
Approximating Average Parameters of Graphs�In Memory of Shimon Even (1935{2004)Oded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.il Dana RonDepartment of EE{SystemsTel-Aviv UniversityRamat-Aviv, Israel.danar@eng.tau.ac.ilNovember 22, 2007AbstractInspired by Feige (36th STOC, 2004), we initiate a study of sublinear randomized algorithmsfor approximating average parameters of a graph. Speci�cally, we consider the average degree of agraph and the average distance between pairs of vertices in a graph. Since our focus is on sublinearalgorithms, these algorithms access the input graph via queries to an adequate oracle.We consider two types of queries. The �rst type is standard neighborhood queries (i.e., what isthe ith neighbor of vertex v?), whereas the second type are queries regarding the quantities that weneed to �nd the average of (i.e., what is the degree of vertex v? and what is the distance between uand v?, respectively).Loosely speaking, our results indicate a di�erence between the two problems: For approximatingthe average degree, the standard neighbor queries su�ce and in fact are preferable to degree queries.In contrast, for approximating average distances, the standard neighbor queries are of little helpwhereas distance queries are crucial.Keywords: Sublinear-time algorithms, randomized approximation algorithms, Wiener Index

�Part of this work was done while the authors were fellows of the Radcli�e Institute for Advanced Study, HarvardUniversity. The research was supported in part by the Israel Internet Association (ISOC-IL).1

1 IntroductionIn a recent work [8], Feige investigated the problem of estimating the average degree of a graph whengiven direct access to the list of degrees (of individual vertices). He observed two interesting (\phasetransition") phenomena. Firstly, in contrast to the problem of estimating the average value of anarbitrary function d : [n] ! [n� 1] (where [n] def= f1; : : : ; ng), sublinear-time approximations canbe obtained when the function d represents the degree sequence of a simple graph over n vertices.1Secondly, whereas a (2 + �)-approximation can be obtained in O(pn)-time, for every constant � > 0,a better approximation factor cannot be achieved in sublinear time (i.e., a (2 � o(1))-approximationrequires time
(n)).Feige's work views the problem of estimating the average degree of a graph as a special case ofestimating the average value of an arbitrary function d : [n]! [n�1]. Our perspective is di�erent: Weview Feige's work as a sublinear algorithm for a natural graph theoretic problem, which brings up two(open-ended) questions:1. What type of operations (i.e., direct access queries to the input graph) are natural to considerfor such an algorithm?2. What other natural \average graph parameters" (i.e., averages of vertex-based quantities) are ofinterest?In the following two subsections we brie
y address these questions, and afterwards we present ourresults that refer to various combinations of \answers" to these questions.1.1 Types of direct access queriesWhen viewing the problem of estimating the average degree in a graph as a special case of the problemof estimating the average value of an arbitrary function d : [n] ! [n�1], it seems natural to restrictthe algorithm to \degree queries". However, from the point of view of sublinear-time algorithms forgraphs (cf., e.g., [11, 12, 16, 3, 15]), it is natural to allow also other types of queries to the graph.The most natural queries are neighbor queries; that is, queries of the form (v; i) that are answered bythe ith neighbor of v (or by a special symbol that indicates that v has less than i neighbors). In caseof relatively dense graphs, it is also natural to consider adjacency queries (i.e., are vertices u and vadjacent in the graph). Thus, we consider two basic types of queries:1. Standard neighbor (and adjacency) queries, which are natural in any algorithmic problem regard-ing graphs.2. Problem-speci�c queries that associate values to vertices (or to sets of vertices), where our aimis to compute the average of these values. For example, in the case of approximating the averagedegree we consider degree queries.We comment that degree queries can be emulated by a logarithmic number of neighbor queries (i.e.,via binary search).1 Here we also assume that there are no isolated vertices in the graph (i.e., each vertex has degree at least 1).
1

1.2 Other natural averaging problemsIn addition to the average degree of a graph, we consider two problems regarding distances in a graph.The �rst is approximating the all-pairs average distance in the graph, and the second is approximatingthe average distance of a �xed vertex to all the graph vertices. We refer to these problem by the termsall-pairs and single-source, respectively. We mention that the average all-pairs distance is closely relatedto the sum of all pairwise distances, which is called the Wiener Index [18] and plays a central role inchemical graph theory.In addition to the standard neighbor queries, for the average distance approximation problems, wewill also consider distance queries. That is, in both cases, we will consider queries of the form (u; v)that are answered by the distance between u and v in the graph.1.3 Our resultsOur results indicate that for one problem (i.e., approximating the average degree) augmenting theproblem-speci�c oracle with neighbor queries helps, whereas for the other problems (i.e., approximatingaverage distances) such an augmentation does not help. Moreover, as noted above, degree queriesare not of great help (for approximating the average degree), whereas distance queries are crucial toapproximating average distances in sublinear-time. In both cases, our algorithms do not use adjacencyqueries (and our lower bounds show that these queries do not help).1.3.1 Approximating the Average Degree of a GraphWe present a sublinear algorithm that obtains an arbitrarily good approximation of the average degree,while making only neighbor queries.2 Speci�cally, for every constant � > 0, we obtain a (1 + �)-approximation to the average degree of a simple graph G = (V;E) in time eO(pjV j), where thedependence on 1=� is polynomial, and the eO(�) notation hides polylogarithmic factors.Our result should be contrasted with Feige's results [8]: Recall that Feige showed that, when usingonly degree queries, a (2 � o(1))-approximation (of the average degree of G = (V;E)) requires time
(jV j). Thus, neighbor queries are essential for sublinear-time algorithms that provide a (2 � o(1))-approximation. On the other hand, he showed that (for every constant � > 0) a (2 + �)-approximationcan be obtained in O(pjV j)-time (using only degree queries).The running-time of our algorithm is essentially optimal: Any constant-factor approximation of theaverage degree requires making
(pjV j) queries of some graph G = (V;E), even when allowed bothneighbor and degree queries. Furthermore, a (1 + �)-approximation requires
(pjV j=�) queries.The above represents a simpli�ed account of the results. We recall that Feige [8] provides hisalgorithm with a lower bound on the average degree of the input graph. This auxiliary input allowsalso to handle graphs that have isolated vertices (rather than assuming that each vertex has degree atleast 1) and yields an improvement whenever the lower bound is better (than the obvious value of 1).Speci�cally, given a lower bound of ` (on the average degree), the complexity of Feige's algorithmis related to pjV j=` rather than to pjV j. The same improvement holds also for our algorithms.Furthermore, we observe that our algorithms (as well as Feige's) can be adapted to work withoutthis lower bound. Speci�cally, the complexity of the modi�ed algorithm, which obtains no a prioriinformation about the average degree, is related to (jV j=d)1=2, where d denotes the actual averagedegree (which is, of course, not given to the algorithm). Thus, we get:2Note that a degree query can be emulated using O(log jV j) neighbor queries, by performing a kind of binary search.2

