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Summary: As pointed out by Kowalski and Pelc (FOCS, 2002), there is an error in
our paper (which appeared in the JCSS, 1992). The error is due to a gap between
two reasonable models of radio communication without collision-detection mechanisms.
Specifically, this effects the linear-time lower-bound claimed in our paper, which does
hold for one model but not for the other related model (which unfortunately is the
model stated in the paper).

The difference between the two models is in the treatment of the case in which several
neighbors of a potential receiver transmit at the same time. In one model (formulated
below), the result may be arbitrary (i.e., either one transmission is received or nothing
is received (like in case of no transmission)). In the second model (formulated in the
original paper), the result (in case of multiple transmissions) is that nothing is received.

1 High level description and discussion

The errata refers to our paper On the Time-Complexity of Broadcast in Radio Networks: An
Ezponential Gap Between Determinism and Randomization, which has appeared in the Journal
of Computer and system Sciences, Vol. 45, (1992), pages 104-126. Specifically, we refer to the
linear lower-bound on the deterministic time-complexity of broadcast (in radio networks), which is
claimed in that paper.

1.1 Two models

The said lower-bound is valid in a reasonable model of radio communication, but (as shown by
Kowalski and Pelc, FOCS’02) not in the model stated in the original work. The different between
these two models refers to what is postulated to happen in case several neighbors of a potential
receiver choose to transmit in the same time (or round). Recall that there are three possible cases
(w.r.t the number of transmitting neighbors):
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1. None of the neighbors transmits.

Clearly, in this case, the receiver obtains no message.

2. Exactly one of the neighbors transmits.

In this case, the receiver obtains the message.

3. Several (i.e., at least two) of the neighbors transmits.

The issue is what happens in this case.

If conflict detection mechanisms are available in the network (and are used by the receiver), then
the receiver can distinguish the above three cases (and in particular may distinguish the third
case from the first two cases that are definitely distinguishable). Our work was aimed at modeling
networks in which conflict detection mechanisms are not available. Intuitively, in such networks, the
third case may be indistinguishable from the first case. But the question we raise here is whether
this means that the third case is always indistinguishable from the first case. Two possible models
emerge.

Model A: as in the original work. In this model it is postulated that the case in which two or
more neighbors transmit is always indistinguishable from the case in which no neighbor transmits.
The rational is that in both cases, the potential receiver hears noise, which is always present also
in case nobody transmits.

Model B: different than in the original work. In this model it is postulated that in case
two or more neighbors transmit the result may be either that one of these transmissions is received
(like in a case of a transmission by a single neighbor) or that nothing is received (as in case that
no neighbor transmits). The rational is that the case of multiple transmission is a bad event and
it is unpredictable what its outcome may be. Furthermore, postulating the the outcome is always
indistinguishable from the case in which no neighbor transmits means that one can distinguish
the case of single transmission from the case of multiple transmission. This seems to be a strong
assumption, which may not hold in some communication networks.

Clearly, an execution under Model A is also a valid execution under Model B, but the converse
does not hold. Note that in Model A the message delivery events are fully determined by the
number of neighbors that transmit, whereas in Model B in some cases (i.e., multiple transmitters)
delivery is decided non-deterministically (i.e., by an adversary).

We note that our original intuitions about radio networks were more along the lines of Model B.
However, since Model A is simpler to formulate and negative results regarding Model A certainly
hold for Model B, we preferred at the time to state our negative results with respect to Model A.
Such a choice would have been fully justified if the negative results were to hold also for Model A
(which, unfortunately, is not the case).

1.2 The main facts

The main facts are as follows:

1. The lower-bound claimed in the original work does not hold for Model A.
(For details see the work of Kowalski and Pelc, FOCS’02.)

2. In contrast, the lower-bound claimed in the original work does hold for Model B.



The flaw in the original lower-bound proof is due to a single point; specifically, to the proof of
Lemma 7. The rather laconic proof of Lemma 7 actually refers to executions that are consistent
with Model B (but not with Model A). Consequently, although Lemma 7 is wrong (as stated w.r.t
Model A) it is valid w.r.t Model B (see details below). The rest of the proof of the lower-bound
remains unchanged and correct.

1.3 An after-thought

In retrospect, we prefer Model B over Model A. In a sense, Model B postulates than when a
bad event (i.e., multiple transmission) occurs the result may be arbitrary. In contrast, Model A
postulates than when a bad event (i.e., multiple transmission) occurs the result is always as in
case of a different bad event (i.e., no transmission). Although none of these models seems totally
realistic, Model B feels more adequate because it assumes less about reality. In general, abstract
models may carry reality to an unreasonable extreme, but it seems better to be overly pessimistic
than overly optimistic. Consequently, it is better to have unrealistic events justify negative results
than have them justify positive ones (e.g., see the use of ECHO in the work of Kowalski and Pelc).

