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1 IntrodutionProbabilistially Chekable Proofs [22, 5, 4℄ (a.k.a. Holographi Proofs [6℄) are NP witnesses thatallow eÆient probabilisti veri�ation based on probing few bits of the NP witness. The elebratedPCP Theorem [5, 4℄ asserts that probing a onstant number of bits suÆes, and it turned out thatthree bits suÆe for rejeting false assertions with probability almost 1=2 (f. [32, 30℄).Optimizing the query omplexity of PCPs has attrated a lot of attention, motivated in part bythe signi�ane of query omplexity for non-approximability results (see, for example, [10, 9, 32,30, 48℄). However, these works only guarantee that the new NP witness (i.e., the PCP) is of lengththat is upper-bounded by a polynomial in the length of the original NP witness.1 Optimizing thelength of the new NP witness was the fous of [6, 44, 31, 28, 12℄, and in this work we ontinue thelatter researh diretion.In our view, the signi�ane of PCPs extends far beyond their appliability to deriving non-approximability results. The mere fat that NP-witnesses an be transformed into a format thatsupports super-fast probabilisti veri�ation is remarkable. From this perspetive, the question ofhow muh redundany is introdued by suh a transformation is a fundamental one. Furthermore,PCPs have been used not only to derive non-approximability results but also for obtaining positiveresults (e.g., CS-proofs [37, 41℄ and their appliations [7, 16℄), and the length of the PCP a�etsthe omplexity of those appliations.In any ase, the length of PCPs does also have relevane to non-approximability results; speif-ially, it a�ets their tightness with respet to the running time. For example, suppose (exat) SAThas omplexity 2
(n). The original PCP theorem [5, 4℄ only implies that approximating MaxSATrequires time 2n� , for some (small) � > 0. The work of Polishhuk and Spielman [44℄ makes �arbitrarily lose to 1, whereas the results of [28, 12℄ further improve the lower-bound to 2n1�o(1) .Our results redue the o(1) term.21.1 PCPs with better length vs query trade-o�How short an a PCP be? The answer may depend on the number of bits we are willing to readin order to rejet false assertions (say) with probability at least 1=2. It is impliit in the work ofPolishhuk and Spielman [44℄ that, for proofs of satis�ability of iruits of size n, if we are willingto read n0:01 bits then the length of the new NP witness may be ~O(n). That is, strething the NPwitness by only a poly-logarithmi amount, allows to dramatially redue the number of bits read(from n to n0:01). More preisely:3Theorem 1.1 (impliit in [44℄) Satis�ability of iruits of size n an be probabilistially veri�edby probing an NP witness of length poly(log n) � n in no(1) bit loations. In fat, for any valueof a parameter m � logn, there is a PCP having randomness omplexity (1 � m�1) � log2 n +O(log logn) +O(m logm) and query omplexity poly(log n) � n1=m.Reall that the proof length of a PCP is at most 2r � q, where r is the randomness omplexityand q is the query omplexity of the PCP. Thus, the �rst part of the above theorem follows bysetting m = log log n= log log log n in the seond part.1We stress that in all the above works as well as in the urrent work, the new NP witness an be omputed inpolynomial-time from the original NP witness.2A aveat: it is urrently not known whether these improved lower-bounds an be ahieved simultaneously withoptimal approximation ratios, but the hope is that this an eventually be done.3All logarithms in this work are to based 2, but in some plaes we hoose to emphasize this fat by using thenotation log2 rather than log. 2



Our results show that the query omplexity an be redued dramatially if we are willing toinrease the length of the proof slightly. First, with a quasi-polylogarithmi streth, the queryomplexity an be made double-logarithmi:Theorem 1.2 Satis�ability of iruits of size n an be probabilistially veri�ed by probing an NPwitness of length exp( ~O(log logn)2)�n in o(log logn) bit-loations. In fat, it has a PCP having ran-domness omplexity log2 n+(log log n)2�poly(log log logn) and query omplexity O(log logn= log log logn).Prior to our work, reduing the query omplexity below exp(plogn) required strething the NPwitness by at least a exp(plogn) fator. With approximately suh a streth fator, previous worksatually ahieved onstant query omplexity (f. [28, 12℄). Thus, Theorem 1.2 represents a vastimprovement in the query omplexity of PCPs that use very short proofs (i.e., in the range betweenexp( ~O(log log n)2) �n and exp(plogn) �n). On the other hand, onsidering NP witnesses that allowprobabilisti veri�ation by a onstant number of queries, we redue the best known streth fatorfrom exp(log0:5+" n) (established in [28, 12℄) to exp(log" n), for any " > 0. That is:Theorem 1.3 For every onstant " > 0, satis�ability of iruits of size n an be probabilistiallyveri�ed by probing an NP witness of length exp(log" n) �n in a onstant number of bit-loations. Infat, it has a PCP having randomness omplexity log2 n+ log" n and query omplexity O(1=").It may indeed be the ase that the trade-o� (between length blow-up fators and query omplexity)o�ered by Theorems 1.1{1.3 merely reets our (inomplete) state of knowledge. In partiular, wewonder whether iruit satis�ability an be probabilistially veri�ed by a PCP having proof-lengthn � poly(log n) and onstant query omplexity.1.2 New notions and main tehniquesA natural approah to reduing the query omplexity in Theorem 1.1 is via the \proof omposition"paradigm of [5℄. However, that PCP, as onstruted in [44℄, does not seem amenable to omposition(when the parameter m is non-onstant). Thus, we begin by giving a new PCP onstrution whoseparameters math those in Theorem 1.1, but is suitable for omposition. As we will see, we annota�ord the standard proof omposition tehniques, and thus also introdue a new, more eÆientomposition paradigm.The initial PCP. Our new proof of Theorem 1.1 modi�es the onstrutions of Polishhuk andSpielman [44℄ and Harsha and Sudan [31℄. The latter onstrution was already improved in [28, 12℄to redue the length of PCPs to n�2 ~O(plogn). Our results go further by re-examining the \low-degreetest" (query-eÆient tests that verify if a given funtion is lose to being a low-degree polynomial)and �rst observing that the small-bias sample sets of [12℄ give an even more signi�ant savingson the randomness omplexity of low-degree tests than notied in their work. However, exploitingthis advantage takes a signi�ant e�ort in modifying known PCP modules, and rede�ning theingredients in \proof omposition".For starters, PCP onstrutions tend to use many (i.e., a super-onstant number of) funtionsand need to test if eah is a low-degree polynomial. In prior results, this was performed eÆientlyby ombining the many di�erent funtions on, say m variables, into a single new one on m + 1variables, where the extra variable provides an index into the many di�erent old funtions. Testingif the new funtion is of low-degree, impliitly tests all the old funtions. Suh triks, whih involveintroduing a few extra variables, turn out to be too expensive in our ontext. Furthermore, forsimilar reasons, we an not use other \parallelization" tehniques [23, 38, 4, 27, 45℄, whih were3



instrumental to the proof omposition tehnique of [5℄. In turn, this fores us to introdue anew variant of the proof omposition method, whih is muh more exible than the one of [5℄.Going bak to the PCP derived in Theorem 1.1, we adapt it for our new omposition method byintroduing a \bundling" tehnique that o�ers a randomness eÆient alternative to parallelization.Our new \proof omposition" method refers to two new notions: the notion of a PCP of proxim-ity and the notion of a robust PCP. Our method is related to the method disovered independentlyby Dinur and Reingold [19℄. (There are signi�ant di�erenes between the two methods; as ex-plained in Setion 1.3.)PCPs of Proximity. Reall that a standard PCP is given an expliit input (whih is supposedlyin some NP language) as well as aess to an orale that is supposed to enode a \probabilistiallyveri�able" NP witness. The PCP veri�er uses orale queries (whih are ounted) in order toprobabilistially verify whether the input, whih is expliitly given to it, is in the language. Inontrast, a PCP of proximity is given aess to two orales, one representing an input (supposedly inthe language) and the other being a redundant enoding of an NP-witness (as in a PCP). Indeed,the veri�er may query both the input orale and the proof orale, but its queries to the input oraleare also ounted in its query omplexity. As usual we fous on veri�ers having very low queryomplexity, ertainly smaller than the length of the input. Needless to say, suh a onstrainedveri�er annot hope to distinguish inputs in the language from inputs out of the language, but itis not required to do so. A veri�er for a PCP of proximity is only required to aept inputs thatare in the language and rejet inputs that are far from the language (i.e., far in Hamming distanefrom any input in the language). (PCPs of proximity are related to holographi proofs [6℄ and to\PCP spot-hekers" [20℄; see further disussion in Setion 1.3.)Robust PCPs. To disuss robust PCPs, let us reall the soundness guarantee of standard (non-adaptive) PCPs. The orresponding veri�er an be thought of as determining, based on its ointosses, a sequene of orale positions and a prediate suh that evaluating this prediate on theindiated orale bits always aepts if the input is in the language and rejets with high probabilityotherwise. That is, in the latter ase, we require that the assignment of orale bits to the prediatedoes satisfy the prediate. In a robust PCP we strengthen the latter requirement. We require thatthe said assignment (of orale bits) not only fails to satisfy the prediate but rather is far from anyassignment that does satisfy the prediate.Proof Composition. The key observation is that \proof omposition" works very smoothly whenwe ompose an outer \robust PCP" with an inner \PCP of proximity". We need neither worryabout how many queries the outer \robust PCP" makes nor are about what oding the inner \PCPof proximity" uses in its proof orale (muh less apply the same enoding to the outer answers). Allthat we should make sure is that the lengths of the objets math and that the distane parameterin the robustness ondition (of the outer veri�er) is at least as big as the distane parameter in theproximity ondition (of the inner veri�er).Indeed, Theorems 1.2 and 1.3 are proved by �rst extending Theorem 1.1 to provide a robust PCPof proximity of similar omplexities, and then applying the new \proof omposition" method. Westress that our ontribution is in providing a proof of Theorem 1.1 that lends itself to a modi�ationthat satis�es the robustness property, and in establishing the latter property. In partiular, theaforementioned \bundling" is applied in order to establish the robustness property. Some are isalso due when deriving Theorem 1.2 using a non-onstant number of \proof ompositions". Inpartiular, Theorem 1.2 (resp., Theorem 1.3) is derived in a way that guarantees that the queryomplexity is linear rather than exponential in the number of \proof ompositions", where thelatter is o(log log n) (resp., 1="). 4



We stress that the exibility in omposing robust PCPs of proximity plays an important rolein our ability to derive quantitatively stronger results regarding PCPs. We believe that robustPCPs of proximity may play a similar role in other quantitative studies of PCPs. We note thatthe standard PCP Theorem of [5, 4℄ an be easily derived using a muh weaker and simpler variantof our basi robust PCP of proximity, and the said onstrution seems easier than the basi PCPsused in the proof omposition of [5, 4℄.In addition to their role in our \proof omposition" method, PCPs of proximity provide alsoa good starting point for deriving improved loally testable odes (see disussion in Setion 1.4).The relation of PCPs of proximity to \property testing" is further disussed in Setion 1.5.1.3 Related workAs mentioned above, the notion of a PCP of proximity is related to notions that have appearedin the literature. Firstly, the notion of a PCP of proximity generalizes the notion of holographiproofs set forward by Babai, Fortnow, Levin, and Szegedy [6℄. In both ases, the veri�er is givenorale aess to the input, and we ount its probes to the input in its query omplexity. The keyissue is that holographi proofs refer to inputs that are presented in an error-orreting format (e.g.,one aims to verify that a graph that is represented by an error-orreting enoding of its adjaenymatrix (or inidene list) is 3-olorable). In ontrast, a PCP of proximity refers to inputs thatare presented in any format but makes assertions only about their proximity to aeptable inputs(e.g., one is interested in whether a graph, represented by its adjaeny matrix (or inidene list),is 3-olorable or is far from being 3-olorable).PCP of proximity are impliit in the low-degree testers that utilize auxiliary orales (e.g., anorale that provides the polynomial representing the value of the funtion restrited to a queriedline); f. [5, 4℄.PCPs of proximity are a speial ase of the \PCP spot-hekers" de�ned by Erg�un, Kumarand Rubinfeld [20℄. On the other hand, PCPs of proximity extend \property testing" [47, 25℄ byproviding the tester with orale aess to a proof (on top of the ordinary input-orale to whih ithas aess). Thus, the relation of PCPs of proximity to property testing is analogous to the relationof NP to BPP (or RP). Put di�erently, while property testing provides a notion of approximationfor deision proedures, PCP of proximity provides a notion of approximation for (probabilisti)veri�ation proedures. In both ases, approximation means that inputs in the language shouldbe aepted (when aompanied with suitable proofs) while inputs that are far from the languageshould be rejeted (no matter what false proof is provided).As stated above, our \proof omposition" method is related to the method disovered indepen-dently by Dinur and Reingold [19℄. Both methods use the same notion of PCPs of proximity, butwhile our method refers to the new notion of robustness (i.e., to the robustness of the outer veri�er)the method of Dinur and Reingold refers to the number of (non-Boolean) queries (made by theouter veri�er). Indeed, the method of Dinur and Reingold uses a (new) parallelization proedure(whih redues the number of queries by a onstant fator), whereas we avoid parallelization al-together (but rather use a related \bundling" of queries into a non-onstant number of \bundles"suh that robustness is satis�ed at the bundle-level).4 We stress that we annot a�ord the ost4The main part of the bundling tehnique takes plae at the level of analysis, without modifying the proof systemat all. Spei�ally, we show that the answers read by the veri�er an be partitioned into a non-onstant number of(a-priori �xed) \bundles" so that on any no instane, with high probability a onstant fration of the bundles readshould be modi�ed to make the veri�er aept. We stress that the fat that ertain sets of queries (namely those ineah bundle) are always made together is a feature that our partiular proof system happens to have (or rather it wassomewhat massaged to have). One \robust soundness" is established at the \bundle level," we may just modify the5



of any known parallelization proedure, beause at the very least these proedures inrease thelength of the proof by a fator related to the answer length, whih is far too large in the ontextof Theorem 1.1 (whih in turn serves as the starting point for all the other results in this work).We omment that the parallelization proedure of [19℄ is ombinatorial (albeit inappliable in ourontext), whereas our \bundling" relies on the algebrai struture of our proof system.1.4 Appliations to oding problemsThe exibility of PCPs of proximity makes them relatively easy to use towards obtaining resultsregarding loally testable and deodable odes. In partiular, using a suitable PCP of proximity, weobtain an improvement in the rate of loally testable odes (improving over the results of [28, 12℄).Loosely speaking, a odeword test (for a ode C) is a randomized orale mahine that is givenorale aess to a string. The tester may query the orale at a onstant number of bit-loations andis required to (always) aept every odeword and rejet with (relatively) high probability everystring that is \far" from the ode. The loally testable odes of [28, 12℄ used odewords of lengthexp(log0:5+" k) � k in order to enode k bits of information, for any onstant " > 0. Here we reduethe length of the odewords to exp(log" k) � k. That is:Theorem 1.4 (loosely stated, see Setion 4.1 for details): For every onstant " > 0, there ex-ists loally testable odes that use odewords of length exp(log" k) � k in order to enode k bits ofinformation.We also introdue a relaxed notion of loally deodable odes, and show how to onstrut suh odesusing any PCP of proximity (and ours in partiular). Loosely speaking, a ode is said to be loallydeodable if whenever relatively few loation are orrupted, the deoder is able to reover eahinformation-bit, with high probability, based on a onstant number of queries to the (orrupted)odeword. This notion was formally de�ned by Katz and Trevisan [34℄ and the best known loallydeodable ode has odeword of length that is sub-exponential in the number of information bits.We relax the de�nition of loally deodable odes by requiring that, whenever few loation areorrupted, the deoder should be able to reover most of the individual information-bits (based onfew queries) and for the rest of the loations, the deoder may output a fail symbol (but not thewrong value). That is, the deoder must still avoid errors (with high probability), but is allowedto say \don't know" on a few bit-loations. We show that this relaxed notion of loal deodabilityan be supported by odes that have odewords of length that is almost-linear in the number ofinformation bits. That is:Theorem 1.5 (loosely stated, see Setion 4.2 for details): For every " > 0, there exists relaxedloally deodable odes that use odewords of length k1+" in order to enode k bits of information.1.5 Relation to Property TestingFollowing Erg�un et al. [20℄, we view PCPs of proximity as an extension of property testing [47, 25℄.Loosely speaking, a property tester is given orale aess to an input and is required to distinguishthe ase in whih the input has the property from the ase in whih it is far (say in Hammingdistane) from any input having the property. Typially, the interest is in testers that query theirproof system so that the bundles beome queries and the answers are plaed in (any) good error-orreting format,whih implies robustness at the bit level. 6



input on few bit-loations (or at the very least on a sub-linear number of suh loations). In a PCPof proximity suh a tester (now alled a veri�er) is also given orale aess to an alleged proof.We omment that PCPs of proximity are provably stronger than property testers; that is, thereare (natural) separations between property testers and PCPs of proximity (whih may be viewedas the \approximation" versions of BPP and NP). For further disussions, refer to Setion 2.21.6 OrganizationTheorems 1.2 and 1.3, whih are the work's main results, are proved by onstruting and usinga Robust PCP of Proximity that ahieves a very good trade-o� between randomness and queryomplexity. Thus, this Robust PCP of Proximity is the main building blok that underlies our work.Unfortunately, the onstrution of a very eÆient Robust PCP of Proximity is quite involved, andis thus deferred to the seond part of this work (whih starts with an overview). In the �rst partof this work we show how the aforementioned Robust PCP of Proximity an be used to derive allthe results mentioned in the Introdution (and, in partiular, Theorems 1.2 and 1.3). Thus, theoverall struture of this work is as follows:Part I: Using the main building blok. We start by providing a de�nitional treatment of PCPsof proximity and robust PCPs. The basi de�nitions as well as some observations and use-ful transformations are presented in Setion 2. Most importantly, we analyze the naturalomposition of an outer robust PCP with an inner PCP of proximity.In Setion 3, we state the properties of our main building blok (i.e., a highly eÆient RobustPCP of proximity), and show how to derive Theorems 1.2 and 1.3, by omposing this RobustPCP of proximity with itself multiple times. Spei�ally, o(log log n) ompositions are usedto derive Theorem 1.2 and 1=" ompositions are used to derive Theorem 1.3. The odingappliations stated in Theorems 1.4 and 1.5 are presented in Setion 4.Part II: Construting the main building blok. We start this part by providing an overviewof the onstrution. This overview (i.e., Setion 5) an be read before reading Part I, providedthat the reader is omfortable with the notion of a Robust PCP of proximity.The onstrution itself is presented in Setions 6{8. We start by presenting a (highly eÆient)ordinary PCP (establishing Theorem 1.1), whih lends itself to the subsequent modi�ations.In Setion 7, we augment this PCP with a test of proximity, deriving an analogous PCP ofproximity. In Setion 8 we present a robust version of the PCP of proximity derived in theprevious setions.Part III: Appendies. The onstrution presented in Setion 3 also uses a PCP of proximity ofpolynomial randomness omplexity and onstant query omplexity. Suh a PCP of proximityan be derived by a simple augmentation of the Hadamard-based PCP of [4℄, whih we presentin Appendix A.In Appendix B, we reall results regarding random-eÆient low-degree tests and a relatedsampling lemma, whih are used in Part II.
7



Part IAll but the main onstrut2 PCPs and variants: de�nitions, observations and transforma-tionsNotation: Exept when otherwise noted, all iruits in this paper have fan-in 2 and fan-out 2,and we allow arbitrary unary and binary Boolean operations as internal gates. The size of a iruitis the number of gates. We will refer to the following languages assoiated with iruits: the P-omplete language Ciruit Value, de�ned as CktVal = f(C;w) : C(w) = 1g ;the NP-ompleteCiruit Satisfiability, de�ned as CktSAT = fC : 9wC(w) = 1g; and the also NP-ompleteNondeterministi Ciruit Value, de�ned as NCktVal = fC : (C;w) : 9zC(w; z) = 1g. (Inthe latter, we assume that the partition of the variables of C into w-variables and z-variables isexpliit in the enoding of C.)We will extensively refer to the relative distane between strings/sequenes over some alphabet�: For u; v 2 �`, we denote by �(u; v) the fration of loations on whih u and v di�er (i.e.,�(u; v) , jfi : ui 6= vigj=`, where u = u1 � � � u` 2 �` and v = v1 � � � v` 2 �`). We say that u is Æ-lose to v (resp., Æ-far from v) if �(u; v) � Æ (resp., �(u; v) > Æ). The relative distane of a string toa set of strings is de�ned in the natural manner; that is, �(u; S) , minv2Sf�(u; v)g. Oasionally,we will refer to the absolute Hamming distane, whih we will denote by �(u; v) , jfi : ui 6= vigj.Organization of this setion: After realling the standard de�nition of PCP (in Setion 2.1),we present the de�nitions of PCPs of Proximity and Robust PCPs (in Setions 2.2 and 2.3, respe-tively). We then turn to disuss (in Setion 2.4) the omposition of a Robust PCP with a PCP ofProximity. Various observations and transformations regarding the new notions are presented inSetion 2.5.2.1 Standard PCPsWe begin by realling the formalism of a PCP veri�er. Throughout this work, we restrit ourattention to nonadaptive veri�ers, both for simpliity and beause one of our variants (namelyrobust PCPs) only makes sense for nonadaptive veri�ers.De�nition 2.1 (PCP veri�ers)� A veri�er is a probabilisti polynomial-time algorithm V that, on an input x of length n,tosses r = r(n) random oins R and generates a sequene of q = q(n) queries I = (i1; : : : ; iq)and a iruit D : f0; 1gq ! f0; 1g of size at most d(n).We think of V as representing a probabilisti orale mahine that queries its orale � for thepositions in I, reeives the q answer bits �jI , (�i1 ; : : : ; �iq ), and aepts i� D(�jI) = 1.� We write (I;D) R V (x) to denote the queries and iruit generated by V on input x andrandom oin tosses, and (I;D) = V (x;R) if we wish to speify the oin tosses R.� We all r the randomness omplexity, q the query omplexity, and d the deision omplexity ofV . 8



For simpliity in these de�nitions, we treat the parameters r, q, and d above (and other param-eters below) as funtions of only the input length n. However, at times we may also allow themto depend on other parameters, whih should be understood as being given to the veri�er togetherwith the input. We now present the standard notion of PCPs, restrited to perfet ompletenessfor simpliity.De�nition 2.2 (standard PCPs) For a funtion s : Z+! [0; 1℄, a veri�er V is a probabilistiallyhekable proof system for a language L with soundness error s if the following two onditions holdfor every string x:Completeness: If x 2 L then there exists � suh that V (x) aepts orale � with probability 1.Formally, 9� Pr(I;D) R V (x)[D(�jI) = 1℄ = 1:Soundness: If x 62 L then for every orale �, the veri�er V (x) aepts � with probability stritlyless than s. Formally, 8� Pr(I;D) R V (x)[D(�jI) = 1℄ < s(jxj):If s is not spei�ed, then it is assumed to be a onstant in (0; 1).Our main goal in this work is to onstrut short PCPs that use very few queries. Realling thatthe length of a (nonadaptive) PCP is upper-bounded by 2r(n) � q(n), we fous on optimizing the(trade-o� between) randomness and query omplexities.We will fous on onstruting PCPs for the NP-omplete problem Ciruit Satisfiability,de�ned as CktSAT = fC : 9w C(w) = 1g. Reall that every language in NTIME(t(n)) reduesto CktSAT in time O(t(n) log t(n)) (f. [33, 43, 17℄), and so a nearly linear-sized PCP for CktSATimplies PCPs for NTIME(t(n)) of size nearly linear in t(n) for every polynomial t(n).2.2 PCPs of ProximityWe now present a relaxation of PCPs that only verify that the input is lose to an element of thelanguage. The advantage of this relaxation is that it allows the possibility that the veri�er mayread only a small number of bits from the input. Atually, for greater generality, we will divide theinput into two parts (x; y), giving the veri�er x expliitly and y as an orale, and we only ountthe veri�er's queries to the latter. Thus we onsider languages onsisting of pairs of strings, whihwe refer to as a pair language. One pair language to keep in mind is the Ciruit Value problem:CktVal = f(C;w) : C(w) = 1g. For a pair language L, we de�ne L(x) = fy : (x; y) 2 Lg. Forexample, CktVal(C) is the set of satisfying assignments to C. It will be useful below to treat thetwo orales to whih the veri�er has aess as a single orale, thus for orales �0 and �1, we de�nethe onatenated orale � = �0 Æ �1 as �b;i = �bi .De�nition 2.3 (PCPs of proximity (PCPPs)) For funtions s; Æ : Z+! [0; 1℄, a veri�er V isa probabilistially hekable proof of proximity (PCPP) system for a pair language L with proximityparameter Æ and soundness error s if the following two onditions hold for every pair of strings (x; y):Completeness: If (x; y) 2 L, then there exists � suh that V (x) aepts orale y Æ � with proba-bility 1. Formally, 9� Pr(I;D) R V (x)[D((y Æ �)jI) = 1℄ = 1:9



Soundness: If y is Æ(jxj)-far from L(x), then for every �, the veri�er V (x) aepts orale y Æ �with probability stritly less than s(jxj). Formally,8� Pr(I;D) R V (x)[D((y Æ �)jI) = 1℄ < s(jxj):If s and Æ are not spei�ed, then both are assumed to be onstants in (0; 1).Note that the parameters (soundness, randomness, et.) of a PCPP are measured as a funtion ofthe length of x, the expliit portion of the input.In omparing PCPPs and PCPs, one should note two di�erenes that have oniting e�ets.On one hand, the soundness riterion of PCPPs is a relaxation of the soundness of PCPs. Whereas,a PCP is required to rejet (with high probability) every input that is not in the language, a PCPPis only required to rejet input pairs (x; y) in whih the seond element (i.e., y) is far from beingsuitable for the �rst element (i.e., y is far from L(x)). That is, in a PCPP, nothing is required inthe ase that y is lose to L(x) and yet y 62 L(x). On the other hand, the query omplexity ofa PCPP is measured more stringently, as it aounts also for the queries to the input-part y (ontop of the standard queries to the proof �). This should be ontrasted with a standard PCP thathas free aess to all its input, and is only harged for aess to an auxiliary proof. To summarize,PCPPs are required to do less (i.e., their performane requirements are more relaxed), but they areharged for more things (i.e., their omplexity is evaluated more stringently). Although it may notbe a priori lear, the stringent omplexity requirement prevails. That is, PCPPs tend to be morediÆult to onstrut than PCPs of the same parameters. For example, while Ciruit Value hasa trivial PCP (sine it is in P), a PCPP for it implies a PCP for Ciruit Satisfiability:Proposition 2.4 If Ciruit Value has a PCPP, then Ciruit Satisfiability has a PCP withidential parameters (randomness, query omplexity, deision omplexity, and soundness).An analogous statement holds for any pair language L and the orresponding projetion on �rstelement L1 , fx : 9y s.t. (x; y) 2 Lg; that is, if L has a PCPP then L1 has a PCP with identialparameters.Proof: A PCP � that C is satis�able an be taken to be wÆ�0, where w is a satisfying assignmentto C and �0 is a PCPP that (C;w) 2 CktVal. This proof � an be veri�ed using the PCPP veri�er.The key observation is that if C 62 Ciruit Satisfiability then there exists no w that is 1-loseto Ciruit Value(C), beause the latter set is empty.Note that we only obtain a standard PCP for Ciruit Satisfiability, rather than a PCPof proximity. Indeed, Ciruit Satisfiability is not a pair language, so it does not even �tsyntatially into the de�nition of a PCPP. However, we an give a PCPP for the losely related(and also NP-omplete) pair language Nondeterministi Ciruit Value. Reall that is thelanguage NCktVal = f(C;w) : 9zC(w; z) = 1g (where the variables of C are expliitly partitionedinto w-variables and z-variables).Proposition 2.5 If Ciruit Value has a PCPP with proximity parameter Æ(n), soundness s(n),randomness r(n), query omplexity q(n), and deision omplexity d(n), then NondeterministiCiruit Value has a PCPP with proximity parameter 2Æ(4n), soundness s(4n), randomness r(4n),query omplexity q(4n), and deision omplexity d(4n).10



