
Appears in Advances in Cryptology { Crypto 94 Proceedings, Lecture Notes in Computer ScienceVol. 839, Springer-Verlag, Y. Desmedt, ed., 1994.Incremental Cryptography: The Case ofHashing and SigningM. Bellare� O. Goldreichy S. GoldwasserzDecember 10, 1995AbstractWe initiate the investigation of a new kind of e�ciency for cryptographic transformations.The idea is that having once applied the transformation to some documentM , the time to updatethe result upon modi�cation of M should be \proportional" to the \amount of modi�cation"done to M . Thereby one obtains much faster cryptographic primitives for environments whereclosely related documents are undergoing the same cryptographic transformations.We provide some basic de�nitions enabling treatment of the new notion. We then exemplifyour approach by suggesting incremental schemes for hashing and signing which are e�cientaccording to our new measure.� Advanced Networking Laboratory, IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights,NY 10598, USA. e-mail: mihir@watson.ibm.com.y Department of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel.e-mail: oded@wisdom.weizmann.ac.il. Research was partially supported by grant No. 92-00226 from the US-IsraelBinational Science Foundation (BSF), Jerusalem, Israel.z Department of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Is-rael, and MIT Laboratory for Computer Science, 545 Technology Square, Cambridge MA 02139, USA. e-mail:shafi@wisdom.weizmann.ac.il. Research was partially supported by NSF FAW grant CCR-9023313 and DARPAgrant N00014-92-J-1799. 1



2



1 IntroductionWe initiate an investigation of incremental algorithms for cryptographic functions. The idea, takingdigital signatures as an example, is to have a signature which is easy to update upon modi�cationof the underlying message. Thus, suppose you have signed message M to obtain signature �. Nowyou make some change to M . For example, you might replace one block by another, insert a newblock, or delete an old one. Let M 0 be the modi�ed message. You want to update the signature �into a signature �0 of M 0. The time to update should be somehow proportional to the \amount ofchange" you have made in M to get M 0, and not the same as simply signing M 0 anew.1.1 A wide range of applicationsIncrementality is suitable for an environment in which the documents undergoing cryptographictransformations are altered versions of documents which have already undergone the same crypto-graphic transformations.For example suppose you are sending the same message to many di�erent users so that the text isessentially the same except for header information, and you want to sign each copy.A second example is video tra�c. Here one can take advantage of the well-known fact that successivevideo frames usually di�er only slightly.A third example is the use of authentication tags for virus protection. We imagine a user who hasa PC and stores his �les on a remote, possibly insecure host which could be attacked by a virus.The user authenticates the �les so that he can detect their modi�cation by a virus. When a usermodi�es his �les, he must re-authenticate them, and an incremental scheme might be useful. (Thetype of authentication used for virus protection can vary. The most likely choice may be a privatekey authentication scheme such as a �nger-print. But one can envisage applications where theuser's signature has to be checked also by others and a full 
edged digital signature is desirable).In general it seems clear that incrementality is a nice property to have for any cryptographicprimitive (eg. �nger-printing, message authentication, digital signatures, hashing, encryption, etc.).1.2 Problems considered in this abstractIt quickly becomes apparent that incrementality presents a large area of research. The goal of this(preliminary) abstract is to draw attention to this area, lay some basic de�nitions, and provide someexamples. For simplicity we restrict the scope of the work presented here in two ways. First, wefocus on just one update operation on the underlying message, namely the replacement of one blockby another. Second, we limit the primitives we consider to digital signatures and the collision-freehashing primitive via which we approach it.We view a message M = M [1] : : :M [n] as a sequence of b-bit blocks. Let Mhj;mi denote M withM [j] replaced by the b-bit string m. The problem, for collision-free hashing, is to design a schemefor which there exists an e�cient \update" algorithm: this algorithm is given the hash function H ,the hash h = H(M) of M and the \replacement request" (j;m), and outputs the hash H(Mhj;mi)of the modi�ed message. Similarly, for signing, the update algorithm is given the signing key Sk,a message M , its signature �, and the replacement request (j;m), and must produce the signature�0 of Mhj;mi. Ideally, in either case, the update time should depend only on the block size b and3



the underlying security parameter k, and not on the length of the message.1 A scheme is said tobe ideally incremental if it possesses an ideal update algorithm.In work in progress we address other operations on messages, like insertion or deletion of blocks,and we also expand the scope to consider more primitives, namely �nger-printing and messageauthentication. See Section 5 for more information.1.3 Incremental collision-free hashingWe pin-point an ideal incremental scheme for collision-free hashing which is based on the hardnessof the discrete logarithm in groups of prime order. Hashing an n-block message (each block k bitslong) to a k bit string takes n exponentiations, while updating takes two exponentiations; theseexponentiations are modulo a O(k)-bit prime.The special case of this hash function in which the number of blocks n is a constant was presentedand analyzed by Chaum, Heijst and P�tzmann [7]. Brands [5] provided a proof of security for n =poly(k). The observation that this hash function possesses an (ideal) update algorithm identi�esfor the �rst time a crucial use for it: we know no other collision-free hashing scheme that is ideallyincremental.We make an additional contribution by considering the \exact security" of the reduction via whichsecurity is proved, and presenting a new reduction which is essentially optimal. The motivationand impact of this result, as explained in Section 3.4.3, is practical: it enables a user to get thesame level of security for a smaller value of the security parameter, leading to greater e�ciency.Note the hash functions we discuss here are ones of public description. That is, the description ofthe function is provided to the adversary trying to �nd collisions. This is unlike the hash functionsused in applications like �nger-printing, where the description of the function is not available tothe collision-�nder!1.4 Incremental digital signaturesWith an (ideal) incremental hash function available, an (ideal) incremental signature scheme iseasily derived by a slight variation of the standard hash-and-sign construction. Namely, hash themessage M with the incremental hash function to get h; sign h with some standard scheme to get��; and use (h; ��) as the signature. (The variation is that the hash value must be included in thesignature). To update, update the hash (fast by assumption) and then sign the new hash valuefrom scratch (fast because we are signing a k-bit string).When evaluating the security of this scheme (or any other) scheme one must be careful: the presenceof the update algorithm entails new security considerations. In keeping with the philosophy of anadaptive chosen message attack [13], we must allow the adversary to obtain examples of signaturesunder the update algorithm. In general these could be di�erently distributed from signaturescreated by the signing algorithm, and the extra power could help the adversary.We will show that the above scheme achieves what we call basic security. Here, in addition to beingable to get examples of signatures from the signing algorithm, the adversary can point to any pastmessage/signature pair and obtain the result of an arbitrary update on this pair.1 Some care must be taken in formalizing this since the update algorithm receives the entire nb-bit message asinput and in a standard Turing machine model could not even read the relevant part in poly(k; b) time. Thus weassume a RAM type computation model and in the formal de�nition allow the update time to depend on log n.4