Theorem 1.1 There exists an algorithm that makes only neighbor queries to the input graph andsatis�es the following condition. On input G = (V;E) and � 2 (0; 1), with probability at least 2=3,the algorithm halts within O �(jV j=d)1=2 � poly(log jV j; 1=�)� steps and outputs a value in [d; (1 + �) � d],where d = 2jEj=jV j. The expected running time of the algorithm is O �(jV j=d)1=2 � poly(log jV j; 1=�)�.Again, this running-time is essentially optimal in the sense that a (1 + �)-approximation requires
((jV j=(�d))1=2) queries, for every value of jV j and d 2 [2; o(jV j)] and � 2 [!(jV j�1=4); o(jV j=d)].1.3.2 Approximating Average DistancesWe present a sublinear algorithm that obtains an arbitrarily good approximation of the average (all-pairs and single-source) distances, while making (only) distance queries. Speci�cally, we obtain a(1 + �)-approximation of the (relevant) average distance of a simple unweighted graph G = (V;E) intime O �pjV j � poly(1=�)�. Actually, as in the case of approximating the average degree, we obtain animproved performance as a function of the actual average distance.Theorem 1.2 There exists an algorithm that makes only distance queries to the input graph andsatis�es the following condition. On input G = (V;E) and � 2 (0; 1), with probability at least 2=3,the algorithm halts within O �(jV j=dG)1=2 � poly(1=�)� steps and outputs a value in [dG; (1 + �) � dG],where dG is the average of the all-pairs distances in G. The expected running time of the algorithm isO �(jV j=dG)1=2 � poly(1=�)�. A corresponding algorithm exists for the average distance to a given vertexs 2 V .This running time is essentially optimal: Any constant-factor approximation of the average distancein G = (V;E) requires making
((jV j=dG)1=2) queries, even when allowed both distance and neighborqueries. Furthermore, a (1 + �)-approximation requires
((jV j=(�dG))1=2) queries, for every value ofjV j and dG = o(jV j) and � = !(jV j�1).We show that distance queries are essential for sublinear-time algorithms that provide any constant-factor approximation of the average distances. Speci�cally, when using only neighbor queries, a k-approximation of the average distance in G = (V;E) requires making
(jEj=k2 log k) queries. In thecase of the single-source problem, this means that (when using only neighbor queries) a constant-factor approximation is as hard to obtain as the exact value. In the case of the all-pairs problem, byemulating distance queries in a straightforward manner, we can obtain a (1+ �)-approximation in timeO �pjV j � jEj � poly(1=�)� when using only neighbor queries. For moderately sparse graphs, this yieldsan improvement over the straightforward approach of computing (or approximating) all pair-distancesand computing the average of these jV j2 values. Details follow.If jEj � jV j3=2 then our O �pjV j � jEj � poly(1=�)�-time (1 + �)-approximation is de�nitely prefer-able to computing the average of jV j2 approximate values regardless of how the latter are obtained. Onthe other hand, if jEj > jV jemm�0:5, where emm 2 [2; 2:376) is the matrix multiplication exponent (cf. [4]),then one can �nd all pair-distances as well as their average faster than the time that it takes our algo-rithm to approximate the latter (cf. [10, 17]). In the intermediate range3 (of jV j3=2 � jEj � jV jemm�0:5,where emm � 0:5 < 1:876), our algorithm should be compared against a host of algorithms for �ndingall-pairs approximate distances and the preference may depend on additional parameters (e.g., theapproximation sought and a priori bounds on the average distance taken over all pairs). Speci�c al-gorithms that may be relevant include those of [6, 5]. (The interested reader is referred to Zwick'ssurvey [19] of algorithms for �nding exact and approximate distances in graphs.)3Indeed, the intermediate range exists provided emm > 2 (or rather, that emm = 2 is not known).3

As pointed out by Sergio Cabello (priv. comm.), in the case of planar graphs, an almost-lineartime approximation algorithm for the all-pair problem is achievable. The key observation is that, givena planar graph G = (V;E), one can construct in eO(jV j)-time a data structure allowing for distancequeries to be answered in eO(pjV j)-time [9]. Thus, we can obtain a (1 + �)-approximation for theall-pairs problem in planar graphs in time eO(jV jpoly(1=�)), when using only neighbor queries.1.4 Related WorkIn addition to the work of Feige [8], we are aware of two other related results on estimating averageparameters of graphs. Indyk [14] considers the problem of estimating the average distance in a distancemetric over n points. In particular, such a metric is de�ned by the shortest distances in a connectedweighted graph. Indyk gives a (1 + �)-approximation algorithm that runs in time O(n=�7=2). Thisalgorithm is linear in the number of points, but sublinear in the size of the input, which is an n � nmatrix.B�adoiu et. al. [2] consider the problem of computing the optimal cost of the metric facility loca-tion problem in sublinear time. It follows from their analysis that it is possible to obtain a (1 + �)-approximation of the average degree of a graph in time ~O(n=�2) in the following model: The algorithmdoes not have access to degree queries nor to neighbor queries, but rather is only allowed to traversethe incidence list of a vertex according to a �xed order. By de�nition, in this model it takes �(d(v))time to compute the degree d(v) of a vertex v. This algorithm is sublinear in the size of the input whenthe graph is not sparse.2 PreliminariesThroughout the work, all algorithms are probabilistic and have direct access to their input. Thatis, such algorithms are actually probabilistic oracle machines that have access to one or more oracles.These oracles will typically represent a graph in a way to be understood from the context. For example,we consider oracles that answer queries such as neighbor queries and degree queries. The explicit inputto these algorithms will consist of relevant parameters that always include the number of vertices inthe graph, which in turn determines the vertex set (i.e., for simplicity, we assume that all n-vertexgraphs have [n] def= f1; : : : ; ng as their vertex set). As the basic de�nition of approximation algorithms,we use the following standard one.De�nition 2.1 For � > 0, a (1 + �)-approximation of a quantity q : f0; 1g� ! (0;1) is an algorithmthat on input x, with probability at least 2=3, outputs a value in the interval [q(x); (1 + �) � q(x)].The error probability can be decreased to 2�k by invoking the basic algorithm for O(k) times andoutputting the median value. At times, when � � 1, for simplicity of presentation we allow thealgorithm to output a value in the interval [(1 � �) � q(x); (1 + �) � q(x)]. (Indeed, the output can be\normalized" by division (by 1� �).) Our algorithms will all be uniform in the sense that we actuallypresent an algorithm that takes � as a parameter.When stating lower bounds that depend on several parameters, we mean that these bounds holduniformly for all choices of these parameters (or all choices satisfying explicitly stated conditions).That is, when we say that a (1 + �)-approximation of q requires
(f(n; �; p)) queries, we mean thatthere exists a constant c > 0 such for any possible value of the parameters n; � and p and any (1 + �)-approximation algorithm A of the quantity q, there exists an n-vertex graph G with q(G) = p suchthat A makes at least c � f(n; �; p) queries. (Since all our lower bounds refer to the query complexity ofalgorithms, linear speed-up phenomena do not arise.)4