Proof: Given a iruit C(�; �) of size n whose variables are partitioned into one group of size kand another of size `, we transform it into a new iruit C 0(�; �) of size n0 = 4n in whih the �rstgroup has size k0 � ` and the seond group has size `. Spei�ally, we set t = d`=ke and k0 = t � k,and de�ne C 0(x0; y) to be a iruit that heks whether x0 = xt for some x suh that C(x; y) = 1. Itan be veri�ed that this an be done in size n+ 3tk � 4n (over the full binary basis). In addition,if w is Æ-far from being extendable to a satisfying assignment of C, then wt is Æ-far from beingextendable to a satisfying assignment of C 0.Now, the NCktVal-veri�er, on expliit input C and input orale w 2 f0; 1gk , will onstrut C 0as above and expet a proof orale of the form z Æ�, where z 2 f0; 1gm and � is a PCPP that wt Æzsatis�es C 0 as onstruted above. That is, the NCktVal-veri�er will simulate the CktVal-veri�eron expliit input C 0, input orale wt Æ z (whih an easily be simulated given orale aess to wand z), and proof orale �. Completeness an be veri�ed by inspetion. For soundness, supposethat w is 2Æ-far from being extendable to a satisfying assignment of C. Then wt is 2Æ-far frombeing extendable to a satisfying assignment of C 0, whih implies that, for any z, wt Æ z is Æ-farfrom satisfying C 0. Thus, by the soundness of the CktVal-veri�er, the aeptane probability isat most s(n0) = s(4n), for any proof orale �.Relation to property testing: Atually, the requirements from a PCPP for a pair language Lrefer only to its performane on the (\gap") promise problem � = (�Y ;�N ), where �Y = L and�N = f(x; y) : y is Æ-far from L(x)g. That is, this PCPP is only required to (always) aept inputsin �Y and rejet (with high probability) inputs in �N (whereas nothing is required with respet toinputs not in �Y [�N ). Suh a gap problem orresponds to the notion of approximation in propertytesting [47, 25℄.5 Indeed, property testers are equivalent to PCPP veri�ers that have no aess toan auxiliary proof �. Thus the relation between property testing and PCPPs is analogous to therelation between BPP and NP (or MA). For example, the problem of testing Bipartiteness anbe ast by the pair language L = f(n;G) : the n-vertex graph G is bipartiteg, where the �rst (i.e.,expliit) input is only used to speify the length of the seond (i.e., non-expliit) input G, to whihthe tester has orale aess (measured in its query omplexity). We omment that the formulationof pair languages allows to apture more general property testing problems where more informationabout the property (to be tested) itself is spei�ed as part of the input (e.g., by a iruit, as inCktVal).In both property testers and PCPs of proximity, the interest is in testers/veri�ers that querytheir input (and proof orale) in only a small (preferably onstant, and ertainly sublinear) numberof bit-loations. It turns out that PCPPs are provably stronger than property testers; that is, thereare (natural) separations between property testers and PCPs of proximity. (Some of the followingexamples were pointed out in [20℄.) In the adjaeny matrix model (f. [25℄), Bipartiteness has aPCP of proximity in whih the veri�er makes only O(1=Æ) queries and rejets any graph that isÆ-far from being bipartite with probability at least 2=3. (The proof-orale onsists of an assignmentof verties to the two parts, and the veri�er queries the assignment of the end-points of O(1=Æ)random edges. This onstrution also generalizes to k-olorability, and in fat any generalizedgraph partition property (f. [25℄) with an eÆient one-sided tester.) In ontrast, Bogdanov andTrevisan [15℄ showed that any tester for Bipartiteness that rejets graphs that are Æ-far from beingbipartite must make 
(Æ�3=2) queries. More drasti separations are known in in the inidene-lists(bounded-degree) model (of [26℄): testing Bipartiteness (resp., 3-olorability) of n-vertex graphshas query omplexity 
(pn) [26℄ (resp., 
(n) [14℄), but again a PCP of proximity will only use5This notion of approximation (of deision problems) should not be onfused with the approximation of (searh)optimization problems, whih is also losely related to PCPs [22, 4℄.11



O(1=Æ) queries.Another example omes from the domain of odes. For any good ode (or \even" any odeof linear distane), there exists a PCP of proximity for the property of being a odeword thatmakes a onstant number of queries.6 This stands in ontrast to the linear lower-bound on thequery-omplexity of odeword testing for some (good) linear odes, proved by Ben-Sasson et al. [11℄.Needless to say, there may be interesting ases in whih PCPs of proximity do not out-performproperty testers.Queries vs. proximity: Intuitively, the query omplexity of a PCPP should depend on theproximity parameter Æ. Proposition 2.8 (in Setion 2.5) on�rms this intuition.The relation of PCPP to other works: As disussed in the introdution (see Setion 1.3),notions related to (and equivalent to) PCPPs have appeared in the literature before [6, 20℄. Inpartiular, holographi proofs are a speial ase of PCPPs (whih refer to pair languages L =f(n; C(x)) : x 2 L0 \ f0; 1gng, where C is an error-orreting ode and L0 2 NP), whereas PCPPsare a speial ase of \PCP spot-hekers" (when viewing deision problems as a speial ase of searhproblems). In addition, PCPPs play an important role also in the work of Dinur and Reingold [19℄;again, see Setion 1.3. Reall that both our use and their use of PCPPs is for failitating \proofomposition" (of PCP-type onstruts). Finally, existing PCP onstrutions (suh as [4℄) an bemodi�ed to yield PCPPs.2.3 Robust SoundnessIn this setion, we present a strengthening of the standard PCP soundness ondition. Instead ofasking that the bits that the veri�er reads from the orale are merely rejeted with high probability,we ask that the bits that the veri�er reads are far from being aepted with high probability. Themain motivation for this notion is that, in onjuntion with PCPPs, it allows for a very simpleomposition without the usual osts of \parallelization".De�nition 2.6 (robust soundness) For funtions s; � : Z+ ! [0; 1℄, a PCP veri�er V for alanguage L has robust-soundness error s with robustness parameter � if the following holds for everyx =2 L: For every orale �, the bits read by the veri�er V are �-lose to being aepted with probabilitystritly less than s. Formally,8� Pr(I;D) R V (x)[9a s.t. D(a) = 1 and �(a; �jI) � �℄ < s(jxj):If s and � are not spei�ed, then they are assumed to be onstants in (0; 1). PCPPs with robust-soundness are de�ned analogously, with the �jI being replaed by (y Æ �)jI .Note that for PCPs with query omplexity q, robust-soundness with any robustness parameter� < 1=q is equivalent to standard PCP soundness. However, there an be robust PCPs with largequery omplexity (e.g. q = n
(1)) yet onstant robustness, and indeed suh robust PCPs will bethe main building blok for our onstrution.Various observations regarding robust PCPs are presented in Setion 2.5. We briey mentionhere the relation of robustness to parallelization; spei�ally, when applied to a robust PCP, thesimple query-redution tehnique of Fortnow et al. [23℄ performs less poorly than usual (i.e., the6Indeed, this is a speial ase of our extension of the result of Babai et al. [6℄, disussed in Setion 1.3. On theother hand, this result is simpler than the loally testable ode mentioned in Setion 1.4, beause here the PCP ofproximity is not part of the odeword. 12



resulting soundness is determined by the robustness parameter rather than by the number ofqueries).2.4 CompositionAs promised, a robust \outer" PCP omposes very easily with an \inner" PCPPs. Loosely speaking,we an ompose suh shemes provided that the deision omplexity of the outer veri�er mathesthe input length of the inner veri�er, and soundness holds provided that the robustness parameter ofthe outer veri�er upper-bounds the proximity parameter of the inner veri�er. Note that ompositiondoes not refer to the query omplexity of the outer veri�er, whih is always upper-bounded by itsdeision omplexity.Theorem 2.7 (Composition Theorem) Suppose that for funtions rout; rin; dout; din; qin : N !N, and "out; "in; �out; Æin : N! [0; 1℄, the following hold:� Language L has a robust PCP veri�er Vout with randomness omplexity rout, deision om-plexity dout, robust-soundness error 1� "out, and robustness parameter �out.� Ciruit Value has a PCPP veri�er Vin with randomness omplexity rin, query omplexityqin, deision omplexity din, proximity parameter Æin, and soundness error 1� "in.� Æin(dout(n)) � �out(n), for every n.Then, L has a (standard) PCP, denoted Vomp, with� randomness omplexity rout(n) + rin(dout(n)),� query omplexity qin(dout(n)),� deision omplexity din(dout(n)), and� soundness error 1� "out(n) � "in(dout(n)).Furthermore, the omputation of Vomp (i.e. evaluating (I;D)  Vomp(x;R)) an be performedby some universal algorithm with blak-box aess to Vout and Vin. On inputs of length n, thisalgorithm runs in time n for some universal onstant , with one all to Vout on an input of lengthn and one all to Vin on an input of length dout(n). In addition:� If (instead of being a PCP) the veri�er Vout is a PCPP with proximity parameter Æout(n) thenVomp is a PCPP with proximity parameter Æout(n).� If Vin has robust-soundness with robustness parameter �in(n), then Vomp has robust-soundnesswith robustness parameter �in(dout(n)).Proof: We will use the inner PCPP to verify that the orale positions seleted by the (robust)outer-veri�er are lose to being aepted by the outer-veri�er's deision iruit. Thus, the newproof will onsist of a proof for the outer veri�er as well as proofs for the inner veri�er, where eahof the latter orresponds to a possible setting of the outer veri�er's oin tosses (and is intended toprove that the bits that should have been read by the outer-veri�er satisfy its deision iruit). Wewill index the positions of the new (ombined) orale by pairs suh that (out; i) denotes the i'thposition in the part of the orale that represents the outer-veri�er's proof orale, and (R; j) denotesthe j'th position in the R'th auxiliary blok (whih represents the R-th possible proof orale (for13



the inner veri�er's), whih in turn is assoiated with the outer-veri�er's oins R 2 f0; 1grout ). Fornotational onveniene, we drop the input length n from the notation below; all parameters of Voutare with respet to length n and all parameters of Vin with respet to length dout(n). With theseonventions, here is the desription of the omposed veri�er, Vomp(x):1. Choose R R f0; 1grout .2. Run Vout(x;R) to obtain Iout = (i1; : : : ; iqout) and Dout.3. Run Vin(Dout) (on random oin tosses) to obtain Iin = ((b1; j1); : : : ; (bqin ; jqin)) and Din.(Reall that Vin, as a PCPP veri�er, expets two orales, an input orale and a proof orale,and thus makes queries of the form (b; j), where b 2 f0; 1g indiates whih orale it wishes toquery.)4. For eah ` = 1; : : : ; qin, determine the queries of the omposed veri�er:(a) If b` = 0, set k` = (out; ij`); that is, Vin's queries to its input orale are direted to theorresponding loations in Vout's proof orale. Reall that the j-th bit in Vin's inputorale is the j-th bit in the input to Dout, whih in turn is the ij-th bit in the prooforale of Vout.(b) If b` = 1, set k` = (R; j`); that is, Vin's queries to its R'th possible proof orale aredireted to the orresponding loations in the auxiliary proof. Reall that the j-th bit inthe proof orale that Vin is using to verify the laim referring to the outer-veri�er oinsR is the j-th bit in the R-th blok of the auxiliary proof.5. Output Iomp = (k1; : : : ; kqin) and Din.The laims about Vomp's randomness, query, deision, and omputational omplexities an beveri�ed by inspetion. Thus we proeed to hek ompleteness and soundness.Suppose that x 2 L. Then, by ompleteness of the outer veri�er, there exists a proof �out makingVout aept with probability 1. In other words, for every R 2 f0; 1grout , if we set (Iout;Dout) =Vout(x;R), we have Dout(�outjIout) = 1. By ompleteness of the inner veri�er, there exists a proof�R suh that Vin(Dout) aepts the orale �outjIout Æ �R with probability 1. If we set �(t; �) = �t(�)for all t 2 foutg [ f0; 1grout , then Vomp aepts � with probability 1.Suppose that x =2 L, and let � be any orale. De�ne orales �t(�) = �(t; �). By the robust-soundness (of Vout), with probability greater than "out over the hoies of R 2 f0; 1grout , if we set(Iout;Dout) = Vout(x;R), then �outjIout is �out-far from satisfying Dout. Fixing suh an R, by thePCPP-soundness of Vin (and Æin � �out), it holds that Vin(Dout) rejets the orale �outjIout Æ�R (or,atually, any proof orale augmenting the input orale �outjIout) with probability greater than "in.Therefore, Vomp(x) rejets orale � with probability at least "out � "in.The additional items follow by similar arguments. If Vout is a PCPP veri�er, then the input isof the form (x; y), where y is given via orale aess. In this ase, throughout the proof above weshould replae referenes to the orale �out with the orale y Æ �out, and for soundness we shouldonsider the ase that y is Æout-far from L(x). If Vin has robust-soundness, then at the end of thesoundness analysis, we note that not only is �outjIout Æ�R rejeted with probability greater than "inbut rather it is �in-far from being aepted by Vin (and hene also by Vomp).The above theorem an serve as a substitute for the original Composition Theorem in thederivation of the original PCP Theorem [4℄. Spei�ally, one simply needs to modify the (pre-omposition) veri�ers of [4℄ to both test proximity and have robust soundness. As we shall see14



in the next setion, robust soundness an be obtained automatially from \parallelized PCPs" (asalready onstruted in [4℄). And the PCPs [4℄ an easily be made PCPs of proximity by augmentingthem with appropriate \proximity tests". Thus, all the tehnial work in Part II is not fored bythe new notion of robust PCPPs, but rather is aimed at onstruting ones whih have nearly linearlength.2.5 Various observations and transformationsMost of this subsetion refers to robust PCPs, but we start with an observation regarding PCPs ofproximity.Queries vs. proximity: Intuitively, the query omplexity of a PCPP should depend on theproximity parameter Æ. The following proposition on�rms this intuition.Proposition 2.8 (queries vs. proximity) Suppose pair-language L has a PCPP with proximityparameter Æ, soundness error 1 � ", and query omplexity q. Suppose further that there exists(x; y) 2 L suh that jxj = n and jyj = m, suh that if we let z 2 f0; 1gm be a random string ofrelative Hamming distane Æ0 , Æ0(x) from y, we havePrz [z is Æ-far from L(x)℄ �  , (x):Then q > " � Æ0In partiular, if L = CktVal, then q � "=(Æ +O(1=n)).The �rst part of Proposition 2.8 does not speify the relation of Æ0 to Æ (although, surely, Æ0 > Æmust hold for any  > 0, beause �(z; L(x)) � �(z; y) = Æ0). The seond part relies on the fatthat, for CktVal, one may set Æ0 as low as Æ +O(1=n).Proof: By ompleteness, there exists an orale � suh that the PCPP veri�er V (x) aepts oraley Æ � with probability 1. Consider z = y��, where � 2 f0; 1gm is a uniformly distributed stringwith relative Hamming weight Æ0. If we invoke V (x) with orale to z Æ�, then the probability (overthe hoie of �) that any of the positions read by V has been hanged is at most q � Æ0. Thus, V (x)rejets orale (y � �) Æ � with probability at most q � Æ0.On the other hand, by assumption z is Æ-far from L(x) with probability at least , in whihase V (x) should rejet orale z Æ� with probability greater than ", by the PCPP soundness. ThusV (x) should rejet with probability greater than  � " (over the hoie of z and the oin tosses ofV ), and we onlude that q � Æ0 >  � ", as desired.For the appliation to CktVal, let C : f0; 1gm ! f0; 1g be a iruit of size n that aepts onlythe all-zeroes string 0m, for m = 
(n). Then we have (C; 0m) 2 CktVal, but for every Æ0 > Æ andevery string z of relative Hamming weight Æ0, we see that (C; z) is Æ-far from satisfying C. Setting = 1 and Æ0 suh that Æ0m is the least integer greater than Æm ompletes the proof.Expeted robustness: Oasionally, we will be interested in a variant of robust-soundness,whih refers to distane on average rather than with high probability.
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De�nition 2.9 (expeted robustness) For a funtion � : Z+ ! [0; 1℄, a PCP has expetedrobustness � if for every x =2 L, we have8�;E(I;D) R V (x)[�(�jI ;D�1(1))℄ > �(jxj):Expeted robustness for PCPPs is de�ned analogously.We now present several generi transformations regarding robustness and soundness. Althoughwe only state them for PCPs, all of these results also hold for PCPPs, with no hange in theproximity parameter. The following proposition relates robust-soundness to expeted robustness.Proposition 2.10 (robust-soundness vs. expeted robustness) If a PCP has robust-soundnesserror 1 � " with robustness �, then it has expeted robustness " � �. On the other hand, if a PCPhas expeted robustness �, then for every " � �, it has robust-soundness error 1� " with robustnessparameter �� ".Expeted robustness an easily be ampli�ed to standard robustness with low robust-soundnesserror, using any averaging (a.k.a. oblivious) sampler (f., [24℄). Combined with Proposition 2.10, weget a (soundness) error redution for robust PCPs. For example, using the expander-neighborhoodsampler of [29℄, we have:Lemma 2.11 (error redution via expander neighborhoods) If a language L has a PCPwith expeted robustness �, randomness omplexity r, query omplexity q, and deision omplex-ity d, then for every two funtions s;  : Z+! [0; 1℄, then L has PCP having� robust-soundness error s with robustness parameter �� ,� randomness omplexity r +O(log(1=s) + log(1=)),� query omplexity O(1=(s2)) � q, and� deision omplexity O(1=(s2)) � dAn alternative error-redution proedure that will also be used is given by pairwise independentsamples:Lemma 2.12 (error redution via pairwise independene) If a language L has a PCP withexpeted robustness �, randomness omplexity r, query omplexity q, and deision omplexity d suhthat � � 2r � 2, then L has PCP having� robust-soundness error 1=2 with robustness parameter �=2,� randomness omplexity 2r,� query omplexity 2q=�, and� deision omplexity 2d=�
16



Non-Boolean PCPs: The next few transformations involve non-Boolean PCPs. That is, PCPswhere the orale returns symbols over some larger alphabet � = f0; 1ga rather than bits; we refer toa = a(n) as the answer length of the PCP. (Often non-Boolean PCPs are disussed in the languageof multi-prover interative proofs, but it is simpler for us to work with the PCP formulation.)Robust-soundness of a non-Boolean PCP is de�ned in the natural way, using Hamming distaneover the alphabet �. (In the ase of a robust non-Boolean PCPP, we still treat the input orale asbinary.)The �rst transformation provides a way of onverting non-Boolean PCPs to Boolean PCPs ina way that preserves robust-soundness.Lemma 2.13 (alphabet redution) If a language L has a non-Boolean PCP with answer lengtha, query omplexity q, randomness omplexity r, deision omplexity d, and robust-soundness errors with robustness parameter �, then L has a Boolean PCP with query omplexity O(a�q), randomnessomplexity r, deision omplexity d+O(a�q), and robust-soundness error s with robustness parameter
(�). If, instead of robust-soundness, the non-Boolean PCP has expeted robustness �, then theBoolean PCP has expeted robustness 
(�).The proof uses a good error-orreting ode (i.e., onstant relative distane and rate). Furthermore,to obtain deision omplexity d+O(a�q) we should use a ode having linear-size iruits for enoding(f. [51℄). Using more lassial odes would only give deision omplexity d + ~O(a � q), whih isatually suÆient for our purposes.Proof: This transformation is analogous to onverting non-Boolean error-orreting odes toBoolean ones via \ode onatenation". Let V be the given non-Boolean PCP veri�er, with answerlength a. Let ECC : f0; 1ga ! f0; 1gb for b = O(a) a binary error-orreting ode of onstantrelative minimum distane, whih an be omputed by an expliit iruit of size O(a). We willaugment the original orale � having a-bit entries with an additional orale � having b-bit entries,where �i is supposed to be ECC(�i). (We note that inluding the original orale simpli�es theargument as well as frees us from assuming a noiseless deoding algorithm.)Our new veri�er V 0(x), on orale aess to �Æ� , will simulate V (x), and for eah query i made byV , will query the a bits in �i and the b bits in �i, for a total of q �(a+b) binary queries. That is, if Vqueries positions I = (i1; : : : ; iq), V 0 will query positions I 0 = ((0; i1); : : : ; (0; iq); (1; i1); : : : ; (1; iq)).If V outputs a deision iruit D : (f0; 1ga)q ! f0; 1g, V 0 will output the iruit D0 : (f0; 1ga)q �(f0; 1gb)q ! f0; 1g de�ned byD0(x1; : : : ; xq; y1; : : : ; yq) = D(x1; : : : ; xq) ^ C(x1; : : : ; xq; y1; : : : ; yq);where C(x1; : : : ; xq; y1; : : : ; yq) = q̂i=1(yi = ECC(xi)):Sine ECC an be evaluated by a iruit of size O(a), we see that jD0j = jDj+O(a � q), as desired.For ompleteness of V 0, we note that any aepting orale � for V an be augmented to anaepting orale for V 0 by setting �i = ECC(�i) for all i. For soundness of V 0, suppose x =2 Land let (�; �) be any pair of orales. De�ne a \deoded" orale �̂ by setting �̂i to be the stringx 2 f0; 1ga whih minimizes the distane between ECC(x) and �i. We will relate the robustness ofV on orale �̂ to the robustness of V 0 on orales � and � . Spei�ally, let � > 0 be a onstant suhthat the (absolute) minimum distane of ECC is greater than 2� � (a+ b). Then we will show that17



for every sequene R of oin tosses and for every � > 0, if the bits read by V 0(x;R) from � Æ � are��-lose to being aepted, then the bits read by V from �̂ are �-lose to being aepted. Thus,both robustness parameters (standard and expeted) derease by at most a fator of �.Consider any sequene R of oin tosses, let (I;D) = V (x;R), and write I = (i1; : : : ; iq). Supposethat (�i1 ; : : : ; �iq ; �i1 ; : : : ; �iq ) is ��-lose to some (�0i1 ; : : : ; �0iq ; � 0i1 ; : : : ; � 0iq ) that satis�es D0 = D^C.Then, for at least a 1�� fration of j 2 [q℄, the pair (�ij ; �ij ) is �-lose to (�0ij ; � 0ij ) = (�0ij ;ECC(�0ij )).For suh j, the hoie of � implies that ECC(�0ij ) is the losest odeword to �ij and hene �̂ij = �0ij .Sine the �0's satisfy D, we onlude that �̂'s are �-lose to satisfying D, as desired.The usual \parallelization" paradigm of PCPs [38, 4℄ onverts a Boolean PCP with manyqueries into a non-Boolean PCP with a onstant number of queries, where this is typially the �rststep in PCP omposition. As mentioned in the introdution, we annot a�ord parallelization, androbust-soundness will be our substitute. Nevertheless, there is a lose (but not lose enough for us)onnetion between parallelized PCPs and PCPs with robust-soundness:Proposition 2.14 (parallelization vs. robustness)1. If a language L has a non-Boolean PCP with answer length a, query omplexity q, randomnessomplexity r, deision omplexity d, and soundness error s, then L has a (Boolean) PCP withquery omplexity O(a � q), randomness omplexity r, deision omplexity d + O(a � q), androbust-soundness error s with robustness parameter � = 
(1=q).2. If a language L has a (Boolean) PCP with query omplexity q, randomness omplexity r,deision omplexity d, and expeted robustness �, then L has a 2-query non-Boolean PCPwith answer length q, randomness omplexity r + log q, deision omplexity d + O(1), andsoundness error 1� �.Thus, for onstant soundness and onstant robustness parameter, q-query robust (Boolean)PCPs are essentially equivalent to onstant-query non-Boolean PCPs with answer length �(q).However, note that in passing from robust-soundness to a 2-query non-Boolean PCP, the random-ness omplexity inreases by log q. It is preisely this ost that we annot a�ord, and hene wework with robust-soundness in the rest of the paper.Proof: For Part 1, note that any non-Boolean PCP with query omplexity q and soundness errors has robust-soundness error s for any robustness parameter � < 1=q. Thus, the laim follows fromLemma 2.13.Turning to Part 2, let V be a robust PCP veri�er for L with the stated parameters. We use theusual query-redution tehnique for PCPs [23℄, and observe that when applied to a robust PCP,the detetion probability (i.e., one minus the soundness error) does not deteriorate by a fator ofq as usual. Instead, the detetion probability of the resulting 2-query (non-Boolean) PCP equalsthe expeted robustness of V .7 Spei�ally, the 2-query non-Boolean PCP veri�er V 0 is de�ned asfollows:7It may be more instrutive (alas more umbersome) to disuss what is happening in terms of ordinary robustness.Suppose that V has robust-soundness error s = 1�d with respet to robustness �. The standard analysis ignores therobustness and asserts that the 2-query (non-Boolean) PCP has soundness error s0 = 1 � d0, where d0 = d=q. Thisrude analysis impliitly assumes the trivial bound (i.e., 1=q) of the robustness parameter. A more re�ned analysistakes advantage of the atual bound of the robustness parameter, and asserts that the 2-query (non-Boolean) PCPhas soundness error s0 = 1� � � d. 18



� V 0 expets two orales, one Boolean orale � orresponding to the orale for V , and a seondorale � with answer length q, indexed by random strings of V .� On input x, the veri�er V 0 selets a random string R for V and j R [q℄, and omputes(I;D) = V (x;R), where I = (i1; : : : ; iq). It sets I 0 = (R; ij) (whih means that the queriesfor the values �R and �ij ) and D0(a; b) = [(D(a) = 1) ^ (aj = b)℄; that is, it aepts if andonly if [D(�R) = 1℄ ^ [(�R)j = �ij ℄.It an be veri�ed that the probability that V 0 rejets a false assertion is preisely the expetedrobustness of V . In partiular, suppose that V 0(x) aepts the orale pair (�; �) with probabilityp. We may assume, without loss of generality, that D(�R) = 1 for any R, where (�;D) = V (x;R).Then, it follows that the expeted (relative) distane of �jI from �R, where (I;D) = V (x;R) for arandom R, equals 1� p (beause 1� p = PrR;j[(�R)j 6= �ij ℄, whih in turn equals ER[�(�R; �jI)℄).This means that on the average, � is (1 � p)-lose to assignments that satisfy the orrespondingdeision iruits. Thus, if x 62 L then 1� p > �, and p < 1� � follows.Robustness vs. proximity: Finally, for PCPPs, we prove that the robustness parameter isupper-bounded by the proximity parameter.Proposition 2.15 (robustness vs. proximity) Suppose a pair-language L has a PCPP withproximity parameter Æ and expeted robustness �. Suppose further that there exists (x; y) 2 L suhthat jxj = n and jyj = m, suh that if we let z 2 f0; 1gm be a random string at relative Hammingdistane Æ0 , Æ0(x) from y, we havePrz [z is Æ-far to L(x)℄ �  , (x):Then � � Æ0=:In partiular, if L = CktVal, then � � Æ +O(1=n).Proof: The proof is similar to that of Proposition 2.8. By ompleteness, there exists an orale� suh that the PCPP veri�er V (x) aepts orale y Æ � with probability 1. If we run V (x) withorale z Æ � instead, then bits read by V have expeted distane at most Æ0 from being aepted,where the expetation is over the hoies of z (even when �xing the oins of V ).On the other hand, z is Æ-far from L(x) with probability at least , and for any suh �xed zthe bits read by V from z Æ � should have expeted distane greater than � from being aepted(over the oin tosses of V ). Thus, the expeted distane of z Æ � from being aepted is greaterthan  � �, where here the expetation is over the hoie of z and the oin tosses of V . We onludethat Æ0 >  � �, as desired.Reall that in the proof of Proposition 2.8, we have demonstrated the existene of a pair (C;w)suh that any string z at distane Æ0 = Æ + O(1=n) from w it holds that w is Æ-far from satisfyingC. Setting  = 1, the seond part follows.3 Very short PCPs with very few queriesIn this setion we prove the main results of this work; that is, we establish Theorem 1.2 and 1.3.Our starting point is the following Robust PCP of proximity, whih is onstruted in the seondpart of this work (f. Case I of Theorem 8.1). 19



Theorem 3.1 (Main Construt) There exists a universal onstant  suh for all n;m 2 Z+,0 < Æ;  < 1=2 satisfying n1=m � mm=(Æ)3 and Æ � =, Ciruit Value has a robust PCP ofproximity (for iruits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=Æ)),� deision omplexity n1=m � poly(logn; 1=Æ), whih also upper-bounds the query omplexity.8� perfet ompleteness, and� for proximity parameter Æ, the veri�er has robust-soundness error  with robustness parameter(1� )Æ.We omment that the ondition Æ < = merely means that we present robust PCPs of proximityonly for the more diÆult ases (when Æ is small), and our robustness parameter does not improvefor larger values of Æ. We all the reader's attention to the typially small value of the query andrandomness omplexities, whih yield a proof length that is upper-bounded by poly(mm log n) � n(for Æ and  as small as 1=poly(mm; log n)), as well as to the small values of the soundness errorand the the small deterioration of robustness wrt proximity.We also need the following robust PCP of proximity whih has parameters similar to the PCPonstruted by Arora et al. [4℄. In omparison to the main onstrut above, this PCPP is not veryeÆient in randomness. However, as we plan to use this robust PCPP only towards the �nal stagesof omposition, we an a�ord to pay this ost in randomness. This robust PCP of proximity isobtained by applying the error-redution lemma using pairwise independene (Lemma 2.12) to avariant of the robust PCP of proximity onstruted in Theorem 3.1 (f. Case II of Theorem 8.1).An alternate onstrution of this robust PCPP an be obtained by adding a suitable proximity testto the PCP onstruted by Arora et al. [4℄.Theorem 3.2 (ALMSS-type Robust PCP of proximity) For all n 2 Z+ and Æ 2 (0; 1),Ciruit Value has a robust PCP of proximity (for iruits of size n) with the following parameters� randomness O(logn+ log(1=Æ)),� deision omplexity poly(log n)=Æ, whih also upper-bounds the query omplexity.� perfet ompleteness, and� for proximity parameter Æ, the veri�er has robust-soundness error 1=2 with robustness param-eter 
(Æ).Using Theorems 3.1 and 3.2, we derive the general trade-o� (aptured by the following Theo-rem 3.3) between the length of PCPs and their query omplexity.Theorem 3.3 (Randomness vs. query omplexity trade-o� for PCPs of proximity) Forevery parameter n; t 2 N suh that 2 � t � 2 log log nlog log log n there exists a PCP of proximity for Cir-uit Value (for iruits of size n) with randomness omplexity log2 n+O(t+(log n) 1t ) log logn+O((log n) 2t ) + t2 � poly log log logn, query omplexity O(1), perfet ompleteness, and soundness er-ror 1�
(1=t) with respet to proximity parameter 1=t. Alternatively, we an have query omplexityO(t) and soundness error 1=2 maintaining all other parameters the same.8In fat, we will upper-bound the query omplexity by q = n1=m � poly(log n; 1=Æ) and show that the veri�er'sdeision an be implemented by a iruit of size ~O(q), whih an also be bounded by n1=m � poly(log n; 1=Æ) with aslightly larger unspei�ed polynomial. 20