1.5 Practical issuesIncrementality is fundamentally a practical concern because it is a measure of e�ciency.Clearly, an (ideal) incremental scheme is a win over a standard one as message sizes get larger. Thepractical concern is what is the cross-over point: if incrementality only helps for messages longerthan I am ever likely to get, I am not inclined to use the incremental scheme. The cross over pointfor our schemes is low enough to make them interesting (cf. Section 3.4.4).We prefer schemes with low memory requirements. Signatures of size proportional to the message,as permitted in theoretical de�nitions, are not really acceptable. Thus we want schemes withpoly(k; b) size signatures independent of the number n of message blocks. (This considerationeliminates some trivial incremental schemes like the tree hash signature scheme. See Section 4.4.2).This is achieved in our constructions.Finally, we analyze and state all our security results exactly (as opposed to asymptotically) andstrive for the best possible reductions.21.6 An interesting open questionThe notion of basic security makes an assumption. Namely, that the signer is in a setting wherethe integrity of messages and signatures which he is updating is assured. That is, when a signerapplies the update algorithm to update M and its signature �, he is con�dent that this data hasnot been tampered with since he created it. This is re
ected in the fact that adversary's attack onthe update algorithm consists of pointing to a past (authentic) message/signature pair.This is the right assumption in the majority of applications of digital signatures. For example, inthe case where I am sending the same message to many parties except with di�erent headers, Isign one copy and update to obtain the rest. But I keep the original copy and its signature on mymachine| when I update I know the original is authentic.But there are some situations in which one might want an even stronger form of security. Forexample, suppose you are remote editing a �le residing on an insecure machine, and at any timethe machine could be hit by a virus which would tamper with the data. For e�ciency you areincrementally signing the �le every time you make a change to it. But when you run the updatealgorithm, you can't be sure the data is still authentic. (It is impractical to verify authenticity beforeupdating because veri�cation takes time depending on n and the whole point of incrementality isto update the signature quick).We formalize a new notion of security under substitution attacks appropriate to the above setting.We then show that substitution attacks can be used to break the above hash-and-sign scheme whenthe hash function is our discrete log based one. This is interesting in two ways| it illustrates thestrength of the new attacks, and it shows that a \standard" construction (namely hash-and-sign)can become insecure in a new setting!We leave it as an open problem to �nd ideal incremental signature schemes secure against substi-tution attack.2 Exact security is not new. Although the majority of theoretical works only make asymptotic statements, theexact tradeo�s can be derived from the proofs. (However these tradeo�s are sometimes quite bad). Moreover severalprevious works explicitly address exact security with concern for tradeo� quality, eg. [12, 14, 17, 11, 1].5



2 PreliminariesWe follow the notation for algorithms and probabilistic experiments that originates in [13] and referthe reader there for a detailed exposition. Let's brie
y recall that z R A(x; y; � � �) is the experimentof running probabilistic algorithm A and letting z be its output, and [A(x; y; � � �)] is the set of allstrings output by A(x; y; � � �) with positive probability. PPT denotes \probabilistic, polynomialtime."Our results require us to be careful about the model of computation. Rather than the traditionalTuring machine model, we use the (in any case more realistic) RAM model. In this model anyalgorithm A(x; y; � � �) has random access to each of of its inputs x; y; � � �.A message is viewed as a sequence of blocks. The block size is denoted b and we let Bb = f0; 1gbbe the domain within which blocks range. We let n denote the number of blocks and Bnb the spaceof n-block messages. With b understood, M [i] is the i-th block of M 2 Bnb .A replacement request has the form (j;m) with 1 � j � n and m 2 Bb. We let Mhj;mi denote themessage consisting of M with block j replaced by m. We'll say M has been updated or incrementedby (j;m).3 Incremental collision-free hashing3.1 Families of hash functionsWe need to extend usual de�nitions of hash families to allow independent consideration of thesecurity parameter, the block size and the number of blocks. These parameters are denoted k; b; n,respectively. Below the string H is (the description of) a particular hash function.De�nition 3.1 A family of hash functions is speci�ed by a pair H = (HGen;HEval) of algorithms.The PPT generator HGen takes as input 1k; 1b; 1n and outputs a string HThe polynomial time hash evaluation algorithm HEval takes H and a message M 2 Bnb andoutputs a k bit string called the hash of M under H .When the family (HGen;HEval) is clear from the context, we will identify H with HEval(H; �) andregard it as a map of Bnb to f0; 1gk. In particular we will write H(M) for HEval(H;M).3.2 IncrementalityThe following de�nition says that an update algorithm IncH is one that can turn the hash of Minto the hash of Mhj;mi.De�nition 3.2 Let H = (HGen;HEval) specify a family of hash functions. We say that IncH is anupdate algorithm for H with running time T (�; �; �) if8 k; b; n; 8H 2 [HGen(1k; 1b; 1n)] 8 j 2 f1; : : : ; ng; 8m 2 Bb;if h = HEval(H;M) then it is the case that IncH(H;M; h; (j;m)) halts in T (k; b; n) steps withoutput equal to HEval(H;Mhj;mi). 6



