
On the Average-Case Complexity of Property TestingOded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.ilJuly 13, 2007AbstractMotivated by a recent study of Zimand (22nd CCC, 2007), we consider the average-casecomplexity of property testing (focusing, for clarity, on testing properties of Boolean strings).We make two observations:1. In the context of average-case analysis with respect to the uniform distribution (on allstrings of a �xed length), property testing is trivial. Speci�cally, either the yes-instances(i.e., instances having the property) or the no-instances (i.e., instances that are far fromhaving the property) are exponentially rare, and thus the tester may just reject (resp.,accept) obliviously of the input.2. Turning to average-case derandomization with respect to distributions that assigns no-ticeable probability mass to both yes-instances and no-instances, we identify a naturalclass of distributions and testers for which average-case derandomization results can beobtained directly (i.e., without using randomness extractors). Furthermore, the resultingdeterministic algorithm may preserve the non-adaptivity of the original tester. (In con-trast, Zimand's argument utilizes a strong type of randomness extractors and introducesadaptivity into the testing process.)We also present a natural example for which the approach of Item 2 is inapplicable, whileZimand's approach may be applicable.
Keywords: Property Testing, Average-Case, Derandomization, Randomness Extractors.

0

IntroductionRecently, Zimand showed that any randomized sublinear-time algorithm can be derandomizedyielding deterministic algorithms of polynomially-related complexity that err on a negligible fractionof the instances [Z]. Speci�cally, he showed that, for some �xed � > 0, randomized algorithms oftime-complexity T such that T (n) < n� can be emulated by poly(T)-time deterministic algorithmsthat err on at most an exp(�
(T log T)) fraction of the instances. Needless to say, Zimand's work(as well as the current note) refers to a \direct access" model of computation in which each bit ofthe input can be read at unit cost. Zimand noted the relevance of his work to property testing,but our view is that this aspect of his work should be evaluated with great care. Articulating thisview is the main motivation of the current note.Average-case with respect to the uniform distributionIn discussing the theoretical signi�cance of his work, Zimand says \it shows that the propertiesthat can be checked in sublinear time depend, except for a few inputs, on just a few bits of theinput and the locations of these bits can be found very fast."1 We fear that such a phrasing doesnot put adequate emphasis on the exception clause (i.e., \except for a few inputs"). Furthermore,in our opinion, the crux of property testing is dealing with non-typical (i.e., exceptional) inputs,whereas dealing with random inputs is typically uninteresting.We �rst note that average-case analysis with respect to the uniform distribution is not adequatein the context of testing properties of strings, which in turn cover almost all types of property test-ing problems (e.g., testing graph properties in the adjacency matrix model). The reason being thatproperty testing problems are special type of promise problems2 in which one should distinguishinstances having the property from instances that are far from any string having the property.However, as shown in Section 1, for every property of n-bit strings either the �rst set (i.e., in-stances having the property) or the second set (i.e., instances far from having the property) hasexponentially vanishing density. In the �rst (resp., second) case, a trivial tester that rejects (resp.,accepts) every input (without reading a single bit) is correct on all but a exponentially vanishingfraction of all inputs, where the exceptional cases consists of all the yes-instances (resp., all the\far-away" instances).Indeed, the average-case complexity of promise problems is meaningful only with respect todistributions that assign noticeable probability mass to both yes-instances and no-instances (becauseotherwise a trivial algorithm as above will do). However, the uniform distribution cannot satisfythe latter condition in the case of promise