Throughout this work, we assume that the neighbors of each vertex are listed in arbitrary order.This reasonable assumption facilitates the proofs of the lower bound, which can be modi�ed to handlealso the case where the said lists are sorted.In all that follows, when we say \with high probability" we mean with probability at least 1� � forsome small constant � > 0.3 Approximating the Average Degree of a GraphLet G = (V;E) be a simple graph (i.e., having no parallel edges and no self-loops), where jV j = n, andlet d(v) denote the degree of vertex v 2 V in G. We denote by d def= 1nPv2V d(v) the average degreein G. An algorithm for estimating d is allowed to perform two types of queries: degree queries andneighbor queries. Namely, for any vertex v of its choice the algorithm can obtain d(v), and for any vand j � d(v), the algorithm can obtain the jth neighbor of v. Actually, when degree queries are allowedthen it su�ces to allow the algorithm to obtain a random neighbor of any desired (i.e., queried) vertex.We start by describing an algorithm that is provided with an a priori known lower bound ` on thevalue of d. We later eliminate the need for this a priori knowledge. We close this section with a proofthat our algorithm has almost optimal running-time (when referring to its dependence on the size ofthe graph).3.1 The AlgorithmOur algorithm is inspired by the work of Kaufman et. al. [15], and more speci�cally, by a subroutinepresented in [15] for sampling edges \almost uniformly". We start by giving the high-level idea of ouralgorithm. For the sake of simplicity, we assume that the lower bound ` on d is 1. The algorithmsamples vertices and puts them into \buckets" according to their degrees. Speci�cally, in bucket Bi wehave vertices with degree between (1 + �)i�1 and (1 + �)i (where � = �=c for some constant c > 1). IfS is the sample, then we denote by Si the subset of sampled vertices that belong to Bi. The size of Sis O (pn � poly(log n; 1=�)).We will focus on the sets Si that are su�ciently large, because we want jSij=jSj to be a good approx-imation of jBij=n, and we'll show that the error due to small sets (which correspond to relatively smallbuckets) is not too large. In particular, if t is the number of buckets (so that t = O((log n)=�)), thenwe consider a set Si to be large, if jSij =
 �jSj � 1t �p �n�. This ensures that jSij =
(poly(log n; 1=�)).Let us denote the set of the corresponding i's by L. Note that, assuming that jSij=jSj is indeed closeto its expected value, jBij=n, then the total number of vertices that belong to buckets Bi where i =2 L(i.e., small buckets) is O(p�n).Suppose we take (1=jSj)Pi2L jSij(1 + �)i�1 as our estimate for the average degree of the graph.Note that the expected value of jSij=jSj is jBij=n and that (1=n)Pi jBij(1+�)i�1 � d. Given our choiceof the the size of the sample S and hence the size of each Si for i 2 L, with high probability we wouldbe overestimating the average degree by a factor of at most (1 + �). The source of the overestimationis only the error in approximating jBij=n by jSij=jSj. However, we may underestimate d by a factorof roughly 2. The reason is that the edges between large buckets and small buckets are only countedonce, rather than twice, and the edges with both endpoints in small buckets are not counted at all.As noted in the foregoing discussion, the \threshold of largeness" is set such that the total number ofvertices in small buckets is O(p�n) so that the number of edges with both endpoints in small bucketsis upper bounded by O(�n).So far we have described a procedure that approximates d up to a factor of 2 + � while using onlydegree queries (i.e., we obtain Feige's result [8] using a di�erent analysis). To get beyond the \factor5

2 barrier" we observe that the main source of approximation error is due to edges with one endpointin a large bucket and the other endpoint in a small bucket. These edges were counted once (in ourestimate for d), whereas they need to be counted twice. Thus, it su�ces to estimate the number of suchedges. This can be done by estimating, for each large bucket, the fraction of edges that are incident tovertices in the bucket and whose other endpoint is in a small bucket. This estimate cannot be obtainedusing degree queries, but it can be obtained using \random neighbor" queries. Speci�cally, for everyvertex v in a large Si, we select uniformly a neighbor of v and check whether this neighbor resides in asmall bucket. Adding our estimate of the number of edges between large buckets and small buckets to(n=jSj)Pi2L jSij(1 + �)i�1 yields a (1 + �)-approximation of 2jEj (and hence a (1 + �)-approximationof d = 2jEj=n).We are now ready to present and analyze the algorithm in full detail. For t = dlog(1+�) ne+ 1, wede�ne a partition of V into the following buckets:Bi = nv : d(v) 2 �(1 + �)i�1; (1 + �)iio; for i = 0; 1; : : : ; t� 1 : (1)The algorithm refers to an a priori lower bound ` on d, and the reader may think of ` = 1 as in theforegoing motivating discussion. We will consider Bi to be large (and put i 2 L) if the sample Scontains at least
�p�t � jSjpn=`� representatives of Bi. Otherwise it is considered small . For a largeBi, we let e�i denote our approximation of the fractions of edges incident at Bi that have their otherendpoint in a small bucket.Average Degree Approximation Algorithm1. Uniformly and independently select K = ��pn=` � ��4:5 � log2 n � log(1=�)� vertices from V , andlet S denote the (multi-)set of selected vertices.2. For i = 0; 1; : : : ; dlog(1+�) ne, let Si = S \Bi.3. Let L = ni : jSijjSj � 1t �q �6 � ǹ o, where t def= dlog(1+�) ne+ 1.4. For every i 2 L and every v 2 Si, select at random a neighbor u of v, and let �(v) = 1 ifu 2 Sj =2LBj, and �(v) = 0 otherwise. For every i 2 L, let e�i = jfv2Si : �(v)=1gj=jSij.5. Output ed = 1K �Pi2L(1 + e�i) � jSij � (1 + �)i.Lemma 3.1 For every � < 1=2 and � � �=8, the above algorithm outputs a value ed such that, withprobability at least 2=3, it holds that (1� �) � d < ed < (1 + �) � d.Proof: By de�nition of the buckets (i.e., Bi's), it holds thatd � 1n tXi=0 jBij � (1 + �)i � (1 + �) � d : (2)Let � def= (1=t)p(�=8) � `=n be a density threshold. For an appropriate choice of the constant in the�(�) notation for the sample size K, we have that with high probability,8i s.t. jBij � � � n : �1� �4� � jBijn � jSijK � �1 + �4� � jBijn (3)6

