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Introduction Speude bradeos.1The title of this essay employs more non-technical terms than one is accustomed to en-counter in the title of a technical survey, let alone that some are rarely used in a technicalcontext. Indeed, this is an unusual survey, written in an attempt to communicate a feelingthat cannot be placed on sound ground. The feeling is that there is a common themeamong the works to be reviewed here, and that this common theme is intriguing and maylead to yet additional important discoveries. We hope that also readers that disagree withthe foregoing feeling may bene�t from the perspective o�ered by lumping the said workstogether and highlighting a common theme.We are going to review four celebrated works, each either resolving a central openproblem or providing an alternative proof for such a central result. The common themethat we highlight is the (utmost abstract) attitude of these works towards solving theproblem that they address. Rather than trying to solve the problem by one strong blow,each of these works goes through a long sequence of iterations, gradually transforming theoriginal problem into a trivial one. (At times, it is more convenient to view the processas proceeding in the opposite direction; that is, gradually transforming a solution to thetrivial problem into a solution to the original problem.) Anyhow, each step in this processis relatively simple (in comparison to an attempt to solve the original problem at oneshot), and it is the multitude of iterated steps that does the job. Let us try to clarify theforegoing description by providing a bird's eye view of each of these works.A bird's eye view of the four worksFollowing are very high level outlines of the aforementioned works. At this point we avoidalmost all details (including crucial ones), and refrain from describing the context of theseworks (i.e., the history of the problems that they address). Instead, we focus on theiterative processes eluded to above. More detailed descriptions as well as comments aboutthe history of the problems are to be found in corresponding sections of this essay.Approximating the permanent of non-negative matrices. The probabilistic polynomial-time approximation algorithm of Jerrum, Sinclair, and Vigoda [17] is based on the follow-1This Ancient Greek proverb, reading hasten slowly, is attributed to Augustus; see C. Suetonius Tran-quillus, D. Octavius Caesar Augustus, paragraph XXV. The intention seems to be a calling for action thatis marked by determination and thoroughness, which characterizes the \moderate revolution" of Romeunder Augustus. 2



ing observation: knowing (approximately) certain parameters of a non-negative matrixMallows to approximate the same parameters for a matrix M 0, provided that M and M 0are su�ciently similar. Speci�cally, M and M 0 may di�er only on a single entry, and theratio of the corresponding values must be su�ciently close to one. Needless to say, theactual observation (is not generic but rather) refers to speci�c parameters of the matrix,which include its permanent. Thus, given a matrix M for which we need to approximatethe permanent, we consider a sequence of matrices M0; :::;Mt � M such that M0 is theall 1's matrix (for which it is easy to evaluate the said parameters), and each Mi+1 isobtained from Mi by reducing some adequate entry by a factor su�ciently close to one.This process of (polynomially many) gradual changes, allows to transform the dummymatrix M0 into a matrix Mt that is very close to M (and hence has a permanent that isvery close to the permanent of M). Thus, approximately obtaining the parameters of Mtallows to approximate the permanent of M .The iterative (Zig-Zag) construction of expander graphs. The construction ofconstant-degree expander graphs by Reingold, Vadhan, and Wigderson [25] proceeds initerations. Its starting point is a very good expander G of constant size, which may befound by exhaustive search. The construction of a large expander graph proceeds in itera-tions, where in the ith iteration the current graph Gi and the �xed graph G are combined(via a so-called Zig-Zag product) to obtain the larger graph Gi+1. The combination stepguarantees that the expansion property of Gi+1 is at least as good as the expansion of Gi,while Gi+1 maintains the degree of Gi and is a constant times larger than Gi. The processis initiated with G1 = G2, and terminates when we obtain a graph of approximately thedesired size (which requires a logarithmic number of iterations). Thus, the last graph is aconstant-degree expander of the desired size.The log-space algorithm for undirected connectivity. The aim of Reingold's algo-rithm [24] is to (deterministically) traverse an arbitrary graph using logarithmic amountof space. Its starting point is the fact that any expander is easy to traverse in determin-istic logarithmic-space, and thus the algorithm gradually transforms any graph into anexpander, while maintaining the ability to map a traversal of the latter into a traversalof the former. Thus, the algorithm traverses a virtual graph, which being an expander iseasy to traverse in deterministic logarithmic-space, and maps the virtual traversal of thevirtual graph to a real traversal of the actual input graph. The virtual graph is constructedin (logarithmically many) iterations, where in each iteration the graph becomes easier totraverse. Speci�cally, in each iteration the expansion property of the graph improves bya constant factor, while the graph itself only grows by a constant factor, and each it-3