problems that correspond to property testing (of Booleanstrings).A direct average-case derandomization for many natural casesWe thus turn to average-case derandomization with respect to distributions that assigns notice-able probability mass to both yes-instances and no-instances (i.e., \far-away" instances). WhileZimand's results may be applicable to this context too3, we identify a natural class of distributions1See last paragraph of [Z, Sec. 1.0].2Recall that promise problems [ESY] are represented as pairs of non-intersecting sets A;B � f0; 1g� and solvingsuch problems requires distinguishing inputs in A from inputs in B, while an arbitrary answer is allowed for inputsthat are neither in A nor in B. For such a promise problem we say that a string in A [B satisfy the promise (whilestrings outside A [B violate the promise).3As shown in Section 1, such distributions must have min-entropy at most n �
(n), while [Z] does not provideresults for this range of paramters. Still it is possible that the basic approach of [Z] coupled with an adequate1

and testers for which average-case derandomization results can be obtained directly (and providea more illuminating account of what is actually going on).Recall that, in continuation to [GW], Zimand [Z] emulates the computation of the originalrandomized tester by applying a (special type of) randomness extractor to the input and replacingthe coin tosses of the original tester with corresponding outputs of the extractor. Consequently,even if the original tester is non-adaptive (as is the case with most natural property testers), theresulting deterministic algorithm is adaptive (because the simulation step depends on the bitsread in the randomness-extraction step). In contrast, we show that, in many natural cases, anaverage-case derandomization can be obtained by arbitrarily �xing the coins of the original tester.To illustrate the point, let us consider the problem of testing whether a given Boolean string hasa majority of 1-values (or is far from any such string). In this case, we may obtain a deterministicalgorithm by inspecting the value of the �rst few bits in the string, where this algorithm decidescorrectly on almost all n-bit strings that have a number of 1-values that is bounded away from n=2;that is, ruling by the majority of the inspected bits, we decide correctly on almost all elements in theset of n-bit strings having Hamming weight outside the interval [0:49n; 0:51n]. Furthermore, any�xed set of su�ciently many bit positions can be used for this purpose. For a general treatment,see Section 2.We illustrate the general treatment by considering the special case of testing graph properties inthe adjacency matrix model (as in, e.g., [GGR]). In this setting (but also in other natural settings),the natural property testers use their randomness solely for determining the bit positions to beexamined in the input. Furthermore, at the cost of squaring the query complexity, we may assumethat any graph property can be tested by using randomness in such a restricted manner [GT]. InSection 2, we show that a deterministic tester that inspects the subgraph induced by any �xed setof vertices (of adequate size) errs rarely with respect to any distribution on labeled graphs that isinvariant under isomorphism.Final commentsWe note that in many cases, it is easier to construct property testers that work only on typicalobjects drawn from natural distributions rather than construct standard testers that work on allobjects. This fact is not re
ected by the results shown in Section 2, where we convert standard(randomized) testers into deterministic \average-case testers".We emphasize the fact that, when considering worst-case complexity, randomness is essentialfor testing natural properties (see, e.g., [GS], and note that this is an unconditional result). Indeed,this result stand in contrast to the aforementioned average-case testing results, and provides aformal sense in which \average-case testing" is easier than standard (worst-case) testing. However,we claim that things go beyond this sense: detecting random objects that are far from a propertyis typically easier than detecting arbitrary objects that are far from this property.Reservations regarding our own opinions. The direct