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1 IntroductionPseudorandom functions [8] are an essential tool in many cryptographic solutions. They can beused to generate a pseudorandom pad for symmetric encryption, to mask a universal hash functionfor producing a secure message-authentication (MAC), to implement secure challenge-responsemechanisms, and so on. In practice, one might use, in the role of pseudorandom functions, variousconcrete primitives, such as block ciphers or keyed hash functions under the assumption that theydo possess the pseudorandomness properties in question.The danger of repetition. In usages of pseudorandom functions such as those mentionedabove, the same pseudorandom function will be applied to many values in the function's domain.In many such cases, security can be compromised if one applies the pseudorandom function twice tothe same point. Consider as an example the following method of encryption. Two parties share akey which speci�es a function f : f0; 1gn ! f0; 1gm from some �xed pseudorandom function family.In order to encrypt a message M of length m, the sender computes f on an element v 2 f0; 1gn andthen sends the pair (v;M � f(v)). Clearly, the security of such a scheme depends on never re-usingthe same value v for encrypting di�erent messages. The same problem arises in other applicationsof pseudorandom functions, including MACs and challenge-response protocols.1.1 Counters versus coinsUsing counters. A natural way to avoid repetition is for the sender to use (as the points onwhich to evaluate the function) an increasing counter, or other form of varying, non-repeating state,which is updated with each application of the function. This does very well in terms of avoidingrepetition, but can have various drawbacks depending on the setting and application.Maintaining a counter, or other state information, might in some settings be impractical orunsafe. This can happen, for example, whenever maintaining a synchronized state across di�erentapplications of the function is unsafe or impossible. Such is the case of a function that is used acrossdi�erent sessions (or invocations) of a protocol, or used (possibly simultaneously) by di�erent usersor components of a system. Additional examples include the use of smart-cards, or authenticationtokens, that store the key to a pseudorandom function in persistent memory but are not equippedwith non-volatile writeable memory to store the varying value of a counter. Even in cases wheresuch a varying state can be stored, security is susceptible to system failures that may reset thevalue of that counter.Also some applications require more for security than mere non-repetitiveness of the value towhich the pseudorandom function is applied; e.g., the value might be a challenge which shouldbe unpredictable, and a counter value is of course highly predictable. In this case too, the use ofcounters is not possible at all.Using coins. Another possibility is to use random values as those on which to evaluate thefunction. This can avoid the need to store varying information, and also yield unpredictability,thereby avoiding the drawbacks of counters. However, randomness might do less well at the taskwe �rst highlighted, namely avoiding repetition. This is due to the \birthday" phenomenon, whichmeans that if the domain of the function has size N = 2n, and we apply the function to a sequenceof q points selected at random from the domain, we have probability about q2=N of seeing arepetition in the selected points. In the encryption example discussed above, this represents asigni�cant decrease in the number of messages that can be safely encrypted: only pN if we userandom values for the point v, but up to N (depending on the security of the pseudorandomfunction family) if we use counters. 3



Construction Insecurity No. f-appls.Upper bound Lower bound1. CBC-2 12q2N [6] 
( q2N ) [15] 22. Feistel-t (t = 3; 4) q2N [11] 
( q2N ) t3. [12] O( q2N ) [12] 
( q2N ) 24. Benes [1] O � qN � [1] 
 � qN � 85. 
t (t � 1) [13] qt+1(t+1)Nt [13] ? 2t6. Feistel-6 O( q4N3 + q2N2 ) [14] ? 6Figure 1: Input-length doubling transformations: Constructing g: f0; 1g2n ! f0; 1gn given f : f0; 1gn !f0; 1gn. The insecurity is the maximum adversarial success in q queries. Both upper bounds and lowerbounds (attacks) on the insecurity are shown. Here N = 2n. \No. f -apps" is the number of applications off used in one computation of g, and is the main cost. \Feistel-t" means t rounds, and \CBC-2" means CBCon two blocks. Constructions 2,3,4,6 yield maps of 2n bits to 2n bits; in our context it is implicit that theoutputs are truncated. Question marks mean we don't know. See the text for (even) more discussion.Thus the birthday bound for query collisions may become the security bottleneck of the wholeapplication. This is particularly evident when using 64-bit input pseudorandom functions, such asthose based on DES. In this case a number q = 232 of queries nulli�es the quanti�ed security; evenq = 225 leaves us with an insecurity (ie. chance that the scheme may be broken) of q2=N = 2�14,which is fairly high. With 128-bit blocks (such as in the AES proposals) the probability of repeatedqueries leaves less security than usually intended: in this case q = 232 provides 2�64 insecurity, lessthan the usually conjectured \128-bit security" for these ciphers.The above discussion raises the natural question of to what extent the use of varying state(e.g. counters) is essential for avoiding the quadratic degradation in the security of the function.In other words, can we combine the advantages of coins and counters: get security beyond thebirthday bound, yet avoid the need to maintain state?Using input-length doubling transformations. One approach is to change the pseudoran-dom function and use instead one with a larger domain. For example, instead of f : f0; 1gn !f0; 1gm, we use a pseudorandom function g: f0; 1g2n ! f0; 1gm. This however can be impractical,or may not increase security in the desired way, as we now discuss.Since total redesign of the function is typically not desirable, one would usually try to build g ina generic way from f . Figure 1 summarizes the main known designs. (It sets m = n for simplicity.)For example, one can use the popular CBC-MAC construction. Another alternative is to use one ofmany known transformations of pseudorandom functions on n bits to pseudorandom permutations(or functions) on 2n bits, and simply drop all but the last m bits of the output. (Constructions2,3,4,6 of the table fall in this class, while construction 5 is directly of 2n bits to n bits.) Figure 1indicates the best known analyses upper bounding the insecurity, the best known attacks lowerbounding the insecurity, and the cost measured in terms of the number of applications of f neededto make one computation of g. As the table indicates, the most e�cient known constructionsare still vulnerable to attacks that in q queries achieve success related to q2=N where N = 2n is4



Property Insecurity No. f-appls.Upper bound Lower bound1. Pseudorandomness O(t!) � q2Nt 
(t!) � q2Nt t2. Integrity (t lgN)O(t) � q3Nt 
(tt) � q3Nt tFigure 2: The two security properties of the t-fold parity construction for t � 1: Parameters are as in Figure 1.This is true for q < N=(2e2t), and t is odd in 2. Bounds shown are approximate.the domain size of the original function. (In particular 1,2,3). The last three constructions havebetter bounds on the insecurity, but as the table shows, their computational cost (the number off -applications) is relatively high. In particular, as we will see (Figure 2), it is higher than the costof our methods discussed below.1.2 The parity method and results in briefConstruction. In this paper we propose and investigate a simple mechanism to go beyond thebirthday barrier without using counters or state information. We call it the \parity method".Instead of computing the function at a single random point, compute it at several random (butdistinct) points (typically two or three points will su�ce) and take the parity of the results (namely,XOR these values). For instance, in the above encryption example, if the sender wants to encryptplaintextM , he will choose two di�erent random values r1; r2 from the domain of the function, andsend to the other party as the ciphertext the triple (r1; r2;M �f(r1)�f(r2)). Similar methods willbe used for other applications such as challenge-response, message authentication, or key derivation.As a result our methods o�er a sateless alternative to achieve the high security of stateful schemesat a moderate computational cost but with increased use of random bits.Security. We are interested in proving general security properties of the parity method that canlater be applied to prove the security of speci�c encryption schemes (such as the one discussedabove) or MAC schemes (such as we will discuss below). Accordingly, we begin by considering theprobabilistic function that embodies the parity construct, namelyF (r1; : : : ; rt) = Lti=1 f(ri) (1)where the ri's are uniformly chosen di�erent n-bit numbers. The �rst security property we consideris pseudorandomness, or \distinguishability distance" from true randomness, of the (randomized)function F . This corresponds to passive attacks. The second security property we call \integrity",and it corresponds to certain kinds of active attacks. (In the coming sections we will discuss theseproperties in more depth, and see how they apply to encryption and MAC respectively.) In eithercase we are interested in how the security of this randomized function degrades after q queriesrelative to the security of the original pseudorandom function f . Our analyses reduce this questionto a purely information-theoretic setting, and show that the parity method ampli�es security atquite a high rate, enabling one to move well beyond the birthday barrier. Our results are displayedin Figure 2 and discussed below.Pseudorandomness amplification and encryption. An adversary sees q vectors (r1; : : : ; rt)and the output of the parity function on them. We de�ne a certain \bad" event and show that5



