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1 IntrodutionIn a reent work [2℄, Feige investigated the problem of estimating the average degree of agraph when given diret aess to the list of degrees (of individual verties). He observedtwo interesting (\phase transition") phenomena. Firstly, in ontrast to the problem of es-timating the average value of an arbitrary funtion d : [N ℄ ! f1; :::; N�1g, sublinear-timeapproximations an be obtained when the funtion represents the degree sequene of a sim-ple graph.1 Seondly, whereas a (2 + �)-approximation an be obtained in O(pjV j)-time,for every onstant � > 0, a better approximation fator annot be ahieved in sublinear time(i.e., a (2� o(1))-approximation requires time 
(jV j)).When viewing the problem of estimating the average degree in a graph as a speial ase ofthe problem of estimating the average value of an arbitrary funtion d : [N ℄! f1; :::; N�1g,it seems natural to restrit the algorithm to \degree queries". However, from the point ofview of sublinear-time algorithms for graphs (f., e.g., [3, 4, 6, 1, 5℄), it seems natural toallow also other queries to the graph (e.g., neighbor queries). Spei�ally, we augment themodel by allowing a weak form of neighbor queries; that is, we onsider a model in whihone may obtain a random neighbor of any vertex of one's hoie. (This model is weakerthan the standard neighbor query model, investigated in [3, 5℄ and other works, in whih thequeries of the form (v; i) are allowed and are answered with the ith neighbor of v.)Our main result is a sublinear algorithm (in the augmented model) that obtains anarbitrarily good approximation of the average degree. Spei�ally, for every onstant � > 0,we obtain a (1 + �)-approximation in eO(pjV j)-time. More preisely, the running time iseO(pjV j) � poly(1=�).Turning bak to the bare model (of Feige [2℄), we provide an alternative proof of hisresult. That is, for every � > 0, we obtain a (2 + �)-approximation (in the bare model)in eO(pjV j)-time.2 We believe that our analysis sheds more light on the reason that theapproximation fator annot be better than two. This alternative analysis, whih is inspiredby the work of [5℄, is also instrutive as a warm-up toward our main result.The above represents a simpli�ed aount of the results. We reall that Feige [2℄ hasprovides his algorithm with a lower-bound on the average degree of the input graph. Thisauxiliary input allows also to handle graphs that have isolated verties (rather than assumingthat eah vertex has degree at least 1) and yields an improvement whenever the lowerboundis better (than the obvious value of 1). Spei�ally, given a lowerbound of ` (on the averagedegree), the omplexity of Feige's algorithm is related to pjV j=` rather than to pjV j.The same improvement holds also for our algorithms. Furthermore, we observe that ouralgorithms (as well as Feige's) an be adapted to work without this lowerbound. Spei�ally,the omplexity of the modi�ed algorithm, whih obtains no a priori information about theaverage degree, is related toqjV j=d where d denotes the atual average degree (whih is, ofourse, not given to the algorithm).1 Here we also assume that there are no isolated verties in the graph (i.e., eah vertex has degree atleast 1).2 The running-time of Feige's algorithm is slightly better: His algorithm uses O(pjV j=�) samples, whereasour algorithm uses t(jV j=�) �pjV j=�3:5 samples, where t(M) = O(logM � log logM).1