and 8i s.t. jBij < � � n : jSijK < 1tp(�=6) � `=n (4)In particular, in the latter case we have that i =2 L. Thus, with high probability, for every i 2 L wehave that jSij=K is close to its expected value. Let us assume from this point on that this is in factthe case.For V1; V2 � V , we denote by ~E(V1; V2) the set of all ordered pairs of adjacent vertices with the�rst vertex in V1 and the second vertex with V2; that is,~E(V1; V2) def= f(v1; v2) : v12V1 ^ v22V2 ^ fv1; v2g2Eg : (5)The set of edges between vertices in V1 and vertices in V2, i.e., unordered pairs of adjacent vertices,is denoted by E(V1; V2). For each i, let ~Ei def= ~E(Bi; V); that is, ~Ei is the set of all ordered pairs ofadjacent vertices such that the �rst vertex is in Bi. By their de�nition, the ~Ei's are disjoint and eachedge contributes two pairs to the set Si ~Ei. Also,jBij � (1 + �)i�1 < j ~Eij � jBij � (1 + �)i (6)Let U def= fv2Bi : i =2Lg denote the set of vertices that reside in buckets that are deemed small by thesample S (that is, jSijjSj < 1t �q �6 � ǹ). Conditioned on Equation (3) holding, and by de�nition of L,jU j � �����v2Bi : jBij< 1t �r �4 � n � `����� � r �4 � n � ` (7)Now, let ~E0i def= ~E(Bi; U) � ~Ei and �i def= j ~E0ij=j ~Eij � 1. That is, for i 2 L, the set ~E0i contains onlypairs of adjacent vertices with a single endpoint in V n U , and the corresponding edge is counted onlyonce in the sumPi2L j ~E0ij. Thus:Xi2L j ~E0ij = jE(V n U;U)j and Xi2L j ~Ei n ~E0ij = 2jE(V n U; V n U)j (8)For an appropriate choice of the constant in the �(�) notation for the sample size K, we have that withhigh probability, for every i 2 L such that �i � �=8,�1� �4� � �i � e�i � �1 + �4� � �i (9)and if �i < �=8 then e�i < �=4.Therefore, with high probability, all the estimates that the algorithm has are quite good, in whichcase the following holds:ed = 1K �Xi2L(1 + e�i) � jSij � (1 + �)i (10)� 1n �Xi2L(1 + e�i) � �1 + �4� � jBij � (1 + �)i (11)� 1 + �=4n � Xi2L�i��=8�1 + �1 + �4� � �i� � (1 + �) � j ~Eij+ Xi2L�i<�=8�1 + �4� � (1 + �) � j ~Eij ! (12)< (1 + �=4)2 � (1 + �)n �Xi2L(1 + �i) � j ~Eij (13)7

where Equation (11) uses our assumption that jSij=K is close to its expected value for every i 2 L,and Equation (12) uses Equation (6) and our assumption on the estimates e�i. Similarly,ed � (1� �=4)2n �Xi2L(1 + �i) � j ~Eij (14)Using � � �=8, j ~E0ij = �i � j ~Eij, and the shorthand a = (1�
)b, which stands for (1�
)b � a � (1+
)b,we have ed = (1� (�=4))2 � (1� �=8)n �Xi2L(1 + �i) � j ~Eij (15)= 1� (3�=4)n � �Xi2L j ~Ei n ~E0ij+Xi2L j ~E0ij+Xi2L �i � j ~Eij� (16)= 1� (3�=4)n � �Xi2L j ~Ei n ~E0ij+ 2Xi2L j ~E0ij� (17)Using Equation (8) it follows thated = 1� (3�=4)n � �2jE(V n U; V n U)j+ 2jE(V n U;U)j� (18)= 1� (3�=4)n � �2jE(V; V)j � 2jE(U;U)j� (19)= 1� (3�=4)n � �dn� jU j2� (20)Recalling (cf. Equation (7)) that jU j2 � (�=4) � `n (and ` � d), we get ed = (1 � �) � d. Lemma 3.1follows.Working without a degree lower bound. For sake of simplicity, we start by modifying thealgorithm so that when given a valid lower bound `, it does not output an overestimation of the averagedegree (except with small probability). This is done by simply decreasing the output by a factor of1 + �. Thus, the output, ed, of the algorithm satis�es Pr[(1 � 2�)d < ed < d] � 2=3. Furthermore, byrunning the algorithm (with the valid lower bound `) independently log log n+O(1) times, and takingthe median value among the outputs, we may reduce the probability of error to below 1=(6 log n).An interesting feature of our algorithm is that, with high probability, it does not output an over-estimate of d even in case it is invoked with a parameter ` that is higher than the average degree d(i.e., is not a valid lower bound). To verify this feature, observe that the only place in the analysiswhere we rely on the assumption ` � d is in bounding the underestimation error (i.e., when boundingthe total number of edges with both endpoints in U). (We comment that also Feige's algorithm [8] hasthis feature, but for di�erent reasons.)This feature allows us to present a version of our algorithm that does not require an a priori lowerbound on the average degree. Speci�cally, let our algorithm (with the probability of error reduced to atmost 1=(6 log n)) be denoted by A. Then, starting with ` = n=2, we may proceed in at most d2 log neiterations as follows. We invoke A with the current value of `, and let ed denote the output obtained. Ifed � ` then we halt and output ed, otherwise we proceed to the next iteration while setting ` `=2. Incase all iterations were completed and still ed < ` in the last iteration (i.e., ed < 1=2n) then the graphmust have no edges and we halt outputting ed = 0.Let `j def= n=2j be the parameter used in the j-th invocation of algorithm A, and let edj denote thecorresponding output. We assume � � 1=4 (or else we simply set � = 1=4). Since the probability of error8

of A is at most 1=(6 log n), with probability at least 2=3, for every iteration j that took place, it holdsthat edj � d, and if d � `j then edj � (1�2�)d. Observe that for j = dlog(2n=d)e we have that `j � d=2,and since � � 1=4 we get edj � (1 � 2�)d � `j. Therefore, assuming the graph contains any edges atall,4 with probability at least 2=3 the algorithm will stop after at most dlog(2n=d)e iterations, witha total running time of O �(n=d)1=2 � poly(log n; 1=�)�, and will output a value that is in the interval[(1� 2�)d; d].It remains to bound the expected running time of the algorithm. Let r = dlog(2n=d))e. The �rstr iterations are completed within O �(n=d)1=2 � poly(log n; 1=�)� steps. For each j � r, if the algo-rithm executes iteration j, then the probability it does not halt right after this iteration is at most1=(6 log n). Since the di�erent iterations are independent, for each j > r, the probability that thealgorithm halts right after iteration j (and not before) is O(log�(j�r) n). The running time of the algo-rithm in this case is dominated by the last iteration, and is hence O �(n=`j)1=2 � poly(log n; 1=�)� =O �(n=d)1=2 � 2(j�r)=2 � poly(log n; 1=�)�. Therefore, the expected running time of the algorithm isO �(n=d)1=2 � poly(log n; 1=�)�. Theorem 1.1 follows.A note on the polylogarithmic dependence on n. As described, our algorithm has a polyloga-rithmic dependence on n even when d is large (e.g., d =
(n)). We note that we can slightly modifythe algorithm so that the dependence will be on log(n=d) instead (that is, the expected running timewill be ~O �(n=d)1=2 � poly(1=�)�). Details follow.We �rst address the case that we have a valid lower bound ` on d. In this case, the modi�ed algorithmconsiders only buckets Bi that contain vertices with degree at least � � `. The number of these bucketsis t0 = O((log n)=�� log(�`)=�) = O(log(n=(�`))=�), and we replace the dependence on t = O((log n)=�)with a dependence on t0 = O((log n)=(�`)). In this case there is clearly no additional overestimationerror, and the additional underestimation error is at most � (so that the total underestimation error is2�).We now turn to the case in which no lower bound on d is provided. Here we observe that it su�cesto repeat the algorithm in iteration j (when `j = n=2j), �(log log(n=`j)) = �(j) times (and take themedian output), so as to reduce its error probability to O(2�j). This ensures that with probability atleast 2=3 the algorithm halts after O(log(n=d)) iterations and output a value as desired. The boundon the expected running time in this case is O �(n=d)1=2 � poly(log(n=d); 1=�)�.3.2 A Lower BoundWe observe that any constant approximation algorithm must perform
(pn) queries. A more generalbound, which depends also on the approximation parameter � > 0 and on the actual degree of thegraph, is stated next.Theorem 3.2 For any n, d 2 [2; o(n)] and � 2 (!(1=dn); o(n=d)), a (1 + �)-approximation of theaverage degree of G = (V;E) requires
((n=(�d))1=2) queries, where d = 2jEj=n. This holds even if thealgorithm is allowed neighbor and adjacency queries as well as degree queries.Proof: For parameters n and k 2 (d; o(n)), we consider (randomly labeled versions of) two graphs.The �rst graph, denoted Gn;k, consists of a d-regular subgraph over n � k vertices and a d-regular4In case the graph contains no edges, the algorithm will complete all iterations with no output (because d = 0 < `jwhereas edj = 0 for each j � 2 log n), and thus outputs the correct value (i.e., 0) at the last step. In this case, theoverall running-time of the algorithm is poly(log n; 1=�) � n. Clearly one can modify the algorithm so that its complexityis never more that O(n) (i.e., the complexity of computing the exact average degree), by stopping once `j goes belowpoly(log n; 1=�)=n for an appropriate polynomial in log n and 1=�.9