subject to its not happening, the outputs look uniform. Exploiting and extending a connection of[4], the bad event is that a certain matrix associated to the vectors is not of full rank. Lemma 3.3bounds this probability roughly by:O(t!) � q2N t for q � Ne2t ; (2)where N = 2n is the size of the domain of the function.1 (The bound on q is necessary: we note inSection 3.2 why the parity construct is not pseudorandom when q > N .) Remarkably, the boundEquation (2) shows that if f is chosen as a truly random function then the e�ect of the parityconstruct of Equation (1) on limiting the degradation of security due to repeated queries is, forq < O(N=t) and small t, close to the e�ect of applying a random function on single inputs of lengthtn. Indeed, in the latter case the distance from randomness is, using the birthday argument, ofthe order of q2Nt . That is, we approximate the e�ect of a t-fold increase in the queries size withoutnecessitating any change to the underlying function f . We note that the bound is tight.The encryption scheme discussed above, a special case of the CTR scheme in [2], was shown bythe latter to have insecurity (under a chosen-plaintext attack of q < N messages) at most �, themaximum possible attainable advantage in breaking the underlying pseudorandom function in qqueries and time related to that allowed the encryption attacker. The insecurity of the randomized(stateless) version is only bounded by �+ q2=N due to birthday attacks. In Section 3.3 we considerthe (counter-less) encryption scheme in which to encrypt plaintextM , we choose t distinct randomvalues r1; : : : ; rt and set the ciphertext to (r1; : : : ; rt; F (r1; : : : ; rt)�M). Theorem 3.7 bounds itsinsecurity by the term of Equation (2) modulo an additive term corresponding to the insecurity ofF under tq queries. Considering the case t = 2 discussed above, for q = O(pN), the new schemehas security which is close to the counter-version of the basic CTR scheme, whereas the coin-versionof the basic scheme is totally insecure at q = pN . Furthermore the security gets even better withlarger t.Our improvements are more than in merely going beyond the birthday barrier. The insecurity ofthe parity construct grows much more slowly with q than the insecurity of constructs from Figure 1when q > pN . This is true already with t = 2, and with t = 3 the gap is quite large. For moreinformation see the plots in Figure 3.Integrity amplification and message authentication. In the Carter-Wegman paradigm[17], the MAC of message M is (C; h(M)�f(C)), where C is a counter value, f is a pseudorandomfunction (PRF), and h is a �-AXU hash function [10]. When trying to make this stateless bysubstituting a random string for C, security drops to the birthday bound. The same situationarises in the XOR MAC schemes of [4]. A counter based variant of their scheme has high security,but the stateless version substitutes a random value for the counter and security drops to thebirthday bound. The modi�ed (stateless) Carter-Wegman MAC scheme we propose is that theMAC of message M be (r1; : : : ; rt; h(M)�F (r1; : : : ; rt)) where r1; : : : ; rt 2 f0; 1gn are random butdistinct points, and f; h are as before. Here t is a parameter, and the higher we set it, the moresecurity we get, though each increment to t costs one extra application of the PRF.The pseudorandomness of the parity construct does not by itself guarantee security of the abovedue to the fact that an adversary in a MAC setting is allowed an active attack, and can attempta forgery in which the values r1; : : : ; rt are of its own choice. We propose another property of the1 We are simplifying a little, but the deviation from the more complex bound of Equation (5) is insigni�cant forreasonable values of t. The constant in the big-oh in O(t!) can be taken to be one in all practical situations, exceptfor the case t = 2 when it is larger, about 30. (Practical means N is large and t is small.) See Corollary 3.4 andLemma 3.3 for more information. 6



parity construct we call \integrity". We again reduce the analysis to the question of whether thematrix associated to the points on which the parity function is evaluated has a certain property,which we call \vulnerability" and is de�ned in Section 4. Improvement over the birthday boundoccurs only at t � 3. Speci�cally, for odd t, Lemma 4.2 bounds the probability of vulnerability byd0(t; lgN) � q3N t for q � N2e2t ; (3)where N = 2n and d0(t; lgN) is a polynomial in lgN for each �xed t, whose value is speci�ed byEquation (17). (Curiously enough, the bound for even t � 4 is typically inferior to the bound fort�1. Speci�cally, for even t our bound is d0(t; lgN) � q2Nt=2 , which is tight.) Note that this expressionis inferior to the one obtained in Equation (2). Still, it su�ces for our applications. We apply thisto get Theorem 4.4, an analysis of the security of the MAC scheme discussed above.1.3 Discussion and related workOne should note that getting security beyond the birthday bound (both in the case where one usescounters, and in our setting where one does not) requires that we use a pseudorandom functionfamily which itself has security beyond the birthday bound. This precludes the direct use of blockciphers; since they are permutations, their security does not go beyond the birthday bound. Thequestion of designing pseudorandom functions (with security beyond the birthday bound) out ofpseudorandom permutations (which model block ciphers) was �rst considered by Bellare, Krovetzand Rogaway [7] and later by Hall, Wagner, Kelsey and Schneier [9] and Bellare and Impagliazzo[5]. These works provide several constructions that one might use. (The works of [7, 9] werealso motivated by the desire to get beyond the birthday bound for encryption, but were using acounter-based encryption scheme: their applications are not stateless.)Shoup [16] considers various ways of providing better security tradeo�s when using pseudo-random functions or permutations as masks in universal-hash function based MACs. He gets thesecurity to decrease slower as a function of the number of queries, but does not get security beyondthe birthday bound without the use of state.1.4 OrganizationIn Section 2 we recall de�nitions of pseudorandom functions, encryption schemes and MAC schemesand their security. Section 3 considers the pseudorandomness of parity and its application toencryption, while Section 4 considers the integrity properties of parity and their application tomessage authentication. A wider perspective is provided in the Appendix A where we consideran arbitrary randomized process which is being applied iteratively on the same random-pad (orrandom function).2 De�nitionsPrimitives discussed in this paper include pseudorandom function families [8], symmetric encryptionschemes, and MACs. Security of all these will be treated in a concrete framework along the linesof works like [6, 2]. Since this approach is by now used in many places, we will brie
y summarizethe concepts and terms we need.The de�nitional paradigm we employ is to associate to any scheme an insecurity function which,given some set of parameters de�ning resource limitations, returns the maximum possible success7



probability of an adversary limited to the given resources. The de�nition of \success" various withthe goal of the primitive, as do the resources considered.Throughout the paper we assume some �xed RAM model of computation and measure com-putation time (of a given algorithm on certain inputs) by the number of steps in this model. Thisenables us to consider the computational complexity of tasks de�ned on �nite domains. When werefer below to \running time" we mean the time in this sense, plus the size of the description ofthe algorithm (namely, the code).Pseudorandom function families. [Notion of [8], concretized as per [6]]. To a family F offunctions (in which each function maps f0; 1gn to f0; 1gm) we associate an insecurity functionInSecprf(F; �; �) de�ned as follows: For integers q; T the quantity InSecprf(F; q; T ) is the maximumpossible \advantage" that an adversary can obtain in distinguishing between the cases where itsgiven oracle is a random member of F or a truly random function of f0; 1gn to f0; 1gm, when theadversary is restricted to q oracle queries and running time T .More precisely let R be the family of all functions each mapping f0; 1gn to f0; 1gm, and F a sub-set of R. Goldreich, Goldwasser and Micali [8] de�ne the advantage Advprf(D) of a (distinguisher)adversary D in breaking F asAdvprf(D) = ���� Prf R F hDf = 1 i� Prf R R hDf = 1 i ���� :The insecurity of F as a pseudorandom function family is the function InSecprf(F; �; �), whereInSecprf(F; q; T ) is the maximum value of Advprf(D), taken over all adversaries D that make upto q queries of their function oracle f and run in time at most T [6].Symmetric encryption schemes. [Following [2]]. To a symmetric encryption scheme ENC(consisting of a probabilistic encryption algorithm and deterministic decryption algorithm) we as-sociate an insecurity function InSecenc(ENC; �; �) de�ned as follows: For integers �; T the quantityInSecenc(ENC; �; T ) is the maximum possible probability that an adversary can \break" the en-cryption scheme under a chosen-plaintext attack in which a total of � plaintext bits are encryptedand the running time of the adversary is restricted to T . (\Break" here means in the sense ofreal-or-random security as detailed in [2].)MACs. [Following [4]]. Unlike what is traditionally called a \MAC," ours generate tags (calledmacs) probabilistically. Veri�cation thus cannot be done by tag re-computation. Accordingly, thedescription of a speci�c MAC scheme MAC includes two procedures, a mac generation procedurewe denote MAC:gen, and a mac veri�cation procedure we denote MAC:vf. The �rst (which israndomized) takes K;M and returns a mac; the second (which is deterministic) takes K;M; �0and returns 0 or 1. Naturally, macs generated by the generation procedure are accepted by theveri�cation procedure. Following [4], the success Succmac(A) of an adversary A attacking a speci�cscheme MAC is the probability (over the choice of key K and the coins of A) that the followingexperiment returns 1{Choose key K at random and let (M;�) AMAC:gen(K;�) ;MAC:vf(K;�;�)If MAC:vf(K;M; �) = 1 and M was never queried of MAC:gen(K; �)then return 1 else return 0The insecurity of MAC as a MAC is the function InSecmac(MAC; �; �; �), where InSecmac(MAC; qa;qv; T ) is the maximum of Succmac(A) taken over over all adversaries A that make up to qa macgeneration queries and qv mac veri�cation queries and run for time at most T . We adopt theconvention that the adversary makes a veri�cation query on the attempted forgery it outputs, sothat qv is always at least 1. 8