The IncH-augmentation of H = (HGen;HEval) is the triple H+ = (HGen;HEval; IncH).Notice this de�nition makes no requirement on the running time T of IncH. So, in particular, anupdate algorithm can just run HEval(H;Mhj;mi) to compute its output. We don't wish to excludethis| it is a legitimate update algorithm. But of course an update algorithm will be interestingonly when it runs faster than HEval. The term \incremental hash family" will be loosely used torefer to a hash family possessing some \non-trivial" update algorithm.We would like to say that an \ideal" update algorithm is one whose running time does not depend onn. Such an algorithm would random access a small number of relevant memory blocks (this is wherewe need the RAM model as opposed to the Turing machine model) and do some quick computationbefore writing the output back to memory. The formal de�nition that follows, however, allows adependence of the time on logn (because otherwise the blocks cannot be accessed even in a RAM)but this quantity will be much smaller than, say, k+ b, in any realistic situation, and thus we viewthe running time as being independent of n.De�nition 3.3 An update algorithm IncH for H is ideal if its running time T (k; b; n) is polynomialin k; b and log n.We'll say that H is an ideal incremental scheme if it possesses an ideal update algorithm.3.3 Collision-freenessIncrementality does not necessitate any additions to the usual notions of attacks on the hashfamily. (This is in contrast to the situation for signatures, where the presence of incrementality willintroduce new security issues). Thus we just have the usual notion of collision-freeness. A collision-�nder for H+ is a probabilistic algorithm A. We discuss security via the following experiment.Experiment describing A's attack on H+(k; b; n) :{(1) Run HGen(1k; 1b; 1n) to get H .(2) Run A on input H . We ask that at the end of her execution, A outputs a pair of distinctmessages M1;M2 2 Bnb . We say A is successful if H(M1) = H(M2).We say that A succeeds in (t; �)-breaking H+(k; b; n) if, in the above experiment, A runs for time tand is successful with probability at least �. We don't say what it means for a scheme to be \secure:"there is no need, because we will make stronger statements on the exact security (cf. Theorem 3.4)which imply the usual asymptotic notion.The fact that the hash function is \public" is captured in the fact that the adversary is given itsdescripton when trying to �nd collisions.3.4 An incremental hash family3.4.1 Discrete log in groups of prime orderWe �x a PPT algorithm PrimeGen which on input 1k outputs a k + 1 bit prime p identifying agroup Gp of (prime) order p. We let G = Sk G(k), where G(k) = fGp : p 2 [PrimeGen(1k)]g, be theset of all these groups, and we assume the discrete log problem for G is hard (when the prime is7



chosen according to PrimeGen). Such groups have been used for cryptography by Croft and Harris[8], Schnorr [17], Chaum and Van Antwerpen [6], and others, and we refer the reader to these worksfor how to choose such groups. In particular, with appropriate assumptions on the distribution ofprimes if necessary, it can be done so that Gp is a subgroup of Z�q for some q of size O(k), so thatwe may assume e�cient group operations. In particular exponentiation takes O(k3) time.A key fact is that since Gp has prime order, every non-trivial element is a generator. We letindexGpg (x) 2 f0; 1; : : : ; p�1g denote the discrete logarithm of x to (non-trivial) base g in the groupGp. A discrete log �nder is a probabilistic algorithm B.Experiment describing B's attack on G(k) :{(1) Let p R PrimeGen(1k) ; g R Gp�f1g ; x R Gp�f1g.(2) Run B on input p; g; x. We say that she is successful if her output is indexGpg (x).We way that B succeeds in (t; �)-breaking G(k) if in the above experiment she halts in t steps andis successful with probability at least �.We denote by h�i: Bb ! f1; : : : ; 2bg an encoding of message blocks into non-zero integers. To bespeci�c, we set hmi to 1 plus the number whose binary expansion is m. Thus for any prime p oflength at least b+ 1 and any g 2 Gp we can compute ghmi, and if g is non-trivial so is ghmi.3.4.2 The hash family and the update algorithmThe block size will be set equal to the security parameter, b = k. (Formally have the followingalgorithms output junk when b 6= k. Theorem 3.4 only addresses the case b = k).The hash family H = (HGen;HEval) is speci�ed as follows. On input 1k; 1k; 1n the generator HGenruns PrimeGen(1k) to get a k+1 bit prime p. It then selects g1; : : : ; gn at random from Gp�f1g andoutputs (p ; g1; : : : ; gn) as the description of the hash function H . The value of the hash functionH = (p ; g1 : : : gn) on a given message M = M [1] : : :M [n] 2 Bnk is given byH(M [1] : : :M [n]) def= HEval(H;M [1] : : :M [n]) = Qni=1 ghM [i]ii ;the operations being of course in the group Gp.The interest of [7] in this family seemed to stem from its e�ciency as compared, for example, tothat of the (discrete log based) hash family of [9]. Brands [5] mentions the family in the context ofa general exposition of the \representation" problem. The (seemingly rare) incremental propertythat we next observe it possesses seems for the �rst time to pinpoint a crucial use of this family,and in some sense answers a question of [5] who asked for interesting uses of the representationproblem when n was more than a constant.De�ne the algorithm IncH byIncH(H;M; h; (j;m)) = h � g�hM [j]ij � ghmij :It is easy to see that if h = H(M) then IncH(H;M; h; (j;m)) = H(Mhj;mi). Now note IncH canrandom access the O(nk) bit description of H to get gj in poly(k; logn) time, and similarly for theother inputs. Its output is then given by a polynomial time computation on O(k) bit inputs andhence the algorithm runs in poly(k) time. Thus it is an ideal update algorithm for H.8