average-case derandomizations pre-sented in Section 2 refer to distributions that are invariant under natural reshu�ing of the presen-tation of the studied objects (e.g., in the case of labeled graph we considered distribution that areinvariant under isomorphism). Although such distributions arise naturally in many cases, distri-butions that lack this feature are natural in other cases. For example, consider a distribution overreal-valued vectors (or matrices) that is obtained by the following two-step process: �rst a vector(resp., a matrix) is selected according to an arbitrary distribution, and then each of its entries israndomness extractor may be applicable to such distributions.2

pertubed at random and independently of anything else. The resulting distribution may not satisfyany of the invariances considered in Section 2, but it does have high min-entropy. Recalling thatvarious natural properties of vectors (resp., matrices) can be tested in probabilistic sublinear time(cf., e.g., [EKKRV, FK]), we note that Zimand's approach [Z] may be applicable in this case (andif so yield average-case derandomization of natural appeal).1 Average-case with respect to the uniform distributionWe start by recalling the setting of property testing, when specialized to bit strings (of �xed length).We comment that other �nite objects can be naturally represented by such generic strings, andthus corresponding properties can be naturally cast in this framework. The most notable exampleis property testing of graphs in the adjacency matrix model (as introduced in [GGR]).For a generic length parameter n, we consider the set of all strings over f0; 1gn, and an arbitraryproperty Pn � f0; 1gn. Property testing with respect to a distance parameter � > 0 corresponds todistinguishing inputs in Pn from inputs in ��(Pn), where��(Pn) def= fx 2 f0; 1gn : 8z 2 Pn �(x; z) > � � ng (1)and �(x1 � � � xn; z1 � � � zn) = jfi : xi 6= zigj denotes the number of bits on which x = x1 � � � xn andz = z1 � � � zn disagree.4 That is, property testing with respect to � corresponds to deciding thepromise problem (Pn;��(Pn)). However, as we shall see, with respect to the uniform distributionon f0; 1gn, this promise problem is trivial on the average. That is,Theorem 1.1 ([AS, Thm. 7.5.3], reformulated): For every constant � > 0 there exists a constantc > 0 such that for every n if jPnj � 2�cn �2n then j��(Pn)j � 2�cn �2n. More generally, if jPnj � ��2nand � � q8 ln(1=�)n , then j��(Pn)j � � � 2n.Indeed, Theorem 1.1 can be reformulated by referring to a uniformly distributed x 2 f0; 1gn. Thisreformulation (of the special case of constant � > 0) asserts that (for some constant c > 0) eitherPrx[x 2 Pn] < 2�cn or Prx[x 2 ��(Pn)] � 2�cn. In the �rst case, a tester that always reject iscorrect on all but at most a 2�cn fraction of the n-bit inputs, whereas in the second case the sameholds for a tester that always accepts. Thus, property testing is trivial on the average with respectto any distribution that has min-entropy m def= n� o(n) (i.e., a distribution Xn such that of everyx it holds that Pr[Xn=x] � 2�m).5Proof: The theorem is merely a reformulation of a well-known result regarding the volume ofballs around sets. Speci�cally, let Bd(S) denote the set of n-bit long strings that are at distanceat most d from some string in S (i.e., Bd(S) def= fx 2 f0; 1gn : 9y 2 S s.t. �(x; y) � dg). Then,Theorem 7.5.3 in [AS] asserts that if jSj � e��2=2 � 2n then jB2�pn(S)j � (1 � e��2=2) � 2n. UsingS = Pn and � = p2 ln(1=�), where � = jPnj=2n, we get jBp8n ln(1=�)(Pn)j � (1 � �) � 2n. Notingthat ��(Pn) = f0; 1gn n B�n(Pn), the general claim follows. The special case follows by noting that� = 2�cn implies p(8 ln(1=�))=n = p8c= log e (and so using c = �2=8 will do).4An alternative exposition may refer to Boolean functions of the form f : [n]! f0; 1g. In this case �(f; g) = jfi :f(i) 6=g(i)gj.5In fact, we may allow min-entropy m = n � (cn=2), where c is a constant as above. For such a distribution Xn(of min-entropy n� (cn=2)), it holds that either Pr[Xn 2 Pn] � 2�cn=2 or Pr[Xn 2 ��(Pn)] � 2�cn=2.3