Conventions. In any insecurity function, we might drop the time argument T , and it is tobe understood then that the time allowed the adversary is not restricted, meaning we are in aninformation theoretic setting. Indeed, this will be the important case in analyses.3 Pseudorandomness of parity and application to encryptionWe need a bit of terminology. A sequence R = (r1; : : : ; rt) of n-bit strings is called non-colliding ifthe t strings r1; : : : ; rt are all distinct. We let D(n; t) denote the set of all non-colliding t-sequencesof n-bit strings. We let R(n;m) denote the set of all functions of f0; 1gn to f0; 1gm.3.1 Distributions and matrix connectionParity distribution. Consider the following game. A random function f from R(n;m) is chosenand �xed. Then q non-colliding sequences, Ri = (ri;1; : : : ; ri;t) for i = 1; : : : ; q, are chosen randomlyand independently. An adversary is provided these sequences together with the q correspondingoutput values of the parity function, namely bi = f(ri;1)� � � � �f(ri;t) for i = 1; : : : ; q. In appli-cations, it is typical that as long as b1; : : : ; bq look like random independent m-bit strings (giventhe other information), the adversary will not be able to derive any \advantage" in \breaking" thesecurity of the application, whatever that may be. This will be seen more clearly and speci�callylater, but for the moment we wish only to give some clue as to the motivation for what we now lookat. Namely, the experiment which produces the output just described, which we call Par(n;m; q; t).We wish to \compare" this to the output of the experiment which picks R1; : : : ; Rq the same way,and b1; : : : ; bq randomly. The experiments are described below.Experiment Par(n;m; q; t)f R R(n;m)For i = 1; : : : ; q doRi = (ri;1; : : : ; ri;t) R D(n; t)bi  Ltj=1f(ri;j)End ForOutput (R1; b1; : : : ; Rq; bq)
Experiment Rnd(n;m; q)For i = 1; : : : ; q doRi = (ri;1; : : : ; ri;t) R D(n; t)bi R f0; 1gmEnd ForOutput (R1; b1; : : : ; Rq; bq)A natural comparison measure is the statistical distance between the output distributions of theseexperiments, de�ned asStatDist [Par(n;m; q; t);Rnd(n;m; q)]= maxJ n ��� Pr h J(!) = 1 : ! R Par(n;m; q; t) i� Pr h J(!) = 1 : ! R Rnd(n;m; q) i ��� o ;the maximum being over all (computationally unlimited) \judging" algorithms J that return either0 or 1 on any input. We would like to upper bound this. In fact we will need a stronger claim.We will de�ne a certain \bad" event, and upper bound its probability. We will also assert thatconditioned on the bad event not occurring, the outputs of the two experiments are identicallydistributed. (The bad event will depend only on the choices of R1; : : : ; Rq hence is de�ned andhas the same probability under both experiments.) In other words, when the bad event does notoccur, the outputs b1; : : : ; bq of the parity experiment are random and uniform. As Proposition 3.2indicates it follows that the statistical distance between the output distributions of the two ex-periments is bounded by the probability of the bad event, but applications will in fact exploit thestronger assertion. 9



Matrix to pseudorandomness connection. The de�nition of the bad event is based on anassociation of a matrix to the parity distribution. This connection is taken from [4], where it isused to analyze a MAC construction based on the XOR operation. We adapt it for our purposes.Then the bulk of our analysis focuses on this matrix. Let us now describe the matrix and explainmore precisely the connection to the pseudorandomness of parity.To any non-colliding sequence R = (r1; : : : ; rt) of n-bit strings is associated its characteristicvector of length N = 2n, denoted ChVec(R). Namely, if we consider the values ri as representinginteger numbers between 0 and N�1 then the characteristic vector of r1; : : : ; rt will have a value of1 in the positions corresponding to these t numbers and 0 elsewhere. If R1; : : : ; Rq are non-collidingsequences we denote by MTXN;q(R1; : : : ; Rq) the q by N matrix (of zeros and ones) whose i-th rowis ChVec(Ri) for i = 1; : : : ; q. We are interested in the rank of our matrix when it is viewed as arandom variable over the choices of R1; : : : ; Rq from D(n; t). Speci�cally, we want the matrix tohave full rank, meaning rank equal to the number of rows q. We consider the probability that thisdoes not happen:NFRProb(N; q; t) = Pr hMTXN;q(R1; : : : ; Rq) is not of rank q : R1; : : : ; Rq R D(n; t) i :Now, let bi = f(ri;1)� � � � �f(ri;t) for i = 1; : : : ; q. View the values b1; : : : ; bq as arranged in acolumn vector consisting of q strings, each m-bits long. Then notice that this vector is given bythe following matrix vector product, where as before we identify f0; 1gn with f0; 1; : : : ; N � 1g forsimplicity: MTXN;q(R1; : : : ; Rq) � 266664 f(0)f(1)...f(N � 1) 377775 = 266664 b1b2...bq 377775 : (4)Namely b1 = f(r1;1)� � � � �f(r1;t) = Pj f(j), the sum being taken over all values j for which thej-th coordinate of ChVec(R1) is 1, and so on.The following lemma says that as long as the matrix has full rank, the entries of the outputvector are uniformly and independently distributed over f0; 1gm. That is, they look like the outputsof a random function with range f0; 1gm being evaluated at q distinct points. It is an adaption ofa lemma of [4] to our setting, and is informally stated. We will not prove this here; the reader isreferred to [4].Lemma 3.1 Conditioned on the event that MTXN;q(R1; : : : ; Rq) is of rank q, the outputs of ex-periment Par(n;m; q; t) and experiment Rnd(q; t) are identically distributed.The implication in terms of the usage of the parity construct is that as long as the matrix maintainsfull rank, seeing the outputs of the parity construct yields no information at all to an adversary. Itis just like seeing values of a random function on distinct points. Accordingly, adversarial successwill only happen when the matrix is not of full rank. For this reason, our e�orts are concentrated onupper bounding NFRProb(N; q; t). Before we do that, however, let us state some relations betweenthe probability we are considering and the statistical distance discussed earlier. Although we don'tuse these facts directly, they are useful in understanding the results.Proposition 3.2 Let N = 2n. Then[1� 2�m] � NFRProb(N; q; t) � StatDist [Par(n;m; q; t);Rnd(n;m; q)] � NFRProb(N; q; t) :10