On the other hand, Model A has the clear advantage of being simpler. Furthermore, it has been
the focus of much subsequent work. Thus, determining the complexity of braodcast in this model
is of significant interest.

In any case, the flaw pointed out by Kowalski and Pelc is a significant contribution to the
clarification of the issues involved. Furthermore, the discovery of the distinction between the two
models is very interesting and may lead to further improvements in our understanding of these
issues.

2 Technical details

The linear lower-bound on the time-complexity of broadcast is proven by considering broadcast
on a very simple class of networks and reducing the problem of broadcast on these networks to
a combinatorial game. Specifically, for any integer n, we prove a n/8 lower-bound for a class of
(n + 2)-vertex networks of radius 2. Each network in the class is identified by a non-empty subset
S C{1,...,n} and consists of the vertex set {0,1,...,n,n + 1} and the edge set

{(0,9) :i =1,...,n} U{(i,n+1):i€ S}

where vertex 0 (resp., n + 1) is called the source (resp., sink), and we consider broadcast initiated
by the source and ending when the sink receives the message.

The reduction proceeds via a sequence of simplification steps (i.e., considering simplified com-
munication models) and culminates in the reduction of broadcast via abstract protocols (as in
Def. 4) to the hitting game (of Def. 5). The reduction is given in Lemma 7, which (as explained
above) is flawed as stated. The analysis of the hitting game (provided in Sec. 3.3) is correct as
stated.

We thus focus on obtaining a valid version of Lemma 7. All that is needed is to modify the
definition of a broadcast protocol and its simplifications such that they all refer to Model B rather
than to Model A. That is, in Item 3 of Definition 1, we should postulate that a processor, acting
as receiver in a certain time-slot, is guaranteed to receive a message in this time-slot if exactly one
of its neighbors transmits, but may receive a message (of one of its neighbors) also if more than
one of its neighbors transmits. (Indeed, message delivery is not guaranteed in the latter case, but
it may occur nevertheless.) A similar modification applies implicitly to Definition 2 and should be



applied explicitly to Definition 4. It is easy to see that the simple reductions among these protocol
models remain valid. All that remains is to show that the modified Lemma 7 is valid, where this
modified lemma reduces broadcast as formulated in the modified Def. 4 to the game (as stated in
Def. 5, with no change here).

2.1 Proof of the modified Lemma 7

We assume that the reader is familiar with the definition of the abstract broadcast model (as stated
in Def. 4 and modified above) and with the hitting game (as in Def. 5). The rest of the text refers
to these two definitions.

The proof of Lemma 7 describes how to use a t-round broadcast strategy 7 in order to derive
a 2t-move strategy for the game. Recall that 7 determines for each processor, S-indicator bit and
execution prefix, whether the processor is to transmit in the current round; that is, 7(p,o, H)
determines whether processor p transmits, on execution prefix H and when yg(i) = o, where xs(p)
is 1 iff p € S. Each round in the protocol (executed in a network identified with the set S) is
used to determine two moves in the game, and the referees answers (w.r.t this set S) are used to
determine the outcome of this communication round.

In each round, we use the sets 7' and 7° (defined by 7), as the two next moves in the game,
where T7 = {p : n(p,o, H) = 1} and H is the corresponding execution prefix. Recall that a move
M wins in the game if its intersection with S is a singleton (i.e., |M N S| = 1), and otherwise is
answered with refg(M), which is p if {p} = SN M and L otherwise.! If either one of the two
moves wins then we halt and declare the broadcast as completed.? Otherwise, we need to determine
the answer to be given to the protocol 7 (i.e., to specify whether and what massage is delivered).
It suffices to deliver the message (0,p) iff refg(T%) = {p} (which happens iff SNT° = {p}).?
Otherwise, no message is delivered at this round. Note that we only use the second referee answer
(i.e., refg(T?)) to determine the delivery event in the protocol.

Observe that in case we have delivered the message (0,p), it holds that the set of transmitters

(ie., T Aot (T*NS)U (TN S)) contains p. We stress that this delivery is consistent with Model B,

but not necessarily with Model A (because the set 7" may contain additional transmitters on top of
p, which must certainly be in 7 2 T°NS = {p}).* On the other hand, if no message is delivered at
this round and the broadcast is not completed, then it must be that both 7'N.S and T7° NS are not
singletons (because the move T would have won the game in the first case and a message would
have been delivered in the second case), and so the decision not to deliver a message is justified.’
It follows that the way we deliver messages (and determine the protocol’s completion) is consistent
with Model B.