3.4.3 SecurityA proof of the security of H+ takes the following form. Given a collision �nder A for H+(k; k; n) weconstruct a discrete log �nder B for G(k). Now suppose A succeeds in (t; �)-breaking H+(k; k; n).The question we consider is for what values of t0; �0 the constructed algorithm B succeeds in (t0; �0)-breaking G(k).Previous works [7, 5] have only discussed asymptotic security, where one sets n = n(k) to some �xedpolynomial in k, regards t; �; t0; �0 as functions of k, assumes t; � are polynomial and non-negligible,respectively, and then shows that t0; �0 are also polynomial, and non-negligible, respectively. Butfor practice it is important to know exactly how the resources and achievements of B compare tothose of A, so that we may know what size to choose for the prime p and what adversaries wecan tolerate with a speci�c security parameter. Moreover, it is important to strive for the tightestpossible reduction, because this means that the same \security" can be obtained with a smallervalue of the security parameter, meaning greater e�ciency. Thus we want the e�ort and success ofB should be as close to those of A as possible.In this light let's look at the existing reductions to see what they achieve. The proof of [7] onlyapplies to the case of n = O(1) block messages, and in fact t0 seems to grow exponentially withn, so that this reduction is not suitable for our purposes. Brands [5] proposes a reduction whichremoves the restriction on n and achieves t0 = t+O(nk3) and �0 = �=n. The running time of B hereis essentially optimal: we must think of t as much larger than n or k, and additive terms like theO(nk3) correspond to overhead of B coming from simple and unavoidable arithmetic operations.The loss in the success probability is more serious. Note that (particularly in our case) n may bevery large. Thus even if A is successful with high probability, the above may only let us concludethat B is successful with low probability.We improve the reduction to be essentially optimal. We preserve the current quality of the runningtime, and achieve for B a success probability within a small constant factor of that of A.The big-oh notation, both in the time as given above and in the following theorem, hides a constantwhich depends only on the underlying machine model and can be taken as small in a reasonablesetting. U denotes some oracle machine which depends only on our proof and the given familyH. Although the statement of the theorem does not say anything about the \size" of U , the proofshows that it is \small," and this is important in practice. H+ is the IncH-augmentation of H.Theorem 3.4 There is an oracle machine U such that the following is true. Suppose collision-�nderA succeeds in (t; �)-breaking H+(k; k; n). Then discrete log �nder B def= UA succeeds in (t0; �0)-breakingG(k) where t0 = t+ O(nk3) and �0 = �=2.The proof is in Appendix A.3.4.4 E�ciencyHashing an n-block message takes n exponentiations (equivalently, one multiplication per messagebit) modulo a O(k)-bit prime. This is quite good for a number-theory based scheme.How does it compare with standard hash functions like MD5 or SHA? Let's �x k = 512. In hashingfrom scratch there is no comparison| MD5 on 512n bits is far better than n exponentiations.But assume we are in a setting with frequent updates. With MD5 we have no choice but to hash9



from scratch, while in our scheme we can use the update algorithm to update the hash in twoexponentiations. Thus to compare the e�ciency we should ask how large is n before the time to dotwo exponentiations of 512 bit numbers is less than the time to evaluate MD5 on a 512n bit string.A computation yields a reasonable value.Note there are heuristics (based on vector-chain addition) to compute Qni=1 ghM [i]ii faster than doingn modular exponentiations [4].3.4.5 A practical version with small description sizeThe size of (the description of) the hash function in the above is O(nk) so that it depends onthe message size, which we assume large. In practice this is too much. Here we suggest a wayto reduce the size to O(k). We let f : f0; 1gk ! f0; 1gO(k) be the restriction of some \standard"hash function, such as MD5, to inputs of length k. We now set gi = f(i) to be the result ofevaluating f at i. Now the description of the hash function is just the prime p and anyone canquickly compute g1; : : : ; gn for themselves. The loss in e�ciency is negligible since the time for thearithmetic operations dwarfs the MD5 computation time.Although such a construction must ultimately be viewed as heuristic, its security can be discussedby assuming f is a random function. Extending our proof of security to this setting is not di�cultand we can conclude (the following statement is informal) that the scheme just described satis�esTheorem 3.4 in the random oracle model. As discussed by [2], although this approach (namelyprove security in a random oracle model and then instantiate the random oracle with a standardhash function) does not yield provable security, it provides a better guarantee than purely heuristicdesign, and protocols designed in this manner seem to be secure in practice. We refer the readerto this paper also for more suggestions on functions with which to \instantiate" f .4 Incremental Signing4.1 Signature schemesDe�nition 4.1 A signature scheme is a triple S = (KGen; Sig;Vf) of algorithms. There is apolynomial s(�; �; �) called the signature size such thatThe PPT key generator KGen takes as input 1k; 1b; 1n and outputs a pair (Sk;Vk) of stringscalled, respectively, the signing and (corresponding) verifying keys.The PPT signing algorithm Sig takes as input Sk and M 2 Bnb and outputs a s(k; b; n)-bitstring called the signature of M .The polynomial time verifying algorithm Vf outputs a bit and satis�es Vf(Vk;M; �) = 1 forevery M 2 Bnb and every � 2 [Sig(Sk;M)].The assumption that Vf is deterministic is for simplicity only: in general one can consider proba-bilistic veri�ers.We'll say that a signature scheme has short signatures if the signature size depends only on k. Insuch a case we abuse notation and write the signature size as s(k).10