Proof: The upper bound follows from Lemma 3.1. For the lower bound we present a judge Jachieving advantage equal to the claimed bound. The judge J gets input ! = (R1; b1; : : : ; Rq; bq)and wants to tell from which of the two distributions ! was drawn. If MTXN;q(R1; : : : ; Rq) hasrank q then J can obtain no advantage, and hence outputs a random bit. Else it �xes some i andsome non-empty S � f1; : : : ; qg � fig such that Ri = �j2SRj. If bi = �j2Sbj then it guesses that! was from Par(n;m; q; t) (meaning it outputs 1) else it guesses ! was from Rnd(n;m; q) (meaningit outputs 0) The advantage of this judge is the claimed lower bound.In other words, the statistical distance is fully captured by the probability that the matrix is notof full rank: to within a constant factor, it is both an upper and a lower bound.3.2 Main lemma: Bound on NFRProb(N; q; t)The heart of our analysis reduces by the above to upper bounding the probability that the matrixMTXN;q(R1; : : : ; Rq) is not of full rank when R1; : : : ; Rq are randomly and independently chosennon-colliding vectors. The bound is given in terms of N = 2n; t and q in the following lemma. Heree is the base of the natural logarithm.Lemma 3.3 Let t be such that 1 � t � pN=(e lgN). Then for any q < N=(e2t) we haveNFRProb(N; q; t) � d1(t) � q2N t + 8>>><>>>: d2(t; lgN) � q3N3t=2 if t is evend2(t; lgN) � q4N2t if t is odd ; (5)where d1(t) = 0:76 � t! (6)and d2(t; n) = ( 3e3+3t=22�3t�3+3tn�3+3t=2 if t is evene4+2t2�4t�4+4tn�4+2t if t is odd. (7)Discussion of the bounds. Let us now interpret the bounds of Lemma 3.3. First, the upperbound on t is a technicality insigni�cant in practice, and safely ignored. (For example if N = 264 itsays roughly that t � 229, and we are interested in values like t = 2; 3; 4.) The bound on q indicatesthat we are not expecting security for q above N ; in fact q must be O(N). This is necessary,as explained below. The main thing is Equation (5) which says that NFRProb(N; q; t) is roughlybounded by q2=N t. This is modulo a small constant factor, and also an additive term. The additiveterm has a factor of qs=N st=2 with s � 3, which is small enough to make the whole additive termnegligible, even given the somewhat large seeming coe�cient d2(t; lgN). Accordingly it is safe toview the above bound as essentially d1(t) � q2=N t for common values of N; t, and in later parts ofthis paper we will make this simplifying assumption.Examples. It is worth looking at some special cases to see how these bounds behave. Typicalpseudorandom functions candidates (eg. block ciphers) have n � 64 so let us make this assumption.That means N � 264. We are interested in values of t as small as possible. The following indicatesthat there is little reason to go beyond t = 3, and even t = 2 is very good.11



Corollary 3.4 Let n � 64 and let N = 2n. Assume q < N=23. ThenNFRProb(N; q; t) � 57 � q2N2 if t = 2, (8)and NFRProb(N; q; t) � 5 � q2N3 if t = 3. (9)Proof: Apply Lemma 3.3. We take q < N=(3e2) to cover the cases t = 2 and t = 3. For t = 2 wehave d2(t; n) = 3e6. Thus the bound isNFRProb(N; q; t) � d1(2) � q2N2 + 3e6 � q3N3� �d1(2) + 3e6 � qN � � q2N2� �1:52 + 3e6 � 13e2 � � q2N2 :Simplifying yields Equation (8). Note we did not need the lower bound on n here since d2(2; n)does not depend on n.For t = 3 the bound becomesNFRProb(N; q; t) � d1(3) � q2N3 + e102�438n2 � q4N6� "d1(3) + e102�438n2 � q2N3# � q2N3� �4:56 + e102�438n2 � 132e4N � � q2N3� "4:56 + e62�436 � lg2(N)N # � q2N3� "4:56 + e62�436 � 642264 # � q2N3� h4:56 + 2�37i � q2N3 :This yields Equation (9).As these calculations indicate, the in
uence of the second term in the bound e�ectively vanishesfor t � 3 as long as N is reasonably large. That is why, as indicated above, there is little loss inthinking of the bound as O(t!) � q2=N t in general.Figure 3 plots for comparison's sake the functions of Corollary 3.4 and also some functions fromFigure 1. The conclusion is that the parity construct with t = 2 does as well as the best previousknown construct although at lower cost, while with t = 3 the security is higher than any previousknown construct, yet the cost stays lower.Tightness of the bound. The upper bound of Lemma 3.3 can be proven to be approximatelytight by considering the event in which two rows in MTXN;q(R1; : : : ; Rq) are identical. This is aninstance of the usual birthday paradox: We are selecting q rows from a universe of �Nt � possible12
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Note: Use ghostview to see the graphs in color.Here we have set N = 264 and x = lg(q) and plotted the following functions:bd(x) = 22xN = q2Nl(x) = 2xN = qNp2(x) = 57 � 22xN2 = 57 � q2N2p3(x) = 5 � 22xN3 = 5 � q2N3 :The �rst function is the birthday bound, refelcting the insecurity of the �rst few constructions of Figure 1.We refer to l(x) as the linear bound: it is that of the of Aiello and Venkatesan's Benes construction [1], alsolisted in Figure 1. The third is the bound for the pseudorandomness of the parity construct when t = 2 asgiven by Corollary 3.4, and the last is the case t = 3 as given by the same Corollary. The �rst graph showsthe birthday behavior: function bd(x) goes to 1 as q hits 232 = pN , while the others stay small much longer.A closer look at the \tail" is provided by the second graph. It indicates that insecurity function of the parityconstruct with t = 2 is lower than the linear function upto about q = 258, then gets higher. The insecurityfunction of the parity construct with t = 3 however is essentially zero; at these scales it simply does not lifto� the x-axis in the above pictures. In summary the parity construction with t = 2 yields essentially thesame security as the best previous construction but at lower cost, while that with t = 3 yields better securityand still at lower cost. Figure 3: Comparitive plots of insecurity functions.13



rows. Then a standard birthday calculation (we take the speci�c estimates used here from [4]) saysthat for 2 � q � q�Nt � the probability of collisions is at least0:16 � q2�Nt � � 0:16 � q2N t=t! � 0:16 � t! � q2N t :Comparing with the �rst term in the bound of Lemma 3.3 we see that the bounds are tight towithin a constant that is independent of N; t; q.Necessity of bound on q. Lemma 3.3 holds only for q < O(N). It turns out the bound on q isnecessary up to the constant factor: if q > N then the matrix MTXN;q(R1; : : : ; Rq) obviously doesnot have rank q, since q (the number of rows) is more than N (the number of columns). That is,NFRProb(N; q; t) = 1 when q > N . Note that this re
ects the fact that the parity construct is notpseudorandom when q > N : applying Proposition 3.2 with q > N we haveStatDist [Par(n;m; q; t);Rnd(n;m; q)] � 12 ;meaning the statistical distance between the distributions output by experiments Par(n;m; q; t)and Rnd(n;m; q) is large when q > N . So indeed, no security can be expected from the parityconstruct when q > N .Pseudorandomness of the parity construct. Putting together Proposition 3.2 and Lemma 3.3tells us that except with probability about d1(t) � q2=2nt, the outputs of experiments Par(n;m; q; t)and Rnd(q; t) are identically distributed. More precisely:Corollary 3.5 Let n � 1 and N = 2n. Let t be such that 1 � t � p2N=(e lgN). Let d1(t) andd2(t; n) be as in Lemma 3.3, and let q < N=(e2t). ThenStatDist [Par(n;m; q; t);Rnd(q; t)] � d1(t) � q2N t + 8>>><>>>: d2(t; lgN) � q3N3t=2 if t is evend2(t; lgN) � q4N2t if t is odd :Proof: Follows from Proposition 3.2 and Lemma 3.3.Proof of Lemma 3.3. Finally we prove the main lemma.Proof of Lemma 3.3: The case of t = 1 corresponds to the well-known birthday bound (i.e., weare interested in the probability that two rows have their single 1-entry in the same column). Theproof thus focuses on (and assumes) t � 2. In the following, it is understood that the probabilitiesare over the choices of R1; : : : ; Rq uniformly and independently from D(n; t).NFRProb(N; q; t) = q�1Xi=2 Pr[MTXN;q(R1; : : : ; Rq) has rank i ]� q�1Xi=2 X1�j1<���<ji�qPr[Rows j1; : : : ; ji of MTXN;q(R1; : : : ; Rq) sum to zero ] :Let p(N; i; t) denote the probability that a i-by-N matrix over Z2, in which each row is a randomN -string with exactly t ones, has row-sum zero. Since the probability above does not depend on14



which rows we consider we haveNFRProb(N; q; t) � q�1Xi=2  qi! � p(N; i; t) :Notice that if t is odd then three rows of the matrix cannot sum to zero. So set s = 3 if t is evenand s = 4 if t is odd. Then our bound becomesNFRProb(N; q; t) �  q2! � p(N; 2; t) + q�1Xi=s  qi! � p(N; i; t) : (10)Claim: For any 2 � i � q � 1 we havep(N; i; t) � 8>>><>>>: 2d1(t)N t if i = 2� eti2N �ti=2 if i � 3 :Proof of Claim: Let R denote a matrix selected according to the above distribution. If i = 2 thenp(N; 2; t) is just the probability of a collision when two balls are thrown into �Nt � buckets. This is1�Nt � = t!(N � t)!N ! = t!N(N � 1) � � � (N � t+ 1) � t!(N � t+ 1)t :By assumption t � pN=(e lgN) so we can lower bound the denominator by�N �pN�t = N t � �1� 1pN �t � N t � �1� tpN � � N t � �1� 1(e lgN)1=2� :The lowest value of N meeting the conditions in the lemma statement is N = 9 and hence theabove is at most 0:659 �N t. Putting all this together we getp(N; 2; t) � 1:517 � t!N t � 2d1(t) �N�tas desired.Now consider i � 3. Each column in R having some 1-entry, must have at least 2 such entries.Thus, the probability that the rows of R sum to zero is upper bounded by the probability that Rhas 1-entries in at most it=2 columns. We can view the choice of a row as that of picking at randoma subset of exactly t columns in which to place ones. Thusp(N; i; t) �  Nti=2! � "�ti=2t ��Nt � #i =  Nti=2! � "Qt�1j=0 ti2 � jQt�1j=0N � j #i :Now use the fact that a � b implies (a � 1)=(b � 1) � a=b. This can be applied since ti=2 � N=2,the latter being true because i � q � N=(2e2t). This bounds the above by Nti=2! � (ti=2N)ti � � Neti=2�ti=2 � (ti=2N)ti :Simplifying the last term yields the claim. 2
15



