
Notes on Levin's Theory of Average-Case ComplexityOded Goldreich�Department of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.E-mail: oded@wisdom.weizmann.ac.ilNovember 1997AbstractIn 1984, Leonid Levin has initiated a theory of average-case complexity. We provide anexposition of the basic de�nitions suggested by Levin, and discuss some of the considerationsunderlying these de�nitions.

Acknowledgement and Warning: Much of the text was reproduced from expositionary mate-rial contained in [1], which in turn was based on [4]. Thus, much of the technical exposition is 10years old; I would have written some things di�erently today.�Written while visting LCS, MIT. 0



1 IntroductionThe average complexity of a problem is, in many cases, a more signi�cant measure than its worstcase complexity. This has motivated the development of a rich area in algorithmic research { theprobabilistic analysis of algorithms [11, 13]. However, this line of research has so far been applicableonly to speci�c algorithms and with respect to speci�c, typically uniform, probability distributions.The general question of average case complexity was addressed for the �rst time by Levin [15].Levin's work can be viewed as the basis for a theory of average NP-completeness, much the same wayas Cook's [2] (and Levin's [14]) works are the basis for the theory of NP-completeness. Subsequentworks [7, 18, 8] have provided few additional complete problems. Other basic complexity problems,such as decision versus search, were studied in [1].Levin's average-case complexity theory in a nutshell. An average case complexity classconsists of pairs, called distributional problems. Each such pair consists of a decision (resp., search)problem and a probability distribution on problem instances. We focus on the class DistNPdef= hNP,P-computablei, de�ned by Levin [15], which is a distributional analogue of NP: It consists of NPdecision problems coupled with distributions for which the accumulative measure is polynomail-time computable. That is, P-computable is the class of distributions for which there exists apolynomial time algorithm that on input x computes the total probability of all strings y � x.The easy distributional problems are those solvable in \average polynomial-time" (a notion whichsurprisingly require careful formulation). Reductions between distributional problems are de�nedin a way guaranteeing that if �1 is reducible to �2 and �2 is in average polynomial-time, then sois �1. Finally, it is shown that the class DistNP contains a complete problem.Levin's average-case theory, revisited. Levin's laconic presentation [15] hides the fact thatchoices has been done in the development of the average-case complexity theory. We discusssome of this choices here. Firstly, one better think of the motivation as to provide a theory ofe�cient computation (as suggested above), rather than a theory of infeasible ones (e.g., as inCryptography). We note that a theory of useful-for-cryptography infeasible computations doesexist (cf., [5, 6]). A key di�erence is that in Cryptography we needs problems for which one maygenerate instance-solution pairs so that solving the problem given only the instance is hard. In thetheory of average-case complexity considered below, we consider problems which are hard to solve,but do not require an e�cient procedure for generating hard (on the average) instances coupledwith solutions.Secondly, one has to admit that the class DistNP (i.e., speci�cally, the choice of distributions)is somewhat problematic. Indeed P-computable distributions seem \simple", but it is not clearif they exhaust all natural \simple" distributions. A much wider class, which is easier to defend,is the class of all distributions having an e�cient algorithm for generting instances (according tothe distribution). One may argue that the instances of any problem we may need to solve aregenerated e�ciently by some process, and so the latter class of P-samplable distribution su�cesfor our theory [1]. Fortunately, it was show [10] that any distributional problem which is completefor DistNP=hNP, P-computablei, is also complete with respect to the class hNP, P-samplablei.Thus, in retrospect, Levin's choice only makes the theory stronger: It requires to select completedistributional problems from the restricted class hNP, P-computablei, whereas hardness holds withrespect to the wider class hNP, P-samplablei.As hinted above, the de�nition of average polynomial-time is less straightforward than one mayexpect. The obvious attempt at formulation this notion leads to fundamental problems which, in1



