
Approximating Average Parameters of GraphsIn Memory of Shimon Even (1935{2004)Oded Goldreich�Department of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.il Dana RonyDepartment of EE{SystemsTel-Aviv UniversityRamat-Aviv, Israel.danar@eng.tau.ac.ilJuly 14, 2005AbstractInspired by Feige (36th STOC, 2004), we initiate a study of sublinear randomized algorithmsfor approximating average parameters of a graph. Speci�cally, we consider the average degreeof a graph and the average distance between pairs of vertices in a graph. Since our focus is onsublinear algorithms, these algorithms access the input graph via queries to an adequate oracle.We consider two types of queries. The �rst type is standard neighborhood queries (i.e., whatis the ith neighbor of vertex v?), whereas the second type are queries regarding the quantitiesthat we need to �nd the average of (i.e., what is the degree of vertex v? and what is the distancebetween u and v?, respectively).Loosely speaking, our results indicate a di�erence between the two problems: For approxi-mating the average degree, the standard neighbor queries su�ce and in fact are preferable todegree queries. In contrast, for approximating average distances, the standard neighbor queriesare of little help whereas distance queries are crucial.

Note: Part of this work (i.e., the material in Section 3.1) was posted on ECCC (as TR04-013).Keywords: Sublinear-time algorithms, randomized approximation algorithms�Part of this work was work done while being a fellow of the Radcli�e Institute for Advanced Study, HarvardUniversity. The research was supported in part by the Israel Internet Association (ISOC-IL).yPart of this work was done while being a fellow of the Radcli�e Institute for Advanced Study, Harvard University.The research was supported in part by the Israel Internet Association (ISOC-IL).1



1 IntroductionIn a recent work [6], Feige investigated the problem of estimating the average degree of a graphwhen given direct access to the list of degrees (of individual vertices). He observed two interesting(\phase transition") phenomena. Firstly, in contrast to the problem of estimating the average valueof an arbitrary function d : [n]! [n�1] (where [n] def= f1; :::; ng), sublinear-time approximations canbe obtained when the function d represents the degree sequence of a simple graph over n vertices.1Secondly, whereas a (2+�)-approximation can be obtained in O(pn)-time, for every constant � > 0,a better approximation factor cannot be achieved in sublinear time (i.e., a (2�o(1))-approximationrequires time 
(n)).Feige's work views the problem of estimating the average degree of a graph as a special case ofestimating the average value of an arbitrary function d : [n]! [n�1]. Our perspective is di�erent:We view Feige's work as a sub-linear algorithm for a natural graph theoretic problem, which bringsup two (open-ended) questions:1. What type of operations (i.e., direct access queries to the input graph) are natural to considerfor such an algorithm?2. What other natural \average graph parameters" (i.e., averages of vertex-based quantities) areof interest?In the following two subsections we brie
y address these questions, and afterwards we present ourresults that refer to various combinations of \answers" to these questions.1.1 Types of direct access queriesWhen viewing the problem of estimating the average degree in a graph as a special case of theproblem of estimating the average value of an arbitrary function d : [n]! [n�1], it seems naturalto restrict the algorithm to \degree queries". However, from the point of view of sublinear-timealgorithms for graphs (cf., e.g., [8, 9, 11, 1, 10]), it is natural to allow also other types of queriesto the graph. The most natural queries are neighbor queries; that is, queries of the form (v; i) thatare answered by the ith neighbor of v (or by a special symbol that indicates that v has less than ineighbors). In case of relatively dense graphs, it is also natural to consider adjacency queries (i.e.,are vertices u and v adjacent in the graph). Thus, we consider two basic types of queries:1. Standard neighbor (and adjacency) queries, which are natural in any algorithmic problemregarding graphs.2. Problem-speci�c queries that associate values to vertices (or to sets of vertices), where ouraim is to compute the average of these values. For example, in the case of approximating theaverage degree we consider degree queries.We comment that degree queries can be emulated by a logarithmic number of neighbor queries(i.e., via binary search).1 Here we also assume that there are no isolated vertices in the graph (i.e., each vertex has degree at least 1).
1



1.2 Other natural averaging problemsIn addition to the average degree of a graph, we consider two problems regarding distances in agraph. The �rst is approximating the all-pairs average distance in the graph, and the second isapproximating the average distance of a �xed vertex to all the graph vertices. We refer to theseproblem by the terms all-pairs and single-source, respectively.In addition to the standard neighbor queries, for the average distance approximation problems,we will also consider distance queries. That is, in both cases, we will consider queries of the form(u; v) that are answered by the distance between u and v in the graph.1.3 Our resultsOur results indicate that for one problem (i.e., approximating the average degree) augmenting theproblem-speci�c oracle with neighbor queries helps, whereas for the other problems (i.e., approxi-mating average distances) such an augmentation does not help. Moreover, as noted above, degreequeries are not of great help (for approximating the average degree), whereas distance queries arecrucial to approximating average distances in sublinear-time. In both cases, our algorithms do notuse adjacency queries (and our lower bounds show that these queries do not help).1.3.1 Approximating the Average Degree of a GraphWe present a sublinear algorithm that obtains an arbitrarily good approximation of the averagedegree, while making only neighbor queries. Speci�cally, for every constant � > 0, we obtain a(1 + �)-approximation to the average degree of a graph G = (V;E) in eO(pjV j)-time, where theO-notation hides a polynomial dependence on �.Our result should be contrasted with Feige's results [6]: Recall that Feige showed that, whenusing only degree queries, a (2�o(1))-approximation (of the average degree of G = (V;E)) requirestime 
(jV j). Thus, neighbor queries are essential for sublinear-time algorithms that provide a(2� o(1))-approximation. On the other hand, he showed that (for every constant � > 0) a (2 + �)-approximation can be obtained in O(pjV j)-time (using only degree queries).The running-time of our algorithm is essentially optimal: any constant-factor approximation ofthe average degree requires making 
(pjV j) queries of some graph G = (V;E), even when allowedboth neighbor and degree queries. Furthermore, a (1+�)-approximation requires 
(pjV j=�) queries.The above represents a simpli�ed account of the results. We recall that Feige [6] has provideshis algorithm with a lower bound on the average degree of the input graph. This auxiliary inputallows also to handle graphs that have isolated vertices (rather than assuming that each vertexhas degree at least 1) and yields an improvement whenever the lower bound is better (than theobvious value of 1). Speci�cally, given a lower bound of ` (on the average degree), the complexity ofFeige's algorithm is related to pjV j=` rather than to pjV j. The same improvement holds also forour algorithms. Furthermore, we observe that our algorithms (as well as Feige's) can be adaptedto work without this lower bound. Speci�cally, the complexity of the modi�ed algorithm, whichobtains no a priori information about the average degree, is related to (jV j=d)1=2, where d denotesthe actual average degree (which is, of course, not given to the algorithm). Thus, we get:Theorem 1.1 There exists an algorithm that makes only neighbor queries to the input graph andsatis�es the following condition. On input G = (V;E) and � 2 (0; 1), with probability at least 2=3,2