subgraph over the remaining k vertices (so that the two subgraphs are not connected). This graph hasaverage degree d. The second graph, denoted G0n;k, consists of a d-regular subgraph over n�k vertices,and a clique over the remaining k vertices. The graph G0n;k has average degree ((n�k)�d+k(k�1))=n =(1�o(1))�(d+k2=n). In particular, if we let k = (�dn)1=2, then we get an average degree of approximately(1 + �)d. However, in order to distinguish between (random labelings of) the two graphs, an algorithmmust hit one of the k vertices in the small component, and hence
(n=k) =
((n=(�d))1=2) queries arenecessary.On non-simple graphs. Recall that we required up front that the graph be simple (i.e., have noparallel edges or self-loops). We note that if parallel edges (or weighted edges) are allowed, thenestimating the average degree of a graph requires
(n) queries (even when both degree queries andneighbor queries are allowed). Consider the following two graphs (or rather families of graphs): onegraph consists of a cycle over all vertices (with a single edge between each pair of consecutive vertices)and the other consists of a cycle over n � 2 vertices, and a pair of vertices with c � n parallel edgesbetween them. The average degree in the �rst graph is 2 whereas the average degree in the secondgraph is roughly 2 + c. But distinguishing between the two (families of) graphs requires
(n) queries.Thus, there is a gap between the query complexity of estimating the average degree of simple graphsand non-simple graphs.4 Approximating the Average Distance from a Single SourceLet G = (V;E) be a simple undirected unweighted connected graph, where n = jV j and m = jEj. Forsome given (\designated") vertex s 2 V we are interested in the average distance of s to the graph'svertices. That is, suppose we have access to an oracle that for any vertex v 2 V provides us with thedistance, denoted distG(s; v), between s and v (in G). We would like to estimate the average distance,denoted dG(s), of vertices in the graph from s; that is, dG(s) = 1nPv2V distG(s; v).We �rst consider algorithms that make only distance queries. We present an algorithm (in Sec-tion 4.1) and a roughly matching lower bound (in Section 4.2). We later discuss the case in which thealgorithm is also allowed neighbor queries (resp., only allowed neighbor queries); see Section 4.3 (resp.,Section 4.4).4.1 An AlgorithmWe start with the basic version of our result.Theorem 4.1 There exists an algorithm that, for any given � 2 (0; 1), makes O �pn=�2� distancequeries and provides a (1 + �)-approximation of the average distance of a given vertex to all graphvertices. The running time of the algorithm is linear in the number of queries.The algorithm selects uniformly and independently q = � �pn=�2� vertices v1; : : : ; vq, performs thedistance queries distG(s; vi) for i = 1; : : : ; q, and outputs the average of the answers received. We showthat, with high probability, the algorithm's output is an (1 + �)-approximation of dG.Let dmax be the maximum distance of any vertex v from s. For each value i = 0; : : : ; dmax let pidenote the fraction of vertices at distance i from s. Let � be a random variable that takes value i withprobability pi, and let �1; : : : ; �q be independent random variables that are distributed the same as �.By de�nition, Exp[�] = dG(s), and the output of our algorithm is distributed as 1qPqj=1 �j . Hence,10

we are interested in upper bounding the probability that 1q Pqj=1 �j deviates from its expected value,dG(s), by more than � � dG(s). By Chebyshev's inequalityPr24������1q qXj=1 �j � Exp[�]������ � � � Exp[�]35 � Var[�]q � �2 � Exp[�]2 (21)Since q = � �pn=�2�, it su�ces to show that the ratio between Var[�] = Exp[�2]�Exp[�]2 and Exp[�]2is O(pn). This follows from the next lemma, by using ` = 1=2.Lemma 4.2 For � and pi as de�ned above, Exp[�2] �p2n=` � Exp[�]2, for any ` � Exp[�].Since all distances are integers, and all are non-negative with the exception of dist(s; s) = 0, we knowthat Exp[�] � n�1n � 1=2, which means that ` = 1=2 can always be used. Thus, Theorem 4.1 followsfrom Lemma 4.2 (when specialized to the obvious case of ` = 1=2), but we will use the more generalstatement of the lemma later.Proof: By the de�nitions of � and dmax,Exp[�2] = dmaxXi=0 pi � i2 � dmax � Exp[�] (22)We next observe that by de�nition of dmax, for every i � dmax we have that pi � 1=n, and soExp[�] = dmaxXi=0 pi � i > d2max2n (23)By multiplying the bound Exp[�] � ` (provided in the lemma's hypothesis) by Equation (23), we getthat Exp[�]2 � `�d2max2n and so p` � dmaxp2n � Exp[�] (24)Finally, we multiply Equations (22) and (24) and get thatExp[�2] � p` � dmaxp2n � dmax � Exp[�]2 (25)and the lemma follows.An improved algorithm. As in Section 3, a better algorithm can be obtained, provided we aregiven an a priori lower bound on the average distance. Denoting such a lower bound by `, Lemma 4.2implies that using a sample of size q = �(pn=`=�2) will do. Actually, similarly to what was shown inSection 3, we do not need this lower bound, and the algorithm can function without it and perform aswell. That is:Theorem 4.3 There exists an algorithm that, on input a graph G = (V;E), a vertex s and param-eter � 2 (0; 1), with probability at least 2=3 halts in O((n=dG(s))1=2=�2) steps and provides a (1 + �)-approximation of the average distance of vertices in G to s (i.e., dG(s)). The algorithm performs onlydistance queries and its expected running time is O((n=dG(s))1=2=�2).11