our opinion, deem it inadequate. (For a detailed discussion of this point, the reader is referredto the Appendix.) We believe that once the failure of the obvious attempt is understood, Levin'sde�nition (presented below) does look a natural one.2 De�nitions and NotationsIn this section we present the basic de�nitions underlying the theory of average-case complexity.Most de�nitions originate from [Levin 84], but the reader is advised to look for further explanationsand motivating discussions elsewhere (e.g., [11, 9, 4]).For sake of simplicity, we consider the standard lexicographic ordering of binary strings. Any�xed e�cient enumeration will do. (An e�cient enumeration is a 1-1 and onto mapping of stringsto integers which can be computed and inverted in polynomial-time.) By writing x < y we meanthat the string x precedes y in lexicographic order, and y� 1 denotes the immediate predecessor ofy. Also, we associate pairs, triples etc. of binary strings with single binary strings in some standardmanner (i.e. encoding).De�nition 1 (Probability Distribution Function): A distribution function � : f0; 1g� ! [0; 1] is anon-decreasing function from strings to the unit interval [0,1] which converges to one (i.e., �(0) � 0,�(x) � �(y) for each x < y, and limx!1 �(x) = 1). The density function associated with thedistribution function � is denoted �0 and de�ned by �0(0) = �(0) and �0(x) = �(x)� �(x � 1) forevery x > 0.Clearly, �(x) = Py�x �0(y). For notational convenience, we often describe distribution functionsconverging to some c 6= 1. In all the cases where we use this convention it is easy to normalize thedistribution, so that it converges to one. An important example is the uniform distribution function�0 de�ned as �00(x) = 1jxj2 � 2�jxj. (A minor modi�cation which does converge to 1 is obtained byletting �00(x) = 1jxj�(jxj+1) � 2�jxj.)De�nition 2 (A Distributional Problem): A distributional decision problem (resp., distributionalsearch problem) is a pair (D; �) (resp. (S; �)), where D : f0; 1g� ! f0; 1g (resp., S � f0; 1g� �f0; 1g�) and � : f0; 1g� ! [0; 1] is a distribution function.In the sequel we consider mainly decision problems. Similar formulations for search problems canbe easily derived.2.1 Distributional-NPSimple distributions are identi�ed with the P-computable ones. The importance of restricting at-tention to simple distributions (rather than allowing arbitrary ones) is demonstrated in [1, Sec. 5.2].De�nition 3 (P-computable): A distribution � is in the class P-computable if there is a deter-ministic polynomial time Turing machine that on input x outputs the binary expansion of �(x) (therunning time is polynomial in jxj).It follows that the binary expansion of �(x) has length polynomial in jxj. An necessary conditionfor distributions to be of interest is their putting noticeable probability weight on long strings (i.e.,for some polynomail, p, and su�ciently big n the probability weight assigned to n-bit strings shouldbe at least 1=p(n)). Consider to the contrary the density function �0(x) def= 2�3jxj. An algorithm of2



running time t(x) = 2jxj will be considered to have constant on the average running-time w.r.t this� (as Px �0(x) � t(jxj) =Pn 2�n = 1).If the distribution function � is in P-computable then the density function, �0, is computablein time polynomial in jxj. The converse, however, is false, unless P = NP (see [9]). In spite ofthis remark we usually present the density function, and leave it to the reader to verify that thecorresponding distribution function is in P-computable.We now present the class of distributional problems which corresponds to (the traditional) NP.Most of results in the literature refer to this class.De�nition 4 (The class DistNP): A distributional problem (D; �) belongs to the class DistNP ifD is an NP-predicate and � is in P-computable. DistNP is also denoted hNP, P-computablei.A wider class of distributions, denoted P-samplable, gives rise to a wider class of distributionalNP problems which was discussed in the introduction: A distribution � is in the class P-samplableif there exists a polynomial P and a probabilistic algorithm A that outputs the string x withprobability �0(x) within P (jxj) steps. That is, elements in a P-samplable distribution are generatedin time polynomial in their length. We comment that any P-computable distribution is P-samplable,whereas the converse if false (provided one-way functions exist). For a detailed discussion see [1].2.2 Average Polynomial-TimeThe following de�nitions, regarding average polynomial-time, may seem obscure at �rst glance. Itis important to point out that the naive formalizations of these de�nitions su�er from serious prob-lems such as not being closed under functional composition of algorithms, being model dependent,encoding dependent etc. For a more detailed discussion, see Appendix.De�nition 5 (Polynomial on the Average): A function f : f0; 1g� ! N is polynomial on theaverage with respect to a distribution � if there exists a constant � > 0 such thatXx2f0;1g� �0(x) � f(x)�jxj <1The function l(x) = f(x)� is linear on the average w.r.t. �.Thus, a function is polynomial on the average if it is bounded by a polynomial in a function whichis linear on the average. In fact, the basic de�nition is that of a function which is linear on theaverage; see [1, Def. 2].De�nition 6 (The class Average-P): A distributional problem (D; �) is in the class Average-P ifthere exists an algorithm A solving D, so that the running time of A is polynomial on the averagewith respect to the distribution �.We view the classes Average-P and DistNP as the average-case analogue of P and NP (respectively).We mention that if EXP 6= NEXP (i.e., DTime(2O(n)) 6= NTime(2O(n))) then Average-P does notcontain all of DistNP (cf., [1]). 3