the algorithm halts within eO((jV j=d)1=2 �poly(1=�)) steps and outputs a value in [d; (1+�) �d], whered = 2jEj=jV j.Again, this running-time is essentially optimal in the sense that a (1 + �)-approximation requires
((jV j=(�d))1=2) queries, for every value of jV j and d 2 [2; o(jV j)] and � 2 [!(jV j�1=4); o(jV j=d)].1.3.2 Approximating Average DistancesWe present a sublinear algorithm that obtains an arbitrarily good approximation of the average(all-pairs and single-source) distances, while making (only) distance queries. Speci�cally, we obtaina (1+ �)-approximation of the (relevant) average distance of a graph G = (V;E) in time O(pjV j) �poly(1=�). Actually, as in the case of approximating the average degree, we obtained an improvedperformance as a function of the actual average distance.Theorem 1.2 There exists an algorithm that makes only distance queries to the input graph andsatis�es the following condition. On input G = (V;E) and � 2 (0; 1), with probability at least 2=3,the algorithm halts within O((jV j=dG)1=2 � poly(1=�)) steps and outputs a value in [dG; (1 + �) � dG],where dG is the average of the all-pairs distances in G. A corresponding algorithm exists for theaverage distances to a given vertex s 2 V .This running time is essentially optimal: any constant-factor approximation of the average distancein G = (V;E) requires making 
((jV j=dG)1=2) queries, even when allowed both distance and neigh-bor queries. Furthermore, a (1 + �)-approximation requires 
((jV j=(�dG))1=2) queries, for everyvalue of jV j and dG = o(jV j) and � = !(jV j�1).We show that distance queries are essential for sublinear-time algorithms that provide anyconstant-factor approximation of the average distances. Speci�cally, when using only neighborqueries, a k-approximation of the average distance in G = (V;E) requires making 
(jEj=k2 log k)queries. In the case of the single-source problem, this means that (when using only neighbor queries)a constant-factor approximation is as hard to obtain as the exact value. In the case of the all-pairsproblem, by emulating distance queries in a straightforward manner, we can obtain a (1 + �)-approximation in time O(pjV j � jEj) � poly(1=�) when using only neighbor queries. For moderatelysparse graphs, this yields an improvement over the straightforward approach of computing (orapproximating) all pair-distances and computing the average of these jV j2 values. Details follow.If jEj � jV j3=2 then our O(pjV j � jEj) � poly(1=�)-time (1 + �)-approximation is de�nitelypreferable to computing the average of jV j2 approximate values regardless of how the latter areobtained. On the other hand, if jEj > jV jemm�0:5, where emm 2 [2; 2:376) is the matrix multiplicationexponent (cf. [2]), then one can �nd all pair-distances as well as their average faster than thetime it takes our algorithm approximates the latter (cf. [7, 12]). In the intermediate range2 (ofjV j3=2 � jEj � jV jemm�0:5, where emm � 0:5 < 1:876), our algorithm should be compared againsta host of all-pairs approximate distance algorithms and the preference may depend on additionalparameters (e.g., the approximation sought and a priori bounds on the average all-pairs distance).Speci�c algorithms that may be relevant include those of [4, 3]. (The interested reader is referredto Zwick's survey [13] of algorithms for �nding exact and approximate distances in graphs.)2Indeed, the intermediate range exists provided emm > 2 (or rather than emm = 2 is not known).
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2 PreliminariesThroughout the work, all algorithms are probabilistic and have direct access to their input. That is,such algorithms are actually probabilistic oracle machines that have access to one or more oracles.These oracles will typically represent a graph in a way to be understood from the context. Forexample, we consider oracles that answer queries such as neighbor queries and degree queries.The explicit input to these algorithms will consist of relevant parameters that always include thenumber of vertices in the graph, which in turn determines the vertex set (i.e., for simplicity, weassume that all n-vertex graphs have [n] def= f1; :::; ng as their vertex set). As the basic de�nitionof approximation algorithms, we use the following standard one.De�nition 2.1 For � > 0, a (1+�)-approximation of a quantity q : f0; 1g� ! (0;1) is an algorithmthat on input x, with probability at least 2=3, outputs a value in the interval [q(x); (1 + �) � q(x)].The error probability can be decreased to 2�k by invoking the basic algorithm for O(k) times andoutputting the median value. At times, when � � 1, for simplicity of presentation we allow thealgorithm to output a value in the interval [(1 � �) � q(x); (1 + �) � q(x)]. (Indeed, the output canbe \normalized" by division (by 1 � �).) Our algorithms will all be uniform in the sense that weactually present an algorithm that takes � as a parameter.When stating lower bounds that depend on several parameters, we mean that these bounds holduniformly for all choices of these parameters (or all choices satisfying explicitly stated conditions).That is, when we say that a (1 + �)-approximation of q requires 
(f(n; �; p)) queries, we meansthat there exists a constant c > 0 such for any possible value of the parameters n; � and p andany (1 + �)-approximation algorithm A of the quantity q, there exists an n-vertex graph G withq(G) = p such that A makes at least c � f(n; �; p) queries. (Since all our lower bounds refer to thequery complexity of algorithms, linear speed-up phenomena do not arise.)Throughout this work, we assume that the neighbors of each vertex are listed in arbitraryorder. This reasonable assumption facilitates the proofs of the lower bound, which can be modi�edto handle also the case where the said lists are sorted.3 Approximating the Average Degree of a GraphLet G = (V;E) be a simple graph (i.e., having no parallel edges and no self-loops), where jV j = n,and let d(v) denote the degree of vertex v2V in G. We denote by d def= 1nPv2V d(v) the averagedegree in G. An algorithm for estimating d is allowed to perform two types of queries: degreequeries and neighbor queries. Namely, for any vertex v of its choice the algorithm can obtain d(v),and for any v and j � d(v), the algorithm can obtain the jth neighbor of v. Actually, it su�ces toallow the algorithm to obtain a random neighbor of any desired (i.e., queried) vertex.We start by describing an algorithm that is provided with an a priori known lower bound ` onthe value of d. We later eliminate the need for this a priori knowledge. We close this section witha proof that our algorithm has almost optimal running-time (when referring to its dependence onthe size of the graph).
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3.1 The AlgorithmOur algorithm is inspired by the work of Kaufman et. al. [10], and more speci�cally, by a subroutinepresented in [10] for sampling edges \almost uniformly". The basic idea of our algorithm is to samplevertices and to put them into \buckets" according to their degrees such that in bucket Bi we havevertices with degree between (1 + �)i�1 and (1+ �)i (where � = �=c for some constant c > 1). If Sis the sample, then we denote by Si the subset of sampled vertices that belong to Bi. We will focuson the sets Si that are su�ciently large, because we want jSij=jSj to be a good approximation ofjBij=n. Let us denote the set of the corresponding i's by L.Suppose we take (1=jSj)Pi2L jSij(1+�)i�1 as our estimate for the average degree of the graph.Note that the expected value of jSij=jSj is jBij=n and that (1=n)Pi jBij(1+�)i�1 � d. Hence, withhigh probability, for a su�ciently large sample S, we would be overestimating the average degreeby a factor of at most (1 + �). The source of the overestimation is only the error in approximatingjBij=n by jSij=jSj. However, we may underestimate d by a factor of roughly 2. The reason isthat the edges between large buckets and small buckets are only counted once, rather than twice,and the edges with both endpoints in small buckets are not counted at all. Yes, the \threshold oflargeness" is set such that the number of vertices in small buckets is so small that we can discardall possible edges that have both end-points in small buckets. (This calls for taking a sample of sizeeO(pn), setting the threshold at poly(log n), and concluding that the number of vertices in smallbuckets is at most pn.)So far we have described a procedure that approximates d up to a factor of 2 + � while usingonly degree queries (i.e., we obtain Feige's result [6] using a di�erent analysis). To get beyondthe \factor 2 barrier" we observe that the main source of approximation error is due to edgeswith one endpoint in a large bucket and the other endpoint in a small bucket. These edges werecounted once (in our estimate for d), whereas they need to be counted twice. Thus, we merelyneed to estimate the number of such edges, which can be done by estimating, for each large bucket,the fraction of edges that are incident to vertices in the bucket and whose other endpoint is in asmall bucket. This estimate cannot be obtained using degree queries, but it can be obtained using\random neighbor" queries. Speci�cally, for every vertex v in a large Si, we select uniformly aneighbor of v and check whether this neighbor resides in a small bucket. Adding our estimate ofthe number of edges between large buckets and small buckets to (n=jSj)Pi2L jSij(1 + �)i�1 yieldsa (1 + �)-approximation of 2jEj (and hence a (1 + �)-approximation of d = 2jEj=n).We are now ready to present and analyze the algorithm in full detail. For t = dlog(1+�) ne+ 1,we de�ne a partition of V into the following buckets:Bi = nv : d(v) 2 �(1 + �)i�1; (1 + �)iio; for i = 0; 1; : : : ; t� 1 : (1)The algorithm refers to an a priori lower bound ` on d, and the reader may think of ` = 1 asin the foregoing motivating discussion. We will consider Bi to be large (and put i 2 L) if thesample S contains at least 
(p�t � jSjpn=`) representatives of Bi. For a large Bi, we let e�i denote ourapproximation of the fractions of edges incident at Bi that have their other endpoint in a smallbucket.
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Average Degree Approximation Algorithm1. Uniformly and independently select K = ~O �pn=` � poly(1=�)� vertices from V , and let Sdenote the (multi-)set of selected vertices.2. For i = 0; 1; : : : ; dlog(1+�) ne, let Si = S \Bi.3. Let L = ni : jSijjSj � 1t �q �6 � ǹ o, where t def= dlog(1+�) ne+ 1.4. For every i 2 L and every v 2 Si, select at random a neighbor u of v, and let �(v) = 1 ifu 2 Sj =2LBj, and �(v) = 0 otherwise. For every i 2 L, let e�i = jfv2Si : �(v)=1gj=jSij.5. Output 1K �Pi2L(1 + e�i) � jSij � (1 + �)i.Lemma 3.1 For every � < 1=2 and � � �=8, the above algorithm outputs a value ed such that, withprobability at least 2=3, it holds that (1� �) � d < ed < (1 + �) � d.Proof: By de�nition of the buckets (i.e., Bi's), it holds thatd � 1n tXi=1 jBij � (1 + �)i � (1 + �) � d : (2)Let � def= (1=t)p(�=8) � `=n be a density threshold. By our choice of the sample size K we have thatwith high probability,8i s.t. jBij � � � n : �1� �4� � jBijn � jSijK � �1 + �4� � jBijn (3)and 8i s.t. jBij < � � n : jSijK < 1tp(�=6) � `=n (4)In particular, in the latter case we have that i =2 L. Thus, with high probability, for every i 2 Lwe have that jSij=K is close to its expected value. Let us assume from this point on that this is infact the case.For V1; V2 � V , we denote by E(V1; V2) the set of all ordered pairs of adjacent vertices with the�rst vertex in V1 and the second vertex with V2; that is,E(V1; V2) def= f(v1; v2) : v12V1 & v22V2 & fv1; v2g2Eg : (5)For each i, let Ei def= E(Bi; V ); that is, Ei is the set of all ordered pairs of adjacent vertices suchthat the �rst vertex is in Bi. Thus, the Ei's are disjoint and each edge contributes two pairs to theset SiEi. Also, jBij � (1 + �)i�1 < jEij � jBij � (1 + �)i (6)Let U def= fv2Bi : i =2Lg denote the set of vertices that reside in buckets that are deemed small bythe sample S. Then, with high probability,jU j � ���nv2Bi : jBij�(1=t) �p(�=4) � n � `o��� � p(�=4) � n � ` (7)6