The said adaptation is based on the following observation: Even when given a wronglowerbound (on the average degree), none of the said algorithms outputs a (gross) overesti-mation of the average degree (exept with small probability). Thus, we may iteratively runthe algorithm starting with ` = jV j=2 and dereasing ` by a fator of 2 in eah iteration,until we obtain an output that is larger than the urrent value of `. The point is that thealgorithm's output is always an approximately orret lower-bound on the average degree,and so if this value is smaller than ` then the latter is a valid lower-bound on the averagedegree.2 The AlgorithmsLet G = (V;E) be a simple graph (i.e., having no parallel edges and no self-loops), and letd(v) denote the degree of vertex v2V in G (i.e., d(v) def= jfu : fu; vg2Egj). We denote byd def= Pv2V d(v)=jV j the average degree in G, and so d � jV j = 2jEj.Both our algorithms an sample uniformly in V as well as obtain the value of d(v) for anyv 2 V of their hoie (that is, perform degree-queries). First, in Subsetion 2.1, we give a (2+�)-approximation proedure for d that uses only degree queries. Next, in Subsetion 2.2, wemodify this proedure in order to obtain a (1+ �)-approximation proedure. This proedureuses \random neighbor" queries in addition to degree queries. Both proedures take as inputa parameter, `, whih is an a priori known lowerbound on d. The larger `, the more eÆientthese algorithms are. Finally, in Subsetion 2.3, we eliminate the need for this a prioriknowledge.2.1 The Basi ProedureThe following proedure only uses the ability to obtain the degree of uniformly seletedverties. That is, it merely requires the ability to sample verties at random and the abilityto obtain the degree of any desired vertex. The proedure refers to two parameters �; � > 0,where � is the main approximation parameter and � may as well equal �=4.Fator-2 Approximation Algorithm1. Uniformly and independently selet K = poly((log jV j)=�) �pjV j=` verties fromV , and let S denote the (multi-)set of seleted verties.a2. For i = 0; 1; : : : ; dlog(1+�) jV je, let Si = nv 2 S : d(v) 2 �(1 + �)i�1; (1 + �)iio.3. Let I = ni : jSijjSj < 1t �q3�8 � `jV j o, where t def= dlog(1+�) jV je+ 1.4. Output 1K �Pi=2I jSij � (1 + �)i.a Setting K = eO(��3:5 log jV j) �pjV j=` will do. 2



In other words, this proedure outputs the average value of (1+�)dlog(1+�) d(v)e, taken overall v 2 S that belong to suÆiently large subsets Si. Clearly, we might as well output theaverage value d(v), taken over all v 2 S that belong to suÆiently large subsets Si. Indeed,it would have been simpler to just output the average value of d(v) over all v 2 S, butour analysis refers to the former (whereas the analysis of Feige [2℄ refers to the latter). Weomment that the above proedure and its analysis follow the ideas underlying the edge-sampling proedure of Kaufman et. al. [5℄.Intuitively, assuming that jSijjSj � jBijjV j (for all i's), it holds that1K �Xi jSij � (1 + �)i � 1jV j �Xi jBij � (1 + �)i � d (1)The problem is that we may not obtain good approximations for all Bi's; in partiular, weannot obtain a good approximation for small Bi's (i.e., Bi's of size smaller than jV j=K).This is the reason that we disard the orresponding small Si's. Consequently, our (impliit)double-ounting of edges (whih is used as an estimate for djV j) is biased as follows: Edgeswith both endpoints in small Bi's are not ounted at all, edges with a single endpoint ina small Bi are ounted one, and edges with both endpoints in big Bi's are ounted twie(as they should). Thus, the above estimate of djV j is never a gross overestimate. Theunderestimation is due to edges with at least one endpoint in a small Bi. For edges with asingle endpoint in a small Bi we lose a fator of two, whereas the number of edges with bothendpoints in small Bi's is upperbounded by the square of the number of verties residing insmall Bi's, whih in turn is at most p(�=2) � `jV j �q(�=2) � djV j.Theorem 1 For every � < 1=2 and � � �=4, the above proedure outputs a value ed suhthat, with probability at least 2=3, it holds that (0:5� �) � d < ed < (1 + �) � d.For arbitrary � > 0, we get (0:5� �) � d < ed < (1 + (�=2) + 2�) � d.Proof: Reall that t = dlog(1+�) jV je + 1, and de�ne a partition of V into the followingbukets: Bi = nv : d(v) 2 �(1 + �)i�1; (1 + �)iio; for i = 0; 1; : : : ; t� 1 : (2)By de�nition