2.3 Reducibility between Distributional ProblemsWe now present de�nitions of (average polynomial time) reductions of one distributional problemto another. Intuitively, such a reduction should be e�ciently computable, yield a valid result and\preserve" the probability distribution. The purpose of the last requirement is to ensure thatthe reduction does not map very likely instances of the �rst problem to rare instances of thesecond problem. Otherwise, having a polynomial time on the average algorithm for the seconddistributional problem does not necessarily yield such an algorithm for the �rst distributionalproblem. Following is a de�nition of randomized Turing reductions. De�nitions of deterministicand many-to-one reductions can be easily derived as special cases.De�nition 7 (Randomized Turing Reductions): We say that the probabilistic oracle Turing ma-chine M randomly reduces the distributional problem (D1; �1) to the distributional problem (D2; �2)if the following three conditions hold.1) E�ciency: Machine M is polynomial time on the average taken over x with distribution �1 andthe internal coin tosses of M with uniform probability distribution (i.e., let tM(x; r) be therunning time of M on input x and internal coin tosses r, then there exists � > 0 such thatPx;r �01(x)�00(r) � tM (x;r)�jxj <1, where �0 is the uniform distribution).2) Validity: For every x 2 f0; 1g�, Prob(MD2(x) = D1(x)) � 23where MD2(x) is the random variable (determined by M 's internal coin tosses) which denotesthe output of the oracle machine M on input x and access to oracle for D2.3) Domination: There exists a constant c > 0 such that for every y 2 f0; 1g�,�02(y) � 1jyjc � Xx2f0;1g�AskM(x; y) � �01(x)where AskM(x; y) is the probability (taken over M 's internal coin tosses) that \machine Masks query y on input x".In the de�nition of deterministic Turing reductions MD2(x) is determined by x (rather than beinga random variable) and AskM(x; y) is either 0 or 1 (rather than being any arbitrary rational in[0; 1]). In case of a many-to-one deterministic reduction, for every x, we have AskM(x; y) = 1 for aunique y.It can be proven that if (D1; �1) is deterministically (resp., randomly) reducible to (D2; �2) and if(D2; �2) is solvable by a deterministic (resp., randomized) algorithm with running time polynomialon the average then so is (D1; �1).Reductions are transitive in the special case in which they are honest; that is, on input x theyask queries of length at least jxj�, for some constant � > 0. All known reductions have this property.2.4 A Generic DistNP Complete ProblemThe following distributional version of Bounded Halting, denoted �BH = (BH; �BH), is known tobe DistNP-complete (see Section 3). 4