because if jBijn � (1=t) �p(�=4) � `=n then jSijjSj � (1=t) �p(�=6) � `=n. Now, let E0i def= E(Bi; U) � Eiand �i = jE0ij=jEij � 1. That is, for i 2 L, the set E0i contains only pairs of adjacent vertices witha single endpoint in V n U , and the corresponding edge is counted only once in the sum Pi2L jEij(and similarly in Pi2L jE0ij). Thus:Xi2L jE0ij = jE(V n U;U)j and Xi2L jEi n E0ij = 2jE(V n U; V n U)j (8)By our choice of the sample size, K, we have that with high probability, for every i 2 L suchthat �i � �=8, �1� �4� � �i � e�i � �1 + �4� � �i (9)and if �i < �=8 then e�i < �=4.Thus, with high probability, all the estimates that the algorithm has are quite good, in whichcase the following holds:ed = 1K �Xi2L(1 + e�i) � jSij � (1 + �)i (10)� 1n �Xi2L(1 + e�i) � �1 + �4� � jBij � (1 + �)i (11)� 1 + �=4n � � Xi2L�i��=8(1 + (1 + �=4) � �i) � (1 + �) � jEij+ Xi2L�i<�=8(1 + �=4) � (1 + �) � jEij � (12)< (1 + �=4)2 � (1 + �)n �Xi2L(1 + �i) � jEij (13)where Eq. (11) uses our assumption that jSij=K is close to its expected value for every i 2 L, andEq. (12) uses Eq. (6) and our assumption on the estimates e�i. Similarly,ed � (1� �=4)2n �Xi2L(1 + �i) � jEij (14)Using � � �=8 and jE0ij = �i � jEij, we haveed = (1� (�=4))2 � (1� �=8)n �Xi2L(1 + �i) � jEij (15)= 1� (3�=4)n � �Xi2L jEi nE0ij+Xi2L jE0ij+Xi2L �i � jEij� (16)= 1� (3�=4)n � �Xi2L jEi nE0ij+ 2Xi2L jE0ij� (17)Using Eq. (8) it follows thated = 1� (3�=4)n � �2jE(V n U; V n U)j+ 2jE(V n U;U)j� (18)7