From Equation (10) and the Claim we getNFRProb(N; q; t) �  q2! � p(N; 2; t) + q�1Xi=s �qei �i � � eti2N �ti=2=  q2! � 2d1(t)N t + q�1Xi=s "eq � � et2N �t=2 � i t2 � 1#i : (11)The �rst term of Equation (11) is at mostq22 � 2d1(t)N t = d1(t) � q2N t : (12)This yields the �rst term in the bound claimed in the lemma statement. Now we consider the sumS = q�1Xi=s "eq � � et2N �t=2 � i t2 � 1#iand show it is bounded by the second term in the lemma statement.Let � be a value to be determined. ThenS = � lgNXi=s "eq � � et2N �t=2 � i t2�1#i + qXi=1+� lgN "eq � � et2N �t=2 � i t2�1#i� � lgNXi=s "eq � � et2N �t=2 � (� lgN) t2�1#i + qXi=1+� lgN "eq � � et2N �t=2 � q t2�1#i� � lgNXi=s "eq � � et2N �t=2 � (� lgN) t2 � 1#i + qXi=1+� lgN "e � � etq2N �t=2#i : (13)We will impose upper bounds on q that guaranteeA def= eq � � et2N �t=2 � (� lgN) t2 � 1 � 12 and B def= e � � etq2N �t=2 � 12 : (14)In that case, each of the sums of Equation (13) is bounded by twice its �rst term, so we can boundthe sum itself by 2 � "eq � � et2N �t=2 � (� lgN) t2 � 1#s + "e � � etq2N �t=2#� lgN� h2e st2 +s(t=2)st=2(� lgN) st2 �si � qsN st=2 + 2�� lgN :Now set � = 2t. The second term is N�� = N�2t and hence we getS � h3e st2 +stst�s2�s(lgN) st2 �si � qsN st=2 :To complete the proof, put this together with Equation (12), plug in the appropriate value of s = 3if t is even and s = 4 if t is odd, and simplify. This yields the bound in the lemma statement.It remains to see what conditions on q; t are imposed by Equation (14). Recalling that � = t, somecalculations show that the conditions imposed by A � 1=2 and B � 1=2 are, respectively,q � t lgNe � Net2 lgN �t=2 and q � Ne2t :16



ENCRXt[F ]: encryption procedureInput: Key f , plaintext MPick distinct, random pointsr1; : : : ; rt 2 f0; 1gnLet mk = f(r1)�f(r2)� � � � �f(rt)Let mdM = mk�MReturn (r1; : : : ; rt;mdM)
ENCRXt[F ]: decryption procedureInput: Key f , ciphertext (r1; : : : ; rt;mdM)Let mk = f(r1)�f(r2)� � � � �f(rt)Let M = mdM�mkReturn M

Figure 4: ENCRXt[F ]: Our encryption scheme: Here M 2 f0; 1gm is the plaintext and f 2 F is the key.As long as N � et2 lgN , some more calculation shows thatNe2t � t lgNe � Net2 lgN �t=2 :To ensure N � et2 lgN we have made the requirement t � pN=(e lgN). Now if q � N=e2t thenwe are ensured A;B � 1=2. The proof is complete.3.3 Application to encryptionSee Section 2 for de�nitions of encryption and PRF related terms used below. Let F be a familyof functions with domain f0; 1gn and range f0; 1gm. (In \practice" this will be a pseudorandomfunction family, but the important case in the analysis is when F is the set R of all functions withthe given domain and range.) For simplicity we look at the problem of encrypting a message ofm-bits. (The methods can be adapted to encrypt messages of longer and varying lengths.)CTR mode encryption. A standard mode to encrypt an m-bit message M is to pick a valuer 2 f0; 1gn and set the ciphertext to (r; f(r)�M). Here f 2 F is the (secret) key under whichencryption and decryption are performed. The counter version sets r to a counter value that isincremented with each message encrypted. Denoting it by StandardENC-Ctr, the insecurity is shownin [2] be be bounded as indicated below. For any number q < N of m-bit messages queried in achosen-plaintext attack, setting N = 2n{InSecenc(StandardENC-Ctr; qm; T ) � 2 � InSecprf(F; q; T 0) + 2�m : (15)Here T 0 = T + O(q(n +m)). When a stateless scheme is desired, the standard paradigm wouldpick r at random. A chosen-plaintext attack of q messages results in a collision in r values withprobability �(q2=N), and when this happens the encryption scheme is broken, in the sense thatpartial information about the plaintext is leaked. We wish to apply the parity construct to getbetter security, comparable or superior to that of the counter version.Our scheme. The idea is that instead of picking one point r, the encryptor picks t distinctrandom points r1; : : : ; rt, and sets the ciphertext of M to (r1; : : : ; rt; f(r1)� � � � �f(rt)�M), thesetting being the same as above.More precisely, we associate to F an encryption scheme ENCRXt[F ], parameterized by theinteger t � 1. It consists of two algorithms, one to encrypt and the other to decrypt. Thesealgorithms are described in Figure 5. The encryption algorithm takes as input a key f and amessage M 2 f0; 1gm, while the decryption algorithm takes the same key and a ciphertext. Heref is a random member of F . It is understood that f is accessible as an oracle. (When F is17



pseudorandom, a seed explicitly supplied to the algorithms names a particular function in thefamily and thus enables computation of the oracle. But the view of f as an oracle better suits theanalysis.)Connection to matrix rank. In the information theoretic case, the insecurity of our schemecan be upper bounded in terms of the probability that the matrix associated to the execution isnot of full rank.Lemma 3.6 Let R be the family of all functions with domain f0; 1gn and range f0; 1gm, and letN = 2n. Let t � 1 and let ENCRXt[R] be the associated encryption scheme as de�ned above. Letq � 0. Then InSecenc(ENCRXt[R]; qm) � NFRProb(N; q; t) :Proof Sketch: This can be proved by combining Lemma 3.1 with the analysis of [2].Security of our scheme. We now turn to the security of a concrete instantiation of our schemeunder some given pseudorandom function family F . The insecurity of our encryption scheme willbe bounded in terms of the insecurity of F (as a prf family), and the bound on the not-full-rank-probability of the matrix we have computed above. For simplicity we view the bound of Lemma 3.3as O(t!) � q2=N t which as we have seen is essentially true.Theorem 3.7 Let F be a family of (pseudorandom) functions with domain f0; 1gn and rangef0; 1gm, and let N = 2n. Let t � 1 and let ENCRXt[F ] be the associated encryption scheme asde�ned above. Assume 1 � q � N=(e2t). ThenInSecenc(ENCRXt[F ]; qm; T ) � d(t) � q2N t + 2 � InSecprf(F; tq; T 0) ;where T 0 = T +O(tq(n+m)) and d(t) = O(t!).Proof Sketch: A standard \simulation" based argument for pseudorandom function based con-structions shows thatInSecenc(ENCRXt[F ]; qm; T ) � InSecenc(ENCRXt[R]; qm) + 2 � InSecprf(F; tq; T 0) :Now bound the �rst term by combining Lemma 3.6 and Lemma 3.3.4 Integrity of parity and application to MACs4.1 Motivational discussion and matrix connectionWhen the parity construct is used in an application such as MAC where the adversary is active,further properties are required to ensure security. It turns out we need to consider the following. Anadversary A sees an output (R1; b1; : : : ; Rq; bq) of experiment Par(n;m; q; t). Now A tries to createa non-colliding sequence Rq+1 = (rq+1;1; : : : ; rq+1;t) and a value bq+1 such that Rq+1 62 fR1; : : : ; Rqgand bq+1 = f(rq+1;1)� � � � �f(rq+1;t). Notice that this is easy for A to do if there is some subsetS of the rows of MTXN;q(R1; : : : ; Rq) which sums up to a N -vector v of exactly t ones, becausethen A can de�ne Rq+1 via v = ChVec(Rq+1) and then set bq+1 to �ibi, the XOR being over all isuch that ChVec(Ri) is a row in S. We will see that in fact this is the only condition under whichA can do it. Thus we want to make sure no subset of rows S has this property. This will implythat if A creates some non-colliding sequence Rq+1 62 fR1; : : : ; Rqg, then A's chance of predicting18