De�nition 8 (distributional Bounded Halting):� Decision: BH(M;x; 1k) = 1 i� there exists a computation of the non-deterministic machineM on input x which halts within k steps.� Distribution: The distribution �BH is de�ned in terms of its density function�0BH (M;x; 1k) def= 1jM j2 � 2jMj � 1jxj2 � 2jxj � 1k2Note that �0BH is very di�erent from the uniform distribution on binary strings (e.g., considerrelatively large k). Yet, as noted by Levin, one can easily modify �BH so that has a \uniform"distribution and is DistNP-complete with respect to randomized reduction. (Hint: replace theunary time bound by a string of equal length, assigning each such string the same probability.)3 DistNP-completeness of �BHThe proof, presented here, is due to Guretich [7] (an alternative proof is implied by Levin's originalpaper [15]).In the traditional theory of NP-completeness, the mere existence of complete problems isalmost immediate. For example, it is extremely simple to show that the Bounded Halting problemis NP-complete.Bounded Halting (BH) is de�ned over triples (M;x; 1k), where M is a non-deterministic machine, xis a binary string and k is an integer (given in unary). The problem is to determine whether thereexists a computation of M on input x which halts within k steps. Clearly, Bounded Halting is inNP (here its crucial that k is given in unary). Let D be an arbitrary NP problem, and let MD bethe non-deterministic machine solving it in time PD(n) on inputs of length n, where PD is a �xedpolynomial. Then the reduction of D to BH consists of the transformation x! (MD; x; 1PD(jxj)).In the case of distributional-NP an analogous theorem is much harder to prove. The di�culty isthat we have to reduce all DistNP problems (i.e., pairs consisting of decision problems and simpledistributions) to one single distributional problem (i.e., Bounded Halting with a single simpledistribution). Applying reductions as above we will end up with many distributional versions ofBounded Halting, and furthermore the corresponding distribution functions will be very di�erentand will not necessarily dominate one another. Instead, one should reduce a distributional problem,(D; �), with an arbitrary P-computable distribution to a distributional problem with a �xed (P-computable) distribution (e.g. �BH). The di�culty in doing so is that the reduction should havethe domination property. Consider for example an attempt to reduce each problem in DistNP to�BH by using the standard transformation of D to BH , sketched above. This transformation failswhen applied to distributional problems in which the distribution of (in�nitely many) strings ismuch higher than the distribution assigned to them by the uniform distribution. In such cases,the standard reduction maps an instance x having probability mass �0(x) � 2�jxj to a triple(MD; x; 1PD(jxj)) with much lighter probability mass (recall �0BH(MD; x; 1PD(jxj)) < 2�jxj). Thisviolates the domination condition, and thus an alternative reduction is required.The key to the alternative reduction is an (e�ciently computable) encoding of strings taken froman arbitrary polynomial-time computable distribution by strings which have comparable probabilitymass under a �xed distribution. This encoding will map x into a code of length bounded above bythe logarithm of 1=�0(x). Accordingly, the reduction will map x to a triple (MD;�; x0; 1jxjO(1)), wherejx0j < O(1) + log2 1=�0(x), and MD;� is a non-deterministic Turing machine which �rst retrieves x5



from x0 and then applies the standard non-deterministic machine (i.e.,MD) of the problem D. Sucha reduction will be shown to satisfy all three conditions (i.e. e�ciency, validity, and domination).Thus, instead of forcing the structure of the original distribution � on the target distribution �BH ,the reduction will incorporate the structure of � into the the reduced instance.The following technical lemma is the basis of the reduction.Coding Lemma: Let � be a polynomial-time computable distribution function. Then there exista coding function C� satisfying the following three conditions.1) Compression: 8x jC�(x)j � 1 +minfjxj; log2 1�0(x)g2) E�cient Encoding: The function C� is computable in polynomial-time.3) Unique Decoding: The function C� is one-to-one (i.e. C�(x) = C�(x0) implies x = x0).Proof: The function C� is de�ned as follows. If �0(x) � 2�jxj then C�(x) = 0x (i.e. in this case xserves as its own encoding). If �0(x) > 2�jxj then C�(x) = 1z, where z is the longest common pre�xof the binary expansions of �(x� 1) and �(x) (e.g. if �(1010) = 0:10000 and �(1011) = 0:10101111then C�(1011) = 1z with z = 10). Consequently, 0:z1 is in the interval (�(x � 1); �(x)] (i.e.,�(x� 1) < 0:z1 � �(x)).We now verify that C� so de�ned satis�es the conditions of the Lemma. We start with thecompression condition. Clearly, if �0(x) � 2�jxj then jC�(x)j = 1 + jxj � 1 + log2(1=�0(x)). On theother hand, suppose that �0(x) > 2�jxj and let z = z1 � � �z` be as above (i.e., the longest commonpre�x of the binary expansions of �(x� 1) and �(x)). Then,�0(x) = �(x)� �(x � 1) � 0@X̀i=1 2�izi + poly(jxj)Xi=`+1 2�i1A� X̀i=1 2�izi < 2�jzjand jzj � log2(1=�0(x)) follows. Thus, jC�(x)j � 1+log2(1=�0(x)) in both cases. Clearly, C� can becomputed in polynomial-time by computing �(x� 1) and �(x). Finally, note that C� is one-to-oneby considering the two cases, C�(x) = 0x and C�(x) = 1z. (In the second case, use the fact that�(x� 1) < 0:z1 � �(x)). 2Using the coding function presented in the above proof, we introduce a non-deterministic machineMD;� so that the distributional problem (D; �) is reducible to �BH = (BH; �BH) in a way thatall instances (of D) are mapped to triples with �rst element MD;�. On input y = C�(x), machineMD;� computes D(x), by �rst retrieving x from C�(x) (e.g., guess and verify), and next runningthe non-deterministic polynomial-time machine (i.e., MD) which solves D.The reduction maps an instance x (of D) to the triple (MD;�; C�(x); 1P (jxj)), where P (n) def=PD(n) +PC(n) + n, PD(n) is a polynomial bounding the running time of MD on acceptable inputsof length n, and PC(n) is a polynomial bounding the running time of an algorithm for encodinginputs (of length n).Proposition: The above mapping constitutes a reduction of (D; �) to (BH; �BH).Proof: We verify the three requirements.� The transformation can be computed in polynomial-time. (Recall that C� is polynomial-timecomputable.) 6