= 1� (3�=4)n � �2jE(V; V )j � 2jE(U;U)j� (19)= 1� (3�=4)n � �dn� jU j2� (20)Recalling (cf. Eq. (7)) that jU j2 � (�=4) � `n (and ` � d), we get ed = (1 � �) � d. The lemmafollows.Working without a degree lower bound. For sake of simplicity, we start by modifying thealgorithm so that when given a valid lower bound `, it does not output an overestimation of theaverage degree (except with small probability). This is done by simply decreasing the output bya factor of 1 + �. Thus, the output, ed, of the algorithm satis�es Pr[(1 � 2�)d < ed < d] � 2=3).Furthermore, by O(1) + log log n repetitions, we may reduce the probability of error to below1=(6 log n).An interesting feature of our algorithm is that, with high probability, it does not output anoverestimate of d even in case it is invoked with a parameter ` that is higher than the averagedegree d (i.e., is not a valid lower bound). To verify this feature, observe that the only place in theanalysis where we rely on the assumption ` � d is in bounding the underestimation error (i.e., whenbounding the total number of edges with both endpoints in U). (We comment that also Feige'salgorithm [6] has this feature, but for di�erent reasons.)This feature allows us to present a version of our algorithm that does not require an a priorilower bound on the average degree. Speci�cally, let our algorithm be denoted by A. Then, startingwith ` = n=2, we may proceed in at most 2 log2 n iterations as follows. We invoke A with the currentvalue of `, and let ed denote the output obtained. If ed � ` then we halt and output ed, otherwisewe proceed to the next iteration while setting `  `=2. In case all iterations were completed andstill ed < ` in the last iteration (i.e., ed < 1=2n) then the graph must have no edges and we haltoutputting ed = 0.Let `j = n=2j be the parameter used in the j-th invocation of algorithm A, and let edj denotethe corresponding output. Then, with probability at least 2=3, for every iteration j that took place,it holds that edj � d and if d � `j then edj � (1 � 2�)d. In this case, assuming the graph containsany edges at all,3 the algorithm will stop after at most log(n=d) +O(1) iterations, and will outputa value that is in the interval [(1 � 2�)d; d]. Thus, the overall running-time of the algorithm ispoly(��1 log n) �qn=d. Theorem 1.1 follows.3.2 A Lower BoundWe observe that any constant approximation algorithm must perform 
(pn) queries. A moregeneral bound, which depends also on the approximation parameter � > 0 and on the actual degreeof the graph, is stated next.Theorem 3.2 For any n, d 2 [2; o(n)] and � 2 (!(1=dn); o(n=d)), a (1 + �)-approximation of theaverage degree of G = (V;E) requires 
((n=(�d))1=2) queries, where d = 2jEj=n. This holds even ifthe algorithm is allowed neighbor and adjacency queries as well as degree queries.3In case the graph contains no edges, the algorithm will complete all iterations with no output (because d = 0 < `jwhereas edj = 0 for each j � 2 log n), and thus output the correct value (i.e., 0) at the last step. In this case, the overallrunning-time of the algorithm is poly(��1 log n) � n. Clearly one can modify the algorithm so that its complexity isnever more that O(n) (i.e., the complexity of computing the exact average degree), by stopping once `j goes belowpoly(��1 log n)=n for an appropriate polynomial in log n and ��1.8