f(rq+1;1)� � � � �f(rq+1;t) correctly is at most 2�m. Based on this it will be possible to prove thesecurity of our MAC scheme.The problem can be formulated by extending the experiments Par(n;m; q; t) and Rnd(n;m; q)to consider an adversary as discussed above. However since we went through that approach before,we will not do it again. Rather we will skip to the essential step and lemma based on which wecan directly prove the security of the applications. This lemma is again about the probability thatMTXN;q(R1; : : : ; Rq) has certain properties.We need to consider the probability that one may augment the given matrix MTXN;q(R1; : : : ; Rq)by a row with t 1-entries, di�erent from all current rows, so as to result in a matrix of rank at mostq. Actually, we will ask for a little more, to simplify the analysis.We say a subset S of its rows sums is bad if it sums up to a N -vector v such that v 62 S but vcontains exactly t 1-entries. We say that MTXN;q(R1; : : : ; Rq) is t-vulnerable if one of the followingis true: (1) It has two identical rows, or (2) some subset of its rows is bad. We letVulProb(N; q; t) = Pr hMTXN;q(R1; : : : ; Rq) is t-vulnerable : R1; : : : ; Rq R D(n; t) i :The following lemma considers an arbitrary adversary that given an output of experiment Par(n;m; q; t)attempts to create a new Rq+1 and the corresponding f value. It says that A has no better strategythan to guess, as long as the matrix is not t-vulnerable.Lemma 4.1 Fix any adversary A that on any input (R1; b1; : : : ; Rq; bq) 2 D(n; t)�f0; 1gm �� � ��D(n; t) � f0; 1gm outputs some Rq+1 = (rq+1;1; : : : ; rq+1;t) 2 D(n; t) � fR1; : : : ; Rqg and a stringbq+1 2 f0; 1gm. In experiment Par(n;m; q; t), conditioned on the event that MTXN;q(R1; : : : ; Rq)is not t-vulnerable, the probability that bq+1 = f(rq+1;1)� � � � �f(rq+1;t) is at most 2�m.Motivated by this we proceed to bound VulProb(N; q; t) (the proof of next lemma is omitted { see[3]).4.2 Main lemma: Bound on VulProb(N; q; t)Notice that a bad subset of the rows must have cardinality greater than 1. Also notice that ifMTXN;q(R1; : : : ; Rq) is not t-vulnerable then it has full rank. (The �rst condition above meansthat no two rows sum to zero. If a subset T of three or more rows sums to zero, removing one rowfrom T leaves a bad subset of rows, which the second condition disallows.)Lemma 4.2 Let t be such that 1 � t � pN=(2e lgN), then for any q < N=(2e2t) we haveVulProb(N; q; t) � 8>>><>>>: d0(t; lgN) � q2N t=2 if t is evend0(t; lgN) � q3N t if t is odd ; (16)where d0(t; n) = ( e2+3t=223t=23�t=2t�2+3t=2nt�2 if t is evene3+2t2�3t�3+5t=2nt�2 if t is odd. (17)Notice the di�erence in the bounds for odd versus even t. This phenomenon is explained later.Wewill focus on odd t. In comparison with Lemma 3.3 the main term in the bound, namely q3=N t,has an extra factor of q. Other than that things are pretty similar. To get an idea of the relative19



values of the various terms, consider N = 264 and t = 3. Then the lemma says that for q � N=46we have VulProb(N; q; 3) � 224 � q3=N3.Proof of Lemma 4.2: Consider separately the two conditions, namely that (1) the matrix hastwo identical rows, or (2) the matrix has a bad subset of rows. The probability of the �rst is easilybounded by q22 � �Nt � = q2 � t!2N(N � 1) � � � (N � t+ 1)� q2 � tt�12(N � t+ 1)t� 2t�1tt�1 � q2N t ; (18)the last bound being due to the fact that q < N=2 by assumption.We proceed to bound the probability that there is some bad subset. Notice that if t is odd then asubset of two rows cannot sum to a N -string of exactly t ones, so the smallest possible bad subsethas size 3. To capture this di�erence between odd and even values of t we let s = 2 if t is even ands = 3 if t is odd. Then we can bound the probability that MTXN;q(R1; : : : ; Rq) has a bad subsetof rows byqXi=s X1�j1<���<ji�qPr[The subset fj1; : : : ; jig of the rows of MTXN;q(R1; : : : ; Rq) is bad ]� qXi=s qi! � p0(N; i; t) ; (19)where p0(N; i; t) the probability that a i-by-N matrix over Z2, in which each row is a randomN -string with exactly t ones, has row-sum which is a N -string containing exactly t ones.Claim: For any s � i � q we havep0(N; i; t) < � 2eNt(s+ 1)�t=2 � �etiN �ti=2 :Proof of Claim: Let R denote a matrix selected according to the above distribution. For the row-sum of R to be a N -string having exactly t ones it must be that all 1-entries in R must lie in asubset of at most t+ ti�t2 = ti+t2 columns. Sop0(N; i; t) �  N(ti+ t)=2! � "�(ti+t)=2t ��Nt � #i :We proceed to bound this as in the proof of the corresponding Claim in the proof of Lemma 3.3.We get p0(N; i; t) � � Ne(ti+ t)=2�(ti+t)=2 � � ti+ t2N �ti� � 2eNti+ t�t=2 � � Ne(ti+ t)=2�ti=2 � � ti+ t2N �ti� � 2eNts+ t�t=2 � �e(ti+ t)2N �ti=2 :20



The claim follows since i+ 1 < 2i. 2From Equation (19) and the Claim we can bound the probability that MTXN;q(R1; : : : ; Rq) containssome bad subset of rows by� 2eNt(s+ 1)�t=2 � qXi=s "qei � �etiN �t=2#i = � 2eNt(s+ 1)�t=2 � qXi=s "eq � � etN �t=2 � i t2�1#i : (20)The sum is the same as the one in the proof of Lemma 3.3 except that it starts at i = s ratherthan i = 2, and the denominator contains N rather than 2N . We can thus bound it the same way.Brie
y, in breaking up the sum into two parts we choose this time � = 2t. SetA def= eq � � etN �t=2 � (2t lgN) t2 � 1 and B def= e � �etqN �t=2 : (21)We will ensure A;B � 1=2. Then the quantity of Equation (20) is bounded by� 2eNt(s+ 1)�t=2 � 2t lgNXi=s Ai + � 2eNt(s+ 1)�t=2 � qXi=1+2t lgN Bi � � 2eNt(s+ 1)�t=2 � h2As +B2t lgNi :We have B2t lgN � N�2t because B � 1=2. Plugging in the value of A and simplifying gives abound of � 2eNt(s+ 1)�t=2 � 2 � "eq � � etN �t=2 � (2t lgN) t2 � 1#s + � 2et(s+ 1)�t=2 �N�3t=2� 2 � h2 t2+ st2 �se t2+ st2 +stst� t2�s(s+ 1)� t2 (lgN) st2 �si � qsN t(s�1)=2 + N�3t=2We need to add in the term of Equation (18), and recall that s = 2 if t is even and s = 3 if t isodd. The bound in the lemma statement then follows.To complete the proof we need to determine the conditions imposed on q; t by the requirementsA;B � 1=2. The calculations are similar to those in the proof of Lemma 3.3. Brie
y under thecondition N � 2et2 lgN it su�ces that q � N=(2e2t). These conditions are imposed by the upperbounds on t and q, respectively, in the lemma statement.Tightness of the above bound. Suppose that q < N (which is required and assumed any-how). Consider, �rst, an even t. Then the probability that a q-by-N matrix is t-vulnerable is lowerbounded by 
(q2) times the probability that two t-vectors add-up to another t-vector. The prob-ability for this event is computed by �rst selecting and �xing the �rst vector, and next computingprobability that the second vector agrees with it on exactly t=2 1-entries. The latter probability is�((t=N)t=2).For odd t, we consider the event that three distinct t-vectors add up to a di�erent t-vector. Fixany random non-overlapping choice for the �rst two t-vectors, and consider the probability thatthe third resides fully in these 2t columns (but does not equal any of the �rst two vectors). Thelatter probability is �((2t=N)t). Considering all �q3� choices of the rows, the claim follows.Is it odd that odd t � 3 is better than even t + 1? Considering small t's and ignoringlogarithmic factors, for odd t � 3 the upper bound is q3=N t which is typically much smaller thanthe (tight!) upper bound q2=N (t+1)=2 provided for the even t+1. We note that a similar phenomenonoccurs for large t's: Consider an even t = N=2. Then the probability that two random rows witht 1-entries sum-up to a row with t 1-entries is �(1=pN). On the other hand, for odd t this event21