Proof: Let A be the modi�ed version of the algorithm that is given a lower bound ` on the averagedistance to s. Since by increasing the sample size of A by a constant factor c, we can reduce its errorprobability by at least this factor, we may assume that when A is given a valid lower bound on dG(s),it outputs a (1 + �)-approximation of dG(S) with probability at least (1� 2�6).5When there is no a priori lower bound on dG(s), the algorithm proceeds in at most (log n + 1)iterations. In the jth iteration, the algorithm executed A with the lower bound set to `j def= n=2j .The algorithm outputs the estimate obtained in the jth iteration and halts if and only if the estimateexceeds `j by a factor of at least eight. Otherwise the algorithm continues to the next iteration. (Ifthe algorithm reaches the last iteration, the estimate is used unconditionally.)We �rst note that, with probability at least 3=4, the algorithm does not produce an output inany of the �rst t def= blog(n=dG(s))c iterations (i.e., in any iteration j such that dG(s) < `j). Thereason is that in order to halt in such an iteration j � t it must hold that the estimate is at least8`j > 8dG(s). Since the expected value of the output is always dG(s), by Markov inequality this mayhappen with probability at most dG(s)=(8`j). Thus, the probability of this bad event is upperboundedby Ptj=1 dG(s)=(8`j), which in turn equals Pblog(n=dG(s))cj=1 (2jdG(s)=(8n)) < 1=4.If this bad event does not occur, then for each j > t, with probability at least 1 � 2�6, the ex-ecution of A with the lower bound `j gives us a (1 + �)-approximation of dG(S). In such a case,once `j � dG(s)=16, the estimate is at least (1 � �) � dG(S) � 8`j, causing the algorithm to halt(we may assume that � � 1=2 or else we set � = 1=2). The probability that the algorithm haltsin one of the iterations between t + 1 = blog(n=dG(s))c + 1 and dlog(16n=dG(s))e with an out-put that is not a (1 + �)-approximation of dG(S), or continues beyond iteration dlog(16n=dG(s))e,it at most 1=12. Conditioned on none of the two bad events occuring, the algorithms halts withinPdlog(16n=dG(s))ej=1 O �(n=(n=2j))1=2=�2� = O �(n=dG(s))1=2=�2� steps with a (1 + �)-approximation ofdG(S). Showing that the expected running time is O �(n=dG(s))1=2=�2� as well, is done very simi-larly to the analysis of the average degree algorithm.Re
ection. Underlying the proof of Theorem 4.3 is a general phenomenon that can be applied to anyrandomized approximation algorithm, and is bene�cial provided that the algorithm performs betterwhen given a valid lower bound on the quantity it needs to approximate.4.2 A Lower BoundIn this subsection we prove the essential optimality of the algorithm presented in the previous subsec-tion.Theorem 4.4 For any n, d 2 (2; o(n)) and � 2 (!(1=dn); o(n=d)), any algorithm that performs onlydistance queries and provides a (1 + �)-approximation of the average distance of vertices in G = (V;E)from s 2 V , where dG(s) = d, must ask
((n=(�d))1=2) queries.Proof: For parameters n and k 2 (!(1); o(n)), consider a (randomly labeled version of a) graph,denoted Gn;k, consisting of a star of n� k vertices centered at s and a path of length k also startingat vertex s. (The reader may think of such a graph as a broom; see Figure 1.)5We note that as opposed to the analysis of the average degree approximation algorithm, here we do not need todecrease the error probability below a constant. The reason is that by the de�nition of the algorithm, the expected valueof its output is dG(s). We can use this to easily bound the probability that the output overestimates dG(s) signi�cantly.12

. . .s v1 v2 vk�1 vk...w1w2wn�k�1Figure 1: An illustration of the \broom-like" graph Gn;k.By de�nition, the average distance of Gn;k from s isdGn;k(s) = (n� k � 1) � 1 +Pki=1 in = 1 + k2 � k � 22n = 1 + (1� o(1)) � k22n (26)Given d 2 (2; o(n)) and � 2 (1=pdn; o(n=d)), we set k so that 1+ (k2=2n) = d (i.e., k � (2(d � 1)n)1=2)and k0 � (2((1 + �) � d� 1)n)1=2. Thus, dGn;k(s) = (1 � o(1)) � d and dGn;k0 (s) = (1 + �) � d. First, weobserve that any (1 + �)-approximation algorithm must make
(n=k0) =
((n=(1 + �)d)1=2) queries inorder to hit a vertex on the path (which is a necessary condition for distinguishing Gn;k from Gn;k0).This establishes the claim for (say) � > 1=10. For the case of � � 0:1, we note that in order to distinguishGn;k from Gn;k0 the algorithm must hit one of the k0 � k vertices that are at distance greater than kfrom s in Gn;k0, which yields the lower bound of
(n=(k0 � k)) =
((n=�d)1=2).4.3 Adding Access to Neighbor and Adjacency QueriesA natural question is whether providing access to neighbor and adjacency queries, in addition todistance queries, can improve the query complexity of the average degree estimation problem. Weanswer this question negatively.Theorem 4.5 Let d 2 (2; o(n)) and � 2 (!(1=dn); o(n=d)), and consider algorithms that are alloweddistance queries, neighbor queries, adjacency queries and degree queries. Any such algorithm thatprovides a (1 + �)-approximation of the average distance of vertices in G = (V;E) from s 2 V wheredG(s) = d, must perform
((n=�d)1=2) queries.For k < k0 < n, consider the \broom-like" graphs Gn;k and Gn;k0 de�ned in the proof of Theorem 4.5.Note that for an algorithm that is allowed neighbor and degree queries it is no longer true that thealgorithm cannot distinguish (randomly labeled versions of) these graphs in o(n=k0) queries. In partic-ular, a single degree query at vertex s distinguishes the two graphs (because the degree of s is n�k�1and n� k0� 1, respectively). Thus, a modi�cation of the construction is due for proving Theorem 4.5.The proof follows.Proof: We consider two cases depending on the value of �. In case � � 1=4, we consider a \two-edgedbroom" graph Gn;k;` with a \stick" of length ` connecting a star of size n � k (centered at s) and astar of size k � ` (on the other side); see Figure 2. That is, as in Gn;k, the designated vertex s is thecenter of a star of n � k vertices, with leaves denoted w1; : : : ; wn�k�1, and is the origin of a path oflength `, where the vertices on the path are v1; : : : ; v`. In addition, v` is also the center of a star, wherethe neighbors of v` are v`+1; : : : vk (as well as v`�1). Observe that for any particular choice of n andk = o(n), the degree of s in Gn;k and in Gn;k;` is the same. Moreover, the only di�erence between thetwo graphs is that in Gn;k;` the path starting at s does not have length k but rather ends with a starafter ` steps. It follows that (randomly labeled versions of) Gn;k and Gn;k;` can only be distinguished13

...w1w2
wn�k�1 s v1 v2 v`�1 v` vkv`+2v`+1

Figure 2: An illustration of the \two-edged broom" graph Gn;k;`.by hitting a vertex that is not in the big ((n� k)-vertex) star. In \hitting" a vertex we mean that thevertex either corresponds to a queried vertex (in any type of query), or is the answer to a neighborquery. Thus,
(n=k) queries are required to distinguish the aforementioned graphs.Recall that dGn;k(s) = 1 + (1� o(1)) � (k2=2n). By de�nition of Gn;k;`,dGn;k;`(s) = n� k � 1 + `(`+1)2 + (k � `)(`+ 1)n (27)= n+ k`� (`2=2)� `=2� 1n = 1 + (1� o(1)) � `(2k � `)2n (28)Thus, given d 2 (2; o(n)) and � > 1=d2, we shall set k and ` such that dGn;k(s) = (1 + �)d whiledGn;k;`(s) < d. In particular, we shall take k � p1 + � � (2(d � 1)n)1=2, and ` � (p1 + � � p�) �(2(d � 1)n)1=2. Under this setting (and � � 1=4), we have n=k =
((n=�d)1=2), and the theorem followsfor � � 1=4.
... ...