� By construction of MD;� it follows that D(x) = 1 if and only if there exists a computationof machine MD;� that on input C�(x) halts outputting 1 within P (jxj) steps. (Recall, oninput C�(x), machine MD;� non-deterministically guesses x, veri�es in PC(jxj) steps that xis encoded by C�(x), and non-deterministically \computes" D(x).)� To see that the distribution induced by the reduction is dominated by the distribution �BH , we�rst note that the transformation x! C�(x) is one-to-one. It su�ces to consider instances ofBH which have a preimage under the reduction (since instances with no preimage satisfy thecondition trivially). All these instances are triples with �rst element MD;�. By the de�nitionof �BH �0BH(MD;�; C�(x); 1P (jxj)) = c � 1P (jxj)2 � 1jC�(x)j2 � 2jC�(x)jwhere c = 1jMD;�j2�2jMD;�j is a constant depending only on (D; �).By virtue of the coding Lemma �0(x) � 2 � 2�jC�(x)jIt thus follows that�0BH (MD;�; C�(x); 1P (jxj)) � c � 1P (jxj)2 � 1jC�(x)j2 � �0(x)2> c2 � jMD;�; C�(x); 1P (jxj)j2 � �0(x)The Proposition follows. 24 ConclusionsIn general, a theory of average case complexity should provide1. a speci�cation of a broad class of interesting distributional problems;2. a de�nition capturing the subclass of (distributional) problems which are easy on the average;3. notions of reducibility which allow to infer the easiness of one (distributional) problem fromthe easiness of another;4. and, of course, results...It seems that the theory of average case complexity, initiated by Levin and further developed in[7, 18, 1, 10], satis�es these expectations to some extent. Following is my evaluation regarding its\performance" with respect to each of the above.1. The scope of the theory, originally restricted to P-computable distributions has been signi�-cantly extended to cover all P-sampleable distributions (as suggested in [1]). The key resulthere is by Impagliazzo and Levin [10] whow proved that every language which is hNP, P-computablei-complete is also hNP, P-samplablei-complete. This important result makes thetheory of average case very robust: It allows to reduce distributional problems from an utmostwide class to distributional problems with very restricted/simple type of distributions.7



2. The de�nition of average polynomial-time does seem strange at �rst glance, but it seems thatit (or similar alternative) does captures the intuitive meaning of \easy on the average".3. The notions of reducibility are both natural and adequate.4. Results did follow, but here indeed much more is expected. Currently, DistNP-completeproblems are known for the following areas: Computability (e.g., Bounded-Halting) [7], Com-binatorics (e.g., Tiling [15] and a generalization of graph coloring [18]), Formal Languages(cf., [7, 4]), and Algebra (e.g., of matrix groups [8]). However the challenge of �nding a reallynatural distributional problem which is complete in DistNP (e.g., subset sum with uniformdistribution), has not been met so far. It seems that what is still lacking are techniques fordesign of \distribution preserving" reductions.In addition to their central role in the theory of average-case complexity, reductions which preserveuniform (or very simple) instance distribution are of general interest. Such reductions, unlike mostknown reductions used in the theory of NP-completeness, have a range which is a non-negligiblepart of the set of all possible instances of the target problem (i.e. a part which cannot be claim tobe only a \pathological subcase").Levin views the results in his paper [15] as an indication that all \simple" (i.e., P-computable)distributions are in fact related (or similar). Additional support to this statment is provided by hislatter work [17].AcknowledgementsI'm very grateful to Leonid Levin for many inspiring discussions.