Proof: For parameters n and k 2 (d; o(n)), we consider (randomly labeled versions of) twographs. The �rst graph, denoted Gn;k, consists of a d-regular subgraph over n� k vertices and ad-regular subgraph over the remaining k vertices (so that the two subgraphs are not connected).This graph has average degree d. The second graph, denoted G0n;k, consists of a d-regular subgraphover n� k vertices, and a clique over the remaining k vertices. The graph G0n;k has average degree((n� k) � d+ k(k� 1))=n = (1� o(1)) � (d+ k2=n). In particular, if we let k = (�dn)1=2, then we getan average degree of approximately (1 + �)d. However, in order to distinguish between (randomlabelings of) the two graphs, an algorithm must hit one of the k vertices in the small component,and hence 
(n=k) = 
((n=(�d))1=2) queries are necessary.On non-simple graphs. Recall that we required upfront that the graph be simple (i.e., have noparallel edges or self-loops). We note that if parallel edges (or weighted edges) are allowed, thenestimating the average degree of a graph requires 
(n) queries (even when both degree queries andneighbor queries are allowed). Consider the following two graphs (or rather families of graphs):one graph consists of a cycle over all vertices (with a single edge between each pair of consecutivevertices) and the other consists of a cycle over n�2 vertices, and a pair of vertices with c �n paralleledges between them. The average degree in the �rst graph is 2 whereas the average degree in thesecond graph is roughly 2 + c. But distinguishing between the two (families of) graphs requires
(n) queries. Thus, there is a gap between the query complexity of estimating the average degreeof simple graphs and non-simple graphs.4 Approximating the Average Distance from a Single SourceLet G = (V;E) be a simple undirected connected graph, where n = jV j and m = jEj. For somegiven (\designated") vertex s 2 V we are interested in the average distance of s to the graph'svertices. That is, suppose we have access to an oracle that for any vertex v 2 V provides us withthe distance, denoted distG(s; v), between s and v (in G). We would like to estimate the averagedistance, denoted dG(s), of vertices in the graph from s; that is, dG(s) = 1nPv2V distG(s; v).We �rst consider algorithms that make only distance queries. We present an algorithm (inSec. 4.1) and a roughly matching lower bound (in Sec. 4.2). We later discuss the case in which thealgorithm is also allowed neighbor queries (resp., only allowed neighbor queries); see Sec. 4.3 (resp.,Sec. 4.4).4.1 An AlgorithmWe start with the basic version of our result.Theorem 4.1 There exists an algorithm that, for any given � 2 (0; 1), makes O �pn=�2� distancequeries and provides a (1 + �)-approximation of the average distance of a given vertex to all graphvertices.The algorithm merely selects uniformly and independently q = � �pn=�2� vertices v1; :::; vq , per-forms the distance queries distG(s; vi) for i = 1; :::; q, and outputs the average of the answersreceived. We show that, with high probability, the algorithm's output is an (1 + �)-approximationof dG. 9



Let dmax be the maximum distance of any vertex v from s. For each value i = 0; : : : ; dmaxlet pi denote the fraction of vertices at distance i from s. Let � be a random variable that takesvalue i with probability pi, and let �1; : : : ; �q be independent random variables that are distributedthe same as �. By de�nition, Exp[�] = dG(s), and the output of our algorithm is distributed as1q Pqj=1 �j . Hence, we are interested in upper bounding the probability that 1q Pqj=1 �j deviatesfrom its expected value, dG(s), by more than � � dG(s). By Chebyshev's inequalityPr24������1q qXj=1 �j � Exp[�]������ � � � Exp[�]35 � Var[�]q � �2 � Exp[�]2 (21)Since q = � �pn=�2�, it su�ces to show that the ratio between Var[�] = Exp[�2] � Exp[�]2 andExp[�]2 is O(pn). This follows from the next lemma, by using ` = 1=2.Lemma 4.2 For � and pi as de�ned above, Exp[�2] �p2n=` � Exp[�]2, for any ` � Exp[�].Since all distances are integers, and all are non-negative with the exception of dist(s; s) = 0, weknow that Exp[�] � n�1n � 1=2, which means that ` = 1=2 can always be used. Thus, Theorem 4.1follows from Lemma 4.2 (when specialized to the obvious case of ` = 1=2), but we will use the moregeneral statement of the lemma later.Proof: By the de�nitions of � and dmax,Exp[�2] = dmaxXi=0 pi � i2 � dmax � Exp[�] (22)We next observe that by de�nition of dmax, for every i � dmax we have that pi � 1=n, and soExp[�] = dmaxXi=0 pi � i > d2max2n (23)By multiplying the bound Exp[�] � ` (provided in the lemma's hypothesis) by Eq. (23), we getthat Exp[�]2 � `�d2max2n and so p` � dmaxp2n � Exp[�] (24)Finally, we multiply Equations (22) and (24) and get thatExp[�2] � p` � dmaxp2n � dmax � Exp[�]2 (25)and the lemma follows.An improved algorithm. As in Section 3, a better algorithm can be obtained, provided weare given an a priori lower bound on the average distance. Denoting such a lower bound by `,Lemma 4.2 implies that using a sample of size q = �(��2 �pn=`) will do. Actually, as in Section 3,we do not actually need this lower bound, and the algorithm can function without it and performas well. That is: 10