4.2 IncrementalityAn update algorithm is one that can turn a signature of M into some signature of Mhj;mi.De�nition 4.2 Let S = (KGen; Sig;Vf) be a signature scheme. We say that IncSig is an updatealgorithm for S with running time T (�; �; �) if8 k; b; n; 8 (Sk;Vk) 2 [KGen(1k; 1b; 1n)] 8 j 2 f1; : : : ; ng; 8m 2 Bb;if Vf(Vk;M; �) = 1 then it is the case that IncSig(Sk;M; �; (j;m)) halts in T (k; b; n) steps withoutput �0 satisfying Vf(Vk;Mhj;mi; �0) = 1.The IncSig-augmentation of S = (KGen; Sig;Vf) is S+ = (KGen; Sig;Vf; IncSig).Note that the output of IncSig(Sk;M; �; (j;m)) is not required to be distributed in the same wayas that of Sig(Sk;Mhj;mi)| IncSig just has to return something that Vf would accept.The term \incremental signature scheme" will be loosely used to refer to a signature scheme pos-sessing some \non-trivial" update algorithm. Ideality of an update algorithm is de�ned in analogyto De�nition 3.3, and an ideal incremental signature scheme is one that possesses an ideal updatealgorithm.The schemes we prefer have short signatures, but it is possible to discuss update algorithms (evenideal ones) even if the signatures are long. In such a case IncSig will not be able to output theentire signature| one imagines that it modi�es � in a few chosen places and the result is what weview as �0.Analogously one can de�ne the notion of incremental veri�cation. We leave it to the reader.4.3 Basic securityWe recall that we will be evaluating the security of signature schemes at two levels, motivated bydi�ering security demands of applications. The basic level we present here is suitable for settings inwhich a signer updating signature � of messageM is guaranteed that these quantities are authentic.In the majority of applications of digital signatures this assumption is valid.The de�nition extends the notion of existential forgery under adaptive chosen message attack toallow the adversary access to IncSig(Sk; � � �). (This is necessary because signatures produced byIncSig might be from a di�erent distribution than those produced by Sig and perhaps the adversarycan gain an advantage by seeing examples from this new distribution). The restriction that updatesonly be made on authentic data is captured below in the fact that the incremental signing requestssimply point to a message and signature from the past.Experiment describing F 's attack on S+(k; b; n) :{(1) Run KGen(1k; 1b; 1n) to get keys Sk;Vk.(2) Initialize: Set � = 0.(3) Run the adversary F on input Vk. Her oracle queries are answered as follows.(3.1) Suppose F makes a simple signing request| this has the form of a message M 2 Bnb .Let � R Sig(Sk;M) and return � to F . Let � �+ 1. Let M�  M and ��  �.11



(3.2) Suppose F makes an incremental signing request| this has the form ((j;m); �) with� 2 f1; : : : ; �g. Let �0 R IncSig(Sk;M�; ��; (j;m)) and return �0 to F . Let �  � + 1.Let M�  M�hj;mi and ��  �0.(4) We ask that at the end of her execution, F output a pair (M;�) such that M 62 Legal, whereLegal = fM1; : : : ;M� g. We say that F is successful if Vf(Vk;M; �) = 1.We say that F succeeds in (t; qsig; qinc; �)-breaking S+(k; b; n) with a basic attack if, in the aboveexperiment, she runs for t steps, makes qqsig simple signing requests, makes qqinc incremental signingrequests, and succeeds with probability at least �.4.4 Incremental signature schemes achieving basic securityIn what follows S� = (KGen�; Sig�;Vf�) denotes a standard (ie. not necessarily incremental) signa-ture scheme as per De�nition 4.1, assumed secure against existential forgery under adaptive chosenmessage attack in the standard sense of [13]. Exact security is discussed by saying that an adversaryF � succeeds in (t; q; �)-breaking S�(k; b; n) with an adaptive chosen message attack if in this attackshe runs in time t, makes q signing queries, and succeeds in existential forgery with probability atleast �. We consider two standard transformations.4.4.1 Incremental hash-and-signGiven an incremental hash function, a slight variation of the standard hash-and-sign method yieldsan incremental signature scheme. Security must however be reconsidered, in light of the fact thatour basic attacks allow attacks on the update algorithm. Luckily they do not cause any damage.For completeness we provide details below.Let H+ = (HGen;HEval; IncH) be a family of hash functions together with an update algorithm.We specify S+ = (KGen; Sig;Vf; IncSig) as follows.On input 1k; 1b; 1n algorithm KGen runs H R HGen(1k; 1b; 1n) ; (Sk�;Vk�) R KGen�(1k; 1k; 11). Itoutputs the signing key Sk = (Sk�; H) and the verifying key Vk = (Vk�; H). Note the keys of theoriginal signature scheme are chosen to sign messages consisting of one k-bit block only.The signature of M 2 Bnb given the above keys is Sig(Sk;M) = (H(M); Sig�(Sk�; H(M))). Namelythe hash of the message, together with its signature under the original scheme. (Including thehash h = H(M) in the signature is the slight variation. It may seem redundant since anyone cancompute it given M;H , but it is important for incrementality). Note Sig� is being applied only toa k-bit string.Given the veri�cation key Vk = (Vk�; H) and a string � = (h; ��) the algorithm Vf outputs 1 i�h = H(M) and Vf�(Vk�; ��) = 1.Given Sk;M; �; (j;m) (with Sk = (H; Sk�) and � = (h; ��)) the update algorithm IncSig �rstupdates the hash by h0 = IncH(H;M; h; (j;m)). Then it computes from scratch a signature �0 =Sig�(Sk�; h0) of (the k-bit string) h0 under the original scheme. It outputs (h0; �0).Note that the signatures in this scheme are short, namely poly(k) bits.The following theorem says that if S+ can be broken then either S� or H+ can be broken, andspeci�es the exact security corresponding to this statement. The function �(k; b; n) represents timedepending only on the algorithms de�ning the schemes. It should be viewed as much smaller than12