of these bukets, it holds thatd � 1jV j tXi=1 jBij � (1 + �)i � (1 + �) � d : (3)Let � def= (1=t)p(�=4) � `=jV j be a density threshold. By our hoie of the sample size K(whih guarantees that (�=2)2 � � �K � 10 log t), with probability at least 1� (1=100t), thenumber of samples residing in any spei� buket having density above the threshold � isapproximately proportional to the buket's density, whereas few samples resides in buketshaving density below the threshold. More preisely, with probability at least 0:99,8i s.t. jBij � � � jV j : �1� �2� � jBijjV j � jSijK � �1 + �2� � jBijjV j (4)3



and 8i s.t. jBij < � � jV j : jSijK < 1tp(�=2) � `=jV j (5)In partiular, in the latter ase we have that i 2 I. Eq. (3), (4)& (5) imply that, with highonstant probability, it holds thated = 1K �Xi=2I jSij � (1 + �)i � 1jV j tXi=1 �1 + �2� � jBij � (1 + �)i (6)� �1 + �2� � (1 + �) � d : (7)Hene (for, say, � = �=4) we don't get too muh of an overestimate; that is, ed � (1 + �) � d.Turning to the possibility of underestimation, we �rst note that with high probabilityed = 1K �Xi=2I jSij � (1 + �)i � 1jV jXi=2I �1� �2� � jBij � (1 + �)i (8)It remains to lower bound the latter expression. We use the following notations and fats:� For eah i, let Ei def= f(u; v) : u2Bi & fu; vg2Eg; that is, Ei is the set of ordered pairsof adjaent verties suh that the �rst vertex is in Bi. Thus, the Ei's are disjoint andeah edge ontributes two pairs to the set SiEi. Also,jBij � (1 + �)i�1 < jEij � jBij � (1 + �)i (9)� Let U def= fv 2 Bi : i 2 Ig denote the set of verties that reside in bukets that aredeemed small by the sample S. Thus, with high probability,jU j � ���nv2Bi : jBij�(1=t) �p(�=2) � jV j � `o��� � p(�=2) � jV j � ` (10)and jU j2 � (�=2) � jV j � `.� Let E(V1; V2) denote the set of edges with one endpoint in V1 and one endpoint in V2.We onsider a partition of E(V; V ) into the sets E(V n U; V n U), E(V n U; U) andE(U; U). Thus:djV j = 2jE(V n U; V n U)j+ 2jE(V n U; U)j+ 2jE(U; U)j (11)� 2jE(V n U; V n U)j+ 2jE(V n U; U)j+ jU j2 (12)The key observation is that the number of times that an edge is ounted in the sumPi=2I jEijequals the number of endpoints of the edge that reside in V n U = Si=2I Bi. Spei�ally, anedge with both endpoints in V nU is ounted twie, an edge with a single endpoint in V nUis ounted one, and an edge with both endpoints in U is not ounted at all. Thus,Xi=2I jEij = 2jE(V n U; V n U)j+ jE(V n U; U)j (13)4



Combining Eq. (8), Eq. (9) and Eq. (13), it follows thated � 1jV jXi=2I �1� �2� � jBij � (1 + �)i (14)� 1jV jXi=2I �1� �2� � jEij (15)= 1� (�=2)jV j � �2jE(V n U; V n U)j+ jE(V n U; U)j� : (16)Using Eq. (12) and Eq. (10), we geted � 1� (�=2)jV j � �jE(V n U; V n U)j+ jE(V n U; U)j� (17)� 1� (�=2)2 � �d� jU j2jV j � (18)� 1� (�=2)2 � d� �4 � ` (19)Sine ` � d, we are done.2.2 The Improved ProedureHere we present an improved approximation in a model that allows, in addition to the \degreequeries" used above, also \neighbor queries" (as in [3, 5℄ and other works). Namely, for anygiven vertex v and for any j � d(v), we an obtain the jth neighbor of v. Atually, it suÆesto be able to obtain a random neighbor of any desired/queried vertex.The improved proedure builds on the basi proedure (fator-2 approximation) presentedin Setion 2.1. Below we refer to the notations introdued in the proof of Theorem 1. Theidea is to modify the basi proedure by estimating the fration of edges in E(V nU; U), andompensating for the fat that these edges are ounted only one in Pi=2I jEij by ountingthese edges twie. To this end, we take a slightly larger sample; spei�ally, the samplesize K is hosen to be suÆiently large so that for eah i =2 I it holds that jSij � L =poly((log jV j)=�). For eah i =2 I and for eah v 2 Si we take a random neighbor of v andhek whether it falls in Sj2I Bj (i.e., whether it belongs to U). We let e�i be the frationof neighbors (among the seleted jSij neighbors) that belong to U . Finally, in Step 4 ofthe algorithm, we replae jSij � (1 + �)i with (1 + e�i)jSij � (1 + �)i. The modi�ed algorithmproeeds as follows:
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Fator-(1 + �) Approximation AlgorithmSteps 1{3: As in the basi proedure, with K = eO(L=��2) (rather than K =eO((log jV j)=��2)), where (as before) � def= (1=t)p(�=4) � `=jV j.Additional Step: For every i =2 I and every v 2 Si, selet at random a neighbor u of v,and let �(v) = 1 if u 2 Sj2I Bj, and �(v) = 0 otherwise. For every i =2 I, lete�i = jfv2Si : �(v)=1gj=jSij.Step 4 (modi�ed): Output 1K �Pi=2I(1 + e�i) � jSij � (1 + �)i.Theorem 2 For every � < 1=2 and � � �=4, the modi�ed proedure outputs a value ed suhthat, with probability at least 2=3, it holds that (1� �) � d < ed < (1 + �) � d.Proof: Let E 0i = f(u; v) 2 Ei : v 2 Ug and �i = jE 0ij=jEij. That is, for i =2 I, the set E 0iontains pairs of adjaent verties with a single endpoint in V n U , and the orrespondingedge is ounted only one in the sum Pi=2I jEij (similarly for Pi=2I jE 0ij). Thus:Xi=2I jE 0ij = jE(V n U; U)j (20)Xi=2I jEi n E 0ij = 2jE(V n U; V n U)j (21)By our hoie of L we have that with high probability, for every i =2 I suh that �i � �=8,�1� �4� � �i � e�i � �1 + �4� � �i (22)and if �i < �=8 then e�i < �=4.Thus, with high probability, all approximations are quite good, in whih ase the followingholds: ed = 1K �Xi=2I (1 + e�i) � jSij � (1 + �)i (23)� 1jV j �Xi=2I (1 + e�i) � �1 + �2� � jBij � (1 + �)i (24)� 1 + �=2jV j � � Xi=2I�i��=8(1 + (1 + �=4)�i) � (1 + �) � jEij+ Xi=2I�i<�=8(1 + �=4) � (1 + �) � jEij � (25)� (1 + �) � (1 + �)jV j �Xi=2I (1 + �i) � jEij (26)6



where Eq. (25) uses Eq. (9) and our assumption on the estimates e�i. Similarly,ed � (1� �)jV j �Xi=2I (1 + �i) � jEij (27)Using � � �=4 and jE 0ij = �i � jEij, we haveed = 1� (3�=2)jV j �Xi=2I (1 + �i) � jEij (28)= 1� (3�=2)jV j � �Xi=2I jEi n E 0ij+Xi=2I jE 0ij+Xi=2I �i � jEij� (29)= 1� (3�=2)jV j � �Xi=2I jEi n E 0ij+ 2Xi=2I jE 0ij� (30)Using Eq. (20)& (21), it follows thated = 1� (3�=2)jV j � �2jE(V n U; V n U)j+ 2jE(V n U; U)j� (31)= 1� (3�=2)jV j � �2jE(V; V )j � 2jE(U; U)j� (32)= 1� (3�=2)jV j � �djV j � jU j2� (33)Realling that jU j2 � (�=2) � `jV j (and ` � d), we get ed = (1� 2�) � d. Substituting � by �=2,the theorem follows.2.3 Working without a degree lower-boundFor sake of simpliity, we start by modifying both our algorithms suh that, when given avalid lower-bound `, they do not output an overestimation of the average degree (exept withsmall probability). This is done by simply dereasing the output by a fator of 1 + �. Thus,the output, ed, of the modi�ed �rst (resp., seond) algorithm satis�es Pr[(0:5 � 2�)d < ed <d℄ � 2=3 (resp., Pr[(1�2�)d < ed < d℄ � 2=3). Furthermore, by O(1)+log log jV j repetitions,we may redue the probability of error to below 1=(6 log jV j).An interesting feature of our algorithms is that, with high probability, they do not outputan overestimate of d even in ase they are invoked with a parameter ` that is higher thanthe average degree d (i.e., is not a valid lower-bound). To verify this feature, observe thatthe only plae in the analysis where we rely on the assumption ` � d is in bounding theunderestimation error (i.e., when bounding the total number of edges with both endpoints inU). (We omment that also Feige's algorithm [2℄ has this feature, but for di�erent reasons.)This feature allows us to present versions of these algorithms that do not require an apriori lower-bound on the average degree. Spei�ally, let us denote by Ai the algorithmpresented in Setion 2.i, (where i 2 f1; 2g and when the algorithm is modi�ed as suggested7