Theorem 3.3 atually asserts a PCP of proximity (for Ciruit Value), but a PCP for CiruitSatisfiability and a PCPP for Nondeterministi Ciruit Value (of the same omplexity)follow; see Propositions 2.4 and 2.5.Theorem 3.3 is proved by using the robust PCP of proximity desribed in Theorem 3.1. Speif-ially, this robust PCP of proximity is omposed with itself several times (using the CompositionTheorem from Setion 2). Eah suh omposition drastially redues the query omplexity of theresulting PCP, while only inreasing very moderately its randomness omplexity. The deteriorationof the soundness error and the robustness is also very moderate. After omposing the robust PCPof proximity with itself O(t(n)) times, we ompose the resulting robust PCP with the ALMSS-typerobust PCP of proximity thrie to redue the query omplexity to poly log log log n. Finally weompose this resultant robust PCP of proximity with a PCPP of proximity parameter roughly
(1=t) that has query omplexity O(1) and exponential length. The latter PCP of proximity anbe obtained by a suitable modi�ation of the Hadamard-based PCP of [4℄, as shown in Appendix A.Proof: We onstrut the PCP of proximity of Theorem 3.3 by omposing the robust PCP ofproximity desribed in Theorem 3.1 with itself several times. Eah suh omposition redues thequery omplexity from n to approximately n1=m. Ideally, we would like to do the following: Setm = (log n) 1t and ompose the robust PCPP of Theorem 3.1 with parameterm with itself t�1 times.This would result in a robust PCPP of query omplexity roughly n1=mt = n1=log n = O(1) giving usthe desired result. However, we annot ontinue this repeated omposition for all the t� 1 steps asthe requirements of Theorem 3.1 (namely, n1=m �mm=(Æ)3) are violated in the penultimate twosteps of the repeated omposition. So we instead do the following: In the �rst stage, we omposethe (new and) highly eÆient veri�er from Theorem 3.1 with itself t�3 times. This yields a veri�erwith query omplexity roughly 2m2 = exp(log2=t n) < n, while the soundness error is boundedaway from 1 and robustness 
(1=t). In the seond stage, we ompose the resultant robust PCPP aonstant number of times with the ALMSS-type robust PCPP desribed in Theorem 3.2 to reduethe query omplexity to poly log log log n (and keeping the other parameters essentially the same).The ALMSS-type PCPP is (relatively) poor in terms of randomness, however the input size tothe ALMSS-type PCPP is too small to a�et the randomness of the resultant PCPP. Finally, weompose with the Hadamard-based veri�er of Theorem A.1 to bring the query omplexity down toO(1). In all stages, we invoke the Composition Theorem (Theorem 2.7).Throughout the proof, n denotes the size of the iruit that is given as expliit input to thePCPP veri�er that we onstrut. We shall atually onstrut a sequene of suh veri�ers. Eahveri�er in the sequene will be obtained by omposing the prior veri�er (used as the outer veri�erin the omposition) with an adequate inner veri�er. In the �rst stage, the inner veri�er will bethe veri�er obtained from Theorem 3.1, whereas in the seond and third stages it will be theone obtained from Theorem 3.2 and Theorem A.1, respetively. Either way, the inner veri�erwill operate on iruits of muh smaller size (than n) and will use a proximity parameter that isupper-bounded by the robustness parameter of the orresponding outer veri�er.Stage I: Let m = (log n) 1t � 2 and  = 1t . For this hoie of m and , let V0 be the veri�erobtained from Theorem 3.1. We reall that the parameters of this veri�er: For iruits of size ` andany proximity parameter Æ0 2 (=3; =)S, its randomness omplexity is r0(`) , (1� 1m) � log2 `+O(log log `)+O(m logm)+O(log t), its deision (and query) omplexity is d0(`) , ` 1m �poly(log `; t),its soundness error is s0 ,  and its robustness is �0 � (1� )Æ0.We ompose V0 with itself t�3 times for the same �xed hoie ofm and  to obtain a sequene of21



veri�ers of inreasingly smaller query omplexity.9 While doing so, we will use the largest possibleproximity parameter for the inner veri�er (V0) in eah stage; that is, in the ith omposition, we setthe proximity parameter of the inner veri�er to equal the robustness of the outer veri�er, where thelatter is the result of i�1 ompositions of V0 with itself. We get a sequene of veri�ers V1; : : : ; Vt�2suh that V1 = V0 and the veri�er Vi is obtained by omposing (the outer veri�er) Vi�1 with (theinner veri�er) V0, where the proximity parameter of the latter is set to equal the robustness ofthe former. Unlike V0, whih is invoked on di�erent iruit sizes and (slightly) di�erent values ofthe proximity parameter, all the Vi's (i 2 [t � 2℄) refer to iruit size n and proximity parameterÆ , = < 1=t.Let ri; di; Æi; si and �i denote the randomness omplexity, deision (and query) omplexity,proximity parameter, soundness error, and the robustness parameter of the veri�er Vi. (Reallthat Vi will be omposed with the inner-veri�er V0, where in this omposition the input size andproximity parameter of the latter will be set to di and �i respetively, and so we will need to verifythat d1=mi � mm=(�i)3 and �i < = for i < t� 2).10 We �rst laim that the deision omplexity,proximity, soundness-error, robustness, and proof size parameters satisfy the following onditions:1. Deision omplexity: di(n) � a(n;m)2 � n1=mi , where a(`;m) , d0(`)=`1=m = poly(log `; t).On the other hand, di(n) � n1=mi .2. Proximity: Æi = Æ.3. Soundness error: si � 1� (1� )i. (In partiular, si < i.)4. Robustness: �i � (1� )i � Æ. On the other hand, �i � �0 < =.5. Proof length: 2ri(n)di(n) � b(n;m)i � n, where b(`;m) , 2r0(`) � d0(`)=` = poly(mm; log `; t).We prove this laim by indution on i. For starters, note that the base ase (i.e., i = 1) follows fromthe properties of V0: In partiular, d1(n) � poly(log n; t)�n1=m and 2r1(n)d1(n) � poly(mm; log n; t)�n. Turning to the indution step, assuming that these laims holds for Vi, we prove that they holdalso for Vi+1. For (1), note thatdi+1(n) = d0(di(n)) [By the Composition Theorem℄= a(di(n);m) � di(n)1=m [By the properties of V0℄� a(n;m) � di(n)1=m [By monotoniity of a(�; �) and di(n) � n℄� a(n;m) � �a(n;m)2 � n1=mi�1=m [By indution℄� a(n;m)2 � n1=mi+1 [Using m � 2℄and di+1(n) � di(n)1=m � n1=mi+1 also holds. Clearly Æi = Æ and the bound on si is straightforwardfrom the Composition Theorem. Realling that the proximity parameter for V0 in this ompositionis set to �i, the robustness of the omposed veri�er Vi+1 is �i+1 = (1�)�i = (1�)i+1Æ as desired.Furthermore, �i = (1 � )iÆ � (1 � 1t )tÆ � e�1Æ = =O(1). We now move to the last ondition9We assume, for simpliity, that t � 3. Note that it suÆes to establish the laimed result for t that is greaterthan any universal onstant.10We also need to verify that n1=m � mm=(Æ0)3 and Æ0 < = for the initial veri�er V1 = V0 but this is true forour hoie of parameters. Furthermore, as �i an only deteriorate with eah omposition, we have that �i � �0 � =.Thus, the only ondition that needs to be veri�ed is d1=mi � mm=(�i)3 for i < t� 2.22



(essentially bounding the randomness). Notie �rst that ri+1(n) = ri(n) + r0(di(n)) and thus2ri+1(n) � di+1(n) = 2ri(n) � 2r0(di(n)) � d0(di(n)) [By the Composition Theorem℄� 2ri(n) � di(n) � b(di(n);m) [By the properties of V0℄� n � b(n;m)i � b(n;m) [By indution and monotoniity of b(�; �)℄� n � b(n;m)i+1Thus, Part (5) is veri�ed. Reall that we have to verify that d1=mi � mm=(�i)3 for i < t � 2 aspromised before. We have d1=mi � (n1=mi)1=m = n1=mi+1 � n1=mt�2 (sine i < t � 2). Sine m =(log n) 1t , we have n1=mt = 2. Hene, d1=mi � (n1=mt)m2 = 2m2 . On the other hand, mm=(�i)3 �mm=(e�1Æ)3 = mm � poly(t). Thus it suÆes to verify that 2m2=mm � poly(t), for 2 � t �2 log log n= log log log n, whih is straightforward.11Lastly, we onsider the running-time of Vi, denoted Ti. A areful use of the CompositionTheorem (Theorem 2.7) indiates that Ti(n) = poly(n) + Ti�1(n), for every i = 2; : : : ; t� 2, whereT1(n) = poly(n) (sine V1 = V0). Alternatively, unraveling the indutive omposition, we note thatVi onsists of invoking V0 for i times, where in the �rst invoation V0 is invoked on Vi's input andin later invoations V0 is invoked on an input obtained from the previous invoation. Furthermore,the output of Vi is obtained by a ombining the inputs obtained in these i � t� 2 < n invoations.We now onlude the �rst stage by showing that the �nal veri�er V = Vt�2 has the desiredproperties. By Part (5) above (and the fat that dt�2 � 1), we have r(n) = rt�2(n) � logn +(t � 2) � log b(n;m) � logn + t log b(n;m). By the de�nition of b(n;m), we have log b(n;m) =O(log logn)+O(m logm)+O(log t) = O(log logn+m logm), whereasm logm = (log n) 1t � 1t log logn.Thus r(n) � log2 n+O(t�log log n)+t�O(m logm) = log2 n+O(t+(logn) 1t )�log log n. The deisionomplexity of V is d(n) = dt�2(n) � a(n;m)2 �n1=mt�2 = a(n;m)2 �2m2 , beause n1=mt = 2. Usinga(n;m) = poly(log n; t), it follows that d(n) � 2m2 � poly(log n). The proximity of V equals Æ,its soundness error is s = st�2 = 1 � (1 � )t�2 = 1 � (1 � (1=t))t�2 < 1=2, and its robustness is� = �t�2 � (1� )t�2Æ = Æ=e = 
(1=t).Stage II: We now ompose the veri�er V with the ALMSS-type veri�er Va desribed in Theorem 3.2thrie to obtain the veri�ers V 0, V 00, and V 000 respetively (i.e., V 0 equals V omposed with Va,V 00 equals V 0 omposed with Va, and V 000 equals V 00 omposed with Va). We ompose as beforesetting the proximity parameter of the inner verifer equal to the robustness parameter of the outerveri�er. Reall from Theorem 3.2 that the ALMSS-type verifer Va has the following parameters:randomness ra(`; Æ) = O(log ` + log(1=Æ)), deision omplexity da(`; Æ) = poly log `=Æ, soundnesserror sa(`; Æ) = 1=2 and robustness �a(`; Æ) = 
(Æ) for input size ` and proximity parameter Æ.Thus eah omposition with the inner veri�er Va adds O(log q+ log(1=�)) to the randomness whilereduing the query omplexity to (poly log q)=� where q and � are the deision omplexity androbustness parameter respetively of the outer veri�er. Furthermore, the robustness parameterdeteriorates by at most a onstant fator while the soundness error remains a onstant (providedthat the soundness error of the outer veri�er is a onstant). Hene, the parameters of the veri�ersV 0, V 00 and V 000 are as follows:Parameters of V 0 (reall that d = 2m2 � poly(log n) and Æ = 
(1=t)):r0 = r +O(m2 + log logn+ log t) d0 = poly(m; log log n) � t11Note that as t varies from 2 to 2 log log n= log log log n, the value of m varies from plog n to plog log n. Fort 2 [2; 2 log log n= log log log n℄, the maximum value of poly(t) is poly(log log n= log log log n) = poly(log log n). Onthe other hand, for m 2 [plog log n;plog n℄, the minimum value of 2m2=mm > 2m2=2 is 2plog log n2=2 = plog n >poly(log log n). 23



s0 = 1�
(1) �0 = 
(1=t)Parameters of V 00:r00 = r0 +O(logm+ log log logn+ log t) d00 = poly(logm; log log logn; log t) � ts00 = 1� 
(1) �00 = 
(1=t)Parameters of V 000:r000 = r00 +O(log logm+ log log log log n+ log t) d000 = poly(log logm; log log log logn; log t) � ts000 = 1� 
(1) �000 = 
(1=t)while the proximity parameter for all three veri�ers is that of V (i.e., Æ). We have thatr000 = log2 n+O(t+ (log n)1=t) � log log n+O(m2);q000 < d000 = poly(log log log logn; log logm; log t) � t;whereas Æ000 = Æ = 1=(t), s000 = 1 � 
(1) and �000 = 
(1=t). Substituting m = (log n) 1t , we getr000 = log2 n+O(t+ (log n)1=t) � log logn+O((log n) 2t ) and q000 = t � poly(log log logn).Stage III: Finally, we ompose V 000 with the Hadamard-based inner veri�er Vh of Theorem A.1 toobtain our �nal veri�er Vf . The query omplexity of Vh and hene that of Vf is onstant. Therandomness omplexity of Vf is rf (n) , r000(n)+rh(q000(n)) = r000(n)+t2 �poly(log log log n), beauserh(`) = O(`2). Thus, rf (n) = log2 n+O(t+(log n) 1t ) � log log n+O((log n) 2t )+t2 �poly(log log log n).On proximity parameter Æh, the soundness error of Vh is sh = 1�
(Æh). Setting Æh = �000 = 
(1=t),we onlude that the soundness error of Vf on proximity parameter Æ is 1� 
(1=t).To obtain soundness error 1/2, we repeat perform O(t) repetitions of Vh, yielding a queryomplexity of O(t). This an be done without inreasing the randomness omplexity by using\reyled randomness" (spei�ally, the neighbors of a uniformly seleted vertex in a Ramanujanexpander graph; see [24, Apdx. C.4℄).Corollaries: Reall that Theorem 3.3 asserts a PCP of proximity with randomness omplexitylog2 n + At(n), where At(n) , O(t + (log n) 1t ) log logn + O((log n) 2t ) + t2 � poly log log logn andquery omplexity O(t) (for soundness error 1=2). For t 2 [2; :::; 0:99 log log nlog log log n ℄, we have (log n) 1t >(log log n)1=0:99 and so At(n) = O((log n) 2t ). On the other hand, for t � 1:01 log log nlog log log n , we have(log n) 1t � (log logn)1=1:01 and so At(n) = t2 � poly log log log n.� Two extreme hoies of t(n) are when t(n) = 2" , for some " > 0 (whih maintains a on-stant query omplexity), and t(n) = 2 log log nlog log log n (whih minimizes the randomness omplex-ity of the veri�er). Setting t(n) = 2" yields Theorem 1.3 (i.e., onstant query omplex-ity O(1=") and randomness log2 n + O(log" n)), whereas setting t(n) = 2 log log nlog log log n yieldsTheorem 1.2 (i.e., query omplexity O((log log n)= log log logn) and randomness log2 n +(log log n)2 � poly(log log log n)).Thus, both Theorems 1.2 and 1.3 follow from Theorem 3.3.� By Proposition 2.5, we onlude that for every 2 � t(n) � 2 log log nlog log log n , there exists a PCP ofproximity forNondeterministi Ciruit Value of the same omplexities (i.e., randomnessomplexity log2 n + At(n), query omplexity O(t(n)), perfet ompleteness, and soundnesserror 1=2 with respet to proximity Æ = 
(1=t(n))).Comment: We note that the tight bound on the robustness (as a funtion of the proximityparameter) in our main onstrut (Theorem 3.1) plays an important role in the proof of Theorem 3.3.24



The reason is that when we ompose two robust PCPs of proximity, the proximity parameter ofthe seond must be upper-bounded by the robustness parameter of the �rst. Thus, when weompose many robust PCPs of proximity, the robustness parameter deteriorates exponentially inthe number of omposed systems where the base of the exponent is determined by the tightnessof the robustness (of the seond veri�er). That is, let � , �=Æ, where Æ and � are the proximityand robustness parameters of the system. Then omposing this system t times with itself, meansthat at the lowest PCP-instane we need to set the proximity parameter to be � t�1 times theinitial proximity. This requires the lowest PCP-instane to make at least 1=� t�1 queries (or beomposed with a PCP of proximity that an handle proximity parameter � t, whih again lower-bounds the number of queries). For a onstant � < 1, we get exp(t) query omplexity, whereas for� = 1� = (1� (1=t)) we get query omplexity that is linear in 1=((1�)t �) = O(t). Finally, weargue that in the ontext of suh an appliation, setting  = 1=t is atually the \natural" hoie.Suh a hoie, assigns eah proof-orale enountered in the omposition almost equal weight (of1=t); that is, suh a proof orale is assigned weight 1=t when it appears as the urrent proof-oraleand maintains its weight when it appears as part of the input-orale in subsequent ompositions.4 Appliations to oding problemsIn this setion we show that, ombined with any good ode, any PCP of proximity yields a LoallyTestable Code (LTC). Using our PCPs of proximity, we obtain an improvement in the rate of LTCs(improving over the results of [28, 12℄). We also introdue a relaxed notion of Loally DeodableCodes, and show how to onstrut suh odes using any PCP of proximity (and ours in partiular).Preliminaries: We onsider odes mapping sequenes of k (input) bits into sequenes of n � k(output) bits. Suh a generi ode is denoted by C : f0; 1gk ! f0; 1gn, and the elements offC(x) : x2f0; 1gkg � f0; 1gn are alled odewords (of C). Throughout this setion, the integers kand n are to be thought of as parameters, and we are typially interested in the relation of n to k(i.e., how n grows as a funtion of k). Thus, we atually disuss in�nite families of odes (whihare assoiated with in�nite sets of possible k's), and whenever we say that some quantity of theode is a onstant we mean that this quantity is onstant for the entire family (of odes).The distane of a ode C : f0; 1gk ! f0; 1gn is the minimum (Hamming) distane betweenits odewords; that is, minx6=yf�(C(x);C(y))g, where �(u; v) denotes the number of bit-loationson whih u and v di�er. Throughout this work, we fous on odes of \linear distane"; that is,odes C : f0; 1gk ! f0; 1gn of distane 
(n). The distane of w 2 f0; 1gn from a ode C :f0; 1gk ! f0; 1gn, denoted �C(w), is the minimum distane between w and the odewords; that is,�C(w) , minxf�(w;C(x))g. Reall that, for Æ 2 [0; 1℄, the n-bit long strings u and v are said tobe Æ-far (resp., Æ-lose) if �(u; v) � Æ � n (resp., �(u; v) � Æ � n).4.1 Loally Testable CodesLoosely speaking, by a odeword test (for the ode C : f0; 1gk ! f0; 1gn) we mean a randomized(non-adaptive) orale mahine, alled a tester, that is given orale aess to w 2 f0; 1gn (viewedas a funtion w : f1; :::; ng ! f0; 1g). The tester may query the orale at a onstant number ofbit-loations and is required to (always) aept every odeword and rejet with (relatively) highprobability every orale that is \far" from the ode. Indeed, sine our fous is on positive results, weuse a strit formulation in whih the tester is required to aept eah odeword with probability 1.(This orresponds to \perfet ompleteness" in the PCP setting.) Spei�ally, following [28℄, werequire the odeword test to rejet any orale w 2 f0; 1gn with probability 
(�C(w)=n)� o(1). In25



partiular, for every Æ > 0, there exists an " > 0 suh that strings that are Æ-far from the odeare rejeted with probability at least ". Note that this de�nition requires nothing with respet tonon-odewords that are relatively lose to the ode (i.e., are at relative distane at most o(1) fromC).Using an adequate PCP of proximity, we an transform any ode to a related ode that has aodeword tester. This is done by appending eah odeword with a PCP of proximity proving theodeword is indeed the enoding of a message. One tehnial problem that arises is that the PCPof proximity onstitutes most of the length of the new enoding and we annot assume muh aboutthe Hamming distane between di�erent proofs of the same statement, thus the distane of the newode may deteriorate. But this is easily �xed by repeating the odeword many times, so that thePCP of proximity onstitutes only a small fration of the total length.12 Spei�ally, given a odeC0 : f0; 1gk ! f0; 1gm of minimal relative distane Æ0, we onsider the ode C(x) , (C0(x)t; �(x)),where t = d(k) � j�(x)j=jC0(x)j suh that (say) d(k) = log k, and �(x) is a PCP of proximity witha proximity parameter Æppp � Æ0=10 and onstant soundness error " > 0 (we make no attemptto optimize onstants). We �rst note that the repliated versions of C0(x) dominate the lengthof C(x). As for �(x), it is a PCP of proximity that refers to an input of the form z 2 f0; 1gmand asserts that there exists an x = x1 � � � xk (indeed the one that is a parameter to �) suh thatz = C0(x).Observe that the ode C maps k-bit long strings to odewords of length n , (d(k)+1) �`, where` = s0(m)1+o(1) denotes the length of the PCP of proximity and s0(m) denotes the size of the iruitfor enoding relative to C0. In addition, C approximately preserves the relative distane of C0,beause a odeword of C is dominated by repetitions of C0. Using a good ode (with s0(m) = ~O(m)),we may set m = O(k), and obtain n = k1+o(1). Spei�ally, using ` = s0(m) � exp(log" s0(m)), weobtain n < k � exp(log2" k). The odeword test emulates the PCP-veri�er in the natural way.Spei�ally, given orale aess to w = (w1; :::; wt; �) 2 f0; 1gt�m+`, the odeword tester seletsuniformly i 2 [t℄, and emulates the PCP-veri�er providing it orale aess to the input-orale wiand to the proof-orale �. In addition, the tester heks that the repetitions are valid (by inspetinga randomly seleted position in two randomly seleted m-bit long bloks). Let us denote this testerby T .Proposition 4.1 The orale mahine T is a odeword tester for C.Theorem 1.4 follows.Proof: Completeness follows immediately from the ompleteness of the PCP of proximity, sowe fous on the soundness ondition. We onsider an arbitrary w = (w1; :::; wt; �) 2 f0; 1gt�m+`.Assuming that w is Æ-far from C, it follows that w0 = (w1; :::; wt) is (Æ � o(1))-far from the odeC0 , fC0(x)t : x 2 f0; 1gkg (beause the repetition of C0 onstitutes an 1�o(1) fration of the lengthof w). We onsider two ases. The �rst ase is thatPti=1�C0(wi) � Æ0 �tm, where Æ0 = (Æ�o(1))=4.In this ase, at least Æ0=2 fration of wi are Æ0=2-far from C0, so the PCP-veri�er will rejet eahof them with probability at least 1 � " (reall " is the soundness error of the PCP of proximity).Thus, w will be rejeted with probability � " �Æ0=2. The seond ase is thatPti=1�C0(wi) � Æ0 � tm.Consider odewords i's that are losest to the wi's (i.e., Pti=1�(wi; i) � Æ0 � tm). Then it holdsthat 0 = (1; :::; t) is 3Æ0-far from C0, beause �C0(0) � �C0(w0)��(w0; 0). Let 0 be a odeword12Throughout this setion we will use repetitions to adjust the \weights" of various parts of our odes. An alternativemethod would be to work with weighted Hamming distane (i.e. where di�erent oordinates of a odeword reeivedi�erent weights), and indeed these two methods (weighting and repeating) are essentially equivalent. For the sakeof expliitness we work only with repetitions. 26



of C0 suh that 0 is losest to t0. Then 3Æ0 � tm � Pti=1�(i; 0) � Er2[t℄[Pti=1�(i; r)℄, where ris uniformly distributed in [t℄. In this ase, the \repliation test" that heks if two random blokswr; ws are equivalent, will rejet with probabilityEr;s2[t℄ ��(wr; ws)=m� � 1m � Er;s2[t℄ ��(r; s)��(r; wr)��(s; ws)�= 1tm � Er2[t℄ " tXi=1 �(r; i)#� 2 � tXi=1 �(i; wi)!� 3Æ0 � 2 � Æ0We onlude that, in both ases, the tester rejets with probability at least 
(Æ � o(1)).4.2 Relaxed Loally Deodable odesWe �rst reall the de�nition of Loally deodable Codes (LDCs), as formally de�ned by Katzand Trevisan [34℄. A ode C : f0; 1gk ! f0; 1gn is loally deodable if for some onstant Æ > 0(whih is independent of k) there exists an eÆient orale mahine M that, on input any indexi 2 [k℄ and aess to any orale w 2 f0; 1gn suh that �(w;C(x)) � Æn, reovers the i-th bit of xwith probability at least 2=3 while making a onstant number of queries to w. That is, wheneverrelatively few loation are orrupted, the deoder should be able to reover eah information-bit,with high probability, based on a onstant number of queries to the (orrupted) odeword.Katz and Trevisan showed that if M makes q queries then n = 
(k1+1=(q�1)) must hold [34℄.13This lower-bound is quite far from the best known upper-bound, due to Beimal et al. [8℄, that assertsn � exp(kO((log log q)=(q log q))). It has been onjetured that, for a onstant number of queries, nshould be exponential in k; that is, for every onstant q there exists a onstant " > 0 suh thatn > exp(k") must hold. In view of this state of a�airs, it is natural to relax the de�nition of Loallydeodable Codes, with the hope of obtaining more eÆient onstrutions (e.g., n = poly(k)).We relax the de�nition of Loally deodable Codes by requiring that, whenever few loation areorrupted, the deoder should be able to reover most (or almost all) of the individual information-bits (based on few queries) and for the rest (of the loations) the deoder may output a fail symbol(but not the wrong value). That is, the deoder must still avoid errors (with high probability),but is allowed to say \don't know" on a few bit-loations. The following de�nition is atuallyweaker; yet, the (aforementioned) stronger formulation is obtained when onsidering � � 1 (andusing standard ampli�ation to redue the error from 1=3 to any desired onstant).De�nition 4.2 (Relaxed LDC) A ode C : f0; 1gk ! f0; 1gn is relaxed loally deodable if forsome onstants Æ; � > 0 there exists an eÆient probabilisti orale mahine M that makes aonstant number of queries and satis�es the following two onditions with respet to any w 2 f0; 1gnsuh that �(w;C(x)) � Æn:1. On input any index i 2 [k℄ and given aess to the orale w, with probability at least 2=3,mahine M outputs either the i-th bit of x or a speial failure symbol, denoted ?.2. For at least a � fration of the indies i 2 [k℄, on input i and orale aess to w 2 f0; 1gn,with probability at least 2=3, mahine M outputs the i-th bit of x.13Their lower-bound refers to non-adaptive deoders, and yields a lower-bound of n = 
(k1+1=(2q�1)) for adaptivedeoders. A lower-bound of n = 
(k1+1=O(q)) for adaptive deoders was presented in [18℄, and lower-bound ofn = 
(k1+1=(q=2�1)) for non-adaptive deoders was presented in [36℄. (We note that below we use a non-adaptive(relaxed) deoder.) 27



Furthermore, if w = C(x) is a odeword then the deoder orretly reovers every bit of x withprobability at least 2=3.One may strengthen the de�nition by requiring that � be greater than 1=2 or any other favoriteonstant smaller than 1 (but probably refrain from setting � > 1� Æ or so). In fat, we ahieve thelatter stronger form.Note that it is very easy to ome up with onstrutions that satisfy eah one of the two mainonditions of De�nition 4.2. For example, Condition 1 an be satis�ed by (any ode and) a trivialdeoder that always returns ?. On the other hand, the identity enoding (ombined with a trivialdeoder) satis�es Condition 2. Our aim, however, is to have a onstrution that satis�es bothonditions (as well as the furthermore lause) and beats the performane of the known loallydeodable odes.The above de�nition only onsiders strings w that are Æ-lose to the ode. However, using ouronstrution from the previous setion, any relaxed LDC an be augmented so that strings that areÆ-far from the ode are rejeted with high probability (i.e. for every index i, the deoder outputs? with high probability), and this an be done with only a nearly linear (n � exp(log" n)) inreasein size.Motivation to our onstrution: We seek a ode of linear distane that has some weak \loaldeodability" properties. One idea is to separate the odeword into two parts, the �rst providingthe distane property (eg using any ode of linear distane) and the seond allowing for \loaldeodability" (eg using the identity map). It is obvious that a third part that guarantees theonsisteny of the �rst part should be added, and it is natural to try to use a PCP of proximity inthe latter part. The natural deoder will hek onsisteny (via the PCPP), and in ase it detetsno error will deode aording to the seond part. Indeed, the seond part may not be \robustto orruption" but the �rst part is \robust to orruption" and onsisteny means that both partsenode the same information. Considering this vague idea, we enounter two problems. First, aPCP of proximity is unlikely to detet a small hange in the seond part. Thus, if we use theidentity map in the seond part then the deoder may output the wrong value of some (althoughfew) bits. Put in other words, the \proximity relaxation" in PCPPs makes sense for the �rst partof the odewords but not for the seond. Our solution is to provide proofs of the onsisteny foreah bit in the seond part with the entire �rst part. The seond problem is that the PCPPs aremuh longer than the �rst two parts, whereas the orruption rate is measured in terms of the entireodeword. This is easy to �x by repeating the �rst two parts suÆiently many times. However, itis important not to \overdo" this repetition, beause if the third part is too short, then orruptingit may prevent meaningful deoding even at low orruption rates (measured in terms of the entireodeword).The atual onstrution. Let C0 : f0; 1gk ! f0; 1gm be a good ode of relative distane Æ0,then we enode x 2 f0; 1gk by C(x) , (xt;C0(x)t0 ; �1(x); :::; �k(x)), where t = j�1(x); :::; �k(x)j=jxj(resp., t0 = j�1(x); :::; �k(x)j=jC0(x)j), and �i(x) is a PCP of proximity to be further disussed. We�rst note that the repliated versions of x (resp., C0(x)) takes a third of the total length of C(x).As for �i(x), it is a PCP of proximity that refers to an input of the form (z1; z2) 2 f0; 1gm+mand asserts that there exists an x = x1 � � � xk (indeed the one that is a parameter to �i) suh thatz1 = xmi and z2 = C0(x).14We use our PCP of proximity from Theorem 3.3 (with t(n) set to be asuÆiently large onstant to be determined later). Let Æppp > 0 be the proximity parameter of the14Indeed z1 is merely the bit xi repeated jC0(x)j times in order to give equal weight to eah part in measuringproximity. 28