...wn�t`�1w2w1 vt;1vt;2 vt;`...
v1;`v1;2v1;1 vt�1;`vt�1;2vt�1;1swn�t`�1w2w1 v1;`v1;2v1;1 vt�1;1. . .vt;2vt;1

vt;2`�1
s

Figure 3: The \multi-stick broom" graph G0n;k;`.We now turn to the case of � < 1=4. In this case we use a di�erent graph G0n;t;` that consists ofa star of size n � t` centered at s and t paths, each of length `, emanating from s. That is, vertex sis the center of a star of n � t` vertices, with leaves denoted w1; : : : ; wn�t`�1, and t paths such thatthe ith path is denoted vi;1; : : : ; vi;` and vi;1 is connected to s. (See Figure 3.) We also consider thegraph G00n;t;` that is identical to G0n;t;` except that the t� 1st path has length 1 and the last path haslength 2`�1. The average distance from s in G0n;t;` (resp., G00n;t;`) is approximately 1+(t �`2=2n) (resp.,14

1 + (t � `2=2n) + (`2=n)):dG0n;t;`(s) = n� t`� 1n + t � (1 + o(1)) � `22n � 1 + t � `22n (29)dG00n;t;`(s) � dG0n;k;`(s) + (1 + o(1)) � (2`� 1)22n � 2 � (1 + o(1)) � `22n � dG0n;k;`(s) + `2n (30)Given d 2 (2; o(n)) and � 2 (!(1=dn); 1=4), we set the parameters such that t`2 � 2(d � 1)n and` = p�dn (i.e., t � 2(d � 1)=(�d)). Thus, the ratio between the averages distances to s in the twographs is 1+ �. In order to distinguish these graphs, the algorithm must hit a vertex on one of the lasttwo paths, which requires making
(n=`) queries, establishing the
((n=�d)1=2) lower bound.4.4 Using Only Neighbor and Adjacency QueriesIf we allow only neighbor and adjacency queries, then the problem becomes signi�cantly harder.Theorem 4.6 Let k > 1 be a given approximation factor. Every algorithm that is allowed onlyneighbor, adjacency and degree queries must perform
(m=(k log k)) queries in order to obtain a k-approximation of dG(s) in graphs G with m edges, provided m 2 (
(n); O(n2=k log k)).Proof: Here too we consider two distributions over graphs, denoted D1 and D2. In both distributions,the vertices are partitioned into t = �(k log k) equal-size subsets V1; : : : ; Vt. Each Vj is partitioned intotwo subsets, denoted Lj and Rj, where jLjj = ��n=t and jRj j = (1��)�n=t for � 2 (0; 0:5] that satis�esjLj j � jRj j = �(1 � �) � (n=t)2 = m=t. Such � exists provided that (n=t)2=4 � m=t (i.e., m � n2=4t).The vertex s belongs to L1. The edges of the graphs in the support of the two distributions are de�nedas follows: For each j = 1; : : : ; t, there is an almost complete bipartite graph between Lj and Rj ; theonly exception are two, randomly selected, missing edges. When j = 1, these edges are restricted notto be incident to s. The end-points of these missing edges are used to connect between vertices thatbelong to the di�erent Vj's.
.
Lt Rt L1 R1 L2 R2 L3 R3s

Figure 4: An illustration for graphs in the support of D1.Speci�cally, let the endpoints of these missing edges be denoted vj;1; vj;2 2 Lj and wj;1; wj;2 2 Rj .We refer to these vertices as terminal vertices, and to the edges we put between them as connectingedges. In D1 we add edges between the terminal vertices so as to form a cycle structure among theVj 's. Namely, for each j = 1; : : : ; t � 1, we put the edges (vj;1; wj;1) and (vj;2; wj;2), and we put the15

edges (vt;1; w1;1), and (vt;2; w1;2). That is, the connecting edges are placed according to the structureof a 4-regular (non-simple) t-vertex graph that forms a \double cycle" (i.e., a cycle in which eachedge appears with multiplicity 2). In D2 we connect the terminal vertices according to some 4-regularexpander graph with vertex set [t]. That is, if (i; j) is an edge of the expander then we connect one ofthe (four) terminal vertices of Vi to one of the terminal vertices of Vj (while using each terminal vertexexactly once). Thus, each graph in the support of each distribution is determined by the choice of themissing edges within each Vj (which in turn determine the terminal vertices of the graph as well as allconnecting edges). For an illustration, see Figure 4.By de�nition of D1, for every graph G in the support of D1, it holds that dG(s) = �(t). On theother hand, since in D2 the edges between the terminal vertices are determined by a 4-regular (t-vertex)expander graph, dG(s) = �(log t) holds for every graph G in the support of D2. Thus, the ratio betweenthe average distances is
(t= log t) � k, where equality holds for a suitable choice of t =
(k log k).Consider the execution of an algorithm that can perform only neighbor and adjacency queries. Aslong as the algorithm does not perform a query concerning a connecting edge, the distribution on theanswers it gets is exactly the same for both distributions on graphs. Recall that for each j there are(m=t) � 2 non-connecting edges that are incident to vertices in Vj and two connecting edges. Thus,
(m=t) queries are required to distinguish between the two (graph) distributions. (Note that degreequeries are of no help towards distinguishing the two distributions, whereas a single distance query(explicitly prohibited here) allows to distinguish these two distributions.) The lower bound follows byour choice of t = O(k log k).5 Approximating All-Pairs Average DistanceIn continuation to Section 4, we now turn to the question of estimating the average distance betweenall pairs of vertices. That is, for any given graph G over n vertices, let dG = 1n2 Pu;v2V dist(u; v) denotethe average distance between pairs of vertices in the graph.5.1 An AlgorithmWe show that the result for estimating the average distance to a single source, which was stated inTheorem 4.3, can be extended to estimating the average distance between all pairs of vertices.Theorem 5.1 There exists an algorithm that, on input a graph G = (V;E), and parameter � 2 (0; 1),with probability at least 2=3 halts in O((n=dG)1=2=�2) steps and provides a (1+ �)-approximation of dG.The algorithm performs only distance queries and its expected running time is O((n=dG)1=2=�).Proof: We focus on the basic version that is analogous to the one stated in Theorem 4.1, and commentthat its modi�cation is analogous to the proof of Theorem 4.3. Here, the basic algorithm takes a sampleof �(pn=�2) uniformly selected pairs of vertices, and outputs the average over the distances betweenthese pairs. Below we modify the proof of Theorem 4.1 to show that the foregoing basic algorithmprovides a (1 + �)-approximation of dG.Let dmax be rede�ned here to be the maximum distance between any pair of vertices, let pi be thefraction of pairs of vertices (among all n2) that are at distance i and let � be distributed according tothe pi's (i.e., Pr[� = i] = pi). Below we show that Exp[�2] = O(pn � Exp[�]2), and the correctness ofthe basic algorithm follows (as in the proof of Theorem 4.1). In fact, analogously to Lemma 4.2, forany lower bound ` of dG, we prove thatExp[�2] = O(pn=` � Exp[�]2) : (31)16