8



Appendix: Failure of a naive formulationWhen asked to motivate his de�nition of average polynomial-time, Leonid Levin replies, non-deterministically, in one of the following three ways:� \This is the natural de�nition".� \This de�nition is not important for the results in my paper; only the de�nitions of reduc-tion and completeness matter (and also they can be modi�ed in many ways preserving theresults)".� \Any de�nition which makes sense is either equivalent or weaker".For further elaboration on the �rst argument the reader is referred to Leonid Levin. The secondargument is, o� course, technically correct but unsatisfactory. We will need a de�nition of \easyon the average" when motivating the notion of a reduction and developing useful relaxations of it.The third argument is a thesis which should be interpreted along Wittgenstein's suggestion to theteacher: \say nothing and restrict yourself to pointing out errors in the students' attempts to saysomething". We will follow this line here by arguing that the de�nition which seems natural to anaverage computer scientist su�ers from serious problems and should be rejected.De�nition X (naive formulation of the notion of easy on the average): A distributional problem(D; �) is polynomial-time on the average if there exists an algorithm A solving D (i.e. on input xoutputs D(x)) such that the running time of algorithm A, denoted tA, satis�es 9c > 08n:Xx2f0;1gn �0n(x) � tA(x) < ncwhere �0n(x) is the conditional probability that x occurs given that an n-bit string occurs (i.e.,�0n(x) = �0(x)=Py2f0;1gn �0(y)).The problem which we consider to be most upsetting is that De�nition X is not robust underfunctional composition of algorithms. Namely, if the distributional problem A can be solved inaverage polynomial-time given access to an oracle forB, and problem B can be solved in polynomial-time then it does not follow that the distributional problem A can be solved in average polynomial-time. For example, consider uniform probability distribution on inputs of each length and an oracleTuring machine M which given access to oracle B solves A. Suppose that MB runs 2n2 steps on2n2 of the inputs of length n, and n2 steps on all other inputs of length n; and furthermore thatM when making t steps asks a single query of length pt. (Note that machine M , given access tooracle for B, is polynomial-time on the average.) Finally, suppose that the algorithm for B hascubic running-time. The reader can now verify that although M given access to the oracle B ispolynomial-time on the average, combining M with the cubic running-time algorithm for B doesnot yield an algorithm which is polynomial-time on the average according to De�nition X. It is easyto see that this problem does not arise when using the de�nition presented in Section 2.The source of the above problem with De�nition X is the fact that the underlying de�nition ofpolynomial-on-the-average is not closed under application of polynomials. Namely, if t : f0; 1g� ! Nis polynomial on the average, with respect to some distribution, it does not follow that also t2(�)is polynomial on the average (with respect to the same distribution). This technical problem isalso the source of the following problem, that Levin considers most upsetting: De�nition X is notmachine independent. This is the case since some of the simulations of one computational model on9