t and its exact value can be derived from the proof.Theorem 4.3 There are oracle machinesU1; U2 and a function �(k; b; n) such that the following is true.Suppose F succeeds in (t; qsig; qinc; �)-breaking S+(k; b; n) with a basic attack, and let q = qsig + qinc.Then one of the following is true:(1) Either F � def= UF1 succeeds in (t + q � �(k; b; n); q; �=2)-breaking S�(k; k; 1) with an adaptivechosen-message attack, or(2) A def= UF2 succeeds in (t+ q � �(k; b; n); �=2)-breaking H+(k; b; n).The proof of Theorem 4.3 is in Appendix B.The hardness of discrete log implies, via [15], the existence of standard (ie. non-incremental) sig-nature schemes which can play the role of S� in the above. Combining this with the results ofSection 3.4.3 we have established the existence of an incremental signature scheme with short sig-natures given the hardness of the discrete log in groups of prime order. This construction howeveris not too practical because of the use of the result of [15]. For a practical version we could useEl Gamal's scheme [10] or RSA in the role of S� and the practical version of our hash function(cf. Section 3.4.5) in the role of H.The public �le is large because the hash function has poly(n; k) size. But it isn't necessary thateach user publish a hash function. Rather, some (trusted) center can publish a single hash functionfor use by all users. Now, a user's public �le is just that of the original non-incremental scheme,and this is poly(k).4.4.2 The tree hash scheme uses too much memoryThe tree-hash scheme is probably the �rst thing that comes to mind when asked to �nd an incre-mental signature scheme.Assuming for simplicity that b = k we recall that the scheme makes use of a standard (ie. notnecessarily incremental) collision-free hash function H : f0; 1g2k! f0; 1gk. The message is hashedby the binary tree construction. That is, in each stage, adjacent blocks are hashed together to yielda single block, halving the number of blocks per stage. In lg(n) stages we have the �nal hash value.This can be signed under the standard scheme.Now suppose we store all the internal nodes of the tree: formally, include them in the signature.Now the hash can he incremented by just recomputing the tree nodes indicated by the path fromthe updated block to the root of the tree.The security needs again to be reconsidered because we allow the adversary to attack the updatealgorithm (cf. Section 4.3) but some thought shows that the scheme satis�es our basic securityrequirement.But the signature is long| incrementality is at the cost of storing about twice as many bits asin the message. Thus while this scheme may be incremental under our formal de�nition, it is toomemory ine�cient to be interesting in most applications. We want schemes with short signaturesand hence prefer the method of Section 4.4.1. 13



4.5 Security against substitution attacksWe provide here a stronger notion of security for incremental signature schemes, suitable for ap-plications like remote editing a �le on an insecure machine. We let S+ = (KGen; Sig;Vf; IncSig)be an augmented signature scheme. The adversary's incremental signing requests now have a newform: she supplies M;�; (j;m); �. We �rst describe the experiment then provide explanation anddiscussion.Experiment describing F 's attack on S+(k; b; n) :{(1) Run KGen(1k; 1b; 1n) to get keys Sk;Vk.(2) Initialize: Set � = 0.(3) Run the adversary F on input Vk. Her oracle queries are answered as follows.(3.1) Suppose F makes a simple signing request| this has the form of a message M 2 Bnb .Let � R Sig(Sk;M) and return � to F . Let � �+ 1 and let M�  M .(3.2) Suppose F makes an incremental signing request| this has the form (M;�; (j;m); �)with � 2 f1; : : : ; �g. Let �0 R IncSig(Sk;M; �; (j;m)) and return �0 to F . Let � �+1and let M�  M�hj;mi.(4) We ask that at the end of her execution, F output a pair (M;�) such that M 62 Legal, whereLegal = fM1; : : : ;M� g. We say that F is successful if Vf(Vk;M; �) = 1.We say that F succeeds in (t; qsig; qinc; �)-breaking S+(k; b; n) with a substitution attack if, in theabove experiment, she runs for t steps, makes qqsig simple signing requests, makes qqinc incrementalsigning requests, and succeeds with probability at least �.Recall that the assumption in basic security was that when the signer applies the update algorithmit is to \authentic" data. We are assuming we are in a situation where this assumption is notrealistic; for example, the data is on an insecure medium and when the signer accesses it to updatea message and signature, he cannot be sure it has not been tampered with. In the worst case, hemust assume it has been adversarially tampered with.To model this the adversary is asked, as before, to point, via �, to that message out of the paston which she is requesting an update, and to supply the update request (j;m). The novel elementis that she will additionally supply M;�, to be taken to mean that she has substituted these forM�; ��. That is, she has tampered with the data.The index � is not re
ected in the way her query is answered| the answer is obtained by applyingIncSig(Sk; � � �) to the message M and accompanying �; (j;m) that F provides. But � is used toupdate the signer's own \view" of what is happening. The idea is that that signer has \accepted"to update M� according to (j;m), and thus has, from his point of view, willingly signed M�hj;mi.In other words, we can view the set Legal, at the end of the experiment, as being all those messageswhich the signer believes he has signed.The notion of existential forgery says F is successful if she outputs a message M not previouslyqueried of Sig(Sk; �), and passing veri�cation. We recall that the intuition is that \legitimatelysigned" messages are excluded. Thus according to the above discussion, we should declare Fsuccessful if she forges the signature of a message not in Legal.Why would such an attack help the adversary? The reason is that IncSig was designed to beused on inputs Sk;M; �; (j;m) for which Vf(Vk;M; �) = 1, and we don't know what happens14