Generalization. We note that Theorem 1.1 generalizes to properties of sequences over any al-phabet �. That is, for any property Pn � �n, it holds that if jPnj � � � j�jn and � � q8 ln(1=�)n ,then j��(Pn)j � � � j�jn, where ��(Pn) denotes the set of n-long sequences over � that are �-far fromevery sequence in Pn. (See further details in the Appendix.)2 A direct average-case derandomization for many natural casesIn this section we show that, in many interesting settings of property testing, average-case de-randomization results can be obtained more directly than by following the approach suggested byZimand (see Footnote 3). We start by considering the concrete setting of testing graph propertiesin the adjacency matrix model (as in [GGR]), and later generalize the treatment to other settings.Indeed, the setting of testing graph properties in the adjacency matrix model provides the mostappealing application of the general approach to be described later.Recall that in this model (for testing graph properties), n-vertex graphs are represented byBoolean strings of length n2. For technical reasons, we prefer to represent such graphs as Booleanfunctions de�ned over the set of the �n2� (unordered) vertex-pairs, which is actually more natural(as well as non-redundant). Note that the set of all permutations over [n] induces a transitive groupof permutations over these pairs, where the permutation � : [n]! [n] induces a permutation thatmaps pairs of the form fi; jg to f�(i); �(j)g. Indeed, any graph property is invariant under thisgroup, which is hereafter referred to as the group of vertex-relabeling; that is, G=([n]; E) has theproperty if and only if �(G)=([n]; ff�(i); �(j)g : fi; jg 2 Eg) has this property.Theorem 2.1 Let Gn be a graph property, referring to n-vertex graphs, and let Xn be any arbitrarydistribution of n-vertex graphs that is invariant under the group of vertex-relabeling (i.e., for everypermutation � : [n]! [n] it holds that Xn and �(Xn) are identically distributed). Suppose that thepromise problem (Gn;��(Gn)) can be decided correctly (in the worst case) by a probabilistic testerof query complexity q(n; �) and error probability at most 1=3. Then, for every k < n=O(q(n; �)2),there exists a deterministic algorithm of query complexity O(k � q(n; �)2) that inspects only vertexpairs that correspond to the vertices 1; :::; O(k � q(n; �)) and is correct on a random input Xn withprobability at least 2�k.As will be clear from the proof, we may use any O(k � q(n; �)) �xed vertices rather than the vertexset f1; :::; O(k � q(n; �))g.Proof: By [GT, Thm. 2], we may convert the original tester into a canonical tester that selectsuniformly a set of n0 def= O(q(n; �)) vertices, denoted R, and accepts if and only if the subgraphinduced by R has some predetermined (graph) property G0n0 . By invoking the resulting (canonical)tester t def= O(k) times, we reduce its (worst-case) error probability to 2�k. We claim that theresulting tester, denoted A, can be derandomized (for average-case performance) by merely usingany �xed set of t �n0 vertices rather than a random set of t �n0 vertices as selected by A. We denotethe resulting deterministic algorithm by D.To prove the above claim, we consider an arbitrary input graph G that satis�es the promise(i.e., either G 2 Gn or G is �-far from Gn). By the foregoing discussion we know that the probabilitythat A errs on input G is at most 2�k. Let � denote a uniformly distributed permutation of [n],and consider the graph �(G) obtained from G by relabeling its vertices according to �. Note that�(G) 2 Gn if and only if G 2 Gn (and, likewise, �(G) is �-far from Gn i� G is �-far from Gn). On theother hand, the distribution of the view of A on input G is identical to distribution of the view of D4

on input �(G), because a random � maps any �xed set of vertices to a uniformly distributed set ofvertices. We stress that the �rst probability space is de�ned over the coin tosses of A, whereas thesecond probability space is de�ned over the random relabeling �. We conclude that the probabilitythat D errs on input �(G) is at most 2�k.By the hypothesis that Xn is invariant under the group of vertex-relabeling, it follows that Xncan be described by a process in which one �rst selects a random graph G (possibly G Xn) andthen outputs �(G), where � is a uniformly distributed permutation of [n]. Note that if G violatesthe promise then so does �(G), whereas if G satis�es the