MACRXt[F ]: mac generationInput: Key hh; fi, message MPick distinct, random pointsr1; : : : ; rt 2 f0; 1gnLet mk = f(r1)�f(r2)� � � � �f(rt)Let mhM = mk�h(M)Return (r1; : : : ; rt;mhM)
MACRXt[F ]: mac veri�cationInput: Key hh; f i, message M , candidate mac �Check that � has form (r1; : : : ; rt; �) fort distinct strings r1; : : : ; rt 2 f0; 1gnand some � 2 f0; 1gmLet mk = f(r1)�f(r2)� � � � �f(rt)Let mhM = mk�h(M)If mhM = � then return 1 else return 0Figure 5: MACRXt[F ]: Our message authentication scheme: Here M 2 D is the text to be authenticatedand hh; fi 2 H � F is the key.never happens. In general, the discrepancy is due to the fact that for even t, one should considerthe contribution of pairs of rows; whereas for odd t only larger subsets are relevant.4.3 Application to message authenticationGiven. Let D be some domain consisting of messages we want to authenticate. (For example Dcould be f0; 1g�, or all strings of length up to some maximum length.) We �x a family H of �-AXUhash functions in which each function h 2 H maps from D to f0; 1gn. We also let F be a familyof functions with domain f0; 1gn and range f0; 1gm. (In \practice" this will be a pseudorandomfunction family, but the important case in the analysis is when F is the set R of all functions withthe given domain and range.)Universal hash based MACs. The standard paradigm is that to authenticate message M 2 D,pick a value r 2 f0; 1gn and set the mac to (r; f(r)�h(M)). Here hh; fi is the (secret) key underwhich macs are created and veri�ed, where h 2 H and f 2 F . The counter version sets r to a countervalue that is incremented with each message authenticated. Denoting it by StandardMAC-Ctr,InSecmac(StandardMAC-Ctr; qa; qv; T ) � qv�+ InSecprf(F; qa + qv; T 0) :where qa < N , qv � 1, N = 2n and T 0 = T+O((qa+qv)(n+m)). When a stateless scheme is desired,the standard paradigm would pick r at random. A chosen-message attack of q messages results in acollision in r values with probability �(q2=N), and when this happens forgery is possible. We wishto apply the parity construct to get better security, comparable or superior to that of the counterversion.Our scheme. The idea is that instead of picking one point r, the generator of the mac picks tdistinct random points r1; : : : ; rt, and sets the mac of M to (r1; : : : ; rt; f(r1)� � � � �f(rt)�h(M)),the setting being the same as above.More precisely, with H �xed we associate to F a message authentication scheme MACRXt[F ],parameterized by the integer t � 1. It consists of two algorithms, one to generate macs, and theother to verify candidate macs. (The distinction is necessary since the mac generation algorithmis probabilistic.) These algorithms are described in Figure 5. The mac generation algorithm takesas input a key hh; fi and a message M 2 D, while the veri�cation algorithm takes the same key, amessage, and a candidate mac for it. Here h is a random hash function from H while f is a randommember of F . It is understood that f is accessible as an oracle. (When F is pseudorandom, a seedexplicitly supplied to the algorithms names a particular function in the family and thus enablescomputation of the oracle. But the view of f as an oracle better suits the analysis.)22



We stress one aspect of the veri�cation procedure, namely to check that the candidate tagreally contains t points (not more or less) and that these are distinct. Without this check, forgeryis possible.Connection to matrix vulnerability. In the information theoretic case, the insecurity ofour scheme can be upper bounded in terms of the quality of H as an AXU family (namely �), thevulnerability of the matrix associated to the number of authentication queries involved, and a termcorresponding to guessing a correct mac in the number of veri�cation queries involved.Lemma 4.3 Let H be a family of �-AXU hash functions with range f0; 1gn. Let R be the familyof all functions with domain f0; 1gn and range f0; 1gm. Let t � 1 and let MACRXt[R] be theassociated MAC as de�ned above. Let qa; qv � 1. ThenInSecmac(MACRXt[R]; qa; qv) � qv�+ VulProb(2n; qa; t) :Proof Sketch: This uses the same ideas as the standard connection between universal hashingand MACs so we only indicate brie
y the source of the various terms in the bound. Consideran adversary A making qa authentication queries and qv veri�cation queries. First assume forsimplicity the veri�cation queries are all made after all the authentication queries are complete.The authentication queries give rise to a matrix MTXN;q(R1; : : : ; Rq). If this matrix is t-vulnerable,we give up, accounting for this term in the bound. So assume not. As observed above, non-t-vulnerable implies full rank so by Lemma 3.1 the adversary is getting no information about h viathe authentication queries. By Lemma 4.1 it is also getting no information about the XOR of fon the entries in some new non-colliding t-sequence. Thus its chance of forgery is limited by qv�.Finally, one must deal with the veri�cation queries. If no information has been released, guessingis the only possible strategy.Security of our scheme. We now turn to the security of a concrete instantiation of our schemeunder some given pseudorandom function family F . The insecurity of our message authenticationscheme will be bounded in terms of the insecurity of F (as a prf family), the quality of the AXUfamily H, the bound on matrix vulnerability we have computed above, and the guessing termmentioned just above. We focus on the case of odd t because our bounds are better here.Theorem 4.4 Let H be a family of �-AXU hash functions with domain D and range f0; 1gn. LetF be a family of (pseudorandom) functions with domain f0; 1gn and range f0; 1gm. Let N = 2nand assume t is an odd integer satisfying 1 � t � pN=(2e lgN). Let MACRXt[F ] be the associatedMAC as de�ned above. Assume 1 � qa � N=(2e2t) and qv � 1. ThenInSecmac(MACRXt[F ]; qa; qv; T ) �qv�+ d0(t; n) � q3aN t + InSecprf(F; t(qa + qv); T 0) ;where T 0 = T +O(t(qa + qv)(n+m)) and d0(t; n) is as in Equation (17).Proof Sketch: A standard \simulation" based argument for pseudorandom function based con-structions shows thatInSecmac(MACRXt[F ]; qa; qv; T ) � InSecmac(MACRXt[R]; qa; qv) + InSecprf(F; t(qa + qv); T 0) :Now bound the �rst term by combining Lemma 4.3 and Lemma 4.2.23