Theorem 4.3 There exists an algorithm that, on input a graph G = (V;E), a vertex s and param-eter � 2 (0; 1), makes O(��2(n=dG(s))1=2) distance queries and provides a (1 + �)-approximation ofthe average distance of vertices in G to s (i.e., dG(s)).Proof: The algorithm proceeds in (1+log n) iterations. In the ith iteration, the algorithm behavesas if `i def= n=2i is a lower bound on d. The algorithm uses the estimate obtained in the ith iterationif and only if it exceeds `i by a factor of eight (otherwise it continue to the next iteration). (In thelast iteration, the estimate is used unconditionally.)We �rst note that, with probability at least 3=4, the algorithm does not produce output inany of the �rst t def= blog(n=d)c iterations (i.e., in any iteration i such that d < `i). The reasonbeing that in order to halt in such an iteration i � t it must hold that the estimate is at least8`i = (8`i=d) � d > 8d, and by Markov inequality this may happen with probability at mostd=8`i. Thus, the probability of the bad event is upperbounded byPti=1 d=8`i, which in turn equalsPblog(n=d)ci=1 (2id=8n) < 1=4. Finally, we observe that if this bad event does not occur then we areexactly in the situation analyzed above (i.e., the generalization of Theorem 4.1 to an arbitrary validlower bound `, which follows by Lemma 4.2).Re
ection. Underlying the proof of Theorem 4.3 is a general phenomenon that can be applied toany randomized approximation algorithm, and is bene�cial provided that the algorithm performsbetter when given a valid lower bound on the quantity it needs to approximate. We are unawareof a prior use of this reasoning.4.2 A Lower BoundIn this subsection we prove the essential optimality of the algorithm presented in the previoussubsection.Theorem 4.4 For any n, d 2 (2; o(n)) and � 2 (!(1=dn); o(n=d)), any algorithm that performsonly distance queries and provides a (1 + �)-approximation of the average distance of vertices inG = (V;E) from s 2 V , where dG(s) = d, must ask 
((n=(�d))1=2) queries.Proof: For parameters n and k 2 (!(1); o(n)), consider a (randomly labeled version of a) graph,denoted Gn;k, consisting of a star of n�k vertices centered at s and a path of length k also startingat vertex s. (The reader may think of such a graph as a broom; see Figure 1.). . .s v1 v2 vk�1 vk...w1w2wn�k�1Figure 1: An illustration of the \broom-like" graph Gn;k.By de�nition, the average distance of Gn;k from s isdGn;k(s) = (n� k � 1) � 1 +Pki=1 in = 1 + k2 � k � 22n = 1 + (1� o(1)) � k22n (26)11



Given d 2 (2; o(n)) and � 2 (1=pdn; o(n=d)), we set k so that 1 + (k2=2n) = d (i.e., k �(2(d � 1)n)1=2) and k0 � (2((1 + �) � d� 1)n)1=2. Thus, dGn;k(s) = (1 � o(1)) � d and dGn;k0 (s) =(1 + �) � d. First, we observe that any (1 + �)-approximation algorithm must make 
(n=k0) =
((n=(1 + �)d)1=2) queries in order to hit a vertex on the path (which is a necessary condition fordistinguishing Gn;k from Gn;k0). This establishes the claim for (say) � > 1=10. For the case of� � 0:1, we note that in order to distinguish Gn;k from Gn;k0 the algorithm must hit one of thek0 � k vertices that are at distance greater than k from s in Gn;k0, which yields the lower bound of
(n=(k0 � k)) = 
((n=�d)1=2).4.3 Adding Access to Neighbor and Adjacency QueriesA natural question is whether providing access to neighbor and adjacency queries, in addition todistance queries, can improve the query complexity of the average degree estimation problem. Weanswer this question negatively.Theorem 4.5 Let d 2 (2; o(n)) and � 2 (!(1=dn); o(n=d)), and consider algorithms that are al-lowed distance queries, neighbor queries, adjacency queries and degree queries. Any such algorithmthat provides a (1 + �)-approximation of the average distance of vertices in G = (V;E) from s 2 Vwhere dG(s) = d, must perform 
((n=�d)1=2) queries.For k < k0 < n, consider the \broom-like" graphsGn;k andGn;k0 de�ned in the proof of Theorem 4.5.Note that for an algorithm that is allowed neighbor and degree queries it is no longer true thatthe algorithm cannot distinguish (randomly labeled versions of) these graphs in o(n=k0) queries.In particular, a single degree query at vertex s distinguishes the two graphs (because the degreeof s is n� k � 1 and n� k0 � 1, respectively). Thus, a modi�cation of the construction is due forproving Theorem 4.5. The proof follows.Proof: We consider two cases depending on the value of �. In case � � 1=4, we consider a... . . . ...w1w2
wn�k�1 s v1 v2 v`�1 v` vkv`+2v`+1

Figure 2: An illustration of the \two-edged broom" graph Gn;k;`.\two-edged broom" graph Gn;k;` with a \stick" of length ` connecting a star of size n� k (centeredat s) and a star of size k � ` (on the other side); see Figure 2. That is, as in Gn;k, the designatedvertex s is the center of a star of n � k vertices, with leaves denoted w1; : : : ; wn�k�1, and is theorigin of a path of length `, where the vertices on the path are v1; : : : ; v`. In addition, v` is also thecenter of a star, where the neighbors of v` are v`+1; : : : vk (as well as v`�1). Observe that for anyparticular choice of n and k = o(n), the degree of s in Gn;k and in Gn;k;` is the same. Moreover, theonly di�erence between the two graphs is that in Gn;k;` the path starting at s does not have lengthk but rather ends with a star after ` steps. It follows that (randomly labeled versions of) Gn;k and12



Gn;k;` can only be distinguished by hitting a vertex that is not in the big ((n� k)-vertex) star. In\hitting" a vertex we mean that the vertex either corresponds to a queried vertex (in any type ofquery), or is the answer to a neighbor query. Thus, 
(n=k) queries are required to distinguish theaforementioned graphs.Recall that dGn;k(s) = 1 + (1� o(1)) � (k2=2n). By de�nition of Gn;k;`,dGn;k;`(s) = n� k � 1 + `(`+1)2 + (k � `)(`+ 1)n (27)= n+ k`� (`2=2)� `=2� 2n = 1 + (1� o(1)) � `(2k � `)2n (28)Thus, given d 2 (2; o(n)) and � > 1=d2, we shall set k and ` such that dGn;k(s) = (1 + �)d whiledGn;k;`(s) < d. In particular, we shall take k � p1 + � � (2(d � 1)n)1=2, and ` � (p1 + � � p�) �(2(d � 1)n)1=2. Under this setting (and � � 1=4), we have n=k = 
((n=�d)1=2), and the theoremfollows for � � 1=4.
... ...