another square the running time (e.g., the simulation of two-tape Turing machines on a one-tapeTuring machine, or the simulation of a RAM (Random Access Machine) on a Turing machine).Another two problems with De�nition X have to do with the fact that it deals separately withinputs of di�erent length. The �rst problem is that De�nition X is very dependent on the particularencoding of the problem instance. Consider, for example, a problem on simple undirected graphsfor which there exist an algorithm A with running time tA(G) = f(n;m), where n is the number ofvertices in G and m is the number of edges (in G). Suppose that if m < n 32 then f(n;m) = 2n andelse f(n;m) = n2. Consider the distributional problem which consists of the above graph problemwith the uniform probability distribution on all graphs with the same number of vertices. Now, ifthe graph is given by its (incident) matrix representation then De�nition X implies that A solvesthe problem in average polynomial-time (the average is taken on all graphs with n nodes). Onthe other hand, if the graphs are represented by their adjacency lists then the modi�ed algorithmA (which transforms the graphs to matrix representation and applies algorithm A) is judged byDe�nition X to be non-polynomial on the average (here the average is taken over all graphs of medges). This of course will not happen when working with the de�nition presented in Section 2.The second problem with dealing separately with di�erent input lengths is that it does not allowone to disregard inputs of a particular length. Consider for example a problem for which we areonly interested in the running-time on inputs of odd length.After pointing out several weaknesses of De�nition X, let us also doubt its \clear intuitiveadvantage" over the de�nition presented in Section 2. De�nition X is derived from the formulationof worst case polynomial-time algorithms which requires that 9c > 0 8n:8x 2 f0; 1gn : tA(x) < ncDe�nition X was derived by applying the expectation operator to the above inequality. But whynot make a very simple algebraic manipulation of the inequality before applying the expectationoperator? How about taking the c-th root of both sides and dividing by n; this yields 9c > 0 8n:8x 2 f0; 1gn : tA(x) 1cn < 1Applying the expectation operator to the above inequality leads to the de�nition presented inSection 2... We believe that this de�nition demonstrates a better understanding of the e�ect of theexpectation operator with respect to complexity measures!Summary: Robustness under functional composition as well as machine independence seems tobe essential for a coherent theory. So is robustness under e�ciently e�ected transformation ofproblem encoding. These are one of the primary reasons for the acceptability of P as capturingproblems which can be solved e�ciently. In going from worst case analysis to average case analysiswe should not and would not like to lose these properties.
10



References[1] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, \On the Theory of Average Case Com-plexity", Journal of Computer and system Sciences, Vol. 44, No. 2, April 1992, pp. 193{219.[2] Cook, S.A., \The Complexity of Theorem Proving Procedures", Proc. 3rd ACM Symp. onTheory of Computing, pp. 151{158, 1971.[3] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the Theory ofNP-Completeness, W.H. Freeman and Company, New York, 1979.[4] Goldreich, O., \Towards a Theory of Average Case Complexity (a survey)", TR-531, ComputerScience Department, Technion, Haifa, Israel, March 1988.[5] O. Goldreich. Foundation of Cryptography { Fragments of a Book. February 1995. Availablefrom http://theory.lcs.mit.edu/�oded/frag.html.[6] O. Goldreich. On the Foundations of Modern Cryptography (essay). Proceedings of Crypto97,Springer LNCS, Vol. 1294, pp. 46{74.[7] Gurevich, Y., \Complete and Incomplete Randomized NP Problems", Proc. of the 28th IEEESymp. on Foundation of Computer Science, 1987, pp. 111{117.[8] Gurevich, Y., \Matrix Decomposition Problem is Complete for the Average Case", Proc. ofthe 31st IEEE Symp. on Foundation of Computer Science, 1990, pp. 802-811.[9] Gurevich, Y., and D. McCauley, \Average Case Complete Problems", preprint, 1987.[10] Impagliazzo, R., and L.A. Levin, \No Better Ways to Generate Hard NP Instances thanPicking Uniformly at Random", Proc. of the 31st IEEE Symp. on Foundation of ComputerScience, 1990, pp. 812{821.[11] Johnson, D.S., \The NP-Complete Column { an ongoing guide", Jour. of Algorithms, 1984,Vol. 4, pp. 284{299.[12] Karp, R.M., \Reducibility among Combinatorial Problems", Complexity of Computer Com-putations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pp. 85{103, 1972.[13] Karp, R.M., \Probabilistic Analysis of Algorithms", manuscript, 1986.[14] Levin, L.A., \Universal Search Problems", Problemy Peredaci Informacii 9, pp. 115{116, 1973.Translated in problems of Information Transmission 9, pp. 265{266.[15] Levin, L.A., \Average Case Complete Problems", SIAM Jour. of Computing, 1986, Vol. 15,pp. 285{286. Extended abstract appeared in Proc. 16th ACM Symp. on Theory of Computing,1984, p. 465.[16] Levin, L.A., \One-Way Function and Pseudorandom Generators", Proc. 17th ACM Symp. onTheory of Computing, 1985, pp. 363{365.[17] Levin, L.A., \Homogeneous Measures and Polynomial Time Invariants", Proc. 29th IEEESymp. on Foundations of Computer Science, 1988, pp. 36{41.[18] Venkatesan, R., and L.A. Levin, \Random Instances of a Graph Coloring Problem are Hard",Proc. 20th ACM Symp. on Theory of Computing, 1988, pp. 217{222.11