above). Then, starting with ` = jV j=2, we may proeed in at most 2 log2 jV j iterations asfollows. We invoke Ai with the urrent value of `, and let ed denote the output obtained. Ifed � ` then we halt and output ed, otherwise we proeed to the next iteration while setting`  `=2. In ase all iterations were ompleted and still ed < ` in the last iteration (i.e.,ed < 1=2jV j) then the graph must have no edges and we halt outputting ed = 0.Let `j = jV j=2j be the parameter used in the j-th invoation of algorithm A1 (resp., A2),and let edj denote the orresponding output. Then, with probability at least 2=3, for everyiteration j that took plae, it holds that edj � d and if d � `j then edj � (0:5� 2�)d (resp.,edj � (1� 2�)d). In this ase, assuming the graph ontains any edges at all,3 the algorithmwill stop after at most log(jV j=d) + O(1) iterations, and will output a value that is in theinterval [(0:5� 2�)d; d℄ (resp., the interval [(1� 2�)d; d℄). Thus, the overall running-time ofthe algorithm is poly(��1 log jV j) �qjV j=d.3 Conluding RemarksWe �rst observe that any onstant approximation algorithm must perform 
(pN) queries(even when both degree queries and neighbor queries are allowed). To verify this, onsiderthe following two graphs. One graph is simply a yle over all verties, so that the averagedegree is 2. The other graphs onsists of a yle of size jV j �  �pjV j, for some onstant, and a lique of size  �pjV j. This graph has average degree 2 +  � o(jV j). But for asuÆiently small onstant 0, if an algorithm performs less than 0 �pjV j queries then itannot distinguish between the two graphs. To be more preise, we need to onsider twoorresponding distributions on graphs (allowing all possible labelings of the graph verties),so that 
(pjV j) queries are required to distinguish between a random graph from onedistribution and a random graph from the other distribution.We also note that if parallel edges (or weighted edges) are allowed, then estimatingthe average degree of a graph requires 
(jV j) queries (even when both degree queries andneighbor queries are allowed). Consider the following two graphs (families of graphs): onegraph onsists of a yle over all verties (with a single edge between every pair of onseutiveverties) and the other onsists of a yle over jV j � 2 verties, and a pair of verties with � jV j parallel edges between them. The average degree in the �rst graph is 2 whereasthe average degree in the seond graph is roughly 2 + . But distinguishing between thetwo (families of) graphs requires 
(jV j) queries. Thus there is a gap between the queryomplexity of estimating the average degree of simple graphs and non-simple graphs.3In ase the graph ontains no edges, the algorithm will omplete all iterations with no output (beaused = 0 < `j whereas edj = 0 for eah j � 2 log jV j), and thus output the orret value (i.e., 0) at the laststep. In this ase, the overall running-time of the algorithm is poly(��1 log jV j) � jV j. Clearly one an modifythe algorithm so that its omplexity is never more that O(jV j) (i.e., the omplexity of omputing the exataverage degree), by stopping one `j goes below poly(��1 log jV j)=jV j for an appropriate polynomial in log jV jand ��1.
8



AknowledgmentsWe are grateful to Uri Feige for pointing out an error in an earlier version of this work.Referenes[1℄ B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the Minimum Spanning TreeWeight in Sublinear Time. In Pro. of the 28th ICALP, pages 190{200, 2001.[2℄ U. Feige. On sums of independent random variables with unbounded variane, andestimating the average degree in a graph. To appear in Pro. of the 36th STOC, 2004.[3℄ O. Goldreih and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmia,Vol. 32 (2), pages 302{343, 2002.[4℄ O. Goldreih and D. Ron. A Sublinear Bipartitness Tester for Bounded Degree Graphs.Combinatoria, Vol. 19 (3), pages 335{373, 1999.[5℄ T. Kaufman, M. Krivelevih, and D. Ron. Tight Bounds for Testing Bipartiteness inGeneral Graphs. In Pro. of RANDOM'03, pages 341{353, 2003.[6℄ M. Parnas and D. Ron. Testing the diameter of graphs. Random Strutures and Algo-rithms, Vol. 20 (2), pages 165{183, 2002.

9