...wn�t`�1w2w1 vt;1vt;2 vt;`...
v1;`v1;2v1;1 vt�1;`vt�1;2vt�1;1s ... ...wn�t`�1w2w1 v1;`v1;2v1;1 vt�1;1. . .vt;2vt;1
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Figure 3: The \multi-stick broom" graph G0n;k;`.We now turn to the case of � < 1=4. In this case we use a di�erent graph G0n;t;` that consists ofa star of size n� t` centered at s and t paths, each of length `, emanating from s. That is, vertex sis the center of a star of n� t` vertices, with leaves denoted w1; : : : ; wn�t`�1, and t paths such thatthe ith path is denoted vi;1; : : : ; vi;` and vi;1 is connected to s. (See Figure 3.) We also consider thegraph G00n;t;` that is identical to G0n;t;` except that the t�1st path has length 1 and the last path haslength 2`� 1. The average distance from s in G0n;t;` (resp., G00n;t;`) is approximately 1 + (t � `2=2n)(resp., 1 + (t � `2=2n) + (`2=n)):dG0n;t;`(s) = n� t`� 1n + t � (1 + o(1)) � `22n � 1 + t � `22n (29)dG00n;t;`(s) � dG0n;k;`(s) + (1 + o(1)) � (2`� 1)22n � 2 � (1 + o(1)) � `22n � dG0n;k;`(s) + `2n (30)Given d 2 (2; o(n)) and � 2 (!(1=dn); 1=4), we set the parameters such that t`2 � 2(d � 1)n and` = p�dn (i.e., t � 2(d � 1)=(�d)). Thus, the ratio between the averages distances to s in thetwo graphs is 1 + �. In order to distinguish these graphs, the algorithm must hit a vertex on one13



of the last two paths, which requires making 
(n=`) queries, establishing the 
((n=�d)1=2) lowerbound.4.4 Using Only Neighbor and Adjacency QueriesIf we allow only neighbor and adjacency queries, then the problem becomes signi�cantly harder.Theorem 4.6 Let k > 1 be a given approximation factor. Every algorithm that is allowed onlyneighbor, adjacency and degree queries must perform 
(m=(k log k)) queries in order to obtain ak-approximation of dG(s) in graphs G with m edges, provided m 2 (
(n); O(n2=k log k)).Proof: Here too we consider two distributions over graphs, denoted D1 and D2. In bothdistributions, the vertices are partitioned into t = �(k log k) equal-size subsets V1; : : : ; Vt. Each Vjis partitioned into two subsets, denoted Lj and Rj, where jLjj = � � n=t and jRj j = (1 � �) � n=tfor � 2 (0; 0:5] that satis�es jLj j � jRj j = �(1 � �) � (n=t)2 = m=t. Such � exists provided that(n=t)2=4 � m=t (i.e., m � n2=4t). The vertex s belongs to L1. The edges of the graphs in thesupport of the two distributions are de�ned as follows: For each j = 1; : : : ; t, there is an almostcomplete bipartite graph between Lj and Rj; the only exception are two, randomly selected, missingedges. When j = 1, these edges are restricted not to be incident to s. The end-points of thesemissing edges are used to connect between vertices that belong to the di�erent Vj's.
. .....
Lt Rt L1 R1 L2 R2 L3 R3s

Figure 4: An illustration for graphs in the support of D1.Speci�cally, let the endpoints of these missing edges be denoted vj;1; vj;2 2 Lj and wj;1; wj;2 2 Rj .We refer to these vertices as terminal vertices, and to the edges we put between them as connectingedges. In D1 we add edges between the terminal vertices so as to form a cycle structure amongthe Vj 's. Namely, for each j = 1; : : : ; t � 1, we put the edges (vj;1; wj;1) and (vj;2; wj;2), and weput the edges (vt;1; w1;1), and (vt;2; w1;2). That is, the connecting edges are placed according tothe structure of a 4-regular (non-simple) t-vertex graph that forms a \double cycle" (i.e., a cyclein which each edge appears with multiplicity 2). In D1 we connect the terminal vertices accordingto some 4-regular expander graph with vertex set [t]. That is, if (i; j) is an edge of the expanderthen we connect one of the (four) terminal vertices of Vi to one of the terminal vertices of Vj (whileusing each terminal vertex exactly once). Thus, each graph in the support of each distribution is14