when this algorithm is run on strange inputs. One might ask why IncSig doesn't simply check thatVf(Vk;M; �) = 1. The reason is that in general this could defeat the e�ciency we are trying to gain.For example, if IncSig is ideal it has only poly(k; b; logn) time and veri�cation takes poly(k; b; n)time.It is important to note that we do not view the adversary as having legitimately obtained thesignature of Mhj;mi| what the signer believes he has signed is M�hj;mi.4.6 A successful substitution attackWe illustrate the strength of substitution attacks by showing how the scheme of Section 4.4.1 canbe broken, in this setting, when we use, as the hash family, the one of Section 3.4. (In particularthis means the scheme in question should not be used in applications like remote editing a �le ona machine which could be unexpectedly hit by a virus).The attack is interesting in illustrating how substitution attacks work. It is also interesting inillustrating how a \standard" construction like hash-and-sign which is secure in the usual sensefails to be secure in a new setting.For simplicity assume the messages consist of just one block (n = 1): the attack easily generalizes toarbitrary n. The hash function is described by (p; g) and reduces simply to H(M) = ghMi = g1+M ,the operations being in Gp. We let Sk� be the signing key under the standard scheme, so that thesignature of M is � = (g1+M ; ��) where �� R Sig�(Sk�; g1+M).The adversary F begins with the simple signing request A. The reply she obtains has the form�A = (hA; ��A) where hA = g1+A. Think of it as the signer having signed A and stored A; �A on theinsecure medium. We set M1 = A.Now, F make the incremental signing request (B; �A; (1; C); 1). That is, on the insecure medium,she changes A to B, and asks the signer to substitute C for the �rst (and only) block of thismessage. According to our scheme, the signer �rst applies the hash update algorithm to updatethe hash: hF = hA � g�(1+B) � g1+C = g1+A�B+C . Then he re-signs via ��F R Sig�(Sk�; hF ). Thereply to F is �F = (hF ; ��F).What is important to note at this point is that what the signer really believes himself to have signedis C. That is, in terms of the experiment of Section 4.5, we have M2 = C. Thus, the adversarycan simply output (A � B + C; �F) as a forgery. The veri�cation algorithm will accept �F as thesignature of A� B + C. But at this point the set of messages whose signatures have been legallyobtained is Legal = fA;Cg. For appropriate choices of B;C (it su�ces that B 62 fA;Cg) it is thecase that A � B + C 62 Legal. Thus the adversary is successful, and the scheme is broken withprobability one.Notice that the attack did not �nd collisions in H , nor did it forge signatures under Sk�.We don't know whether the attack applies to any instance of the hash-and-sign paradigm, but theabove is su�cient to show hash-and-sign is not in general secure against substitution attack.We leave as an open problem to design an incremental signature scheme secure against substitutionattack, under the restrictions that the signature be short and the update algorithm be ideal. Someprogress towards this question is described below.15



5 Work in progressIn [3] we expand the scope of this research in the following directions. First, we consider morecomplex update operations on messages such as insertion (of a new block into the message) ordeletion (of an existing block). These are clearly important in applications. Second, we considerother primitives such as �nger-printing and message authentication. We appropriately extend thenotion of subsitution attack to these contexts. Our main result is a �nger-printing scheme whichpermits insertion and deletion and is secure against substitution attack.AcknowledgmentsWe thank Hugo Krawczyk for many informative discussions on this materiel.References[1] M. Bellare, J. Kilian and P. Rogaway. The security of cipher block chaining. Advancesin Cryptology { Crypto 94 Proceedings, Lecture Notes in Computer Science Vol. 839, Springer-Verlag, Y. Desmedt, ed., 1994.[2] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designinge�cient protocols. Proceedings of the First Annual Conference on Computer and Communi-cations Security , ACM, 1993.[3] M. Bellare, O. Goldreich and S. Goldwasser. Work in progress.[4] J. Bos and M. Coster. Addition chain heuristics. Advances in Cryptology { Crypto 89Proceedings, Lecture Notes in Computer Science Vol. 435, Springer-Verlag, G. Brassard, ed.,1989.[5] S. Brands. An e�cient o�-line electronic cash system based on the representation problem.CWI Technical Report CS-R9323.[6] D. Chaum and H. Van Antwerpen. Undeniable signatures. Advances in Cryptology {Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435, Springer-Verlag, G. Bras-sard, ed., 1989.[7] D. Chaum, E. Heijst and B. Pfitzmann. Cryptographically strong undeniable signatures,unconditionally secure for the signer. Advances in Cryptology { Crypto 91 Proceedings, Lec-ture Notes in Computer Science Vol. 576, Springer-Verlag, J. Feigenbaum, ed., 1991.[8] Croft and Harris. Public key cryptography and re-usable shared secrets. In Cryptographyand Coding , Clarendon Press, 1989.[9] I. Damg�ard. Collision free hash functions and public key signature schemes. Advancesin Cryptology { Eurocrypt 87 Proceedings, Lecture Notes in Computer Science Vol. 304,Springer-Verlag, D. Chaum, ed., 1987.[10] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-rithms. IEEE Trans. Info. Theory, Vol. IT 31, 1985.16