PCP of proximity and let q denote the number of queries it makes in order to support a soundnesserror of 1=6. We note that, in our PCP of proximity, the queries to the proof orale (resp., inputorale) are uniformly distributed. It follows from this uniformity and perfet ompleteness ofthe PCP of proximity, that if we ip at most a Æ0 fration of the bit-loations of the input-oraleand the proof-orale then the veri�er will aept with probability at least 1� q � Æ0, (Following thealternative argument, we obtain the weaker lower-bound of 1� (2=Æppp) � qÆ0.)Observe that the ode C maps k-bit long strings to odewords of length n , 3 � k � `, where` = s0(m)1+o(1) denotes the length of the PCP of proximity and s0(m) denotes the size of the iruitfor enoding relative to C0. Using a good ode | of onstant relative distane Æ0, m = O(k), ands0(m) = ~O(m)) | we obtain n = k2+o(1). The relative distane of C is at least Æ0=3.We now turn to the desription of the deoder D. On input i 2 [k℄ and orale aess tow = (w1; w2; w3) 2 f0; 1gn, the deoder invokes the PCPP-veri�er providing it with aess to aninput-orale (z1; z2) and a proof orale � that are de�ned and emulated as follows: The deoderselets uniformly r 2 [t℄ and r0 2 [t0℄, and de�nes eah bit of z1 to equal the ((r � 1)k + i)-th bitof w1, the string z2 is de�ned to equal the r0-th (m-bit long) blok of w2, and � is de�ned to equalthe i-th blok (`-bit long) of w3. That is, when the veri�er asks to aess the j-th bit of z1 (resp.,z2) [resp., �℄, the deoder answers with the ((r � 1)k + i)-th bit of w1 (resp., ((r0 � 1)m + j)-thbit of w2) [resp., the ((i � 1)` + j)-th bit of w3℄. If the veri�er rejets then the deoder outputs aspeial (failure) symbol. Otherwise, it outputs the ((r � 1)k + i)-th bit of w1.Proposition 4.3 There exist universal onstants " > 0 and  suh that the ode C is relaxed loallydeodable for any Æ � " and with � = 1� Æ.Proof: We prove that the deoder D satis�es the two main onditions of De�nition 4.2 (for� = 1 � O(Æ)). Fixing any x 2 f0; 1gk , we onsider an arbitrary orale w = (w1; w2; w3) thatis Æ-lose to C(x), where w1 (resp., w2) denotes the alleged repliation of x (resp., C0(x)) andw3 = (w3;1; :::; w3;k) denotes the part of the PCPs of proximity. Note that w1 (resp., w2) is 3Æ-loseto xt (resp., to C0(x)t0). To analyze the performane of Dw(i), we de�ne random variables Z1and Z2 that orrespond to the input-orales to whih the PCP-veri�er is given aess. Spei�ally,Z1 = �m, where � is set to equal the ((r� 1)k+ i)-th bit of w1, when r is uniformly distributed in[t℄. Likewise, Z2 is determined to be the r0-th blok of w2, where r0 is uniformly distributed in [t0℄.Finally, we set the proof-orale, �, to equal the i-th blok of w3.We start with Condition 1. We bound the probability that the deoder outputs :xi by onsid-ering three ases:Case 1: � = xi. Then Condition 1 is satis�ed regardless of whether the deoder outputs � or ?(whih are the only two possibilities).Case 2: Z2 is 18Æ-far from C0(x). This ase ours with probability at most 1=6, sine the ex-peted distane of Z2 from C0(x) is at most 3Æ.Case 3: Z2 is 18Æ-lose to C0(x) and � 6= xi. Then, (Z1; Z2) is minf1=2; Æ0�18Æg-far from anystring of the form (ymi ;C0(y)). (Either all of Z1 must be hanged, or Z2 must be hanged toa odeword other than C0(x).) Choosing Æppp < minf1=2; Æ0 � 18Æg, we onlude that thePCPP veri�er aepts (and the deoder outputs :xi) with probability at most 1=6.Thus, in total, the deoder outputs :xi with probability at most 1=6 + 1=6 = 1=3.We now turn to Condition 2. Reall that w1 = w1;1 � � �w1;tk (resp., w3) is 3Æ-lose to xt (resp., to�1(x); :::; �k(x)). It follows that for all but at most an �=2 fration of the i's, w1;iw1;k+i � � �w1;(t�1)k+i29



is 6Æ=�-lose to xti (resp., the i-th blok of w3 is 6Æ=�-lose to �i(x)). Thus, for at least a 1 � �fration of the i's, Z1 equals xmi with probability at least 1 � 6Æ=� and the i-th blok of w3 is6Æ=�-lose to �i(x). Let us �x suh a good i. Reall that the expeted (frational) distane ofZ2 from C0(x) is at most 3Æ and that the deoder D outputs � (where Z1 = �m) if and only ifthe PCP-veri�er aepts. We need to lower-bound the probability that the PCP-veri�er aeptsthe orale-input (Z1; Z2) when aessing the proof orale � (i.e., the i-th blok of w3). Reallthat the PCP-veri�er makes at most q queries, where eah query is uniformly distributed in oneof the orales, and that the PCP-veri�er would have aepted (xmi ;C0(x)) with probability 1 whenaessing the proof �i(x). It follows that this veri�er rejets (Z1; Z2) when aessing the (orrupted)proof � with probability at mostPr[Z1 6= xmi ℄ + q � E ��(Z2;C0(x))m �+ q � �(�; �i(x))` < 6Æ� � q � 3Æ + q � 6Æ� < 7qÆ�Now, 7qÆ=� < 1=3, provided that � > 21qÆ. That is, we may use � = 22qÆ. Thus, Condition 2holds for � = 1� � = 1� 22qÆ.Improving the rate: The reason that our ode has quadrati length odewords (i.e., n = 
(k2))is that we augmented a standard ode with proofs regarding the relation of the standard odewordto the value of eah information bit. Thus, we had k proofs eah relating to a statement of length
(k). Consider the following improvement. Partition the message into pk bloks, eah of lengthpk. Enode the original message and eah one of the smaller bloks, via good error orretingodes. Let w be the enoding of the entire message, and wi; i = 1; : : :pk be the enodings of thebloks. Now, for every i = 1; : : : ;pk append a PCP of proximity for the laim \wi is the enodingof the ith blok of a message enoded by w". In addition, for eah message bit xj residing in bloki, append a PCP of proximity of the statement \xj is the jth bit of the pk-bit long string enodedin wi". The total enoding length has dereased, beause we have pk proofs of statements of lengthO(k) and k proofs of statements of length O(pk), leading to a total length that is almost linear ink3=2.In general, for any onstant `, we onsider ` suessively �ner partitions of the message intobloks, where the (i+1)-st partition is obtained by breaking eah blok of the previous partition intok1=` equally sized piees. Thus, the i-th partition uses ki=` bloks, eah of length k1�i=`. Enoding isdone by providing, for eah i = 0; 1; :::; `, enodings of all of the bloks in the i-th partition in a gooderror-orreting ode. (Thus, for i = 0 we provide the enoding of the entire messages, whereas fori = ` we provide an \enoding" of individual bits.) Eah of these `+ 1 levels of enodings will beassigned equal weight (via repetitions) in the new odeword. In addition, the new odeword willontain PCPs of proximity that assert the onsisteny of \diretly related" bloks (i.e., bloks ofonseutive levels that ontain one another). That is, for every i = 1; :::; ` and j 2 [ki=`℄, we plaea proof that the enoding of the j-th blok in the i-th level is onsistent with the enoding of thedj=k1=`e-th blok in the (i�1)-st level. The i-th suh sequene of proofs ontains ki=` proofs, whereeah suh proof refers to statements of length O(k1�i=` + k1�(i�1)=`) = O(k1�(i�1)=`), whih yieldsa total length of proofs that is upper-bounded by ki=` � (k1�(i�1)=`)1+o(1) = k1+1=`+o(1). Eah ofthese sequenes will be assigned equal weight in the new odeword, and the total weight of all theenodings will equal the total weight of all proofs. The new deoder will just hek the onsistenyof the ` relevant proofs and at aordingly. (Thus, the deoder uses O(`) queries.) We stress that,as before, the proofs in use are PCPs of proximity. In the urrent ontext these proofs refer totwo input-orales of vastly di�erent length, and so the bit-positions of the shorter input-orale are30



given higher \weight" (by repetition) suh that both input-orales are assigned the same weight.15The proof of Proposition 4.3 an be extended with " and  now depending on ` (i.e., " = 
(1=`)and  = O(`)). That is:Proposition 4.4 There exist universal onstants "0 > 0 and 0 suh that, for every `, the afore-mentioned ode is relaxed loally deodable (by O(`) queries) for any Æ � "0=` and with � = 1� 0`Æ.Theorem 1.5 follows.Proof Sketh: Following the outline of the proof of Proposition 4.3, we onsider an orale(w0; w1; :::; w`; �1; :::; �`) that is Æ lose to an enoding of x 2 f0; 1gk , where eah wi is supposedto onsist of enodings of the ki=` (non-overlapping) k1�i=`-bit long bloks of x, and �i onsistsof the orresponding proofs of onsisteny. A key observation is that eah of these sequenes issuÆiently lose to what it is suppose to be (beause (2` + 1) � Æ < 3"0 is a suÆiently small on-stant). Condition 1 is thus established as in the proof of Proposition 4.3, while noting that if theenoding of some bit does not �t the enoding of the entire x then a mismath must our betweenthe enoding of some blok (in some wi) and its immediate super-blok (in wi�1). To establishCondition 2, we �rst upper-bound the number of i 2 [k℄ for whih one of the relevant bloks orproofs has been \drastially orrupted" (i.e., orrupted too muh). Corrupting a Æ fration of theodeword, only allows to \drastially orrupt" a Æ fration of the bloks and proofs at eah level,whih amounts to disrupting the deoding of O(`Æ) of the bit positions.Open Problem: We wonder whether one an obtain relaxed-LDC that an be deoded usingq queries while having length n = o(kq=(q�1)). The existene of suh relaxed-LDC will imply thatour relaxation (i.e., relaxed-LDC) is atually strit, beause suh odes will beat the lower-boundurrently known for LDC (f. [34℄). Alternatively, it may be possible to improve the lower-boundfor (q-query) LDC to n > k1+(=q), for any onstant  and every suÆiently large onstant q (where,as usual, k is a parameter whereas q is a �xed onstant). (In fat, some onjeture that n must besuperpolynomial in k, for any onstant q.)4.3 Linearity of the odesWe note that the odes presented above (establishing both Theorems 1.4 and 1.5) are atuallyGF(2)-linear odes, whenever the base ode C0 is also GF(2)-linear. Proving this assertion reduesto proving that the PCPs of proximity used (in the aforementioned onstrutions) have proof-oralesin whih eah bit is a linear funtions of the bits to whih the proof refers. The main part of thelatter task is undertaken in Setion 8.4, where we show the the main onstrut (i.e., the PCPs ofproximity stated in Theorems 3.1 and 3.2) when applied to a linear iruit yields a an GF(2)-lineartransformation of assignments (satisfying the iruit) to proof-orales (aepted by the veri�er). Inaddition, we need to show that also the onstrution underlying the proof of Theorem 3.3 satisfythis property. This is done next, and onsequently we get:Proposition 4.5 If C is a linear iruit (see De�nition 8.13), then there is a linear transformationT mapping satisfying assignments w of C to proof orales T (w) suh that the PCPP veri�er ofTheorem 3.3 will, on input C, aept orale (w; T (w)) with probability 1.15In a sense, this was also done in the simpler ode analyzed in Proposition 4.3.
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Proof Sketh: In Setion 8.4, we establish a orresponding result for the main onstrut (i.e.,Proposition 8.14 refers to the linearity of the onstrution used in the proof of Theorem 8.1, whihin turn underlies Theorems 3.1 and 3.2). Here we show that linearity is preserved in ompositionas well as by the most inner (or bottom) veri�er.In eah omposition step, we append the proof-orale with new (inner) PCPs of proximity pereah test of the (outer) veri�er. Sine all these tests are linear, we an apply Proposition 8.14and infer that the new appended information is a linear transformation of the input-orale and theouter proof-orale (where, by indution, the latter is a linear transformation of the input).At the bottom level of omposition we apply a Hadamard based PCP (Setion A). The enodingde�ned there is not GF (2)-linear (rather it is quadrati), but this was neessary for dealing withnon-linear gates. It an be veri�ed that for a linear iruit, one an perform all neessary tests ofSetion A with the Hadamard enoding of the input. Thus, we onlude this �nal phase of theenoding is also linear, and this ompletes the proof of Proposition 4.5.Part IIThe main onstrut: A short, robust PCP ofproximity5 Overview of our main onstrutThroughout this setion, n denotes the length of the expliit input given to the PCPP veri�er,whih in ase of Ciruit Value is de�ned as the size of the iruit (given as expliit input). Asstated in the introdution, our main results rely on the following highly eÆient robust PCP ofproximity.Theorem 3.1 (Main Construt - restated): There exists a universal onstant  suh for alln;m 2 Z+, 0 < Æ;  < 1=2 satisfying n1=m � mm=(Æ)3 and Æ � =, Ciruit Value has a robustPCP of proximity (for iruits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=Æ)),� deision omplexity n1=m � poly(logn; 1=Æ), whih also upper-bounds the query omplexity.16� perfet ompleteness, and� for proximity parameter Æ, the veri�er has robust-soundness error  with robustness parameter(1� )Æ.We omment that the ondition Æ < = merely means that we present robust PCPs of proximityonly for the more diÆult ases (when Æ is small). A (simpli�ed) variant of Theorem 3.1 also yieldsthe ALMSS-type Robust PCP of proximity (of Theorem 3.2). Following is an overview of the proofof Theorem 3.1; the atual proof is given in the subsequent three setions.Theorem 3.1 is proved by modifying a onstrution that establishes Theorem 1.1. We follow[31℄ and modify their onstrution. (An alternative approah would be to start from [44℄, but that16In fat, we will upper-bound the query omplexity by q = n1=m � poly(log n; 1=Æ) and show that the veri�er'sdeision an be implemented by a iruit of size ~O(q), whih an also be bounded by n1=m � poly(log n; 1=Æ) with aslightly larger unspei�ed polynomial. 32



onstrution does not seem amenable to ahieving robust soundness.) The onstrution of [31℄may be abstrated as follows: To verify the satis�ability of a iruit of size n, a veri�er expetsorales Fi : Fm ! F , i 2 f1: : : : ; t = poly logng, where F is a �eld and m is a parameter suhthat Fm � mm � n. The veri�er then needs to test that (1) eah of the Fi's is lose to a m-variatepolynomial of low degree and (2) the polynomials satisfy some onsisteny properties whih verifythat Fi is loally onsistent with Fi�1.17 (These onsisteny heks inlude tests whih depend onthe input iruit and verify that Fi's atually enode a satisfying assignment to the iruit.)We work within this framework | namely our veri�er will also try to aess orales for Fi's andtest low-degreeness and onsisteny. Our key modi�ation to this onstrution is a randomness-redution in the low-degree test obtained by using the small olletion of (small-biased) lines of [12℄,while using only the \anonial" representations of these lines (and avoiding any ompliation thatwas introdued towards \proof omposition"). In partiular, unlike in [31, 28, 12℄, we annot a�ordto pak the polynomials F1; : : : ;Ft into a single polynomial (by using an auxiliary variable thatblows-up the proof length by a fator of the size of the �eld in use). Instead, we just maintain allthese t polynomials separately and test them separately to obtain Theorem 1.1. (In the traditionalframework of parallelized PCPs, this would give an una�ordable inrease in the number of (non-Boolean) queries. However, we will later ameliorate this loss by a \bundling tehnique" that willyield robust-soundness.)The resulting PCP is onverted into a PCP of proximity by omparing the input-orale (i.e.supposed satisfying assignment to the iruit) to the proof-orale (whih is supposed to inludean enoding of the said assignment). That is, we read a random loation of the input and theorresponding loation of the proof orale, and test for equality. Atually, these loations of theproof-orale must be aessed via a self-orretion mehanism (rather than merely probing at thedesired points of omparison), sine they onstitute only a small part of the proof orale (and thusorruptions there may not be deteted). (This tehnique was already suggested in [6℄.)The most omplex and subtle part of the proof of Theorem 3.1 is establishing the robust-soundness property. We sketh how we do this below, �rst dealing with the low-degree test andthe onsisteny tests separately, and then showing how to reonile the two \di�erent" �xes.Low-degree tests of F1; : : : ;Ft: Seleting a random line ` : F ! Fm (from the aforementionedsample spae), we an hek that (for eah i) the restrition of Fi to the line ` (i.e., the funtionfi(j) , Fi(`(j))) is a low-degree (univariate) polynomial. Eah of these tests is individually robust;that is, if Fi is far from being a low-degree polynomial then with high probability the restrition ofFi to a random line ` (in the sample spae) is far from being a low-degree polynomial. The problemis that the onjuntion of the t tests is not suÆiently robust; that is, if one of the Fi's is Æ-far frombeing a low-degree polynomial then it is only guaranteed that the sequene of t restritions (i.e.,the sequene of the fi's) is (Æ=t)-far from being a sequene of t low-degree (univariate) polynomials.Thus robustness dereases by a fator of t, whih we annot a�ord for nononstant t.hOur solution is to observe that we an \bundle" the t funtions together into a funtion F :Fm ! F t suh that if one of the Fi's is far from being a low-degree polynomial then the restritionof F to a random line will be far from being a bundling of t low-degree univariate polynomials.Spei�ally, for every x 2 Fm, de�ne F(x) , (F1(x); :::;Ft(x)). To test that F is a bundling of low-degree polynomials, selet a random line ` (as above), and hek that f `(j) = F(`(j)) is a bundlingof low-degree univariate polynomials. Thus, we establish robustness at the bundle level; that is, ifone of the Fi's is far from being low degree then, with high probability, one must modify f ` on a17Stritly speaking, the onsisteny heks are a little more ompliated, with the funtions really being indexedby two subsripts and onsisteny tests being between Fi;j and Fi;j�1, as well as between Fi;0 and Fi+1;0. However,these di�erenes don't alter our task signi�antly | we ignore them in this setion to simplify our notation.33



onstant fration of values in order to make the test aept. The point is that this robustness refersto Hamming distane over the alphabet F t, rather than alphabet F as before. We an a�ord thisinrease in alphabet size, as we later enode the values of F using an error-orreting ode in orderto derive robustness at the bit level.We wish to highlight a key point that makes the above approah work: when we look at thevalues of F restrited to a random line, we get the values of the individual Fi's restrited to somerandom line, whih is exatly what a low-degree test of eah Fi needs. This fat is not verysurprising, given that we are subjeting all Fi's to the same test. But what happens when weneed to make two di�erent types of tests? This question is not aademi and does ome up in theonsisteny tests.Consisteny tests: To bundle the t onsisteny tests between Fi and Fi+1 we need to lookinto the struture of these tests. We note that for every i, a random test essentially refers to thevalues of Fi and Fi+1 on (random) i-th axis-parallel lines. That is, for every i, and a randomx0 = (x1; :::; xi�1) 2 F i�1 and x00 = (xi+1; :::; xm) 2 Fm�i, we need to hek some relation betweenFi(x0; �; x00) and Fi+1(x0; �; x00).18 Clearly, querying F as above on the ith axis-parallel line, we anobtain the relevant values from F(x0; �; x00), but this works only for one spei� value of i, and othervalues of i will require us to make other queries. The end result would be that we'll gain nothingfrom the bundling (i.e., from F) over using the individual Fi's, whih yields a fator of t loss in therobustness.19 Fortunately, a di�erent bundling works in this ase.Consider F0 suh that F0(x) , (F1(x);GF (2)(S(x)); :::;Ft(St�1(x))), for every x 2 Fm, where S denotes a (right) yli-shift (i.e.,S(x1; :::; xm) = (xm; x1 : : : xm�1) and Si(x1; :::; xm) = (xm�(i�1); : : : ; xm; x1; x2; : : : xm�i)). Now,if we ask for the value of F0 on the �rst and last axis-parallel lines (i.e., on (�; x2; :::; xm) and(x2; :::; xm; �) = S�1(�; x2; :::; xm)), then we get all we need for all the m tests. Spei�ally, forevery i, the i-th omponent in the bundled funtion F0(�; x2; :::; xm) is Fi(Si�1(�; x2; :::; xm)) =Fi(xm�i+2; :::; xm; �; x2; :::; xm�i+1), whereas the (i + 1)-st omponent in F0(S�1(�; x2; :::; xm)) isFi+1(Si(S�1(�; x2 : : : ; xm))) = Fi+1(xm�i+2; :::; xm; �; x2; :::; xm�i+1). Thus, we need only to querytwo bundles (rather than t), and robustness only drops by a onstant fator.Reoniling the two bundlings: But what happens with the low-degree tests that we need todo (whih were \served" niely by the original bundling F)? Note that we annot use both F andF0, beause this will requires testing onsisteny between them, whih will introdue new problemsas well as a ost in randomness that we annot a�ord. Fortunately, the new bundling (i.e., F0),designed to serve the axis-parallel line omparisons, an also serve the low-degree tests. Indeed, thevarious Fi's will not be inspeted on the same lines, but this does not matter, beause the propertyof being a low-degree polynomial is preserved when \shifted" (under S).Tightening the gap between robustness and proximity: The above desription suÆes forderiving a weaker version of Theorem 3.1 in whih the robustness is only (say) Æ=3 rather than(1 � )Æ for a parameter  that may be set as low as 1=poly(log n). Suh a weaker result yields aweaker version of Theorem 3.3 in whih the query omplexity is exponentially larger (e.g., for proof-length exp(o(log logn)2) � n, we would have obtained query omplexity exp(o(log log n)) = logo(1) nrather than o(log log n)); see omment at the end of Setion 3. To obtain the stronger bound onthe robustness parameter, we take a loser look at the onjuntion of the standard PCP test and18Again, this is an oversimpli�ation, but suÆes to onvey the main idea of our solution.19It turns out that for onstant m (e.g., m = 2) this does not pose a problem. However, a onstant m would suÆeonly for proving a slightly weaker version of Theorem 1.2 (where o(log log n) is replaed by log log n). but not forproving Theorem 1.3, whih requires setting m = log" n, for onstant " > 0.34



the proximity test. The PCP test an be shown to have onstant robustness  > 0, whereas theproximity test an be shown to have robustness Æ0 , (1 � ))Æ. When ombining the two tests,we obtain robustness equal to min(�; (1 � �)Æ0), where � is the relative length of queries used inthe PCP test (as a fration of the total number of queries). A natural hoie, whih yields theweaker result, is to weight the queries (or repliate the smaller part) so that � = 1=2. (This yieldsrobustness of approximately min(; Æ0)=2.) In order to obtain the stronger bound, we assign weightssuh that � = , and obtain robustness min(; (1� )Æ0) > min(
(); (1� 2)Æ), whih simpli�esto (1�2)Æ for Æ < =O(1). (The above desription avoids the fat that the PCP test has onstantsoundness error, but the soundness error an be dereased to  by using sequential repetitionswhile paying a minor ost in randomness and while approximately preserving the robustness. Weomment that the proximity test, as is, has soundness error .)6 A randomness-eÆient PCPIn this setion, we present a vanilla version (Theorem 6.1) of Theorem 3.1. More spei�ally, weonstrut a regular PCP forCiruit Satisfiability(i.e., a robust PCP of proximity without eitherthe robustness or proximity properties). This onstrution favors over earlier PCP onstrutions inthe fat that it is very eÆient in randomness. As mentioned earlier, this theorem suÆes to proveTheorem 1.1.Theorem 6.1 There exists a universal onstant 0 < " < 1 suh that the following holds. Supposem 2 Z+ satis�es m � log n=loglogn Then there exists a PCP for Ciruit Satisfiability (foriruits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n),� query omplexity q = O(m2n1=m log2 n) and deision omplexity ~O(q),� perfet ompleteness,� and soundness error 1� ".The onstrution of the PCP for Ciruit Satisfiability proeeds in three steps. First, wetransform the input iruit ' to a well-strutured iruit '0 along the lines of Polishhuk andSpielman [44, 52℄ (Setion 6.1). '0 is only slightly larger than ', but has an algebrai struturethat will be ruial to our veri�ation proess. Any legal assignment to the gates of ' (i.e. onethat preserves the funtionality of the gates of ') an be transformed to a legal assignment to '0.The important property of '0 is the following: If we enode an assignment to the gates of '0 usinga spei� sequene of Reed-Muller odewords (i.e. low degree polynomials), then the legality ofthe assignment an be loally veri�ed (by reading a small random portion of the enoding). Theenoding via low degree polynomials (and resulting loal tests) is as in Harsha and Sudan [31℄ andis desribed in Setion 6.2. Thus, our PCP veri�er will essentially test (i) that the enoding ofthe purported satisfying assignment to '0 is formed of low degree polynomials, (this part will bedone using the randomness-eÆient low degree test of Ben Sasson et al. [12℄); and (ii) that theassignment is legal. Setion 6.3 desribes the onstrution of the PCP veri�er and Setion 6.4analyzes its properties. Most of the above results are impliit in the literature, but arefullyabstrating the results and putting them together helps us in signi�antly reduing the randomnessof the PCP veri�er. 35



6.1 Well-strutured Boolean iruitsThe main problem with designing a randomness-eÆient PCP veri�er diretly for Ciruit Satis-fiability is that we need to enode the assignment to all gates of the input iruit using ertainReed-Muller based odes, in suh a way that will allow us to loally verify the legality of all gatesof the iruit, using only the enoded assignment. In order to do this, we require the iruit to havea well-behaved struture (amenable to our spei� enoding and veri�ation demands). Of ourse,an arbitrary iruit does not neessarily have this struture, but lukily we have the tehnology tooverome this. More to the point, we an restruture any iruit into a well-behaved iruit thatwill suit our needs. The natural enoding (used e.g. in the Hadamard based PCP, Setion A) inursa quadrati blowup in size. To get over this problem, Polishhuk and Spielman [44, 52℄ introdueda di�erent, more eÆient restruturing proess that embeds the input iruit into well-struturedgraphs known as de Bruijn graphs. Indeed, the blowup in iruit size using these iruits is merelyby a logarithmi multipliative fator, and their usefulness for the loal veri�ation of legal assign-ments will beome evident later (in Setion 6.2). As in Polishhuk and Spielman [44, 52℄, we embedthe input iruit into wrapped de Bruijn graphs (see De�nition 6.2). We use a slightly di�erent def-inition of de Bruijn graphs, more onvenient for our purposes, than that used in [44, 52℄. Howeverit an easily be heked that these two de�nitions yield isomorphi graphs. The main advantagewith the de Bruijn graphs is that the neighborhood relations an be expressed very easily usingsimple bit-operations like yli-shifts and bit-ips. In [44, 52℄ the vertex set of these graphs isidenti�ed with a vetor spae. We instead work with a strit embedding of these graphs in a vetorspae where the verties are a strit subset of the vetor spae. The bene�t of both approahesis that the neighborhood funtions an be expressed as aÆne funtions (see Setion 6.2 for moredetails). The reason for our approah will be explained at the end of Setion 6.2.De�nition 6.2 The wrapped de Bruijn graph GN;l is a direted graph with l layers eah with 2Nnodes whih are represented by N -bit strings. The layers are numbered 0; 1; : : : ; l � 1. The noderepresented by v = (b0; : : : ; bi� ; : : : ; bN�1) in layer i has edges pointing to the nodes represented by�i;0(v) = (b0; : : : ; bi� ; : : : ; bN�1) and �i;1(v) = (b0; : : : ; bi��1; : : : ; bN�1) in layer (i + 1) modulo l,where i� is i modulo N and a�b denotes the sum of a and b modulo 2.See Figure 1 for an example.We now desribe how to embed a iruit into a wrapped de Bruijn graph (see Figure 2 fora simple example). Given a iruit C with n gates (inluding both input and output gates), weassoiate with it a wrapped de Bruijn graph GN;l where N = log n and l = 5N = 5 log n. We thenassoiate the nodes in layer 0 with the gates of the iruit. Now, we wish to map eah wire inthe iruit to a path in GN;l between the orresponding nodes of layer 0. Standard paket-routingtehniques (see [39℄) an be used to show that if the number of layers l is at least 5N then suh arouting an be done with edge-disjoint paths. (Reall that we work with iruits whose fan-in andfan-out are 2.)Thus, we an �nd \swithes" for eah of the nodes in layers 1; : : : ; l � 1 of the graph suh thatthe output of eah gate (i.e., node in layer 0) is routed to the input of the gates that require it.Eah node has two inputs and two outputs, and thus there is a onstant number of swithes routinginoming edges to outgoing ones (See Figure 3). For nodes in layer 0, instead of speifying a swith,we speify the funtionality of the Boolean gate assoiated to that node in the iruit (e.g. AND,OR, PARITY, NOT, INPUT, OUTPUT). Atually unary gates (suh as NOT and OUTPUT) havetwo forms (NOT, NOT', OUTPUT, OUTPUT') in order to speify whih of the two inoming edgesin the de Bruijn graph to use. 36



Figure 1: The wrapped de Bruijn graph G3;3. Notie the �rst and last layer are the same.This spei�es the embedding of the input iruit into a well-strutured iruit (based on a deBruijn graph). More preisely, let C = fType of swithing ationsg [ fType of Boolean gatesg bethe set of allowable gates of the well-strutured iruit (See Figure 3) . Given a iruit on n gates,we an onstrut, in polynomial time, a wrapped de Bruijn graph GN;l (where N = logn andl = 5 logN) and l funtions T0; T1; : : : ; Tl�1 : f0; 1gN ! C where eah funtion Ti is a spei�ationof the gates of layer i (i.e. a spei�ation of the swithing ation or Boolean funtionality).We now demonstrate how to translate a proof that a iruit is satis�able into an assignmentthat satis�es the embedded iruit. A proof that a iruit is satis�able onsists of an assignmentof 0's and 1's to the inputs and the gates of the iruit suh that eah gate's output is onsistentwith its inputs and the output gate evaluates to 1. The orresponding assignment to the embeddediruit onsists of an assignment of 0's and 1's to the edges entering and leaving the nodes of thewrapped de Bruijn graph that is onsistent with the funtionality of the gates (in layer 0) and theswithing ations of the nodes (in the other layers). Sine we are assigning values to nodes of theembedded graph (and not their edges), the assignment atually assoiates a 4-tuple of 0's and 1'sto eah of the nodes in the graph indiating the value arried by the four edges inident at thatnode (two inoming and two outgoing). More formally, the embedded assignment is given by aset of l funtions A0; A1; : : : ; Al�1 where eah funtion Ai : f0; 1gN ! f0; 1g4 spei�es the valuesarried by the 4 edges inident at that vertex. 37