Needless to say, the proof is analogous to the proof of Lemma 4.2. The main challenge is to establishExp[�] =
(d2max=n), and the rest follows as before. Speci�cally, Equation (22) holds as before bythe de�nitions of dmax and �, and once we establish Exp[�] =
(d2max=n), which is analogous toEquation (23), we derive Equation (31) in the same manner that Lemma 4.2 was established. Wethus turn to giving a lower bound on Exp[�]. Consider any pair of vertices v0 and vd that are atdistance d def= dmax from each other, and let v1; : : : ; vd�1 be the vertices on the shortest path betweenthem. The main observation here is that, for every 1 � i � d=3, and every vertex w in the graph, itholds that dist(vi; w) + dist(w; vd�i) � d=3 (because dist(vi; vd�i) = d� 2i � d=3 whereas dist(vi; w) +dist(w; vd�i) � dist(vi; vd�i)). Hence, here we have thatExp[�] � Pd=3i=1Pw2[n](dist(vi; w) + dist(w; vd�i))n2 � (d=3) � n � (d=3)n2 =
�d2maxn � (32)as claimed.5.2 Lower BoundsIt is not hard to verify that lower bounds analogous to the ones stated in Theorems 4.5 and 4.6 holdalso for approximating the average of all-pairs distances (i.e., dG). That is, for a graph G = (V;E), any(1 + �)-approximation algorithm that uses distance queries must make
((n=�dG)1=2) queries, whereasany constant factor approximation algorithm that uses only standard queries must make
(jEj) suchqueries. The bound is proved using the same graphs that were used in the proofs of Theorems 4.5and 4.6. We merely need to verify that the average all-pair distances of these graphs essentiallymaintain the relative behavior of the single-source counterparts. This is most obvious for the graphsused in the proof of Theorem 4.6. As for the graphs used in the proof of Theorem 4.5, we note thatdGn;k > n� k � 1n � (1 + dGn;k(s)) + kn � k2 � 2 + k2n = 2 � dGn;k(s) (33)dGn;k;` � n� kn � (1 + dGn;k;`(s)) + (1 + o(1)) � (2k � `)`2n � 2 � dGn;k;`(s) (34)dG0n;t;` = n� t`n � (1 + dG0n;k;`(s)) + tǹ � `2 + o(1) � 2 � dG0n;k;`(s) (35)dG00n;t;` � dG0n;k;` + 2 � `2n � 2 � dG00n;k;`(s) (36)6 ExtensionsThe results of Sections 4 and 5 extend to the directed versions of these averaging problems: For theall-pairs problem, we require that the directed graph be strongly connected (so that all distances arede�ned). For the case of the single-source problem, it su�ces to require that all vertices are reachablefrom the source.Our algorithms for degree approximation have been recently extended to k-regular hypergraphs [1].The complexity in this case is ~��jV j k�1k �.AcknowledgmentsWe thank the anonymous referees of RANDOM 2007 and of this journal for their helpful comments.We also thank K�r Barhum for pointing out an inaccuracy in a previous version. Lastly, we are gratefulto Sergio Cabello for calling our attention to the Wiener Index and for suggesting the application ofour all-pairs distance approximation result to planar graphs.17

References[1] K. Barhum. Approximating Averages of Geometrical and Combinatorial Quanti-ties. M.Sc. Thesis, Weizmann Institute of Science, February 2007. Available fromhttp://www.wisdom.weizmann.ac.il/�oded/msc-kb.html[2] M. B�adoiu, A. Czumaj, P. Indyk, and C. Sohler. Facility Location in Sublinear Time. In Proc. ofthe 32nd International Colloquium on Automata, Languages and Programming (ICALP), pages866{877, 2005.[3] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the Minimum Spanning Tree Weightin Sublinear Time. In SIAM Journal on Computing , volume 34, pages 1370{1379, 2005.[4] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progression. Journal ofSymbolic Computation, volume 9, pages 251{280, 1990.[5] D. Dor, S. Halperin, and U. Zwick. All Pairs Almost Shortest Paths. SIAM Journal on Computing ,volume 29, pages 1740{1759, 2000.[6] M. L. Elkin. Computing Almost Shortest Paths. Technical Report MCS01{03, Faculty of Mathe-matics and Computer Science, Weizmann Institute of Science, 2001.[7] S. Even. Graph Algorithms. Computer Science Press, 1979.[8] U. Feige. On Sums of Independent Random Variables with Unbounded Variance, and Estimatingthe Average Degree in a Graph. In SIAM Journal on Computing , volume 35, pages 964{984, 2006.[9] J. Fakcharoenphol and S. Rao. Planar Graphs, Negative Weight Edges, Shortest Paths, and NearLinear Time. JCSS, Vol. 72, pages 868{889, 2006.[10] Z. Galil and O. Margalit. All Pairs Shortest Paths for Graphs with Small Integer Length Edges.Information and Computation, volume 54, pages 243{254, 1997.[11] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica, volume 32,pages 302{343, 2002.[12] O. Goldreich and D. Ron. A Sublinear Bipartiteness Tester for Bounded Degree Graphs. Combi-natorica, volume 19, pages 335{373, 1999.[13] O. Goldreich and D. Ron. Approximating Average Parameters of Graphs. ECCC, TR05-073.[14] P. Indyk. Sublinear Time Algorithms for Metric Space Problems. in Proc. of the 31st AnnualACM Symposium on Theory of Computing (STOC), pages 428{434, 1999.[15] T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness in GeneralGraphs. In SIAM Journal on Computing, volume 33, pages 1441{1483, 2004.[16] M. Parnas and D. Ron. Testing the Diameter of Graphs. Random Structures and Algorithms,volume 20, pages 165{183, 2002.[17] R. Siedel. On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs. Journal ofComputer and System Sciences, volume 51, pages 400{403, 1995.[18] H. Wiener. Structural Determination of Para�n Boiling Points. J. Am. Chem. Soc., Vol. 69, pages17-20, 1947. 18

[19] U. Zwick. Exact and Approximate Distances in Graphs { A Survey. Proceedings of the 9th AnnualEuropean Symposium on Algorithms (ESA), pages 33{48, 2001.

19