[11] S. Even, O. Goldreich and S. Micali. On-line/O� line digital signatures. Manuscript.Preliminary version in Crypto 89.[12] O. Goldreich and L. Levin. A hard predicate for all one-way functions. Proceedings ofthe Twenty First Annual Symposium on the Theory of Computing, ACM, 1989.[13] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure againstadaptive chosen-message attacks. SIAM Journal of Computing, 17(2):281{308, April 1988.[14] R. Impagliazzo, L. Levin and M. Luby. Pseudo-random generation from one-way func-tions. Proceedings of the Twenty First Annual Symposium on the Theory of Computing,ACM, 1989.[15] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Ap-plications. Proceedings of the Twenty First Annual Symposium on the Theory of Computing,ACM, 1989.[16] R. Rivest. The MD5 message-digest algorithm. IETF Network Working Group, RFC 1321,April 1992.[17] C. Schnorr. E�cient identi�cation and signatures for smart cards. Advances in Cryptol-ogy { Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435, Springer-Verlag,G. Brassard, ed., 1989.A Proof of Theorem 3.4We �rst describe the algorithm B = UA. Then we argue that its running time is as claimed and�nally that its success probability is as claimed.On inputs p; g; x algorithm B selects r1; : : : ; rn 2 f0; 1g at random and u1; : : : ; un 2 f0; 1 : : : ; p� 1gat random. For i = 1; : : : ; n it setsgi = ( gui if ri = 0xui if ri = 1 :It sets H = (p ; g1; : : : ; gn). Now it invokes A(H) and obtains distinct messagesM1 = M1[1] : : :M1[n] and M2 = M2[1] : : :M2[n] : (1)For j = 1; 2 it is now convenient to set tj;i = hMj[i]i. Algorithm B sets a =Pri=1 ui(t1;i� t2;i), thearithmetic here being modulo p. If this quantity is 0 then B has failed, and it halts with no output.So assume it is non-zero. Now compute an inverse b of a mod p. (That is, ba � 1 mod p. Such aninverse always exists since p is prime, and it can be found via Euclid's algorithm). B outputs � =b � Pri=0 ui(t2;i � t1;i) mod p and halts.B invokes A once. In addition it performs some arithmetic modulo p of which the dominant partis O(n) exponentiations. This accounts for the claimed running time. We now turn to justifyingthe claimed success probability.Note that the distribution of g1; : : : ; gn is uniform and independent and is the same as the distribu-tion over these quantities that HGen would generate. So the messages found by B in Equation 1 are17



a collision |ie. H(M1) = H(M2)| with probability at least �. Now assuming they are a collisionwe haveQni=1 gt1;ii = Qni=1 gt2;ii :Using the de�nition of g1; : : : ; gn and re-arranging terms in the above we getQri=1 xui(t1;i�t2;i) = Qri=0 gui(t2;i�t1;i) :Note that the left hand side is xa. We now claim that with probability at least 1=2 we have a 6= 0.Given this, raise both sides of the above equation to the power b to getx = xab = Qri=0 gbui(t2;i�t1;i) = g� ;showing that � is indeed indexGpg (x). It remains to justify the claim. We will argue this informally.We will use the following technical fact.Technical Fact. Let a1; : : : ; an be numbers with the property that Pni=1 ai 6= 0. Let X1; : : : ; Xn beindependent random variables de�ned by Pr[Xi = ai ] = Pr[Xi = 0 ] = 1=2 for each i = 1; : : : ; n.Let X =Pni=1Xi. Then Pr[X 6= 0 ] � 1=2.We note that the distribution on g1; : : : ; gn is independent of r1; : : : ; rn. Thus we may think of theexperiment as the following game. We choose g1; : : : ; gn at random and obtain the collision fromA. We let ai = ui(t1;i � t2;i) for i = 1; : : : ; n. Now we choose r1; : : : ; rn at random and computePri=1 ai. Viewed this way we can see it is the same as the technical fact stated above.B Proof of Theorem 4.3Refer to Section 4.3 for the description of the experiment that describes F 's attack on S+(k; b; n).We leave the reader to check that the following algorithms meet the claim.The algorithm F �. On input a veri�cation key Vk� of the original scheme, and with oracle accessto Sig�(Sk�; �), algorithm F � runs HGen(1k; 1b; 1n) to get H . She sets Vk = (Vk�; H) and runs Fon this input. Set � = 0. F 's oracle queries are dealt with as follows:Suppose F makes the simple signing request M . F � lets �  � + 1 and M�  M . ThenF � computes h� = H(M) and invokes its oracle to obtain ��� = Sig�(Sk�; h�). She returns�� = (h�; ���) to F .Suppose F make the incremental signing request ((j;m); �). F � lets �  � + 1 and M�  M�hj;mi. Then F � computes h� = IncH(H;M�; h�; (j;m)) and invokes its oracle to obtain��� = Sig�(Sk�; h�). She returns �� = (h�; ���) to F .Suppose F eventually halts with output (M;�) where � = (h; ��). Then F � outputs (h; ��) as hisforgery, and halts.The algorithm A. On input H chosen according to H R HGen(1k; 1b; 1n), algorithm A lets(Sk�;Vk�) R KGen�(1k; 1k; 11). She sets Vk = (Vk�; H) and runs F on this input. F 's oraclequeries which are dealt with as follows:Suppose F makes the simple signing request M . A lets �  � + 1 and M�  M . Then Acomputes h� = H(M) and ��� = Sig�(Sk�; h�). She returns �� = (h�; ���) to F .18



Suppose F makes the incremental signing request ((j;m); �). A lets �  � + 1 and M�  M�hj;mi. Then A computes h� = IncH(H;M�; h�; (j;m)) and ��� = Sig�(Sk�; h�). She returns�� = (h�; ���) to F .Suppose F eventually halts with output (M;�) where � = (h; ��). If h 62 fh1; : : : ; h�g then A haltswith arbitrary output; else she chooses i such that h = hi, outputs (Mi;M), and halts.

19