Figure 2: Embedding of a iruit into G3;3. In this example all paths between nodes at 0 layer arevertex disjoint. For general iruits we merely need edge disjoint paths.We now list the onstraints on the embedded iruit that assure us that the only legal assign-ments are ones that orrespond to legal satisfying assignments of the original iruit, i.e. assign-ments that orretly propagate along the edges of the iruit, orretly ompute the value of everygate and produe a 1 at the output gate.De�nition 6.3 The assignment onstraints for eah node of the well-strutured iruit require:� the two outgoing values at the node are propagated orretly to the inoming values of itsneighbors at the next level,� for nodes at layers 6= 0, the two outgoing values have the unique values ditated by the in-oming values and the swithing ation,� for non-OUTPUT nodes in layer 0, both outgoing values equal the unique value ditated bythe gate funtionality and the inoming values (the INPUT funtionality merely requires thatthe two outgoing values are equal to eah other)� for nodes in layer 0 with an OUTPUT funtionality, the appropriate inoming value equals 1Let  : C � (f0; 1g4)3 ! f0; 1g be the boolean funtion suh that  (t; a; a0; a1) = 0 i� a node whoseT -gate is t, A-assignment is a, and whose neighbors in the next layer have A-assignments a0 anda1 respetively, satis�es the aforementioned assignment onstraints.Observe that the de�nition of  is independent of N , the assignments Ai and gates Ti. By def-inition, the assignment A = (A0; : : : ; Al�1) is legal for an embedded iruit de�ned by T0; : : : ; Tl�1if and only if for every layer i and every node v in layer i, �T (v); A(v); A��i;0(v)�; A��i;1(v)�� = 0:We are now ready to formally de�ne the well-strutured iruit satis�ability problem.38



Figure 3: Some gates of a well-strutured iruit. Gates 1{2 are swithing gates, and gate 3 sits inlayer 0 and omputes the parity (xor) funtion.De�nition 6.4 The problem Strutured-CktSAT has as its instanes hGN;l; fT0; T1; : : : ; Tl�1giwhere GN;l is a wrapped de Bruijn graph with l layers and Ti : f0; 1gN ! C is a spei�ation of thenode types of layer i of the graph (Ti's are spei�ed by a table of values).hGN;l; fT0; : : : ; Tl�1gi 2 Strutured-CktSAT if there exists a set of assignments A0; A1; : : : ; Al�1where Ai : f0; 1gN ! f0; 1g4 is an assignment to the nodes of layer i of GN suh that for all layersi and all nodes v in layer i, �T (v); A(v); A��i;0(v)�; A��i;1(v)�� = 0:The above disussion also demonstrates the existene of a redution fromCktSAT to Strutured-CktSAT whih does not blow up the length of the target instane by more than a logarithmimultipliative fator.Proposition 6.5 There exists a polynomial time redution R from CktSAT to Strutured-CktSAT suh that for any iruit C, it holds that C 2 CktSAT if and only ifR(C) 2 Strutured-CktSAT. Moreover, if C is a iruit of size n, then R(C) = hGN;l; fT0; : : : ; Tl�1gi where N =dlog ne and l = 5N .Remark 6.6 The above redution though known to take polynomial time (via routing tehniques)is not known to be of almost linear time.Remark 6.7 We observe that if C is a satis�able iruit, then any set of assignments A0; : : : ; Alproving that the redued instane R(C) = hGN;l; fT0; : : : ; Tl�1gi is a YES instane of Strutured-CktSATontains within it a satisfying assignment to the iruit C. Spei�ally, let I be the set ofnodes in layer 0 that have gate funtionality INPUT assoiated with them. Then the assignmentA0 restrited to the set of nodes I (i.e.,A0jI) ontains a satisfying assignment. More preisely, thesatisfying assignment is obtained by onatenating the third bit (i.e., �rst outgoing bit) of A0ji 2f0; 1g4 for all i 2 I. Conversely, every satisfying assignment w to C an be extended to A0; : : : ; Al�1suh that A0jI ontains w. This is done by omputing the values of all gates in the omputationof C(w), setting the outgoing bits of A0 aording to these values, and routing them throughout39



Figure 4: Example of legal and illegal assignments. The two verties on the left are the inputs (atlayer i� 1) to a gate at layer i. Reall that assignments evaluate eah inoming and outgoing edgeof a gate.GN;l aording to the swithing ations to obtain A1; : : : ; Al�1 and the inoming bits of A0. Thisobservation will be vital while onstruting PCPs of proximity(see Setion 7).Remark 6.8 Suppose the input iruit C is a linear iruit, in the sense that all gates are INPUT,OUTPUT, or PARITY gates, and the OUTPUT gates test for 0 rather 1 (See De�nition 8.13).Then it an be veri�ed that the transformation mapping satisfying assignments w of C to legalassignments A0; : : : ; Al�1 of R(C) is GF(2)-linear. The reason is that eah gate in the omputationof C(w) is a GF(2)-linear funtion of w. These remarks will be used in the oding appliations, toobtain linear odes (see Setion 8.4 for more information).6.2 ArithmetizationIn this setion, we onstrut an algebrai version of Strutured-CktSAT by arithmetizing italong the lines of Harsha and Sudan [31℄. The broad overview of the arithmetization is as follows:We embed the nodes in eah layer of the wrapped de Bruijn graph GN;l in a vetor spae andextend the gate spei�ations and assignments to low-degree polynomials over this spae. Finally,we express the assignment onstraints (De�nition 6.3) as a pair of polynomial identities satis�edby these polynomials.First for some notation. Let m be a parameter. Set h suh that h = N=m where 2N is thenumber of nodes in eah layer of the de Bruijn graph. Choose a �nite extension �eld F of GF(2)of size roughly Fm22h = Fm22N=m where F is a suitably large onstant to be spei�ed later.Spei�ally, take F = GF(2)f for f = h + 2 logm + log F . Let fe0; e1; : : : ; ef�1g be a basis of Fover GF(2). Set H to be a subspae of GF(2)f (and hene a subset of F ) spanned by fe0; : : : ; eh�1g.Note that Hm is a subset of the spae Fm. Furthermore, jHmj = 2N . Hene, we an embed eahlayer of the graph GN;l in Fm by identifying the node v = (b0; : : : ; bN�1) 2 f0; 1gN with the element(b0e0+ � � �+ bh�1eh�1; bhe0+ � � �+ b2h�1eh�1; : : : ; b(m�1)he0+ � � �+ bmh�1eh�1) of Hm. Heneforth,we use both representations (N -bit string and element of Hm) interhangeably. The representationwill be lear from the ontext.Any assignment S : Hm ! F an be interpolated to obtain a polynomial ~S : Fm ! F of degreeat most jHj in eah variable (and hene a total degree of at most mjHj) suh that ~SjHm = S (i.e.,40



the restrition of ~S to Hm oinides with the funtion S). Conversely, any polynomial ~S : Fm ! Fan be interpreted as an assignment from Hm to F by onsidering the funtion restrited to thesub-domain Hm.Reall that C and f0; 1g4 are the set of allowable gates and assignments given by the gatefuntions Ti and assignments Ai in the Strutured-CktSAT problem. We identify C withsome �xed subset of F and we identify f0; 1g4 with the set of elements spanned by fe0; e1; e2; e3gover GF(2). With this identi�ation, we an view the assignments Ai and gates Ti as funtionsAi : Hm ! F and Ti : Hm ! F respetively. Furthermore, we an interpolate these funtions, asmentioned above, to obtain polynomials ~Ai : Fm ! F and ~Ti : Fm ! F of degree at most mjHjover F .We now express the neighborhood funtions of the graph in terms of aÆne funtions over Fm.This is where the nie struture of the wrapped de Bruijn graph will be useful. For any positiveinteger i, de�ne aÆne transformations ~�i;0; ~�i;1 : Fm ! Fm as follows: ~�i;0 is the identity funtion.For ~�i;1, �rst let t = bi=h mod m and u = i mod h. Then ~�i;1(z0; : : : ; zm�1) = (z0; : : : ; zt�1; zt +eu; zt+1; : : : ; zm�1).20 It an heked from the above de�nition that for any layer i and node x inlayer i (whih we view as a point in Hm), we have ~�i;j(x) = �i;j(x) for j = 0; 1. In other words, ~�is an extension of the neighborhood relations of the graph GN;l over Fm.Finally, we now express the assignment onstraints (De�nition 6.3) as polynomial identities.The �rst of these identities heks that the assignments given by the assignment polynomial ~Ai areatually elements of f0; 1g4 for points in Hm. For this purpose, let  0 : F ! F be the univariatepolynomial of degree 24 given by  0(z) = Y�2f0;1g4(z � �) (1)This polynomial satis�es  0(z) = 0 i� z 2 f0; 1g4 (reall we identi�ed f0; 1g4 with a subsetof F spanned by e0; : : : ; e3). We hek that  0( ~Ai(x)) = 0 for all x 2 Hm and all layers i.We then arithmetize the rule  (from De�nition 6.3) to obtain a polynomial  1 : F 4 ! F .In other words,  1 : F 4 ! F is a polynomial suh that  1(t; a; a0; a1) =  (t; a; a0; a1) for all(t; a; a0; a1) 2 C � (f0; 1g4)3. The degree of  1 an be made onstant, beause jCj and jf0; 1g4jare onstant.21 The two polynomial identities we would like to hek are  0( ~Ai(x)) = 0 and 1( ~Ti(x); ~Ai(x); ~Ai+1(~�i;0(x)); ~Ai+1(~�i;1(x))) = 0 for all x 2 Hm. For notational onveniene, weexpress these two onditions together as a pair of polynomials  0 = ( 0;  1) : F 4 ! F 2 suh that 0(x1; x2; x2; x4) = ( 0(x2);  1(x1; x2; x3; x4)). Let � be the maximum of the degree of these twopolynomials. In order to make these polynomial identities suÆiently redundant,, we set F to bea suÆiently large onstant (say 100) suh that �m22h=jF j is low.We have thus redued Strutured-CktSAT to an algebrai onsisteny problem, whih weshall all the AS-CktSAT problem (short for Algebrai-Strutured-CktSAT)22.De�nition 6.9 The promise problem AS-CktSAT = (AS-CktSATYES; AS-CktSATNO) hasas its instanes h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi where F is an �nite extension �eld of GF(2) (i.e.,20An alternate desription of ~�i;1 is as follows: Sine F = GF(2)f , we an view Fm as mf -dimensional spae overGF(2). Hene, any vetor (z0; : : : ; zm�1) an be written as (b0;0; : : : ; b0;f�1; b1;0; : : : ; b1;f�1; : : : ; bm�1;0; : : : ; bm�1;f�1).Furthermore, we note that for any vetor (z0; : : : ; zm�1) in Hm, br;s = 0 for all s � h and all r. It an now be hekedthat ~�i;1 is the aÆne transformation that ips the bit bt;u where t = bi=h modm and u = i mod h..21Notie that we do not speify  1 uniquely at this stage. Any hoie of a onstant-degree polynomial will workin this setion, but to enfore linearity, we will use a somewhat non-standard hoie in Setion 8.4. Spei�ally, weargue that if C is a linear iruit, then  1 an be piked to be GF(2)-linear transformations over GF (2), and wepoint out that  0 is a GF (2)-linear transformation. For more details see Setion 8.4.22AS-CktSAT is atually a promise problem. 41



F = GF(2)f for some f), H a GF(2)-linear subspae of F and ~Ti : Fm ! F , for i = 0; : : : ; l� 1, asequene of polynomials of degree d, where jHj = n1=m, d = m � jHj, and F = F �md. The �eld Fis spei�ed by an irreduible polynomial p(x) of degree f over GF(2), H is taken to be spanned bythe �rst h = log jHj anonial basis elements, and eah of the polynomials ~Ti is spei�ed by a listof oeÆients.� h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi 2 AS-CktSATYES if there exist a sequene of degree d polyno-mials ~Ai : Fm ! F; i = 0; : : : ; l � 1 suh that for all i = 0; : : : ; l � 1 and all x 2 Hm, 0� ~Ti(x); ~Ai(x); ~Ai+1�~�i;0(x)�; ~Ai+1�~�i;1(x)�� = (0; 0)� h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi 2 AS-CktSATNO if for all funtions ~Ai : Fm ! F; i =0; : : : ; l � 1 there exists an i = 0; : : : ; l � 1 and x 2 Hm suh that, 0� ~Ti(x); ~Ai(x); ~Ai+1�~�i;0(x)�; ~Ai+1�~�i;1(x)�� 6= (0; 0)where ~�i;j's and  0 are as de�ned earlier. (Reall that the ~�'s are linear funtion while  0 representsa pair of polynomials of degree at most �.)From the above disussion we have the following redution from Strutured-CktSAT toAS-CktSAT.Proposition 6.10 There exists a polynomial-time omputable funtion R mapping any instaneI = hGN;l; fT0; T1; : : : ; Tl�1gi of Strutured-CktSAT and parameter m � logn=loglogn (wheren = jIj) to an instane R(I; 1m) of AS-CktSAT suh thatI 2 Strutured-CktSAT =) R(I; 1m) 2 AS-CktSATYESI =2 Strutured-CktSAT =) R(I; 1m) 2 AS-CktSATNOMoreover, if R(I; 1m) = h1n0 ; 1m0 ; F;H; f ~T0; : : : ; ~Tl0�1gi, then n0 = 2N (the number of nodes ineah layer of the de Bruijn graph GN;l), m0 = m, and l0 = l (the number of layers in the de Bruijngraph).Combining Propositions 6.5 and 6.10, we have the following.Proposition 6.11 There exists a polynomial-time omputable funtion R mapping any iruit Cand parameter m � log n=loglogn (where n = jCj) to an instane R(C; 1m) of AS-CktSAT suhthat C 2 CktSAT () R(C; 1m) 2 AS-CktSAT.Moreover, if C is a iruit of size n then R(C; 1m) = h1n0 ; 1m0 ; F;H; f ~T0; : : : ; ~Tl0�1gi, wheren0 = �(n), m0 = m, and l0 � 5 log n0. Thus, jR(C; 1m)j = O((Fm2)m logn) � jCj.Remark 6.12 Following Remark 6.7, if C is a satis�able iruit, then any set of polynomials~A0; : : : ; ~Al�1 proving that the redued instane R(C; 1m) = h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi is a YESinstane of AS-CktSAT ontain within it a satisfying assignment to the iruit C. Spei�ally,the set I (of layer-0 nodes with INPUT funtionality in GN;l) from Remark 6.7 an now be viewedas a subset I � Hm. Then the polynomial ~A0 : Fm ! F restrited to the set I (i.e., ~A0jI) ontainsa satisfying assignment (again as a onatenation of third-bits). Conversely, every satisfying as-signment w to C an be extended to a set of polynomials ~A0; : : : ; ~Al�1 suh that ~A0jI ontains w.This is done by taking low-degree extensions of the funtions A0; : : : ; Al�1 from Remark 6.7.42



Remark 6.13 Following Remark 6.8, if C is a linear iruit, then the mapping of satisfying as-signments w of C to polynomials ~A0; : : : ; ~Al�1 satisfying R(C) is GF(2)-linear. This is due toRemark 6.8, the assoiation of f0; 1g4 with the linear spae spanned by fe0; e1; e2; e3g in F , andfrom the fat that the interpolation from Ai to ~Ai is F -linear and hene GF(2)-linear. For moreinformation see Setion 8.4.Comment: Reall that the arithmetization was obtained by onsidering low-degree extensionsover Fm of funtions from Hm to H. If H were a sub�eld of the �eld F this step would have auseda quadrati blow-up, and we avoid this problem by not insisting that H be a �eld. In [44, 52℄, His a �eld and F = H2 is an extension of it, but the PCP system refers only to a O(jHj)-sized ofF . We annot take this approah beause we will be using a total low-degree test, whih needs torefer to the entire vetor spae Fm. In ontrast, in [44, 52℄ an individual low-degree test is used,whih an work with a subset of Fm.6.3 The PCP veri�erWe design a PCP veri�er for CktSAT via the redution to AS-CktSAT based on the randomness-eÆient low-degree tests of Ben-Sasson et al. [12℄. Given a iruit C, the veri�er redues it to aninstane of the problem AS-CktSAT (Proposition 6.11). The proof onsists of a sequene oforales ~Ai : Fm ! F for i = 0; : : : ; l � 1 and an auxiliary sequene of orales Pi;j : Fm ! F 2 fori = 0; : : : ; l � 1 and j = 0; : : : ;m. For eah i and j, we view the auxiliary orale Pi;j : Fm ! F 2as a pair of funtions P (0)i;j : Fm ! F and P (1)i;j : Fm ! F (i.e., Pi;j(x) = (P (0)i;j (x); P (1)i;j (x))). Thisauxiliary sequene of orales helps the veri�er to hek that the funtions ~Ai satisfy ondition  0(see De�nition 6.9).The veri�er expets the �rst subsequene of auxiliary orales Pi;0(�) for i = 0; : : : ; l�1, to satisfythe following relation:Pi;0(x) =  0� ~Ti(x); ~Ai(x); ~Ai+1�~�i;0(x)�; ~Ai+1�~�i;1(x)�� 8x 2 Fm (2)Furthermore, it expets Pi;0(x) = 0 for every x 2 Hm. Indeed, by De�nition 6.9, we have:Lemma 6.14 1. If h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi is a YES instane of AS-CktSAT, satis�edby polynomials ~A0; : : : ; ~Al�1, and P0;0; : : : ; Pl�1;0 are de�ned aording to Equation 2, thenPi;0(x) = (0; 0) for all x 2 Hm.2. If h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi is a NO instane of AS-CktSAT, then for any sequenes offuntions ~A0; : : : ; ~Al�1, P0;0; : : : ; Pl�1;0, either Equation 2 fails to hold for some i or Pi;0(x) 6=(0; 0) for some i and some x 2 Hm.Realling that the degree of the onstraint  0 (see De�nition 6.9) is at most � and that the ~Ai'sare of degree at most d = m � jHj, we observe that the Pi;0's an be taken to be of degree at most�d in Part 1.As mentioned above, the veri�er now needs to hek that the funtions Pi;0 vanish on theset Hm. For this we use a \zero-propagation test", based on the sum-hek protool of Lundet al. [40℄. Spei�ally, the veri�er expets the remaining set of auxiliary orales Pi;j = (P (0)i;j ; P (1)i;j )(i = 0; : : : ; l � 1 and j = 1; : : : ;m) to satisfy the following relations: Let H = fh0; : : : ; hjHj�1g be43



some �xed enumeration of the elements in H. For all b 2 f0; 1g,P (b)i;j �x1; : : : ; xj�1| {z }; xj ; xj+1; : : : ; xm| {z }� = jHj�1Xk=0 P (b)i;j�1�x1; : : : ; xj�1| {z }; hk; xj+1; : : : ; xm| {z }�xkj ;8(x1; : : : ; xm) 2 Fm (3)These relations ensure that for all i and j � 1, Pi;j(�) vanishes on F j � Hm�j i� the funtionPi;j�1(�) vanishes on F j�1 �Hm�j+1. In other words:Lemma 6.15 P (b)i;j jF j�Hm�j � 0 () P (b)i;j�1jF j�1�Hm�j+1 � 0:Thus, for all i, Pi;m vanishes on the entire spae Fm i� Pi;0 vanishes on Hm. Also, as P (b)i;0 hasdegree at most �d in eah variable, so does P (b)i;j for eah i and j. Hene, the degree of P (b)i;j is atmost �d.Thus, the veri�er needs to make the following heks� Low-Degree TestFor i = 0; : : : ; l � 1 and j = 0; : : : ;m, the sequene of funtions ~Ai are polynomials of degreeat most d = m � jHj and the sequene of funtions Pi;j are pairs of polynomials of degree atmost �d,� Edge-Consisteny TestFor i = 0; : : : ; l � 1, the funtions Pi;0 obey Equation (2),� Zero Propagation TestFor i = 0; : : : ; l � 1 and j = 1; : : : ;m, the funtions Pi;j satisfy Equation (3),� Identity TestFor i = 0; : : : ; l � 1, the funtions Pi;m are identially zero on the entire domain Fm.The Low-Degree test in most earlier onstrution of PCP veri�ers is performed using the \line-point" test. The \line-point" low degree test �rst hooses a random line, a random point on thisline and heks if the restrition of the funtion to the line (given by a univariate polynomial) agreeswith the value of the funtion at the point. A random line l is typially hosen by hoosing tworandom points x; y 2 Fm and setting l = lx;y = fx + tyjt 2 Fg. However, this requires 2m log jF jbits of randomness whih is too expensive for our purposes. We save on randomness by usingthe low-degree test of Ben-Sasson et al. [12℄ based on small-biased spaes (see Setion B for moredetails). The low-degree test of [12℄ uses pseudorandom lines instead of totally random lines in thefollowing sense: The pseudorandom line l = lx;y is hosen by hoosing the �rst point x at randomfrom Fm, while the seond point y is hosen from a �-biased subset S� of Fm. This needs onlylog jS�j + log jF jm bits of randomness. We further save on randomness by the use of anoniallines23. Consider any pseudorandom line l = lx;y where x 2 Fm and y 2 S�. We observe that forevery x0 2 l, we have lx0;y = lx;y. In other words, jF j di�erent hoies of random bits leads to thesame line lx;y. We prevent this redundany by representing eah line in a anonial manner. Aanonial line is hosen by �rst hoosing a random point y from the �-biased set S�. We view this23It is to be noted that the anonial representation of lines has been used either impliitly or expliitly in thesoundness analysis of all earlier uses of the Low-Degree Test. However, this is the �rst time that the anonialrepresentation is used to save on the number of random bits.44



y as speifying the diretion (i.e., slope) of the line. This diretion partitions the spae Fm intojF jm�1 parallel lines (eah with diretion y). We enumerate these lines arbitrarily and selet one ofthem uniformly at random. Thus, hoosing a random anonial line osts only log jS�j+log jF jm�1bits of randomness. A further point to be noted is that we perform a \line" test instead of theregular \line-point" test: The test queries the funtion for all points along the anonial line lx;yand veri�es that the restrition of the funtion to this line is a low-degree polynomial.Having performed the low-degree test (i.e., veri�ed that the polynomials ~Ai's and Pi;j 's are loseto low-degree polynomials), the veri�er then performs eah of the Node-Consisteny Test,Zero Propagation Test, and Identity Tests by hoosing a suitable small-sized sample inthe entire spae and heking if the orresponding ondition is satis�ed on that sample. For theZero Propagation Test indeed the natural sample is an axis-parallel line. For the Edge-Consisteny Test and Identity Test, the sample we use is any set of jF j points seleted froma partition of Fm into jF jm�1 equal sets.We are now ready to formally desribe the PCP veri�er for CktSAT. We parameterize thePCP veri�er in terms of m, the number of dimensions in our intermediate problem AS-CktSAT,and �, the parameter of the �-biased sets of Fm required for the low-degree tests of Ben-Sassonet al. [12℄. We rely on the fat that �-biased subsets of Fm of size at most poly(log jF jm; 1=�) anbe onstruted eÆiently [42, 2℄.PCP{Verifier ~Ai;Pi;j ;i=0;:::;l�1;j=0;:::;mm;� (C).1. Use Proposition 6.11 to redue the instane C of CktSAT, using parameter m, to aninstane h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT, and set d = m � jHj.Notation: We let S� � Fm be a �-biased set of size at most � log jF jm� �2 [2℄. Let Fm =UjF jm�1�=1 U� and Fm = UjF jm�1�=1 V� be two arbitrary partitions of the spae Fm into jF j-sized sets eah.2. Choose a random string R of length log(jS�j � jF jm�1). [Note: We reuse R in all tests,but only the Low-Degree Test utilizes the full length of R.℄3. Low-Degree TestUse random string R to determine a random anonial line L in Fm using the �-biasedset S�.For i = 0; : : : ; l � 1,Query orale ~Ai on all points along the line L and rejet if the restrition ~Ai to Lis not a (univariate) polynomial of degree at most d.For i = 0; : : : ; l � 1, j = 0; : : : ;m, and b 2 f0; 1g,Query orale P (b)i;j on all points along the line L and rejet if the restrition of P (b)i;jto L is not a (univariate) polynomial of degree at most �d.4. Edge-Consisteny TestUse the random string R to determine a random set U� of the partition Fm = UjF jm�1�=1 U�.For i = 0; : : : ; l � 1,For all x 2 U�, query Pi;0(x); ~Ai(x); ~Ai+1(~�i;0(x)) and ~Ai+1(~�i;1(x)) and rejet ifEquation (2) is not satis�ed.5. Zero Propagation TestFor i = 0; : : : ; l � 1, j = 1; : : : ;m, and b 2 f0; 1g,45



Use random string R to determine a random jth axis-parallel line in Fm of theform L = f(a1; : : : ; aj�1;X; aj+1; : : : ; am) : X 2 Fg. Query P (b)i;j�1 and P (b)i;j alongall the points in L. Rejet if either the restrition of P (b)i;j�1 or P (b)i;j to L is not aunivariate polynomial of degree at most �d or if any of the points on the line Lviolate Equation (3).6. Identity TestUse the random string R to determine a random set V� of the partition Fm = UjF jm�1�=1 V�.For i = 0; : : : ; l � 1,For all x 2 V�, query Pi;m(x). Rejet if any of these Pi;m(x) is not (0; 0).Aept if none of the above tests rejet.Remark 6.161. The Low-Degree Test requires log(jS�j � jF jm�1) random bits to generate a anonial linein Fm using the �-biased set, while eah of the other tests require at most log(jF jm�1) bits ofrandomness. Hene, the string R suÆes for eah of the tests. For the settings of parameterswe use, log(jS�j � jF jm�1) is typially signi�antly smaller than log(jF jm), whih we would notbe able to a�ord.2. The Edge-Consisteny Test and Identity Test in the \standard" sense are usuallyperformed by seleting a random point in the spae Fm and heking whether the orrespond-ing ondition is satis�ed. However, we state these tests in a \non-standard" manner usingpartitions of the spae Fm into jF j sized tests so that these tests an easily be adapted whenwe onstrut the robust PCP veri�er (see Setion 8). The non-standard tests are performedin the following manner: Choose a random set in the partition and perform the standard testfor eah point in the set. At present, we an work with any partition of Fm, however we willlater need spei� partitions to get \robustness".6.4 Analysis of the PCP veri�erWe now analyze the PCP veri�er above. The analysis below assumes that the parameters satisfym � log n=loglogn and � � 1= log n for a suÆiently large onstant . Theorem 6.1 an be deduedby setting � = 1= log n.Complexity: The PCP Verifier makes O(lmjF j) = O(m3n1=m log n) queries eah of whihexpets as an answer an element of F or F 2 (i.e., a string of length O(log jF j)). Hene, the to-tal (bit) query omplexity is O(lmjF j log jF j) = O(lm � Fm2n1=m log(Fm2n1=m)). Realling thatl = 5 log n, this quantity is at most O(m2n1=m log2 n) for m � log n. For the deision omplexity,we note that the main omputations required are (a) testing whether a funtion is a low-degreeunivariate polynomial over F (for Low-Degree Test and Zero Propagation Test), (b) evalu-ating  0 on jF j quadruples of points (for Edge-Consisteny Test), and () univariate polynomialinterpolation and evaluation (for testing (3) in Zero Propagation Test). We now argue thateah of these an be done with a nearly linear ( ~O(jF j)) number of operations over F , yielding anearly linear ( ~O(q)) deision omplexity overall. Eah evaluation of  0 an be done with a onstantnumber of F -operations beause  0 is of onstant degree. Polynomial interpolation and evaluationan be done with a nearly linear number of F -operations by [50, 49℄, and testing whether a funtionis of low degree redues to polynomial interpolation (interpolate to represent as a polynomial ofdegree jF j � 1 and hek that the high-degree oeÆients are zero). Eah F -operations an be46