Thus, MACRX3[F ] o�ers better security than MACRX1[F ], and for qa < 22n=3 its security is com-parable to the counter-version as given in Equation (22). MACRX5[F ] is comparable in security tothe counter-version.Stronger bounds can be obtained if we make stronger assumptions about the family from whichh is selected. For example, if we may assume that an adversary cannot compute LM2Sh(M), fora set S of messages of its choice then it su�ces to consider passive attacks on F (as done in theprevious sections), and the bound given in Equation (2) applies. Thus, under such assumptionsMACRX3[F ] is comparable in security to the counter-version.On the insufficiency of the full rank condition in the MAC setting. We show thatfor ensuring the security against forgery of the MAC scheme, presented in Section 4.3 and inTheorem 4.4, it is not enough to require that the matrix MTXN;q(R1; : : : ; Rq) be full rank. Theadditional requirement of not being t-vulnerable is necessary too. That is, we show an attackagainst the MAC scheme that succeeds if the attacker can obtain a linear combination of the rowsthat result in a vector over ZN2 with exactly t non-zero entries. For this we assume that theuniversal hash functions in use are additive over Z2 (this is a common property of many universalhash families [17, 10]). The attack proceeds as follows. The attacker asks to see the MAC valueof q < 2n=(2e2t) random messages M1; : : : ;Mq, say each uniformly chosen in f0; 1g2n. That is,for each such message Mi, the attacker sees the value �i = h(Mi) �Ltl=1ri;l together with the trandom values ri;1; : : : ; ri;t (note that the later values represent the positions with non-zero entriesin the i-th row of the matrix). Now suppose that the XOR of rows i1; :::; ik in M result in a vector(di�erent from all these rows) with exactly t ones in positions r1; : : : ; rt. The attacker computes amessage M =Lkj=1Mij , and outputs as its forgery the tag value (r1; : : : ; rt;Lkj=1�ij ). It is easy toverify thatMkj=1�ij =Mkj=1h(Mij )�Mkj=1Mtl=1rij ;l = h�Mkj=1Mij��Mtl=1rl = h(M)�Mtl=1rl :Since we assumed the Mi were random messages (in f0; 1g2n) then with very high probability Mis di�erent than all previously queried messages (as the Mi's are linearly independent), and theforgery is successful.AcknowledgmentsWe thank R. Venkatesan and B. Yee for helpful discussions on the subject of the uses and drawbacksof counters in computer systems.References[1] W. Aiello, and R. Venkatesan. Foiling birthday attacks in length-doubling transformations. Ad-vances in Cryptology { Eurocrypt 96 Proceedings, Lecture Notes in Computer Science Vol. 1070,U. Maurer ed., Springer-Verlag, 1996.[2] M. Bellare, A. Desai, E. Jokipii and P. Rogaway. A concrete security treatment of symmet-ric encryption: Analysis of the DES modes of operation. Proceedings of the 38th Symposium onFoundations of Computer Science, IEEE, 1997.[3] M. Bellare, O. Goldreich and h. Krawczyk. Beyond the birthday barrier, without counters. Ad-vances in Cryptology { Crypto 99 Proceedings, Lecture Notes in Computer Science Vol. ??, M. Wienered., Springer-Verlag, 1999.[4] M. Bellare, R. Gu�erin and P. Rogaway. XOR MACs: New Methods for Message Authenticationusing Finite Pseudorandom Functions. Full version available via http://www-cse.ucsd.edu/users/24
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is allowed: each time the sender picks a new function according to the prescribed process. Thiscaptures what seems a most general possible notion of a stateless scheme.The question is what methods of generating g lead to the least loss in information about themessage sequence as a function of the number of messages encrypted. To formalize this, we neednot talk about the message; we just consider the process of generating the function g.De�nition A.1 A stateless encryption scheme is speci�ed by a stateless function speci�er. This isa probabilistic algorithm FnSp that takes inputN and outputs a function g 2 Maps(f0; 1gN ; f0; 1g).Notice that FnSp is probabilistic. We write FnSp(N ;R) to be its output on input N and coins R.We now consider two distributions:Distribution FnSpN;qPick a random N -bit string padFor i = 1; : : : ; q doPick Ri at randomLet gi R FnSp(N;Ri)Let bi  gi(pad )End ForOutput (hg1i; b1); : : : ; (hgqi; bq)
Distribution RandN;qFor i = 1; : : : ; q doPick Ri at randomLet gi R FnSp(N;Ri)Pick a bit bi at randomEnd ForOutput (hg1i; b1); : : : ; (hgqi; bq)In each distribution, we output a sequence of pairs. The �rst component of each pair is the outputfunction of the function speci�er. The second component is either the application of this functionto the pad, or an independently selected random bit. We are interested in the statistical distancebetween these distributions.De�nition A.2 The discrepency of a function speci�er, FnSp, is de�ned as the statistical di�erencebetween the above distributions, as a function of N and q; that is,Dist(FnSp; N; q) = StatDist hFnSpN;q;RandN;qiWe are interested in the growth rate of this function, as a function of q, for �xed N . Furthermore,we want to construct e�cient function speci�ers for which this value is as low as possible.A.1 Lower boundsTo guide our study we consider some lower bounds. We start by observing that the discrepancycannot be zero as soon as we output more than one bit. This is in contrast to the stateful case,where the distance may remain zero upto N bits.Proposition A.3 Dist(FnSp; N; q) > 0, for any function speci�er FnSp and any q � 2.Proof: There is a non-zero probability that the random strings R1; R2 chosen in the �rst two triesare equal. In this case, in the �rst experiment, we get back the same bit both times. In the randomexperiment, we get back independent random bits both times.On the other hand, it is clear that one cannot out-perform the stateful schemes. That is, Shannon'sbounds continue to hold here.Proposition A.4 Dist(FnSp; N;N + i) � 1� 2�i, for any function speci�er FnSp and any i � 1.26



Proof: Fixing any sequence g1; :::; gN+i, we consider the residual distribution of the bits b1; :::; bN+iin FnSpN;q and RandN;q, denoted X and Y , respectively. Clearly, Y is uniform over f0; 1gN+i,whereas X has a support of size at most 2N (as it is obtained by performing a �xed mappingon the uniform distribution over f0; 1gN ). Thus, the statistical di�erence between X and Y is1� support(X)2N+i � 1� 2�i.A.2 Upper boundsWe are interested in a particular class of function speci�ers, namely those where the output functiong is the XOR of some subset of bits in its argument. Let LinN � Maps(f0; 1gN ; f0; 1g) be the setof all these maps; such a generic map, denoted �S , is speci�ed by S � [N ] def= f1; :::; Ng, and isde�ned by �S(pad ) = �i2Spad i, where pad = pad 1 � � � padN . (LinN is also called the set of parityfunctions.)De�nition A.5 An function speci�er is called a parity function speci�er if it always outputsfunctions g in the set LinN .We can analyze parity function speci�ers using the connection to matrix rank as in [4]. We associateto any such function speci�er FnSp a random variable Mtx(FnSp; N; q) (de�ned below). Thisrandom variable takes as value a q-by-N matrix of zeros and ones. To de�ne it, think of �S as anN -element vector with a 1 in position j i� j 2 S.Random Variable Mtx(FnSp; N; q)Initialize M to an empty matrixFor i = 1; : : : ; q doPick Ri at random and let �Si R FnSp(N ;Ri)Make �Si the i-th row of matrix MEnd ForOutput MThis is a random variable over the choices of R1; : : : ; Rq made.Proposition A.6 [Following [4]] For any parity function speci�er FnSp it is the case thatDist(FnSp; N; q)is bounded above by the probability thatMtx(FnSp; N; q) is not of full rank.Consider the following simple parity function speci�er, called the full parity function speci�er. Itsimply selects a subset S � f0; 1gN at random:Full Parity Function Speci�er FuParSp(N)Select S � f0; 1gN at randomOutput �SIt is useful to visualize the set S being chosen item by item. That is, for every j = 1; :::; N , put jin S with probability one-half. Note that the Full Parity Function Speci�er is very bad in termsof integrity (i.e., for the application to MACs): Given two invocations of it, �S1  FuParSp(N)and �S2  FuParSp(N), and the values �S1(pad ) and �S2(pad ), an active adversary may set S tobe the symmetric di�erence of S1 and S2, and predict the value �S(pad ) (= �S1(pad )��S2(pad )).However, the Full Parity Function Speci�er fares very well with respect to a passive attack (i.e.,the pseudorandomness property equivalent to discrepancy):27



Proposition A.7 For any N and q � 1 the discrepancy of the full parity function speci�er isupper bounded as follows: Dist(FuParSp; N; q) < 2q2N :Proof: By the above proposition, the statistical distance between FnSpN;q and RandN;q is boundedabove by the probability that the associated matrix is not of full rank. This probability is easilycomputed: Having chosen i � 1 boolean vectors, what is the probability that an i-th, randomlychosen one, is a linear combination of one of the previous ones? There are 2i�1 linear combinationsof the given i � 1 vectors, and 2N choices for the i-th one, so this probability is 2i�1=2N . This istrue for each choice for i = 1; : : : ; q, so we getDist(FuParSp; N; q) � qXi=1 2i�12N < 2q2N ;as desired.As explained in the introduction, the full parity function speci�er is useless in applications (such asours) where we need to operate in poly(n)-time, where n = lgN . Recall that in practice the N -bitrandom pad, pad , will be de�ned by a succinct (pseudorandom) function f : f0; 1gn ! f0; 1g. Thisleads to our main results which refer to partity function speci�ers for which the subset of XORedbits is small.De�nition A.8 An function speci�er is called a t-parity function speci�er if it always outputsfunctions �S 2 LinN so that jSj = t. The t-uniform parity function speci�er selects uniformly at-subset, S, and outputs �S .Our main result isTheorem A.9 For any t � 1, the t-uniform parity function speci�er has discrepancy at mostd1(t) � q2Nt .This result follows immediately by combining Proposition A.6 and Lemma 3.3.
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