determined by the choice of the missing edges within each Vj (which in turn determine the terminalvertices of the graph as well as all connecting edges). For an illustration, see Figure 4.By de�nition of D1, for every graph G in the support of D1, it holds that dG(s) = �(t). Onthe other hand, since in D2 the edges between the terminal vertices are determined by a 4-regular(t-vertex) expander graph, dG(s) = �(log t) holds for every graph G in the support of D2. Thus,the ratio between the average distances is 
(t= log t) � k, where equality holds for a suitable choiceof t = 
(k log k).Consider the execution of an algorithm that can perform only neighbor and adjacency queries.As long as the algorithm does not perform a query concerning a connecting edge, the distributionon the answers it gets is exactly the same for both distributions on graphs. Recall that there are(m=t)� 2 non-connecting edges that are incident to vertices in each Vj and two connecting edges.Thus, 
(m=t) queries are required to distinguish between the two (graph) distributions. (Note thatdegree queries are of no help towards distinguishing the two distributions, whereas a single distancequery (explicitly prohibited here) allows to distinguish these two distributions.) The lower boundfollows by our choice of t = O(k log k).5 Approximating All-Pairs Average DistanceIn continuation to Section 4, we now turn to the question of estimating the average distance betweenall pairs of vertices. That is, for any given graph G over n vertices, let dG = 1n2 Pu;v2V dist(u; v)denote the average distance between pairs of vertices in the graph.5.1 An AlgorithmWe show that the result for estimating the average distance to a single source, which was stated inTheorem 4.3, can be extended to estimating the average distance between all pairs of vertices.Theorem 5.1 There exists an algorithm that, on input a graph G = (V;E) an a parameter � 2(0; 1), makes O((n=dG)1=2=�2) distance queries and provides a (1 + �)-approximation of dG.Proof: We focus on the basic version that is analogous to the one stated in Theorem 4.1, andcomment that its modi�cation is analogous to the proof of Theorem 4.3. Here, the basic algorithmtakes a sample of �(pn=�2) uniformly selected pairs of vertices, and outputs the average over thedistances between these pairs. Below we modify the proof of Theorem 4.1 to show that the foregoingbasic algorithm provides a (1 + �)-approximation of dG.Let dmax be rede�ned here to be the maximum distance between any pair of vertices, let pibe the fraction of pairs of vertices (among all n2) that are at distance i and let � be distributedaccording to the pi's (i.e., Pr[� = i] = pi). Below we show that Exp[�2] = O(pn �Exp[�]2), and thecorrectness of the basic algorithm follows (as in the proof of Theorem 4.1). In fact, analogously toLemma 4.2, for any lower bound ` of dG, we prove thatExp[�2] = O(pn=` � Exp[�]2) : (31)Needless to say, the proof is analogous to the proof of Lemma 4.2. The main challenge is to establishExp[�] = 
(d2max=n), and the rest follows as before.4 Consider any pair of vertices v0 and vd that4 Eq. (22) hold as before by the de�nitions of dmax and �. Once we establish Exp[�] = 
(d2max=n), which isanalogous to Equation (23), we derive Equation (31) in the same manner that Lemma 4.2 was established.15



are at distance d def= dmax from each other, and let v1; : : : ; vd�1 be the vertices on the shortest pathbetween them. The main observation here is that, for every 1 � i � d=3, and every vertex w in thegraph, it holds that dist(vi; w) + dist(w; vd�i) � d=3 (because dist(vi; vd�i) = d� 2i � d=3 whereasdist(vi; w) + dist(w; vd�i) � dist(vi; vd�i)). Hence, here we have thatExp[�] � Pd=3i=1Pw2[n](dist(vi; w) + dist(w; vd�i))n2 � (d=3) � n � (d=3)n2 = 
�d2maxn � (32)as claimed.5.2 Lower BoundsIt is not hard to verify that lower bounds analogous to the ones stated in Theorems 4.5 and 4.6 holdalso for approximating the average of all-pairs distances (i.e., dG). That is, for a graph G = (V;E),any (1 + �)-approximation algorithm that uses distance queries must make 
((n=�dG)1=2) queries,whereas any constant factor approximation algorithm that uses only standard queries must make
(jEj) such queries. The bound is proved using the same graphs that were used in the proofs ofTheorems 4.5 and 4.6. We merely need to verify that the average all-pair distances of these graphsessentially maintain the relative behavior of the single-source counterparts. This is most obviousfor the graphs used in the proof of Theorem 4.6. As for the graphs used in the proof of Theorem 4.5,we note that dGn;k > n� k � 1n � (1 + dGn;k(s)) + kn � k2 � 2 + k2n = 2 � dGn;k(s) (33)dGn;k;` � n� kn � (1 + dGn;k;`(s)) + (1 + o(1)) � (2k � `)`2n � 2 � dGn;k;`(s) (34)dG0n;t;` = n� t`n � (1 + dG0n;k;`(s)) + tǹ � `2 + o(1) � 2 � dG0n;k;`(s) (35)dG00n;t;` � dG0n;k;` + 2 � `2n � 2 � dG00n;k;`(s) (36)6 ExtensionsThe results of Sections 4 and 5 extend to the directed versions of these averaging problems: For theall-pairs problem, we require that the directed graph be strongly connected (so that all distancesare de�ned). For the case of the single-source problem, it su�ces to require that all vertices arereachable from the source.References[1] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the Minimum Spanning Tree Weightin Sublinear Time. In Proc. of the 28th ICALP, pages 190{200, 2001.[2] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progression. Journalof Symbolic Computation, Vol. 9, pages 251{280, 1990.[3] D. Dor, S. Halperin, and U. Zwick. All Pairs Almost Shortest Paths. SIAM Journal onComputing , Vol. 29, pages 1740{1759, 2000. 16



[4] M. L. Elkin. Computing Almost Shortest Paths. Technical Report MCS01{03, Faculty ofMathematics and Computer Science, Weizmann Institute of Science, 2001.[5] S. Even. Graph Algorithms. Computer Science Press, 1979.[6] U. Feige. On sums of independent random variables with unbounded variance, and estimatingthe average degree in a graph. To appear in Proc. of the 36th STOC, 2004.[7] Z. Galil and O. Margalit. All Pairs Shortest Paths for Graphs with Small Integer Length Edges.Information and Computation, Vol. 54, pages = 243{254, 1997.[8] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,Vol. 32 (2), pages 302{343, 2002.[9] O. Goldreich and D. Ron. A Sublinear Bipartitness Tester for Bounded Degree Graphs. Com-binatorica, Vol. 19 (3), pages 335{373, 1999.[10] T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness in GeneralGraphs. In Proc. of RANDOM'03, pages 341{353, 2003.[11] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and Algorithms,Vol. 20 (2), pages 165{183, 2002.[12] R. Siedel. On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs. Journalof Computer and System Sciences, Vol. 51, pages 400{403, 1995.[13] U. Zwick. Exact and approximate distances in graphs - a survey. Proceedings of the 9th AnnualEuropean Symposium on Algorithms (ESA), pages 33{48, 2001.

17