done with ~O(log jF j) bit-operations, using the polynomial multipliation algorithm of [50, 49℄ (overGF(2)).The number of random bits used by the veri�er is exatly log(jS�j�jF jm�1). Let n0 = jF jm. Thenlog(jS�j�jF jm�1) = �1� 1m� log n0+log�poly� log n0� �� = �1� 1m� logn0+O(log log n0)+O �log � 1���.Now, n0 = (Fm2)mn. Hene, log n0 = log n+2m logm+O(m) and log log n0 = log logn+O(logm).Thus, the total randomness is at most �1� 1m� log n+O(m logm) +O(log log n) +O �log � 1���.We summarize the above observations in the following proposition for future referene.Proposition 6.17 The randomness, query and deision omplexities of the PCP{Verifier arer = �1� 1m� logn+ O(m logm) + O(log logn) + O �log � 1���, q = O(m2n1=m log2 n) and d = ~O(q)respetively.Completeness: If C is satis�able, then the redution redues it to an YES instane ofAS-CktSAT.Then by de�nition there exist polynomials ~Ai that satisfy onstraint  0. Setting Pi;j aording toEquations (2) and (3), we notie that the veri�er aepts with probability one.Soundness: To prove the soundness, we need to prove that if C is not satis�able then the veri�eraepts with probability bounded away from 1. We will prove a stronger statement. Reall fromRemark 6.12 that the funtion ~A0 : Fm ! F supposedly has the satisfying assignment embeddedwithin it. Let I � Fm be the set of loations in Fm that ontains the assignment (i.e., ~A0jI issupposedly the assignment).Lemma 6.18 There exists a onstant  and a onstant 0 < "0 < 1 suh that for all ";m; � satisfying" � "0, m � log n=loglogn and � � 1= log n, the following holds. If the veri�er aepts proof oralesf ~Aig and fPi;jg with probability greater than 1 � ", then ~A0 is 4"-lose to some polynomial bA0 ofdegree md suh that C( bA0jI) = 1.Proof: Let � be the universal onstant from Theorem B.4. Set "0 = minf�; 122g. Let d = m2h,and hoose F to be a large enough onstant suh that �md=jF j = �=F � "0. Suppose eah of thefuntions ~Ai are 4"-lose to some polynomial of degree md and eah of the funtions P (b)i;j is 4"-loseto some polynomial of �md. If this were not the ase, then by Theorem B.4 the Low-DegreeTest aepts with probability at most 1 � " for the polynomial that is 4"-far. It an be veri�edthat the parameters satisfy the requirements of Theorem B.4, for suÆiently large hoies of theonstants F and  and suÆiently small ".For eah i = 0; : : : ; l�1, let bAi : Fm ! F be the polynomial of degree at mostmd that is 4"-loseto ~Ai. Similarly, for eah i = 0; : : : ; l � 1; j = 0; : : : ;m and b 2 f0; 1g, let bP (b)i;j be the polynomialof degree at most �md that is 4"-lose to P (b)i;j . Suh polynomials are uniquely de�ned sine everytwo polynomials of degree �md disagree in at least a 1� �mdjF j � 1� "0 > 8" fration of points. Asin the ase of the Pi;j 's, let bPi;j : Fm ! F 2 be the funtion given by bPi;j(x) = ( bP (0)i;j (x); bP (1)i;j (x)).By hypothesis, bA0jI does not satisfy C. Then, by Lemmas 6.14 and 6.15, at least one of thefollowing must hold.(a) There exists i = 0; : : : ; l � 1 and b 2 f0; 1g suh that bP (b)i;m 6� 0.Then for this i, the Identity Test fails unless a random set V� is hosen suh that for allx 2 V�, P (b)i;m(x) = 0. Hene, it must be the ase that for all x 2 V�, either P (b)i;m(x) 6= bP (b)i;m(x)or bP (b)i;m(x) = 0. Sine the V 0�s form a partition of Fm, the probability of this ourring is47



upper-bounded by the probability that a random x 2 Fm satis�es either P (b)i;m(x) 6= bP (bi;m(x)or bP (b)i;m(x) = 0. This probability is at most 4" + �mdjF j = 4" + �F � 5"0, where we use thefat that bP (b)i;m is 4"-lose to P (b)i;m and that a nonzero polynomial of degree �md vanishes onat most a �md=jF j fration of points.(b) There exists i = 0; : : : ; l � 1 suh that bPi;0, bAi, and bAi+1 do not obey Equation (2).In other words, bPi;0(x) 6�  0(( ~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). Then for this i, theEdge-Consisteny Test fails unless a random partition U� is hosen suh that for allx 2 U�, Pi;0(x) =  0(( ~Ti(x); ~Ai(x); ~Ai+1(~�i;0(x)); ~Ai+1(~�i;1(x))). Hene, it must be the asethat for every x 2 U�, that one of the following holds:P (0)i;0 (x) 6= bP (0)i;0 (x); P (1)i;0 (x) 6= bP (1)i;0 (x); ~Ai(x) 6= bAi(x); ~Ai+1(~�i;0(x)) 6= bAi+1(~�i;0(x));~Ai+1(~�i;1(x)) 6= bAi+1(~�i;1(x)); bPi;0(x) =  0(( ~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))):The probability of this happening is at most the probability that a random x 2 Fm satis�esthese onditions, whih is at most 5 � 4"+ �mdjF j � 21"0.() For some i = 0; : : : ; l � 1, j = 1; : : : ;m, and b 2 f0; 1g, bP (b)i;j does not obey Equation (3).In other words, bP (b)i;j (: : : ; xj ; : : :) 6� PjHjk=1 bP (b)i;j�1(: : : ; hj ; : : :)xki . Then, for this i; j, the ZeroPropagation Test rejets unless a random axis parallel line L is hosen suh that bothP (b)i;j jL and P (b)i;j�1jL are polynomials of degree at most �d and for every x 2 L, P (b)i;j (: : : ; x; : : :) =PjHj�1k=0 P (b)i;j�1(: : : ; hk; : : :)xk. Suppose we have that for all x 2 L, P (b)i;j (x) = bP (b)i;j (x) andP (b)i;j�1(x) = bP (b)i;j�1(x). Then, it must be the ase that for all x 2 L, bP (b)i;j (: : : ; x; : : :) =PjHj�1k=0 bP (b)i;j�1(: : : ; hk; : : :)xk. Sine the axis-parallel lines over Fm uniformly, the probabilityof this ourring is at most the probability of a random x 2 Fm satisfying this ondition whihis at most �mdF � ". The probability that that both P (b)i;j jL and P (b)i;j�1jL are polynomials ofdegree �d and either P (b)i;j jL 6= bP (b)i;j jL or P (b)i;j�1jL 6= P (b)i;j�1jL is at 2 � 4"=(1 � "0) � 9"0, sineP (b)i;j and P (b)i;j�1 are 4"-lose to bP (b)i;j and bP (b)i;j�1 respetively, and any two distint polynomialsof degree �md disagree on at least a 1��md=jF j � 1� "0 fration of points.Hene, the ZeroPropagation Test aepts with probability at most 10"0.We thus have that the veri�er aepts with probability at most max f1� "; 5"0; 21"0; 10"0g =1� ".Proof (of Theorem 6.1): Theorem 6.1 is proved using the PCP{Verifier de�ned in this setionsetting � = 1= log n. Step 1 of the veri�er redues the instane C of CktSAT to an instaneh1n0 ; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT. We have from Proposition 6.11 that n0 = �(n) andl = O(log n) where n is the size of the input iruit C. Setting n = n0 in Proposition 6.17, we havethat the randomness, query and deision omplexity of the veri�er are as laimed in Theorem 6.1.The soundness of the veri�er follows from Lemma 6.18.7 A randomness-eÆient PCP of proximityIn this setion, we modify the PCP for Ciruit Satisfiability and onstrut a PCP of proximityfor Ciruit Value while maintaining all the omplexities. (Reall that the latter is stronger than48



the former, via Proposition 2.4.) We do so by adding a proximity test to the PCP{Verifierde�ned in Setion 6.3. This new proximity test, as the name suggests, heks the loseness ofthe input to the satisfying assignment that is supposed to be enoded in the proof orale (seeRemark 6.12). This hek is done by loally deoding a bit (or several bits) of the input from itsenoding and omparing it with the atual input orale.Theorem 7.1 There exists universal onstants  and 0 < " < 1 suh that the following holds forall n;m 2 Z+ and 0 < Æ < 1 suh that m � logn=loglogn. There exists a PCP of proximity forCiruit Value (for iruits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=Æ)),� query omplexity q = O(m2n1=m log2 n) and deision omplexity d = ~O(q),� perfet ompleteness,� Case I: if n1=m � mm=Æ3, then the veri�er has soundness error 1�" for proximity parameterÆ.� Case II: if n1=m < mm=Æ3, then the veri�er has soundness error 1 � Æ= for proximityparameter Æ.Reall that the PCPP{Verifier is supposed to work as follows: The veri�er is given expliitaess to a iruit C with n gates on k input bits and orale aess to the input w in the form of aninput orale W : [k℄ ! f0; 1g. The veri�er should aept W with probability 1 if it is a satisfyingassignment and aept it with probability at most 1� " if it Æ-far from any satisfying assignment.For starters, we assume that k � n=5. In other words, the size of the input w is linear in thesize of the iruit C. The reason we need this assumption is that we wish to verify the proximityof w to a satisfying assignment, but our proofs enode the assignment to all n gates of the iruit,thus it better be the ase that w is a non-negligible fration of the iruit. This assumption is nota major restrition, beause if this is not the ase we work with the iruit C 0 and input w0 whihare as follows: For t = dn=ke, C 0 is a iruit with n0 = n+3tk gates on k0 = tk input bits suh thatC 0(w0) = 1 i� w0 = wt for some w suh that C(w) = 1; that is, C 0 heks if its input is t opiesof some satisfying assignment of C. (It an be veri�ed that C 0 an indeed be implemented on airuit of size n+3tk over the full binary basis.) We hoose t suh that k0 � n0=10. However, notethat the input orale W annot be altered. So the veri�er emulates the input w0 using the originalinput orale W : [k℄ ! f0; 1g in the straight-forward manner. Whenever it wants to read the i-thbit of the w0, it queries the (((i� 1) mod k) + 1)-th bit of w.Remark 7.2 The above transformation from (C;w) to (C 0; w0) is a generi one that inreases thelength of the input orale ompared to the proof orale. The iruit C 0 heks that w0 is a repetitionodeword in order to maintain the distane features of C; that is, if w is Æ-far from the set ofsatisfying assignments of C then w0 = wt is also Æ-far from the satisfying assignments of C 0.As in the ase of the PCP{Verifier desribed in Setion 6.3, the PCPP{Verifier is on-struted by reduing the input iruit C, an instane of CktSAT, using parameter m, to aninstane h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT. The proof orale for the PCPP{Verifieris the same as that of the PCP{Verifier (i.e., the proof orale onsists of a sequene of funtions~Ai : Fm ! F; i = 0; : : : ; l � 1 and Pi;j : Fm ! F 2; i = 0; : : : ; l � 1; j = 0; : : : ;m where l = 5 log n).49



Reall that the funtion ~A0 : Fm ! F is supposed to ontain within it an assignment (See Re-marks 6.7,6.12). Let I � Hm � Fm be the set of loations in Fm that ontain the assignment. ThePCPP{Verifier in addition to the tests of the PCP{Verifier performs the followingProximityTest to hek if the assignment given by ~A0jI mathes with the input orale W . Spei�ally:PCPP{VerifierW ; ~Ai;Pi;j ;i=0;:::;l�1;j=0;:::;mm;�;Æ (C).1. Run PCP{VerifierW ; ~Ai;Pi;jm;� (C) and rejet if it rejets.Let R be the random string generated during the exeution of this step.2. Proximity TestCase I: n � 8000jF jm�1=Æ3.Use random string R to determine a random anonial line L in Fm using the �-biased set S�. Query orale ~A0 on all points along the line L and rejet if therestrition ~A0 to L is not a polynomial of degree at most d = m � jHj. Query theinput orale W on all loations orresponding to those in I \ L and rejet if Wdisagrees with ~A0 on any of the loations in I \ L.Case II: n < 8000jF jm�1=Æ3.Use random string R to determine a position i R f1; : : : ; kg in the input and adiretion y R S�. Let x 2 I be the point orresponding to i in Hm, and let L bethe anonial line through x in diretion y. Query orale ~A0 on all points along theline L and rejet if the restrition ~A0 to L is not a polynomial of degree at mostd = m � jHj. Query the input orale W at loation i and rejet if W [i℄ 6= ~A0(x).By inspetion, the proximity test inreases the query and deision omplexity by (even less than)a onstant fator. For the randomness omplexity, we �rst onsider Case I, the randomness is usedonly to generate a random anonial line (as in the PCP veri�er), so the randomness omplexityis log(jF jm�1 � jS�j) as before. However, in order to prove soundness, we will need to assumenot only that � � 1= log n for some onstant  (as before), but also that � � Æ3=mm.24 Thus,setting � = minf1= log n; Æ3=mmg, the randomness omplexity inreases by at most O(m logm)+O(log(1=Æ)), as laimed in Theorem 7.1. For Case II, the randomness omplexity is log(n � jS�j) �log(8000jF jm�1 � jS�j=Æ3), whih is the same as in Case I plus an additional O(log(1=Æ)) + O(1)random bits. Summarizing the above observations for future referene, we have the followingproposition.Proposition 7.3 The randomness, query and deision omplexities of the PCPP{Verifier arer = �1� 1m� log n+O(m logm) +O(log logn) +O (log (1=Æ)), q = O(m2n1=m log2 n) and d = ~O(q)respetively.It is straightforward to hek perfet ompleteness of this veri�er. To prove soundness, weobserve that if the input W is Æ-far from satisfying the iruit, then one of the following musthappen: (1) the veri�er detets an inonsisteny in the proof orale or (2) the input orale does notmath with the enoding of the input in the proof orale. In ase of the former, we prove soundnessby invoking Lemma 6.18 while in the latter ase, we prove soundess by analyzing the proximitytest. These ideas are explained in detail in the following two lemmas whih prove the soundness ofthe veri�er.24Atually, for the proximity test we only need � � Æ=mm, however to prove robustness of the proximity test (seeSetion 8.1) we require � � Æ3=mm. 50



Lemma 7.4 (Case I) There exists a onstant  and a onstant " > 0 suh that for all m;�; Æsatisfying n � 8000jF jm�1=Æ3, � � 1= log n, and � � Æ=mm, the following holds. If the input wgiven by the input orale W : [k℄ ! f0; 1g is Æ-far from satisfying the iruit, then for any prooforale the veri�er rejets W with probability at least ".Proof: Set " to be the onstant "0 in Lemma 6.18.Case (i): ~A0 is not 4"-lose to any polynomial bA0 of degree md suh that C( bA0jI) = 1. Then byLemma 6.18, we onlude that the veri�er rejets with probability at least ".Case (ii): ~A0 is 4"-lose to some polynomial bA0 of degree md suh that C( bA0jI) = 1. Sine w isÆ-far from any satisfying assignment, the assignment given by bA0jI must be at least Æ-farfrom w. Let B � Fm denote the set of loations in I where the assignment given by bA0disagrees with w (i.e., B = fx 2 Ij bA0(x) disagrees with w at xg ). Hene, jBj=jIj � Æ. SinejIj = k � n=5, we have jBj � Æn=5. Consider the following 2 events.[Event I℄: ~A0jL is 5"-far from bA0jL.By the Sampling Lemma (Lemma B.3) with � = 4" and � = ", this event ours withprobability at most � 1jF j + �� � 4""2 � 14 sine jF j; 1� � 32=".[Event II℄: B \ L = ;.Again by the Sampling Lemma (Lemma B.3) with � = � = jBjjFmj , this event ours withprobability at most � 1jF j + �� � jFmjjBj = � 1jF j + �� � 5jFmjÆn � 14 , where the last inequalityfollows beause n � 8000jF jm�1=Æ3 � 40jF jm�1=Æ and � � Æ=(40(Fm2)m).Suppose Event I does not our. Then, if bA0jL 6= ~A0jL, the Proximity Test rejets sinethen ~A0jL annot be a polynomial of degree at most d as it is 5"-lose to the polynomial bA0and hene annot be loser to any other polynomial (as 5" � 12(1 � djF j) = 12 (1 � 1F ). Nowif bA0jL = ~A0jL and Event II does not our, then the Proximity Test detets a mismathbetween the input orale W and ~A0jL. Hene, if both Event I and Event II do not our,then the test rejets. Thus, the probability of the test aepting in this ase is at most theprobability of either Event I or Event II ourring whih is at most 1=2.Thus, the probability that the veri�er aepts is at most max �1� "; 12	 = 1 � ". This ompletesthe proof of the lemma.Lemma 7.5 (Case II) There exists a onstant  suh that for allm;�; Æ satisfying n < 8000jF jm�1=Æ3,� � 1= log n, and � � Æ=mm, the following holds. If the input w given by the input oraleW : [k℄! f0; 1g is Æ-far from satisfying the iruit, then for any proof orale the veri�er rejets Wwith probability Æ=.Proof: Set � = 4Æ= � Æ=16.Case (i): ~A0 is not �-lose to any polynomial bA0 of degree md suh that C( bA0jI) = 1. Then byLemma 6.18, we onlude that the veri�er rejets with probability at least �=4 = Æ=.Case (ii): ~A0 is �-lose to some polynomial bA0 of degree md suh that C( bA0jI) = 1. Sine w is Æ-farfrom any satisfying assignment, the assignment given by bA0jI must be Æ-far from w. With51



probability greater than Æ over the hoie of i 2 f1; : : : ; kg (and the orresponding point x 2 Iin Hm), we have W [i℄ 6= bA0(x). If this ours, the only way the veri�er an aept is if ~A0jLis a degree md polynomial other than bA0jL. Below, we will bound the probability of thislatter event by Æ=2, and thereby onlude that the veri�er rejets with probability at leastÆ � Æ=2 > Æ=.Reall that ~A0 and bA0 are �-lose. Thus, if we show that the points on L are almost-uniformlydistributed, it will follow that the expeted distane between ~A0jL and bA0jL is small, andhene they are distint degree md polynomials with small probability. Let B � Fm be theset of points where ~A0 and bA0 disagree. Consider any point z on L other than x. That is,z = x+ ty, where t 2 F n f0g is �xed, x is hosen uniformly in I, and y is hosen uniformly inS�. The probability (over x, y) that z lands in B is preisely 1=(jIj � jS�j) times the numberof (direted) edges between I and B in the (expander) graph on vertex set Fm with edge setE = f(a; b) : (a� b) 2 tS�g. This graph has seond eigenvalue �, so by the Expander MixingLemma, the fration of edges between I and B satis�esjE \ (I �B)jjEj � jIjjFmj � jBjjFmj + � �s jIjjFmj � jBjjFmj :Multiplying by jEj=(jIjjS�j), and using jBj=jFmj � � and jEj = jFmj � jS�j, we obtainjE \ (I �B)jjIj � jS�j � �+ � �s jFmjjIj � �� Æ16 + � �r(Fm2n1=m)mn� Æ8 ;where in the last inequality we use � � Æ=mm. Thus, the expeted fration of L n fxg thatlands in B is at most Æ=8. By Markov's inequality, with probability at least 1� Æ=2, ~A0jLnfxgand bA0jLnfxg are 1=4-lose. This implies that ~A0jL annot be a polynomial of degree md otherthan bA0jL (sine two distint polynomials agree in at mostmd points, and (md�1)=jF j < 1=4).By Markov's Inequality, this ours with probability at most Æ=2, as laimed.Proof (of Theorem 7.1): Theorem 7.1 is proved using the PCPP{Verifier de�ned in thissetion setting � = minf1= log n; Æ3=mmg. The randomness and deision (query) omplexityfollow from Proposition 7.3. The only fat to be veri�ed is the soundness of the veri�er. Thesoundness requirements of Theorem 7.1 are di�erent for the two ases when n1=m � mm=Æ3 andn1=m < mm=Æ3. On the other hand, the PCPP{Verifier's ations are di�erent depending onwhether n � 8000jF jm�1=Æ3 or n < 8000jF jm�1=Æ3. These two ases of the soundness requirementsand that of the PCPP{Verifier do not diretly orrespond to eah other. We �rst note that theondition n � 8000jF jm�1=Æ3 is equivalent to n1=m � 8000(Fm2)m�1=Æ3. Suppose n1=m � mm=Æ3for a suitably large onstant  (i.e., Case I of Theorem 7.1). Then, n1=m � 8000(Fm2)m�1=Æ3 orequivalently n � 8000jF jm�1=Æ3). Hene, Lemma 7.4 applies and we have that the veri�er hassoundness error 1 � " for proximity parameter Æ. Now, suppose n1=m < mm=Æ3 (i.e., Case II ofTheorem 7.1). In this ase, we do not know whih of n1=m or 8000(Fm2)m�1=Æ3 is greater. Hene,we do not know whih one of Lemma 7.4 or Lemma 7.5 applies. Thus, we an only guarantee the52



weaker of the two soundness laims. Hene, the soundness-error for proximity parameter Æ is atmost maxf1� "; 1� Æ=g = 1� Æ=. This proves Theorem 7.1.8 A randomness-eÆient robust PCP of proximityIn this setion, we modify the PCP of proximity for Ciruit Value onstruted in Setion 7 todesign a robust PCP of proximity, while essentially maintaining all omplexities. Reall the de�ni-tion of robustness: If the input orale W is Æ-far from a satisfying assignment, a \regular" PCPPveri�er for most hoies of its random oins rejets the input; that is, it observes an inonsistenyin the input. A robust PCPP veri�er, on the other hand, for most hoies of its random oins notonly noties an inonsisteny in the input but also observes that a onsiderable portion of the inputread by it has to be modi�ed to remove this inonsisteny.Theorem 8.1 There exists a universal onstant  suh that the following holds for all n;m 2 Z+,Æ;  > 0 satisfying m � logn=loglogn: There exists a robust PCP of proximity for Ciruit Value(for iruits of size n) with the following parameters� randomness �1� 1m� log n+O(m logm) +O(log log n) +O(log(1=Æ)),� query omplexity q = O((m2n1=m log2 n)=) and deision omplexity d = ~O(q),� perfet ompleteness, and� Case I: if n1=m � mm=Æ3, then for every Æ0 > Æ, the veri�er has expeted robustnessminf
(); (1 � ) � (Æ0 � (Æ=2))gfor proximity parameter Æ0.� Case II: if n1=m < mm=Æ3, then the veri�er has expeted robustness 
(Æ) for proximityparameter Æ.Note that the expeted robustness in Case I an be very lose to the proximity parameter Æ0(provided Æ � Æ0 �  � 1), whereas in Case II it is always a onstant fator smaller. Thus, Case Iis suitable for a large number of proof omposition operations, whereas Case II is useful when thequery omplexity of the outer veri�er is already very small (and Case I an no longer be applied).Indeed, this is how these ases (whih yield Theorems 3.1 and 3.2, respetively) are used in theproof of Theorem 3.3.How Theorem 8.1 implies Theorems 3.1 and 3.2: Our main onstrut (i.e., Theorem 3.1)follows from Case I of Theorem 8.1 by using the error-redution lemma (Lemma 2.11). Spei�ally,replaing Æ by Æ0 and using Æ0 < =, Case I yields expeted robustness of minf
(); (1 � ) �(Æ0 � Æ0=2)g, whih is lower-bounded by �0 , (1� )2 � Æ0. Applying Lemma 2.11 with a slaknessparameter of 0 , �0 and s = , yields robust-soundness error of  with robustness parameter of�0�0 = (1�)3 �Æ0 for proximity parameter Æ0. Using  � 1=2, note that the randomness inreasesby an additive term of O(log(1=0)) + O(log(1=Æ0)) = O(log(1=Æ0)), and the deision omplexityinreases by a multipliative fator of 1=( � (�0)2) = poly(1=Æ0). These modi�ations do not a�etthe general form of the orresponding omplexities laimed in Theorem 3.1, and the latter follows(when substituting Æ0 for Æ and  by =3). We now turn to establishing Theorem 3.2: Settingm = (log n)= log log n (whih satis�es the ondition of Case II) and  = 1=2, we obtain randomnessO(log n=Æ), deision omplexity ~O((log n)3+1+2) = poly(log n) and expeted robustness 
(Æ) forproximity parameter Æ. Applying Lemma 2.12, Theorem 3.2 follows.53



Overview of the proof of Theorem 8.1: We \robustify" our PCPP{Verifier in 3 steps.First we observe that a single exeution of the veri�er atually involves several tests (in fat lm+2lLow-Degree Tests, l Edge-Consisteny Tests, lm Zero Propagation Tests, l IdentityTests and a single Proximity Test). In the �rst step (Setion 8.1), we observe that eah ofthese tests is robust individually. In the seond step (Setion 8.2), we perform a \bundling" ofthe queries so that a ertain set of queries an always be asked together. This bundling ahievesrobustness, albeit over a muh a larger alphabet. In the �nal step (Setion 8.3), we use a gooderror-orreting ode to transform the \bundles" into regular bit-queries suh that robustness overthe binary alphabet is ahieved.8.1 Robustness of individual testsFor eah possible random string R, the PCPP{Verifier performs several tests. More preisely, itperforms l(m + 2) Low-Degree Tests, l Edge-Consisteny Tests, lm Zero PropagationTests, l Identity Tests and a single Proximity Test. In this setion, we prove that eah ofthese test are robust individually. In other words, we show that when one of these tests fail, itfails in a \robust" manner; that is, a onsiderable portion of the input read by the test has to bemodi�ed for the test to pass.First, some notation. We view funtions g; g0 : Fm ! F as strings of length jF jm over thealphabet F , so their relative Hamming distane �(g; g0) is simply Prx[g(x) 6= g0(x)℄. As before, letI � Hm � Fm be the set of loations in Fm that ontains the assignment.Let 0 < " < 1 be a small onstant to be spei�ed later. As before, for i = 0; : : : ; l � 1,j = 0; : : : ;m and b 2 f0; 1g, let bAi (resp., bP (b)i;j ) be the losest polynomials of degree md (resp.,�md) to ~Ai and Pi;j respetively. (If there is more than one polynomial, hoose one arbitrarily.)The proof of the soundness of the PCPP{Verifier (see Setions 6 and 7) was along the followinglines: If the input orale W : [k℄ ! f0; 1g is Æ-far from satisfying the iruit, then one of thefollowing must happen (hanging " by a fator of 2).1. There exists a i = 0; : : : ; l�1 suh that ~Ai is 8"-far from every degree md polynomial or thereexists a i = 0; : : : ; l� 1, j = 0; : : : ;m and b 2 f0; 1g suh that P (b)i;j is 8"-far from every degree�md polynomial. In this ase, the Low-Degree Test detets the error with probability atleast 2".2. There exists i = 0; : : : ; l � 1 and b 2 f0; 1g, suh that �(P (b)i;m; bP (b)i;m) � 8" and bPi;m 6� 0. Inthis ase, the Identity Test detets the error with probability at least 1� 10".3. There exists i = 0; : : : ; l � 1, j = 1; : : : ;m and b 2 f0; 1g suh that �(Pi;j; bPi;j) � 8",�(Pi;j�1; bPi;j�1) � 8", and bPi;j(: : : ; xj ; : : :) 6� PjHj�1k=0 bPi;j�1(: : : ; hk; : : :)xkj . In this ase, theZero Propagation Test detets the error with probability at least 1� 20".4. There exists a i = 0; : : : ; l�1 suh that �(P (0)i;0 ; bP (0)i;0 ) � 8", �(P (1)i;0 ; bP (1)i;0 ) � 8", �( ~Ai; bAi) � 8",�( ~Ai+1; bAi+1) � 8", and bPi;0(x) 6�  0(( ~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). In this ase,the Edge-Consisteny Test detets the error with probability at least 1� 42".5. �( ~A0; bA0) � 8" but W and bA0jI disagree on at least Æ fration of the points. In this ase,the Proximity Test detets the error with probability at least 1=2 (in Case I).Claims 8.2 to 8.7 below strengthen the above analysis and show that one of the tests not onlydetets the error, but a signi�ant portion of the input read by that test needs to be modi�ed in54



order to make the test aept. More formally, reall that eah of our tests T (randomly) generatesa pair (I;D) where I is a set of queries to make to its orale and D is the prediate to apply to theanswers. For suh a pair (I;D) T and an orale �, we de�ne the distane of �jI to T to be therelative Hamming distane between �jI and the nearest satisfying assignment of D. Similarly, wesay that � has expeted distane � from satisfying T if the expetation of the distane of �jI to Tover (I;D) R T equals �.We then have the following laims about the robustness of the individual tests.The robustness of the Low-Degree Test an be easily be infered from the analysis of the�-biased low-degree test due to Ben-Sasson et al. [12℄ as shown below.Claim 8.2 The following holds for all suÆiently small " > 0. If A : Fm ! F (resp., P : Fm ! F )is 8"-far from every polynomial of degree md (resp., degree �md), then then the expeted distaneof A (resp. P ) from satisfying the Low-Degree Test with degree parameter d (resp., �d) is atleast 2".Proof: Reall that the Low-Degree Test hooses a random anonial line L and heks if AjLis a univariate polynomial of degree d. For eah anonial line L, de�ne Alines(L) to be the degreed univariate polynomial mapping L ! F having maximum agreement with A on L, breaking tiesarbitrarily. The distane of AjL to satisfying Low-Degree Test is preisely �(AjL; Alines(L)).The low-degree test LDT of Ben-Sasson et al. [12℄ works as follows (see Setion B for moredetails): The test LDT has orale aess to a points-orale f : Fm ! F and a lines orale g. Ithooses a random anonial line L using the �-biased set, queries the lines-orale g on the line Land the points-orale f on a random point x on L. It aepts i� g(L) agrees with f at x.By inspetion, the probability that LDTA;Alines rejets the points-orale A and lines-orale Alinesas de�ned above equals EL[�(AjL; Alines(L))℄. By Theorem B.4, if A is 8"-far from every degree mdpolynomial, then LDTA;Alines rejets with probability at least 2" (for suÆiently small "). (Reallthat our parameters satisfy the onditions of Theorem B.4 for suÆiently large hoies of theonstants  and F .) Thus, A has expeted distane 2" from satisfying our Low-Degree Test,as desired.The intuition behind the proofs of robustness of Identity Test, Zero Propagation Test,and Edge-Consisteny Test is as follows. The key point to be noted is that the heks made byeah of these tests are in the form of polynomial identities. Hene, if the funtions read by these testsare lose to being polynomials, then it follows from the Shwartz-Zippel Lemma that the inputs readby these tests either satisfy these polynomial identities or are in fat far from satisfying them. Weformalize this intuition and prove the robustness of Identity Test, Edge-Consisteny Test,and Zero Propagation Test in Claims 8.3, 8.4, and 8.5 respetively.Claim 8.3 The following holds for all suÆiently small " > 0. If for some i = 0; : : : ; l � 1 andb 2 f0; 1g, �(P (b)i;m; bP (b)i;m) � 8" and bP (b)i;m(�) 6� 0, then Pi;m has expeted distane at least 1� 9" fromsatisfying the Identity Test.Proof: The expeted distane of Pi;m from satisfying the Identity Test equalsEV� [�(Pi;mjV� ; 0)℄ = �(Pi;m; 0)(sine the fV�g are a partition)� �( bPi;m; 0)��(Pi;m; bPi;m)� �1� �mdjF j �� 8"(by Shwartz-Zippel and hypothesis)� 1� 9" 55