Note that in case the abstract protocol is proclaimed completed in the ith round, it must be
that one of the two corresponding (i.e., 2ith or 2i — 1st) moves wins in the game (i.e., either Tt N S
or T? N S is a singleton). Thus, if the protocol always complete broadcast in ¢ rounds (on any

'"We replace the notation 0 (used in the paper) by L.

2Actually, only a win by the move T implies a successful broadcast, but it does not hurt to define the protocol
successful also in case it is not necessarily so. Alternatively, one may halt and declare the broadcast successful iff
TN S| =1.

3This description is identical to the more cumbersome form of the paper, which actually has a typo. The original
text should have been “let S; «— g(refs(1}'),refz(17)), where g(A, B) = {p} iff AU B = {p}”, which in turn (since
refs(T}') cannot be a singleton) implies that |re fz(77)| = 1. Thus, in fact, S; — {p} iff ref5(T) = {p} and S; — L
otherwise, where S; is the delivery event.

*Indeed, our emulation of Model B does not allow to distinguish the case that T =T°N'S = {p} (i.e., T' NS = ()
from the case that T\ {p} =T* NS # 0.

5If two sets (i.e., 7' NS and T°N'S) are not singletons then neither is their union (i.e., T).



network from the class C),) then there exists a 2¢-move winning strategy for the nth hitting game.
The lemma follows. W

Relation to the original text: The above description is similar to the original text, except
that it was not noticed there that the delivery rule is not consistent with Model A (but is rather
consistent with Model B).

A digest: The proof of Lemma 7 effectively decouples transmissions by parties in .S from trans-

mission by parties in S ot [n]\ S. Viewed in a different way, each round in the original (abstract)
protocol is split into two consecutive rounds such that only processors in 7' N S (resp., 7° N S)
transmit in the first (resp., second) new round. (Recall that the set of transmitters in the original
round is T = (T N S)U (T° N S).) We highlight two key points regarding this transformation.

1. One key observation is that in Model B (but not in Model A), we lose nothing (other than a
factor of 2 in the round complexity) by employing the above transformation. On one hand, if
|T' N S| = 1 then the original protocol IT completes broadcast but so does also the resulting
protocol II". Otherwise (i.e., |T' N S| # 1), determining the delivery events in II’ according to
Model A (and in particular consistently with Model B), we can perfectly emulate the delivery
events in IT in a way that is consistent with Model B. Specifically, we let the original protocol
IT deliver a message iff it was delivered in the resulting protocol II'. This means that we
deliver a message in II iff |79 N S| = 1, regardless of whether |T* N S| =0 or [T' N S| > 1.
(Indeed, this is consistent with Model B but not with Model A.)

2. Referring to the resulting protocol II', we may just analyze it under Model A (which is
consistent with Model B). The key observation is that communication rounds are split to
rounds in which only parties is S may transmit and rounds in which only parties in S may
transmit. This means that II’ may essentially test whether sets determined by it have a single
element in either S or S (i.e., by instructing a corresponding transmission in a corresponding
round). But (unlike IT) protocol II' cannot test whether sets determined by it have a single
element in sets that contain elements from both S and S (e.g., the set S U {p}, where p is
known to be in S).® Thus, the analysis of II' reduces easily to the analysis of the hitting
game (which allows only queries regarding (singleton-intersection with) either S or S, but
not queries regarding a mix of elements from S and S).

2.2 A comment regarding the analysis in Section 3.3

The analysis of the hitting game effectively reduces general strategies to oblivious ones (i.e., to
strategies in which the sequence of moves is fixed before the actual execution starts). This is done
by choosing the adversary set in a way that allows to determine all referee answers from the moves
themselves. That is, given an arbitrary game strategy, we consider the moves it takes when all non-
singleton moves are answered L (and all singletons are answered with the corresponding element,
which is declared not to be in S). Thus, the sequence of moves is fixed (i.e., is independent of S,
which is rather defined to fit this sequence).

®In contrast, in Model A, II may test whether RN (S U {p}) is a singleton, by setting T° = {p} and T* = R’ Lef
R\ {p}, where p is known to be in S, because RN (SU {p}) = (T* NS) U (T°N'S). This yield ability to test whether
R'NS =0, which in turn allows to implement a binary search for an element in S. We stress that this is possible
for the original protocol II operating in Model A, but not when operating in Model B. Furthermore, the resulting
protocol II' cannot conduct such queries (and such a search) even in Model A.