promise then the probability that D errson input �(G) is at most 2�k. It follows that D errs on input Xn with probability at most 2�k.Extensions. Theorem 2.1 can be extended in various ways. We �rst note that most naturaltesters (not only in the setting of testing graph properties in the adjacency matrix model) are \kindof canonical" in the sense that they select some random set of \pivots" and consider small sets ofbit-locations as determined by these pivots. That is, randomization is only used in these testersfor the selection of the pivots, which induce queries that are each uniformly distributed. Thus, thestrategy of the proof of Theorem 2.1 can be applied, resulting in a deterministic algorithm thatuses a �xed set of pivots and errs with probability at most 2�k on any input distribution that isinvariant under permutations that correspond to mapping among sets of pivots. To formalize theabove discussion, we need some de�nitions.We turn back to properties of n-bit strings, which we actually view as functions from [n] tof0; 1g. More generally, we shall consider properties of functions from [n] to an arbitrary alphabet�. For any set (or rather group) � of permutations over [n], we say that the property Pn (ofsuch functions) is �-invariant if for every f : [n] ! � and every � 2 � it holds that f 2 Pn ifand only (f � �) 2 Pn, where (f � �)(i) = f(�(i)) (for every i 2 [n]). In the following de�nition,\normality" amounts to non-adaptivity augmented by the requirement that the �nal decision isdeterministic and only depends on the oracle answers, whereas \�-normality" corresponds to themapping between the aforementioned pivots.De�nition 2.2 (normal testers): Let � be a permutation group over [n] and Pn be a �-invariantproperty. We say that a tester for Pn is normal if there exists a query-generating algorithm Q anda verdict predicate V such that on internal coins s 2 f0; 1gr and oracle access to any f : [n] ! �the tester accepts if and only if V (f(i1); :::; f(iq)) = 1, where (i1; :::; iq) = Q(s). That is, the testerqueries the function at locations i1; :::; iq, which are determined by Q(s) and accepts if and only ifthe predicate V evaluates to 1 on the q-tuple of answers. We say that the tester is �-normal if thefollowing two conditions hold.1. For every s; s0 2 f0; 1gr there exists � 2 � such that Q(s0) = �(Q(s)), where �(i1; :::; iq) =(�(i1); :::; �(iq)).2. For every s 2 f0; 1gr and � 2 � there exists s0 2 f0; 1gr such that Q(s0) = �(Q(s)).Note that, by de�nition, a normal tester is non-adaptive. Also note that the two conditions for�-normality are equivalent to requiring that for every s 2 f0; 1gr and uniformly distributed � 2 �it holds that �(Q(s)) is uniformly distributed in fQ(s0) : s0 2 f0; 1grg (i.e., for every s; s0 2 f0; 1gr itholds that Pr�2�[Q(s0) = �(Q(s))] = 2�r).6 We mention that, indeed, the canonical graph propertytesters (as de�ned in [GT] and used in the proof of Theorem 2.1) are normal. Furthermore, they6Clearly, the latter condition implies the two condition in De�nition 2.2. To see that the other direction, prove5

are �(vr)-normal for the group �(vr) of all vertex-relabeling. Other examples of normal testers arediscussed below.Theorem 2.3 (Theorem 2.1, generalized): Let � be a permutation group over [n] and Pn be a�-invariant property. Let Xn be a distribution over functions from [n] to � such that for everysuch function f and every � 2 � it holds Pr[Xn= f] = Pr[Xn= f � �]. Suppose that the promiseproblem (Pn;��(Pn)) can be decided correctly (in the worst case) by a �-normal tester of querycomplexity q(n; �) and error probability at most 1=3. Then, for every k < n=O(q(n; �)), there existsa (non-adaptive) deterministic algorithm that inspects the function value at O(k � q(n; �)) �xed andpredetermined positions and is correct on a random Xn with probability at least 2�k.A distribution Xn as above is called �-invariant.Proof: The deterministic algorithm, denoted D, is obtained by �xing the coins to the query-generating algorithm Q. For example, we may query the input function f at locations (i1; :::; iq) =Q(0r), and accept if and only if V (f(i1); :::; V (iq)) = 1. (Recall that V represents a �xed predi-cate.) As in the proof of Theorem 2.1, we actually apply this construction after reducing