Claim 8.4 The following holds for all suÆiently small " > 0. Suppose for some i = 0; : : : ; l �1, we have �(P (0)i;0 ; bP (0)i;0 ) � 8", �(P (1)i;0 ; bP (1)i;0 ) � 8", �( ~Ai; bAi) � 8", �( ~Ai+1; bAi+1) � 8", andbPi;0(�) 6�  0( ~Ti(�); bAi(�); bAi+1(~�i;0(�)); bAi+1(~�i;1(�))). Then �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	has expeted distane at least (1� 41")=5 from satisfying the Edge-Consisteny Test.Proof: Note that the distane of �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	jU� from satisfying theEdge-Consisteny Test is at least 1=5 times the the distane of Pi;0(�)jU� to the funtion 0( ~Ti(�); Ai(�); Ai+1(~�i;0(�)); Ai+1(~�i;1(�)))jU� (Sine for eah point x 2 U� where the latter twofuntions disagree, at least one of Pi;0; Ai; Ai+1 Æ ~�i;0; Ai+1 Æ ~�i;1 needs to be hanged at x to makethe test aept). As in the proof of Claim 8.3, we have:EU� [�(Pi;0(�)jU� ;  0( ~Ti(�); Ai(�); Ai+1(~�i;0(�)); Ai+1(~�i;1(�)))jU� )℄ � �1� �mdjF j �� 5 � 8" � 1� 41";where the (1 � �md=jF j) term orresponds to the distane if we replae all �ve funtions withtheir orreted polynomials (e.g., bPi;0, bAi, bAi+1 Æ ~�i;0, bAi+1 Æ ~�i;1) and the �5 � 8" aounts forthe distane between eah of the �ve funtions and their orreted polynomials. Thus, the overallexpeted distane to satisfying the Edge-Consisteny Test is at least (1� 41")=5.Claim 8.5 The following holds for all suÆiently small " > 0. Suppose for some i = 0; : : : ; l � 1,j = 1; : : : ;m, and b 2 f0; 1g, we have �(P (b)i;j ; bP (b)i;j ) � 8", �(P (b)i;j�1; bP (b)i;j�1) � 8", and bP (b)i;j (: : : ; xj; : : : ) 6�PjHj�1k=0 bP (b)i;j�1(: : : ; hk; : : : )xkj . Then (P (b)i;j ; P (b)i;j�1) has expeted distane at least (1�19")=2 from sat-isfying the Zero Propagation Test.Proof: Suppose that L is a jth axis-parallel line suh thatbP (b)i;j (: : : ; xj ; : : : )jL 6� jHj�1Xk=0 bP (b)i;j�1(: : : ; hk; : : : )xkj jL;Then in order for the Zero Propagation Test to aept, either P (b)i;j jL must be modi�ed toequal a degree �d polynomial other than bP (b)i;j�1(: : : ; xj ; : : : )jL or P (b)i;j�1jL must be modi�ed to equala degree �d polynomial other than bP (b)i;j�1(: : : ; xj ; : : : )jL. (Reall that the Zero PropagationTest heks that the said restritions are in fat polynomials of degree �d.) This would requiremodifying P (b)i;j jL (resp., P (b)i;j�1jL) in at least a 1 � �d=jF j � �(P (b)i;j jL; bP (b)i;j jL) fration (resp., 1 ��d=jF j��(P (b)i;j�1jL; bP (b)i;j�1jL) fration) of points. This implies that the pair (P (b)i;j jL; P (b)i;j�1jL) wouldhave to be modi�ed in at least a12 � �1� �djF j ��(P (b)i;j jL; bP (b)i;j jL)��(P (b)i;j�1jL; bP (b)i;j�1jL)�fration of points.
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Thus the expeted distane of (P (b)i;j ; P (b)i;j�1) to satisfying the Zero Propagation Test is atleast 12 � EL �1� �djF j ��(P (b)i;j jL; bP (b)i;j jL)��(P (b)i;j�1jL; bP (b)i;j�1jL)��PrL 24 bP (b)i;j (: : : ; xj ; : : : )jL � jHj�1Xk=0 bP (b)i;j�1(: : : ; hk; : : : )xkj jL35� 12 (1� "� 8"� 8") � �djF j� 12 (1� 19") :We are now left with analyzing the robustness the Proximity Test. Note that the input ofthe Proximity Test omes in two parts: (a) the restrition of A0 to the line L and (b) the inputW restrited to the line L. Unlike earlier tests, we do not ollate the robustness of these two partsof the input but express them separately. The robustness of the Proximity Test is proved byrepeated appliations of the Sampling Lemma (Lemma B.3).Let B � Fm denote the set of loations in I where the assignment given by bA0 disagrees withW (i.e., B = fx 2 Ij bA0(x) disagrees with W at xg ). Reall that jIj = k � n=5.Claim 8.6 (Case I) There exists a onstant  and a onstant " > 0 suh that for all m;�; Æ; Æ0satisfying n � 8000jF jm�1=Æ3, � � 1= log n, � � Æ3=mm, Æ0 > Æ, the following holds. Suppose�( ~A0; bA0) � 1=4 and the input oraleW is Æ0-far from bA0jI (i.e., jBj=jLj � Æ0), then with probabilityat least 1 � Æ=4 (over the hoie of the anonial line L) either at least a "-fration of A0jL or atleast a (Æ0 � Æ=4)-fration of W jL needs to be hanged to make the Proximity Test aept.This laim is the robust analogue of Lemma 7.4. Observe that the robustness of the veri�eris expressed separately for the proof and input orales. As expeted, the robustness of the inputorale depends on the proximity parameter Æ while that of the proof orale is independent of Æ.Proof: Consider the following three events.Event 1: �( ~A0jL; bA0jL) � 1=3 .By the Sampling Lemma (Lemma B.3) with � = 1=4 and � = 1=12, this event ours withprobability at most � 1jF j + �� � 1=4(1=12)2 � Æ12 sine jF j � (8000jF jm)=(Æ3n) > (123=2)=Æ and� < 2Æ=123.Event 2: jI\LjjLj > �1 + Æ8� � jIjjFmj .Again by the Sampling Lemma (Lemma B.3) with � = jIj=jFmj � n5jF jm and � = Æ�8 , thisevent ours with probability at most� 1jF j + �� � 82Æ2� = � 1jF j + �� � 320jF jmÆ2n � Æ12 ;where the last inequality follows from the fat that n � 24 � 320 � jF jm�1=Æ3 and � � Æ3=(24 �320(Fm2)m). 57



Event 3: jB\LjjLj < jBjjFmj � Æ8 � jIjjFmj .Again by the Sampling Lemma (Lemma B.3) with � = jBj=jFmj = Æ0n5jF jm and � = Æn40jF jm ,this event ours with probability at most� 1jF j + �� � ��2 � � 1jF j + �� � 320jF jmÆ2n � Æ12 :Hene, the probability that at least one of the three events ours is at most Æ=4.Now, suppose none of the three events our. We then get thatjB \ LjjI \ Lj � jBj � ÆjIj=8(1 + Æ=8)jIj = Æ0 � Æ=81 + Æ=8 � Æ0 � Æ=4:Now for the Proximity Test to aept the pair ( ~A0jL;W \ L), either we must hange ~A0jL toa polynomial other than bA0jL or orret the input for all x 2 B \ L. The former requires us tohange at least (1 � djF j � 1=3) � 1=2 fration of the points of A0jL while the latter requires us tohange at least Æ0 � Æ=4-fration of the input read (i.e., the input orale W restrited to the lineL). This proves the laim.Claim 8.7 (Case II) There exists a onstant  suh that for allm;�; Æ satisfying n < 8000jF jm�1=Æ3,� � 1= log n, � � Æ3=mm, the following holds. Suppose �( ~A0; bA0) � Æ=16 and the input orale Wis Æ-far from bA0jI (i.e., jBj=jLj � Æ), then with probability at least Æ=2 (over the hoie of index iand diretion y R S�), either at least a 1=2-fration of A0jL or W [i℄ (i.e., the entire portion of theinput orale read by the veri�er) needs to be hanged to make the Proximity Test aept.This laim is the robust analogue of Lemma 7.5. As before, the robustness of the veri�er isexpressed separately for the proof and input orales.Proof: Sine w is Æ-far from any satisfying assignment, the assignment given by bA0jI must beÆ-far from w. Thus with probability greater than Æ over the hoie of i 2 f1; : : : ; kg (and theorresponding point x 2 I), we have W [i℄ 6= bA0(x). If this ours, the only way to make the veri�eraept is to either hange W [i℄ or hange ~A0jL to a degree md polynomial other than bA0jL. As inthe proof of Claim 8.6, with probability at least 1 � Æ=2, ~A0jLnfxg and bA0jLnfxg have distane atmost 1=4, and hene ~A0jL would have to be hanged in at least 1 � ((md � 1)=jF j) � 1=4 � 1=2points to be a degree md polynomial other than bA0jL. Thus, with probability at least Æ�Æ=2 = Æ=2,either W [i℄ would have to hange or at least half of ~A0jL would have to hange to make the veri�eraept.8.2 BundlingIn Setion 8.1, we showed that eah of the tests performed by the PCPP veri�er is individuallyrobust. However, we need to show that the onjuntion of all these tests is also robust. This is nottrue for the PCPP veri�er in its present form for the following reason: Suppose the input oraleW is Æ-far from satisfying the iruit. We then know that one of the tests detets this fat withnon-negligible probability. Moreover as seen in Setion 8.1, this test is robust. However, sine thistest is only one of the O(lm) tests being performed by the veri�er, the orale bits read by this testomprise a small fration of the total query omplexity of the veri�er. For instane, the number of58



bits read by a single Low-Degree Test is about 1=lm times the query omplexity. This ausesthe robustness of the veri�er to drop by a fator of at least lm. Note that the issue here is not thefat that the veri�er performs di�erent types of tests (i.e., Low-Degree Test, Identity Test,Zero Propagation Test, et) but rather that it performs many instanes of eah test and thatthe soundness analysis only guarantees that one of these test instanes rejets (robustly). This isnot suÆient to make the veri�er robust.For this purpose, we \bundle" the various funtions in the proof orale so that the inputsrequired for the several test instanes an be read together. This maintains the robustness of theindividual tests, albeit over a larger alphabet. To understand this \bundling", let us assume forthe present that the only type of tests that the veri�er performs is the Low-Degree Test. Thereexists a natural bundling in this ase. Instead of l(m+2) di�erent orales f ~Aig and fPi;jg, we haveone orale � whih bundles together the data of all these orales. The orale � : Fm ! F l�(2m+3)is supposed to satisfy �(x) = ( ~A0(x); : : : ; ~Al�1(x); P0;0(x); : : : ; Pl�1;m(x)) for all x 2 Fm. It annow be easily heked that over this proof orale, the onjuntion of all the Low-Degree Testsis robust (over alphabet F l�(2m+3)) with the same soundness and robustness parameters as a singleLow-Degree Test(over alphabet F ). However, this natural bundling does not lend itself tothe other tests performed by the PCPP veri�er (namely, Zero Propagation Test, and Edge-Consisteny Test). Next, we provide an alternate bundling and massage our veri�er slightly towork with this bundling.First for some notation. As mentioned earlier, we will be able to prove robustness of the veri�ervia bundling, however over a larger alphabet. This large alphabet will be � = F l+2l�(m+1). Unlikebefore, the proof orale for the robust PCPP veri�er will onsist of only one funtion � : Fm ! �.The robust PCPP veri�er simulates the PCPP veri�er as follows: To answer the queries of thePCPP veri�er, the robust veri�er bundles several queries together, queries the new proof orale �and then unbundles the answer to obtain the answers of the queries of the original PCPP veri�er.For onveniene, we index the l+2l � (m+ 1) oordinates of � = F l+2l�(m+1) as follows: The �rst loordinates are indexed by a single index i ranging from 0 to l� 1, while the remaining 2l � (m+1)are indexed by a triplet of indies (i; j; b) where i ranges over 0; : : : ; l � 1, j ranges over 0; : : : ;mand b 2 f0; 1g. Let S : Fm ! Fm denote the (linear) transformation that performs one yli shiftto the right; that is, S(x0; : : : ; xm�1) = (xm�1; x0; : : : ; xm�2). The bundling of the proof orales~Ai's and Pi;j's by the modi�ed proof orale � is as follows:8x 2 Fm; 8<:�(x)i = ~Ai �Sb ih (x)� i = 0; : : : ; l � 1�(x)(i;j;b) = P (b)i;j �Sj+b ih (x)� i = 0; : : : ; l � 1; j = 0; : : : ;m and b 2 f0; 1g (4)where h = log jHj = log n=m. Note that the size of the new proof orale � is exatly equal to thesum of the size of the orales ~Ai's and Pi;j 's.We now state how the robust veri�er performs the unbundling and the individual tests. Weonsider eah step of the PCPP veri�er and present their robust ounterparts.The �rst steps of the PCP{Verifier (and PCPP{Verifier) are independent of the prooforale and are performed as before. That is, the robust veri�er, as before, redues the CktSATinstane to an instane h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi ofAS-CktSAT, sets d = m�jHj, and generatesa random string R of length log(jS�j � jF jm�1). The remaining steps are proof-orale dependentand we will disuss eah of them in detail.Proximity Test. For the proximity test, the only portion of the proof orale that we require isthe portion ontaining ~A0. Sine �(x)0 is ~A0 Æ Sb 0h (x) = ~A0(x), the Robust Proximity Testan easily be desribes as follows: 59



Robust Proximity TestW ; �(R)Case I: n � 8000jF jm�1=Æ3.Use random string R to determine a random anonial line L in Fm using the �-biasedset S�. Query orale � on all points along the line L. Unbundle �(L) to obtain thevalues of ~A0 on all points along the line L and rejet if the restrition ~A0 to L is not apolynomial of degree at most d. Query the input oraleW on all loations orrespondingto those in I \ L and rejet if W disagrees with ~A0 on any of the loations in I \ L.Case II: n < 8000jF jm�1=Æ3.Use random string R to determine a position i R f1; : : : ; kg in the input and a diretiony R S�. Let x 2 I be the point orresponding to i in Hm, and let L be the anonial linethrough x in diretion y. Query orale � on all points along the line L. Unbundle �(L)to obtain the values of ~A0 on all points along the line L and rejet if the restrition ~A0to L is not a polynomial of degree at most d. Query the input orale W at loation iand rejet if W [i℄ 6= ~A0(x).Low-Degree Test. We note that the distane of the polynomial ~Ai : Fm ! F to being degreek (for any k 2 Z+) is exatly the same as that of ~Ai Æ Sb ih  : Fm ! F sine Sb ih  is an invertiblelinear transformation. Hene, it is suÆient if we hek that ~Ai ÆSb ih  is low-degree. The ase withthe P (b)i;j 's is similar. Thus, the new Robust Low-Degree Test an be desribed as follows:Robust Low-Degree Test�(R)Use random string R to determine a random anonial line L in Fm using the �-biasedset S�.Query the orale � on all points along the line L.For i = 0; : : : ; l � 1,Unbundle �(L) to obtain the values of ~Ai Æ Sb ih  on all points along the line L andrejet if the restrition ~Ai Æ Sb ih  to L is not a polynomial of degree at most d.For i = 0; : : : ; l � 1, j = 0; : : : ;m and b 2 f0; 1g,Unbundle �(L) to obtain the values of P (b)i;j Æ Sj+b ih  on all points along the line Land rejet if the restrition of P (b)i;j Æ Sj+b ih  to L is not a polynomial of degree atmost �d.Thus, e�etively we are testing ~Ai (respetively Pi;j) using the line spae Sb ih  ÆS� (respetivelySj+b ih  Æ S�).Identity Test. In the ase of the Identity Test, we observe that P (b)i;m vanishes on Fm i�P (b)i;m ÆSm+b ih  vanishes on Fm. Reall that we were allowed to use arbitrary partitions of the spaeFm. The set of random 1st axis-parallel lines is one suh partition and we use this partition.robust Identity Test�(R)Use random string R to determine a random 1st axis-parallel line in Fm of the formL = (X; a1; : : : ; am�1). Query the orale � on all points along the line L.For i = 0; : : : ; l � 1 and b 2 f0; 1g, 60



Unbundle �(L) to obtain the values of P (b)i;m Æ Sm+b ih  on all points along the line Land rejet if any of these is non-zero.Edge Consisteny Test. For any x 2 Fm, we say that Pi;0 is well-formed at x if the Equation (2)is satis�ed for this x. The Edge-Consisteny Test veri�es that Pi;0 is well-formed for all x 2 U�and i = 0; : : : ; l � 1. This was done earlier by reading the values of Pi;0; ~Ai; ~Ai+1 Æ ~�i;0 = ~Ai+1 and~Ai+1 Æ ~�i;1 for all x 2 U�.Let L be a random 1st axis-parallel line. The robust version of this test heks that Pi;0 is well-formed for all points on Sb ih (L). Consider any x = (x0; : : : ; xm�1) 2 L. To verify that Pi;0 is well-formed at Sb ih (x), the veri�er needs the values Pi;0(Sb ih (x)); ~Ai(Sb ih (x)); ~Ai+1(Sb ih (x)) and ~Ai+1Æ~�i;1(Sb ih (x)). We will show that all these values an be obtained from unbundling the value of � onL and S�1(L). Clearly, the values Pi;0(Sb ih (x)) and ~Ai(Sb ih (x)) an be obtained from unbundlingthe value of � at x. The other two values that we require are ~Ai+1(Sb ih (x)) and ~Ai+1Æ~�i;1(Sb ih (x)).We �rst show that ~�i;1(Sb ih (x)) = Sb ih (x0) for x0 = (x0 + e(i mod h); x1; : : : ; xm�1) 2 L (reall thatfe0; : : : ; ef�1g are a basis for F over GF(2) and fe0; : : : ; eh�1g span H � F ). For this purpose, we�rst reall the de�nition of ~�i;1: ~�i;1(z0; : : : ; zm�1) = (z0; : : : ; zt�1; zt + eu; zt+1; : : : ; zm�1) wheret = bi=h mod m and u = i mod h. Furthermore, sine Sm is the identity map, we have thatSb ih  mod m = Sb ih . With these observations, we have the following:~�i;1 �Sb ih (x)� = ~�i;1 �Sbi=h mod m(x)�= ~�i;1 �Sbi=h mod m(x0; : : : ; xm�1)�= Sbi=h mod m �x0 + e(i mod h); x1; : : : ; xm�1�= Sb ih (x0)Now, Sb i+1h  is either Sb ih  or Sb ih +1 depending on the value of i. Suppose Sb i+1h  = Sb ih . Wethen have that ~Ai+1(Sb ih (x)) = Ai+1(Sb i+1h (x)) and ~Ai+1 Æ ~�i;1(Sb ih (x)) = ~Ai+1(Sb ih (x0)) =~Ai+1(Sb i+1h (x0)). Both these values an be obtained by unbundling the value of � on L (sineboth x and x0 lie on L). In the other ase, where Sb i+1h  = Sb ih +1, we have Ai+1(Sb ih (x)) =Ai+1(Sb i+1h (S�1x)) and Ai+1 Æ ~�i;1(Sb ih (x)) = Ai+1(Sb ih (x0)) = Ai+1(Sb i+1h (S�1x0)). Thesevalues an be obtained by unbundling the value of � on S�1(L). Thus, to hek that Pi;0 iswell-formed for all points on Sb ih (L), it suÆes if the veri�er queries � on all points on L andS�1(L).Robust Edge-Consisteny Test�(R)Use the random string R to determine a random 1st axis-parallel line in Fm of the formL = (X; a2; : : : ; am). Query the orale � along all points in the lines L and S�1(L).For i = 0; : : : ; l � 1,For all x 2 Sb ih (L), rejet if Pi;0 is not well-formed at x. [Note that all the valuesrequired for this veri�ation an be obtained by unbundling �(L) and �(S�1(L)).℄Zero Propagation Test. For eah i = 0; : : : ; l�1 and b 2 f0; 1g, the Zero Propagation Testheks that P (b)i;0 vanishes on Hm by verifying that Equation (3) is satis�ed for all j = 1; : : : ;m� 161



(we also need to hek that P (b)i;m � 0, however this is taken are by the Identity Test). SineS(Hm) = Hm, heking if P (b)i;0 vanishes on Hm is equivalent to heking if P (b)i;0 Æ Sb ih  vanishes onHm. Hene, we an perform the zero propagation on the polynomials P (b)i;0 ÆSb ih ; i = 0; : : : ; l�1; b 2f0; 1g instead of the polynomials P (b)i;0 ; i = 0; : : : ; l� 1; b 2 f0; 1g. In other words, we need to verifythe following equation instead of Equation (3).P (b)i;j Æ Sb ih �x1; : : : ; xj�1| {z }; xj ; xj+1; : : : ; xm| {z }� = jHj�1Xk=0 P (b)i;j�1 Æ Sb ih �x1; : : : ; xj�1| {z }; hk; xj+1; : : : ; xm| {z }�xkj ;8(x1; : : : ; xm) 2 Fm (5)This equation an be further rewritten in terms of the yli shift S as follows:P (b)i;j �Sb ih +j�1(x1; x2; : : : ; xm)� = jHj�1Xk=0 P (b)i;j�1 �Sb ih +j�1(hk; x2; : : : ; xm)� xk1; 8(x1; : : : ; xm) 2 Fm(6)This helps us to rewrite the Zero Propagation Test with bundling as follows:Zero Propagation Test�(R)Use random string R to determine a random 1st axis-parallel line in Fm of the formL = (X; a2; : : : ; am). Query the orale � along all points in the lines L and S�1(L).For i = 0; : : : ; l � 1, j = 1; : : : ;m, and b 2 f0; 1gUnbundle �(L) to obtain the value of P (b)i;j�1 Æ Sb ih +j�1 on all points along theline L. Similarly, unbundle �(S�1(L)) to obtain the value of P (b)i;j Æ Sb ih +j on allpoints along the line S�1(L) (Equivalently, this is the value of P (b)i;j Æ Sb ih +j�1 onall points along the line L). Rejet either if the restrition of P (b)i;j�1 Æ Sb ih +j�1 orP (b)i;j ÆSb ih +j�1 to L is not a polynomial of degree at most �d or if any of the pointson the line L violate Equation (6).The integrated robust veri�er. Having presented the robust version of eah of the tests, theintegrated robust veri�er is as follows.Robust-PCPP{VerifierW ; �m;�;Æ(C).1. Using Proposition 6.11, redue the instane C of CktSAT, using parameter m, to aninstane h1n; 1m; F;H; f ~T0; : : : ; ~Tl�1gi of AS-CktSAT, and set d = m � jHj.We let S� � Fm be a �-biased set of size at most � log jF jm� �2 [2℄.2. Choose a random string R of length log(jS�j � jF jm�1). [Note: We reuse R in all tests,but only the Low-Degree Test utilizes the full length of R.℄3. Run Robust Low-Degree Test�(R).4. Run Robust Edge-Consisteny Test�(R).5. Run Robust Zero Propagation Test�(R).62



6. Run robust Identity Test�(R).7. Run Robust Proximity TestW ;�(R).Rejet if any of the above tests rejet.The randomness of the Robust-PCPP{Verifier is exatly the same as before whereas the queryomplexity and deision omplexity inrease by a onstant fator25.Proposition 8.8 The randomness, query and deision omplexities of the Robust-PCPP{Verifierare r = �1� 1m� log n + O(m logm) + O(log log n) + O (log (1=Æ)), q = O(m2n1=m log2 n) andd = ~O(q) respetively.It is straightforward to hek perfet ompleteness of this veri�er.Robustness analysis of the integrated veri�er. To state the robust soundness, it is useful forus to separate the robustness wrt the input orale and wrt the proof orale. Let W : [k℄ ! f0; 1gbe the input orale and � the proof orale. For every sequene of oin tosses R (and a given settingof parameters), let �W;�inp (R) (resp., �W;�pf (R)) denote the fration of the bits read from W (resp.�) that would need to be hanged to make the Robust-PCPP{Verifier aept on oin tossesR. Then the following lemmas state the robustness property of our veri�er.Lemma 8.9 (Case I) There are onstants  2 Z+ and � > 0 suh the following holds for everyn;m 2 Z+, Æ; Æ0 > 0 satisfying m � logn=loglogn, n1=m � mm=Æ3, � � minf1= log n; Æ3=mmg,Æ0 > Æ. If W is Æ0-far from satisfying the iruit, then for any proof orale � : Fm ! �, eitherER[�W;�pf (R)℄ � � or ER[�W;�inp (R)℄ � Æ0 � Æ=2.Proof: Unbundle the proof orale � to obtain the funtions ~Ai and Pi;j using Equation (4).Consider the ation of the PCPP{Verifier (i.e., the non-robust veri�er) on the proof orales~Ai; Pi;j and input orale W .Let " be a suÆiently small onstant suh that the Claims 8.2{8.6 hold. Suppose W is Æ0-farfrom satisfying the iruit. We then know that one of the following holds and that the orrespondingtest instane of the PCPP{Verifier rejets its input robustly (see Claims 8.2 to 8.6).1. There exists a i = 0; : : : ; l�1 suh that ~Ai is 8"-far from every degree md polynomial or thereexists a i = 0; : : : ; l� 1, j = 0; : : : ;m and b 2 f0; 1g suh that P (b)i;j is 8"-far from every degree�md polynomial. In this ase,the expeted distane of ~Ai (or resp. P (b)i;j ) from satisfying theLow-Degree Test with degree parameter d (resp., �d) is at least 2" (Claim 8.2).2. There exists i = 0; : : : ; l � 1 and b 2 f0; 1g, suh that �(P (b)i;m; bP (b)i;m) � 8" and bPi;m 6� 0.In this ase, Pi;m has expeted distane at least 1 � 9" from satisfying the Identity Test(Claim 8.3).3. There exists a i = 0; : : : ; l�1 suh that �(P (0)i;0 ; bP (0)i;0 ) � 8", �(P (1)i;0 ; bP (1)i;0 ) � 8", �( ~Ai; bAi) � 8",�( ~Ai+1; bAi+1) � 8", and bPi;0(x) 6�  0(( ~Ti(x); bAi(x); bAi+1(~�i;0(x)); bAi+1(~�i;1(x))). In thisase, �Pi;0(�); Ai(�); Ai+1(~�i;0(�))Ai+1(~�i;1(�))	 has expeted distane at least (1�41")=5 fromsatisfying the Edge-Consisteny Test (Claim 8.4).25Though the new proof orale returns elements of � and not bits, we express the query omplexity as the numberof bits read by the veri�er rather than the number of symbols (i.e., elements of j�j) to maintain onsisteny arossalulating the query omplexity into the proof and input orales.63



4. There exists i = 0; : : : ; l � 1, j = 1; : : : ;m and b 2 f0; 1g suh that �(Pi;j; bPi;j) � 8",�(Pi;j�1; bPi;j�1) � 8", and bPi;j(: : : ; xj ; : : :) 6� PjHj�1k=0 bPi;j�1(: : : ; hk; : : :)xkj . In this ase,(P (b)i;j ; P (b)i;j�1) has expeted distane at least (1 � 19")=2 from satisfying the Zero Propa-gation Test (Claim 8.5).5. �( ~A0; bA0) � 8" but W and bA0jI disagree on at least Æ fration of the points. In this ase,with probability at least 1 � Æ=4 (over the hoie of the anonial line L) either at least a"-fration of A0jL or at least a (Æ0 � Æ=4)-fration of W jL needs to be hanged to make theProximity Test aept (Claim 8.6).This implies that either A0 has expeted distane (1�Æ=4)" � "=2 orW has expeted distane(1� Æ=4)(Æ0 � Æ=4) � (Æ0 � Æ=2) from satisfying the Proximity Test.For instane, lets us assume ~A0 is 8"-far from being low degree so the Low-Degree Testrejets it robustly; that is, for a random anonial line L, the expeted distane of ~A0jL fromsatisfying the Low-Degree Test is at least 2". Reall from Equation (4) that ~A0(x) is one of theo-ordinates in the bundled �(x). Hene, if ~A0jL is �-far from satisfying the Low-Degree Test,so is �L from satisfying the Robust Low-Degree Test. Thus, � has expeted distane at least2" from satisfying the Robust Low-Degree Test. Now, the orale positions read by the RobustLow-Degree Test onstitute a onstant fration of the orale positions read by the Robust-PCPP{Verifier, so � has expeted distane 
(") from satisfying the Robust-PCPP{Verifier.Thus, the robustness of the individual test instane is transfered to the ombined Robust Low-Degree Test by bundling. The ase with the other test types is similar. We thus have thatER[�W;�pf (R)℄ � 
(") or ER[�W;�inp (R)℄ � Æ0 � Æ=2. The lemma then follows by setting � = 
(").Lemma 8.10 (Case II) There is a onstant  2 Z+ suh the following holds for every n;m 2 Z+,Æ > 0 satisfying m � log n=loglogn, n1=m < mm=Æ3, � � minf1= log n; Æ3=mmg. If W is Æ-farfrom satisfying the iruit, then for any proof orale � : Fm ! �, either ER[�W;�pf (R)℄ � Æ= orER[�W;�inp (R)℄ � Æ=.Proof: This proof proeeds in the same way as Lemma 8.9 exept that in this ase we set " tobe Æ=(8 � 32) whih is muh smaller than the onstant required by Claims 8.2{8.5. The reason forthis is that the individual robustness of the Proximity Test - Case II (Claim 8.7) requires that�( ~A0; bA0) � Æ=16 unlike in Case I (Claim 8.7) whih just required �( ~A0; bA0) � 1=4.Suppose W is Æ-far from satisfying C, then as before we have �ve di�erent ases. The �rst fourases are exatly as before. We mention below the only ase that di�ers from before (i.e., the �fthone).5. �( ~A0; bA0) � 8" = Æ=16 but W and bA0jI disagree on at least Æ fration of the points. In thisase, with probability at least Æ=2 (over the hoie of index i and diretion y R S�), eitherat least a 1=2-fration of A0jL or W [i℄ (i.e., the entire portion of the input orale read by theveri�er) needs to be hanged to make the Proximity Test aept (Claim 8.7).This implies that either A0 has expeted distane Æ2 � 12 = 
(") or W has expeted distaneÆ=2 from satisfying the Proximity Test.Arguing as before, we have that ER[�W;�pf (R)℄ � 
(") = 
(Æ) or ER[�W;�inp (R)℄ � Æ=2. The lemmathen follows by setting  to be a large enough onstant suh that Æ= = minf
(Æ; Æ=2g.64