the errorprobability of the original tester to 2�k.To analyze the success probability of D on input Xn, we �x any function f and consider thefunction distribution f � �, where � 2 � is uniformly distributed. As in the proof of Theorem 2.1,the distribution of the view of the original tester on input f is identical to distribution of the view ofthe deterministic algorithm D on the randomized input f ��. We conclude that if f 2 Pn[��(Pn),then the probability that D errs on the input distribution f � � is at most 2�k. Again, using thehypothesis that Xn is �-invariant, we conclude that the probability that D errs on input Xn is atmost 2�k.Corollaries. Indeed, Theorem 2.1 follows as a special case of Theorem 2.3 by invoking [GT,Thm. 2] (and referring to the group of vertex-relabeling permutations). Next, we illustrate theapplicability of Theorem 2.3 to testing low-degree polynomials (see, e.g., [RS]) and to testingmonotone functions (see, e.g., [GGLRS]).� In the case of low-degree tests (see, e.g., [RS]), for some �nite �eld F , we are given a functionf : Fm ! F and wish to test whether it is a low-degree polynomial. The standard testselects uniformly at random a line in Fm, queries some points that reside on �xed locationson this line and accepts if and only if an adequate interpolation condition holds. This testeris clearly normal. Furthermore, this tester is �-normal, where � is the group of all full-ranka�ne transformations of Fm (because such transformations de�ne a transitive operation onthe set of all pairs of di�erent points).7 Thus, Theorem 2.3 can be applied to any distributionof functions that is �-invariant.� In the case of testing monotonicity (see, e.g., [GGLRS]), for some ordered set S, we are givena function f : Sm ! R and wish to test whether it is monotone (i.e., whether f(�) � f(�)for every � = (�1; :::; �m) and � = (�1; :::; �m) such that �i � �i for every i 2 [m]). Inthe case that S = f0; 1g, the standard test selects uniformly at random two points in Smthat for any �xed s; s0; s00 2 f0; 1gr it holds that ps;s0 = ps;s00 , where pa;b def= Pr�2�[Q(b) = �(Q(a))]. (Hint: let �0be a �xed permutation satisfying Q(s00) = �0(Q(s0)), then ps;s00 = Pr�02�[Q(s00) = (�0 � �0)(Q(s))], which equalsPr�02�[Q(s0) = �0(Q(s))] = ps;s0 .)7Note that our notion of normality is closely related (but not identical) to the notion of linear invariances studiedin [KS]. 6

that di�er in a single coordinate, queries f on these two points, and accepts if and onlyif an adequate inequality holds. This tester is clearly normal. Furthermore, monotonicityis �-invariant for the group � that consists of all permutations � : Sm ! Sm such that�(�1; :::; �m) = (��0(1); :::; ��0(m)) for some permutation �0 : [m] ! [m]. Unfortunately, theforegoing tester is not �-invariant, because the permutations in � preserve the Hammingweight of strings in f0; 1gm.In order to apply Theorem 2.3, we decouple the foregoing tester into m tests such that thei-th test selects uniformly an m-bit string � of Hamming weight i and queries f on this stringand on a random string obtained from � by setting one of its 1-entries to zero. Each of thesetesters is �-invariant, and so we may apply an adequate extension of Theorem 2.3 that refersto testing properties by a conjunction of several tests.We comment that similar ideas can be applied even to non-adaptive testers, which seems essential tosettings such as testing properties of bounded-degree graphs in the incidence list model (of [GR1]).For example, note that the testers presented in [GR1, GR2] only employ comparison-based computa-tions; that is, they can described in terms of operations such as select a random vertex, selecta random neighbor of a given vertex, and test equality of two given vertices.8 Thus,the operation of these algorithms is maintained when we relabel the vertices. Consequently, theycan be derandomized analogously to the proof of Theorem 2.1, resulting in an algorithm that usesa �xed set of vertices and a �xed set of neighbor indices.AcknowledgmentsI am grateful to Omer Reingold and Ronen Shaltiel for extremely useful and insightful discussions.I am also grateful to Marius Zimand for correcting my initial impression by which [Z] can handleany source of linear min-entropy.Appendix: Generalization