8.3 Robustness over the binary alphabetThe transformation from a robust veri�er over the alphabet � to one over the binary alphabet isanalogous to onverting non-Boolean error orreting odes to Boolean ones via \ode atenation".This transformation is exatly the same transformation as the one in the proof of Lemma 2.13.However, we annot diretly use Lemma 2.13 as we may apply the \ode onatenation" proessonly to the proof orale � and not to the input orale W . However, this is not a problem, beausethe input orale is already binary and has good robustness.Let ECC : f0; 1glog j�j ! f0; 1gb for b = O(log j�j) be a binary error-orreting ode of onstantrelative minimum distane, whih an be omputed by an expliit iruit of size O(log j�j)[51℄. Weaugment the original proof orale �, viewed now as having log j�j-bit long entries (i.e., elements of�) with an additional orale � having b-bit long entries, where �(x) is supposed to be ECC(�(x)).Our new veri�er V , on orale aess to the input W and proof � Æ �, will simulate theRobust-PCPP{Verifier. The queries to the input orale are performed just as before how-ever, for eah query x 2 Fm in the proof orale � made by Robust-PCPP{Verifier, V willquery the orresponding log j�j bits in �(x) and the b bits in �(x). Thus, the query omplex-ity of V is at most log j�j + b times the number of queries issued by the earlier veri�er. Sineb = O(log j�j), the query omplexity of the new veri�er V is a onstant times that of the pre-vious one. The randomness is exatly the same. The ation of the new veri�er V is as fol-lows: Suppose Robust-PCPP{Verifier issues queries x1; : : : ; xq1 to the proof orale �, andqueries i1; : : : ; iq2 to the input orale, then V issues queries x1; : : : ; xq1 to the proof orale �, asimilar set of queries x1; : : : ; xq1 to the proof orale � and i1; : : : ; iq2 to the input orale. V a-epts (�(x1); : : : ;�(xq1);�(x1); : : : ;�(xq1);W (i1); : : : ;W (iq2)) i� the Robust-PCPP{Verifieraepts (�(x1); : : : ;�(xq1);W (i1); : : : ;W (iq2)) and �(xi) = ECC(�(xi)) for all i = 1; : : : ; q1. It isstraightforward to hek that V has perfet ompleteness if Robust-PCPP{Verifier has perfetompleteness. For the robust soundness, we de�ne �W;�Æ�inp (R) and �W;�Æ�pf (R) wrt V analogouslyto before (f. just before Lemma 8.9), but referring to distane over f0; 1g (rather than �) for theproof orale. The proofs of the following laims regarding the robust-soundness of V mimis theproof of Lemma 2.13.Lemma 8.11 (Case I) There are onstants  2 Z+ and � > 0 suh the following holds for everyn;m 2 Z+, Æ; Æ0 > 0 satisfying m � logn=loglogn, n1=m � mm=Æ3, � � minf1= log n; Æ3=mmg,Æ0 > Æ. If W is Æ0-far from satisfying the iruit, then then for any proof orales � : Fm !f0; 1glog j�j;� : Fm ! f0; 1gb, either ER[�W;�Æ�pf (R)℄ � � or ER[�W;�Æ�inp (R)℄ � Æ0 � Æ=2.Lemma 8.12 (Case II) There is a onstant  2 Z+ suh the following holds for every n;m 2 Z+,Æ > 0 satisfying m � log n=loglogn, n1=m < mm=Æ3, � � minf1= log n; Æ3=mmg. If W is Æ-farfrom satisfying the iruit, then for any proof orale � : Fm ! �, either ER[�W;�pf (R)℄ � Æ= orER[�W;�inp (R)℄ � Æ=.It is to be noted that the expeted robustness of the proof orale (� in Case I and Æ= in CaseII) is not the same as similar parameters in Lemmas 8.9 and 8.10, but weaker by a onstant fatoras suggested in Lemma 2.13.Finally, we onlude by proving Theorem 8.1.Proof (of Theorem 8.1): Theorem 8.1 is proved using the Robust-PCPP{Verifier de�ned inthis setion setting � = minf1= log n; Æ3=mmg. The randomness, query and deision omplexityof the Robust-PCPP{Verifier (i.e., before the transformation to the binary alphabet) are asmentioned in Proposition 8.8. As mentioned in the earlier paragraph, the transformation from65



the alphabet � to the binary alphabet maintains the randomness omplexity while the query (anddeision) omplexity inrease by at most a onstant fator. Hene, the randomness, query anddeision omplexities of the veri�er are as laimed in Theorem 8.1So far, we have onsidered the proof and input orale separately. Hene the expeted robustnessin Lemmas 8.11 and 8.12 were expressed separately for the proof and input orales. We an onsiderthem together by giving weights to the two orale portions in the deision iruits (i.e. repeatingqueries, see Remark 7.2). Also, the expeted robustness mentioned in Theorem 8.1 are di�erentfor the two ases when n1=m � mm=Æ3 and n1=m < mm=Æ3 (and, as in the proof of Theorem 7.1,these two ases do not diretly orrespond to the two ases expressed in Lemmas 8.11 and 8.12respetively). We will give weights to the input and proof orales di�erently in eah of these ases.Case I: n1=m � mm=Æ3In this ase, we give weight (1�) to the input orale and  to the proof orale, where  is asspei�ed in Theorem 8.1. Reall that these weights mean that eah query to the input oraleis repeated several times suh that the relative length of the input-part in the deision iruitis 1 � . These repeated queries may inrease the query (and deision) omplexity inreaseby a fator of at most 1=. Note that weighting does not afet the randomness omplexity(or any other parameter suh as the proximity parameter Æ).Sine n1=m �mm=Æ3, we have n1=m � 8000(Fm2)m�1=Æ3 or equivalently n � 8000jF jm�1=Æ3.Hene, Lemma 8.11 applies and we have that either ER[�W;�Æ�pf (R)℄ � � or ER[�W;�Æ�inp (R)℄ �Æ0 � Æ=2. Note that the �rst expression refers to the \expeted robustness" of the proof-partwhereas the seond expression refers to the input-part. The overall expeted robustness isobtained by a weighted average of these two expressions, where the weights are with respet tothe aforementioned weighting (whih assigns weight  to the input-part). Hene, the expetedrobustness with respet to the said weighting is � ER[�W;�Æ�pf (R)℄ + (1� ) � ER[�W;�Æ�inp (R)℄ � minf � �; (1� ) � (Æ0 � Æ=2)g :Case II: n1=m < mm=Æ3In this ase, we give equal weight to the input and proof orales (i.e., we e�etively set = 1=2). This weighting may inrease the query (and deision) omplexity inrease by atmost a fator of 2, and has no a�et on any other parameter.In this ase, we do not know whih of n1=m or 8000(Fm2)m�1=Æ3 is greater. Hene, we donot know whih one of Lemma 8.11 or Lemma 8.12 applies. Thus, we an only guarantee theweaker of the two expeted robustness laims. Hene, we have that either ER[�W;�Æ�pf (R)℄ �minf�; Æ=g = Æ= or ER[�W;�Æ�inp (R)℄ � minfÆ � Æ=2; Æ=g = Æ=. Hene, the expetedrobustness with respet to the said weighting is12 � ER[�W;�Æ�pf (R)℄ + 12 � ER[�W;�Æ�inp (R)℄ � 12 � Æ = 
(Æ) :Thus, in both ases, the expeted robustness is as laimed. Noting that the other parameters (e.g.,the randomness and deision omplexities) are as laimed, Theorem 8.1 follows.8.4 Linearity of enodingIn this setion we point out that, for linear iruits (to be de�ned below), the mapping from anassignment to the orresponding PCP of proximity is linear. Throughout this setion, \linear"66



means GF (2)-linear (yet, we will sometimes refer to F -linearity, for an extension �eld F of GF (2)).The main motivation to the urrent study is to derive linear odes satisfying loal-testability andrelaxed loal-deodability (i.e., Theorems 1.4 and 1.5, respetively). Spei�ally, the onstrutionspresented in Setion 4 yield linear odes provided that the orresponding PCP of proximity is linearin the aforementioned sense.We all a iruit is linear if it is a onjuntion of linear onstraints. However, instead ofrepresenting this onjuntion via AND gates, it is more onvenient for us to work with iruits thathave multiple output gates, one for eah linear onstraint. That is:De�nition 8.13 A multi-output iruit is linear if all its internal gates are parity gates and aninput is aepted by it if and only if all output gates evaluate to zero.Proposition 8.14 If C is a linear iruit, then there is a linear transformation T mapping satis-fying assignments w of C to proof orales T (w) suh that the PCPP veri�er of Theorem 3.1 will,on input C, aept orale (w; T (w)) with probability 1. Moreover, all the deision iruits produedby the veri�er, on input C, an be made linear (while maintaining the laimed deision omplexity).In the rest of this setion, we provide a proof of Proposition 8.14, starting with an assignmentw that satis�es the linear iruit. We prove that the mapping from w to a proof-orale is linearby reviewing our onstrution of this mapping and ensuring that all steps in this onstrution arelinear transformations.Phase I - Strutured-CktSAT: In this phase (desribed in Setion 6.1) we write down thevalues to all gates of the iruit and route them along the wrapped de Bruijn graph. Atually, wemake a few minor and straightforward modi�ations to De�nition 6.3: we allow multiple outputgates (rather than a single output gate) and require that eah suh gate evaluates to zero (ratherthan to 1).26 Also, here we deal with gate types that are linear (e.g., XOR), rather than arbitrary(e.g., AND and OR).Sine all the iruit gates are linear funtions of the input, the values on the wires leaving thezero-th layer of the well-strutured iruit (i.e., the last two bits of the mapping A0 : f0; 1gN !f0; 1g4 in Setion 6.1) are linear in the input (i.e., in w). As to Ai, i > 0, (and the �rst two bitsof A0) notie that it is obtained by permuting the values of the previous layer Ai�1 and settingsome wires to zero (if they are not needed in the routing, e.g. gates 3 and 4 in Figure 3). Theseoperations are linear, and so all assignment funtions are linear in the input.Phase II - Arithmetization: In this phase (desribed in Setion 6.2) we extend the valuesgiven by Ai to an evaluation of a low-degree multivariate polynomial over some �nite �eld F thatis an extension �eld of GF (2) of degree f . Eah value of Ai is four bits long (say b0; b1; b2; b3) andidenti�ed with the element b0e0 + b1e1 + b2e2 + b3e3, where e0; : : : ; ef�1 is a basis for F viewed asa vetor spae over GF (2). We view Ai as a funtion Ai : Hm ! F and onstrut a low-degreeextension ~Ai : Fm ! F of Ai by interpolation. on all inputs in Hm and use these values tointerpolate and evaluate ~Ai on all points in Fm. Notie that interpolation is F -linear and henealso GF (2)-linear. We onlude that the values of ~Ai on all points in Fm is a linear transformationof the values of Ai. Sine Ai is linear in the input assignment, so is ~Ai.Clari�ation: Many parts of our enoding (starting with ~Ai) onsist of evaluations of multivariatepolynomials P (x) over Fm. The linearity we laim is not linearity in x (the free variables of thepolynomial). Rather, we laim the table of values fP (a) : a 2 Fmg is linear in the initial assignment26Reall that an input is aepted by the linear iruit if and only if all output gates evaluate to zero.67



w, whih may be viewed as the information enoded in this table. In ontrast, throughout thissetion, x is merely an index to this table. For example, in Phase II we showed the table f ~Ai(a) :a 2 Fmg is obtained by a linear transformation applied to the table fAi(a0) : a0 2 Hmg (but weertainly do not laim ~Ai(a) is linear in a). That is, eah ~Ai(a) is a linear ombination of theAi(a0)'s.Phase III - The Constraint Polynomials: We now disuss the polynomials P (0)i;0 and P (1)i;1de�ned in Equation (2), and show their values are a linear transformation of the values of ~Ai.The �rst polynomial (i.e., P (0)i;0 ) is obtained by applying the univariate polynomial  0 de�ned inEquation 1 to eah value of ~Ai (i.e., P (0)i;0 (x) =  0( ~Ai(x))). By de�nition,  0 evaluates to zeroi� its input, when represented as a vetor in GF (2)f , belongs to the linear spae spanned byfe0; e1; e2; e3g. This polynomial de�nes a linear transformation, as laimed by the following lemma.Lemma 8.15 Let L be a GF(2)-linear subspae of F = GF (2f ) and  L(t) = Q�2L(t � �). Thenthe mapping  L : F ! F is linear.Proof: We use the fat that for any integer i, the transformation t 7! t2i is linear; that is,(t+ t0)2i = t2i + t02i . Our main laim is that the polynomial  L(t) an be written as Pi it2i andhene is linear (being a sum of linear transformations). We prove this laim by indution on thedimension of L � GF (2)f . Indeed, for dim(L) = 0 (i.e., L = f0fg), it holds that  L(t) = t and ourlaim follows. In the indution step, write L as L = L0 [ f�+ L0g where L0 is some linear spae ofdimension k�1 and � 2 LnL0. Clearly,  L(t) =  L0(t) � L0 (t+�). Using the indutive hypothesisfor L0 (and the linearity of t 7! t2j ), we get L(t) =  Xi i � t2i! �0�Xj j � (t+ �)2j1A=  Xi i � t2i! �0�Xj j � �t2j + �2j�1A= Xi;j ijt2it2j +Xi;j ijt2i�2j= Xi 2i t2i+1 +Xi 0it2iwhere 0i =Pj ij�2j and Pi 6=j ijt2it2j = 2Pi<j ijt2it2j = 0 (beause F has harateristi 2).This ompletes the proof of the indutive laim.We now turn to the seond polynomial, P (1)i;0 . Reall that P (1)i;0 (x) =  1(s; a; a0; a1), wheres = ~Ti(x), a = ~Ai(x) and aj = ~Ai+1(~�i;j(x)). It an be veri�ed that ~Ti(x) (whih represents thegate type) is independent of the input w to the iruit, and by our previous disussion a; a0; a1are linear in the input w (to the iruit). Thus, it will suÆe to show that  0 is linear in itslast three inputs. When disussing Equation (2) we did not go into the spei� onstrution ofthe polynomial  0 beause only its funtionality mattered, and we showed that there exists someonstant-degree polynomial that does the job. But for our urrent purposes (of showing linearity)we need to present some spei� polynomial  0 that is linear (as an operator over GF (2)f ) and hasthe desired properties needed by the veri�ation proess. To do this, reall C is the set of allowable68



gates in the well-strutured iruit, and so we de�ne Æs0(z) to be the (minimal degree) uni-variatepolynomial of degree jCj that is 1 if z = s0 and is 0 if z 2 C n fs0g, and write  0 as 0(s; a; a0; a1) = Xs02C Æs0(s) �  0s0(a; a0; a1) (7)Claim 8.16 For any s0 2 C that an our as a gate in a well-strutured iruit onstruted from alinear iruit C, the polynomial  0s0(a; a0; a1) of Equation 7 an be written as a linear transformation(of (a; a0; a1)).Proof: Reall that the value of  0s0(a; a0; a1) is supposed to represent whether or not the fourleast signi�ant bits of the three inputs (denoted a0, a00 and a01) satisfy some ondition. By in-speting De�nition 6.3, it an be veri�ed that (in our ase) this ondition is a linear one. That is, 0s0(a; a0; a1) = 0 if and only if the triplet (a0; a00; a01), viewed as a 12-bit vetor over GF (2), belongsto some spei� linear spae Ls0 � GF (2)12.Reall that we may assume that a = 0f�4a0 (and similarly for a0 and a1), beause this onditionis imposed by the onstraint polynomial P (0)i;0 . Thus, we seek a polynomial (over F 3) suh that ifeah of its three inputs belongs to Span(e0; : : : ; e3) then it will output 0 i� the inputs residein the linear spae that is analogous to Ls0 ; that is, the input (a; a0; a1) should evaluate to 0 i�a0Æa00Æa01 2 Ls0 . To obtain this, we assume the existene of � 2 F suh that multiplying an elementby � orresponds to a left yli shift by four positions (e.g., � � �0 � � � �f�1 = �4 � � � �f�1�0 � � � �3).Suh an element exists for the standard representation of F . Using this element we an write 0s0 : F 3 ! F as  0s0(a; a0; a1) =  Ls0 (�2a+ �a0 + a1)where  Ls0 is the univariate polynomial that is zero i� its input is in Ls0 . Note that, for inputsin Span(e0; : : : ; e3), indeed  0s0(a; a0; a1) = 0 i� a0 Æ a00 Æ a01 2 Ls0 . By Lemma 8.15,  Ls0 is linear.It follows that  0s0 is linear, beause multipliation by a �xed element of F (i.e., �) is a linearoperation.Reall Æs0(s) depends only on the iruit and not on its input (i.e., w). Thus, eah summand of(7) is linear in w and hene the sum is itself linear in w. We onlude that the table of evaluationsof the polynomials given by Equation (2) is obtained by linear transformations applied to the inputto the iruit.Phase IV - The Sum-hek Polynomials: In this phase (desribed by Equation (3)) we applya sequene of interpolations to previously onstruted polynomials P (b)i;j . Eah suh interpolation isan F -linear transformation and hene also a GF(2)-linear one. Thus, the sequene of polynomialsP (b)i;j is obtained by a linear transformation applied to the input.Phase V - Bundling and Enoding: In this phase (desribed in Setions 8.2 and 8.3) weapply some yli shifts to the (values of the) sequene of l + 2l(m + 1) polynomials obtainedin the previous phases. Then we bundle the polynomials together, obtaining an alphabet of sizejF jl+2l(m+1). This bundling does not hange the enoding (only the partitioning of the proof intosymbols) and hene is also a linear transformation. Finally, we apply an error orreting ode toeah symbol in order to redue the alphabet size (from jF jl+2l(m+1)) to binary, and this is also alinear transformation as long as the error orreting ode is itself linear.The result of this shifting, bundling and enoding is the atual proof given to the (outer) veri�erof Theorem 8.1. Notie this transformation from l + 2l(m + 1) polynomials (eah evaluated in F )to one proof (over the binary alphabet) is linear, beause all three parts of it are linear.69



Now we argue that all tests performed by the veri�er are linear and the deision omplexitylaimed in Theorem 8.1 an be ahieved by using small linear iruits. This an be seen by inspetingthe various tests desribed in Setion 6.3, notiing that they all hek either linear or F -linearonditions, and applying the general result of Strassen [53℄ showing that any algebrai iruit thatomputes a linear funtion (as a formal polynomial) an be onverted into a linear iruit with onlya onstant-fator inrease in size. This ompletes the proof of Proposition 8.14.AknowledgmentsWe are grateful to Avi Wigderson for ollaborating with us at early stages of this researh and toIrit Dinur for inspiring disussions at late stages of this researh.
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Part IIIAppendiesA Hadamard-ode-based PCP of proximityIn this setion we note that the Hadamard-ode-based inner verifer from Arora et al. [4℄ an beonverted in to a PCP of proximity. Reall that the inner veri�er of [4℄ aesses O(1) input orales,where the ith orale is supposed to provide the Hadamard enoding of some string wi, and veri�esthat their onatenation satis�es some given iruit C.Here we simplify this veri�er to work with a single string w and the veri�er aesses a singleinput orale that represents this string itself (not some enoding of it), and veri�es that w is loseto an assignment aeptable by the iruit C given as expliit input.Theorem A.1 There exists a onstant Æ0 > 0 suh that there exists a PCP of proximity forCiruit Value (for iruits of size n) with randomness omplexity O(n2), query omplexity O(1),perfet ompleteness, soundness error 1 � Æ, and proximity parameter 5Æ for any Æ � Æ0. That is,inputs that are Æ-far from satisfying the iruit are rejeted with probability at least min(Æ; Æ0)=5.Notie that we do not laim robustness of this PCP of proximity. This is beause we don't intend touse this veri�er (or any veri�er derived from it) as the outer veri�er during omposition. However,this veri�er is robust (in a trivial sense). Indeed, any PCP of proximity with O(1) query omplexityis trivially �-robust for some onstant � > 0 (sine the relative distane between two query patternsis lower-bounded by the inverse of number of bits queried).Proof: Let V denote the laimed veri�er. We �rst list the orales used by V , then we desribe thetests that V performs, and �nally we will verify that V 's omplexities are as laimed and analyzeits performane (most notably its soundness and proximity).Orales. Let C be a iruit with n gates on m input bits. The veri�er aesses an inputorale W : [m℄ ! f0; 1g (representing a string w 2 f0; 1gm), and a proof orale � = (A;B), withA : f0; 1gn ! f0; 1g and B : f0; 1gn�n ! f0; 1g.To motivate the veri�er's tests, we desribe what is expeted from the orales in the \om-pleteness" ase, i.e., when C(w) = 1. The input orale, by de�nition, gives the string w, i.e.,W [i℄ = wi. Now let z 2 f0; 1gn be the string of values of all the gates of the iruit C (inludingthe input, the internal gates, and the output gate(s)). W.l.o.g., assume z = w Æ y, where y rep-resents the values assumed for internal gates. The orale A is expeted to give the values of alllinear funtions at z (over GF(2)); and the orale B is supposed to give the value of all quadratifuntions at z. More preisely A = A[x℄x2f0;1gn is expeted to be A[x℄ =Pni=1 xizi = xT z (wherex and z are being thought of as olumn vetors). Similarly, B = B[M ℄M2f0;1gn�n is expeted to beB[M ℄ =Pi;jMijzizj = zTMz (where M is an n�n matrix). In order to verify that w satis�es C,the veri�er will verify that A and B have indeed been onstruted aording to some string z asabove, that z represents an aepting omputation of the iruit, and �nally that A is the enodingof some string w0 Æ y where w0 is lose to the string w given by the input orale W .Tests. Given the iruit C, the veri�er �rst onstruts polynomials P1(z); : : : ; Pn(z) as follows.Viewing the variables fzig as representing the values at the individual gates of the iruit C (withz1; : : : ; zm being the input gates), the polynomial Pi(z) is the quadrati polynomial (over GF(2))75



expressing the onstraint imposed by the i'th gate of the iruit on an aepting omputation. Forexample:Pi(z) = 8>>>>>><>>>>>>:
zi � zjzk if the ith gate is an AND gate with inputs from gates j and k.zi � zj � zk + zjzk if the ith gate is an OR gate with inputs from gates j and k.zi � (1� zj) if the ith gate is a NOT gate with input from gate j.zi � (zj + zk) if the ith gate is a PARITY gate with inputs from gates j and k.1� zj if the ith gate is an output gate with input from gate j.0 if the ith gate is an input gate (i.e. i � m).Note that z = w Æ y reets the omputation of C on an aeptable input w i� Pi(z) = 0 for everyi 2 [n℄. The veri�er onduts the following tests:Codeword tests: These tests refer to (A;B) being a valid enoding of some string z 2 f0; 1gn. Thatis, these tests hek that both A and B are linear funtions, and that B is onsistent with A.In the latter hek, the veri�er employs a self-orretion proedure (f. [13℄) to the orale B.(There is no need to employ self-orretion to A, beause it is queried at random loations.)Linearity of A: Pik x1, x2 uniformly at random from f0; 1gn and verify that A[x1 + x2℄ =A[x1℄ +A[x2℄.Linearity of B: Pik M1, M2 uniformly at random from f0; 1gn�n and verify that B[M1 +M2℄ = B[M1℄ +B[M2℄.Consisteny of A and B: Pik x1; x2 uniformly at random from f0; 1gn andM uniformly fromf0; 1gn�n and verify that B[M + x1xT2 ℄�B[M ℄ = A[x1℄A[x2℄.Ciruit test: This test heks that the string z enoded in (A;B) represents an aepting ompu-tation of C; that is, that Pi(z) = 0 for every i 2 [n℄. The test heks that a random linearombination of the Pi's evaluates to 0, while employing self-orretion to A and B.Pik �1; : : : ; �n 2 f0; 1g uniformly and independently and letPnk=1 �kPk(z) = 0+Pi `izi+Pi;j Qi;jzizj . Pik x 2 f0; 1gn and M 2 f0; 1gn�n uniformly at random. Verify that 0 +(A[x+ `℄�A[x℄) + (B[M +Q℄�B[M ℄) = 0.Proximity test: This test heks that the m-bit long pre�x of the string z, enoded in A, mathes(or is lose to) the input orale W , while employing self-orretion to A.Pik j 2 [m℄ and x 2 f0; 1gn uniformly. Let ej 2 f0; 1gn denote the vetor that is 1 in thejth oordinate and 0 everywhere else. Verify that W [j℄ = A[x+ ej ℄�A[x℄.The veri�er aepts if all the tests above aept, else it rejets.Resoures. The veri�er uses O(n2) random bits and makes O(1) binary queries.Completeness. It is straightforward to see that if w, the string given by W satis�es C, thenletting z be the set of values of the gates of C and letting A[x℄ = xT z and B[M ℄ = zTMz willsatisfy all tests above. Thus the veri�er has perfet ompleteness.Soundness (with proximity). It follows diretly from the analysis of [4℄ that there exists aÆ0 > 0 suh that for every Æ � Æ0, if the Codeword tests and the Ciruit test above aept withprobability at least 1 � Æ then the orale A is 2Æ-lose to the Hadamard enoding of some stringz = w0 Æ y suh that C(w0) aepts. Now we augment this soundness with a proximity ondition.Suppose the veri�er also aepts the Proximity test with probability at least 1�Æ. Then we have that76



wj 6= A[x+ej℄�A[x℄ with probability at most Æ. Furthermore the events A[x+ej ℄ 6= (x+ej)T z, andA[x℄ 6= xT z happen with probability at most 2Æ eah. Thus, with probability at least 1� 5Æ (overthe possible hoies of j and x), both wj = A[x+ ej℄�A[x℄ and A[x+ ej℄�A[x℄ = (x+ ej)T z�xT zhold. Sine (x+ ej)T z�xT z = eTj z = zj = w0j , it follows that, with probability at least 1�5Æ (overthe hoies of j), wj = w0j . In other words, the string w represented by the orale W is at distaneat most 5Æ away from some string w0 that is aepted by the iruit C.B Randomness-eÆient low-degree tests and the sampling lemmaFollowing [12℄, our onstrution makes heavy use of small-bias spaes [42℄ to save on randomnesswhen hoosing random lines. For a �eld F and parameters m 2 Z+ and � > 0, we require a setS � Fm that is �-biased (with respet to the additive group of Fm). Rather than de�ne small-biasspaes here, we simply state the properties we need. (See, e.g., [12℄ for de�nitions and bakgroundon small-bias spaes.)Lemma B.1 For every F of harateristi 2, m 2 Z+, and � > 0, there is an expliit onstrutionof a �-biased set S � Fm of size at most (log jFmj)=�2 [2℄.We now disuss the properties of suh sets that we will use.Expanding Cayley Graphs. �-biased sets are very useful pseudorandom sets in algebraiappliations, and this is due in part to the expansion properties of the Cayley graphs they generate:Lemma B.2 If S � Fm is �-biased and we let GS be the graph with vertex set Fm and edge setf(x; x + s) : x 2 Fm; s 2 Sg, then all the nontrivial eigenvalues of GS have absolute value at most�jSj.Randomness-EÆient Line Samplers. In [12℄, Lemma B.2 was used to prove the followingsampling lemma. This lemma says that if one wants to estimate the density of a set B � Fm usinglines in Fm as the sample sets, one does not need to pik a random line in Fm whih osts 2 log jFmjrandom bits. A pseudorandom line whose slope omes from an �-biased set will do nearly as well,and the randomness is only (1 + o(1)) � log jFmj. In what follows lx;y is the line passing throughpoint x in diretion y, formally: lx;y = fx+ ty : t 2 FgLemma B.3 ([12℄, Sampling Lemma 4.3) Suppose S � Fm is �-biased. Then, for any B �Fm of density � = jBj=jFmj, and any � > 0,Prx2Fm;y2S ����� jlx;y \Bjjlx;yj � ����� > �� � � 1jF j + �� � ��2 :Randomness-EÆient Low Degree Tests Ben-Sasson et al. [12℄ use the randomness-eÆientSampling Lemma B.3 to obtain randomness eÆient low degree tests, by performing a \line vs.point" test only for pseudorandom lines with a diretion y oming from a small �-biased set. Thatis for a set S � Fm, we onsider lines of the form lx;y(t) = x+ ty, for x 2 Fm and y 2 S, and letL be the set of all suh lines, where eah line is parametrized in a anonial way.Then for funtions f : Fm ! F , and g : L ! Pd, where Pd is the set of univariate polynomialsof degree at most d over F , we let LDTf;gS;d be the test that uniformly selets l R L , flx;y : x 2Fm; y 2 Sg and t 2 F , and aepts i� g(l)(t) = f(l(t)). That is, the value of the degree d univariatepolynomial g(l) at point t equals the value of f at l(t). We quote their main theorem and will useit in our onstrutions. 77



Theorem B.4 ([12℄, Theorem 4.1) There exists a universal onstant � > 0 suh that the fol-lowing holds. Let d � jF j=3;m � �jF j= log jF j; S � Fm be a �-biased set for � � �=(m log jF j),and Æ � �. Then, for every f : Fm ! F and g : L ! Pd suh that f is at least 4Æ-far from, anypolynomial of degree at most md, we have the following:Pr[LDTf;gS;d = rej℄ > Æ:
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