of Theorem 1.1We �rst detail the generalization of Theorem 1.1 to properties of sequences over any alphabet �.This requires generalizing the de�nition of �� as follows (for any Pn � �n):��(Pn) def= fx 2 �n : 8z 2 Pn �(x; z) > � � ng (2)where �(x1 � � � xn; z1 � � � zn) = jfi : xi 6= zigj denotes the number of position in the sequence onwhich x = x1 � � � xn and z = z1 � � � zn disagree.Theorem 1.1, generalized. For any property Pn � �n, it holds that if jPnj � � � j�jn and� � q8 ln(1=�)n , then j��(Pn)j � � � j�jn.Proof: The proof of Theorem 1.1 generalizes easily, because the proof of Theorem 7.5.3 in [AS]applies (without any change) also to the general case. For sake of self-containment, we reproduce8Many of these algorithms also use the operation of retrieving all neighbors of a given vertex, which can beemulated by successively selecting a random neighbor for su�ciently many times. We also note that in [GR1, GR2]the incidence-lists are sorted, but this is immaterial to the algorithms. For simplicity, here we refer to unsortedincidence-lists. 7

the proof of [AS, Thm. 7.5.3]. Indeed, the original text refers to � = f0; 1g but it actually holdsfor any �nite � (provided that � and �� are de�ned as above).Fixing any Pn � �n, de�ne �Pn(x) = minz2Pnf�(x; z)g, and consider a uniformly distributed! 2 �n. Then, the theorem's statement can be reformulated as asserting that if Pr![�Pn(!)=0] � �then Pr![�Pn(!) > p8n ln(1=�)] � �. In order to prove this claim, we introduce a martingale(cf. [AS, Chap. 7]) �0; :::; �n such that�i = �i(!) = j�j�(n�i) � Xri+1;:::;rn2��Pn(!1 � � �!iri+1 � � � rn) (3)where ! = !1 � � �!n. (Indeed, �n(!) = �Pn(!) and �0 = E![�n].) Note that actually �i onlydepends on !1 � � �!i. Indeed, the martingale condition holds (i.e., for every �xed !1 � � �!i, it holdsthat E!i+1 [�i+1j�i] = �i) and j�i+1 � �ij � 1 (because j�Pn(x) � �Pn(x0)j � �(x; x0)). By theMartingale Tail Inequality (cf. [AS, Thm. 7.2.1]) we havePr![�n < �0 � �pn] < e��2=2 (4)Pr![�n > �0 + �pn] < e��2=2 (5)Setting � = p2 log(1=�) (such that � = e��2=2) and contrasting Eq. (4) with Pr[�n = 0] � �, weconclude that �0 � �pn. Thus, Eq. (5) implies Pr[�n > 2�pn] < �, and the theorem follows.References[AS] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons, Inc., 1992.Second edition, 2000.[EKKRV] F. Ergun, S. Kannan, S.R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-Checkers.In 30th STOC, pages 259{268, 1998.[ESY] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Ap-plications to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159{173,1984.[F] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletinof the European Association for Theoretical Computer Science, Vol. 75, pages 97{126,2001.[FK] A. Frieze and R. Kanan. Quick approximation to matrices and applications. Combina-torica, Vol. 19 (2), pages 175{220, 1999.[GGLRS] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing Mono-tonicity. Combinatorica, Vol. 20 (3), pages 301{337, 2000.[GGR] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learningand approximation. Journal of the ACM, pages 653{750, July 1998.[GR1] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,pages 302{343, 2002.[GR2] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs.Combinatorica, Vol. 19 (3), pages 335{373, 1999.8

[GS] O. Goldreich and O. She�et. On the randomness complexity of property testing. InProc. of RANDOM'07, to appear.[GT] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Ran-dom Structures and Algorithms, Vol. 23 (1), pages 23{57, August 2003.[GW] O. Goldreich and A. Wigderson, Derandomization that is rarely wrong from short advicethat is typically good. In the proceedings of RANDOM'02, Springer LNCS, Vol. 2483,pages 209{223, 2002.[KS] T. Kaufman and M. Sudan. Algebraic Property Testing. Unpublished manuscript, 2007.[R] D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597{649,2001. (Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reif and J.D.P. Rolim.)[RS] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applicationsto program testing. SIAM Journal on Computing, 25(2), pages 252{271, 1996.[Z] M. Zimand. On derandomizing probabilistic sublinear-time algorithms. In the Proc. ofthe 22nd IEEE Conference on Computational Complexity, pages 1{9, 2007.

9