eration can be performed (or rather emulated) in constant space. Since each graph hassome noticeable expansion (i.e., expansion inversely related to the size of the graph), afterlogarithmically many steps this process yields a good expander (i.e., constant expansion).The alternative proof of the PCP Theorem. Dinur's new approach [12] to theproof of the PCP Theorem is based on gradually improving the performance of PCP-likesystems. The starting point is a trivial PCP-like system that detects error with very smallbut noticeable probability. Each iterative step increases the detection probability of thesystem by a constant factor, while incurring only a small overhead in other parameters(i.e., the randomness complexity increases by a constant term). Thus, the PCP Theorem(asserting constant detection probability for NP) is obtained after logarithmically manysuch iterative steps. Indeed, the heart of this approach is the detection ampli�cationstep, which may be viewed as simple only in comparison to the original proof of the PCPTheorem.An attempt to articulate the thesisThe current section will contain an attempt to articulate the thesis that there is a commontheme among these works. Readers that do not care about philosophical discussions (andother attempts to say what cannot be said) are encouraged to skip this subsection. In orderto emphasize the subjective nature of this section, it is written in �rst person singular.I will start by saying a few works about bravery and moderation. I consider as bravethe attempt to resolved famous open problems or provide alternative proofs for centralcelebrated results.2 To try a totally di�erent approach is also brave, and so is realizing one'slimitations and trying a moderate approach: rather than trying to resolve the problem ina single blow, one wisely designs a clever scheme that gradually progresses towards thedesired goal. Indeed, this is the victory of moderation.Getting to the main thesis of this essay (i.e., the existence of a common theme amongthe reviewed works), I believe that I have already supported a minimalistic interpretationof this thesis by the foregoing bird's eye view of the four works. That is, there is an obvioussimilarity among these bird's eye views. However, some researchers may claim (and indeed2Consider the problems addressed by the four reviewed works: The problem of approximating the per-manent was open since Valiant's seminal work [27] and has received considerable attention since Broder'scelebrated work [11]. Constructions of expander graphs were the focus of much research since the 1970's,and were typically based on non-elementary mathematics (cf. [20, 15, 19]). The existence of deterministiclog-space algorithms for undirected connectivity has been in the focus of our community since the publica-tion of the celebrated randomized log-space algorithm of Aleliunas et. al. [1]. The PCP Theorem, provedin the early 1990's [5, 6], is closely related (via [14, 5]) to the study of approximation problems (whichdates to the early 1970's). 4



have claimed) that this similarity extends also to numerous other works and to variousother types of iterative procedures. This is the claim I wish to oppose here: I believe thatthe type of iterative input-modi�cation process that underlies the aforementioned worksis essentially novel and amounts to a new algorithmic paradigm.Let me �rst give a voice to the skeptic. For example, Amnon Ta-Shma, playing theDevil's advocate, claims that many standard iterative procedures (e.g., repeated squaring)may be viewed as \iteratively modifying the input" (rather than iteratively computingan auxiliary function of it, as I view it). Indeed, the separation line between input-modi�cation and arbitrary computation is highly subjective, and I don't believe that onecan rigorously de�ne it. Nevertheless, rejecting Wittgenstein's advice [28, x7], I will tryto speak about it.My claim is that (with the exception of the iterative expander construction of [25]) thereviewed works do not output the modi�ed input, but rather a function of it, and theymodify the input in order to ease the computation of the said function. That is, whereasthe goal was to compute a function of the original input, they compute a function of the�nal modi�ed input, and obtain the originally desired value (of the function evaluated atthe original input) by a process that relies on the relatively simplicity of the intermediatemodi�cations. The line that I wish to draw is between iteratively producing modi�ed inputs(while maintaining a relation between the corresponding outputs) and iteratively producingbetter re�nements of the desired output while keeping the original input intact. Indeed,I identify the latter with standard iterative processes (and the former with the commontheme of the four reviewed works).My view is that in each of these works, the input itself undergoes a gradual transfor-mation in order to ease some later process. This is obvious in the case of approximatingthe permanent [17] and in the case of traversing a graph in log-space [24], but it is alsotrue with respect to the other two cases: In Dinur's proof [12] of the PCP Theoremthe actual iterative process consists of a sequence of Karp-reductions (which ends witha modi�ed instance that has a simple PCP system), and in the iterative construction ofexpanders [25] the size of the desired expander increases gradually. In contrast, in typicalproofs by induction, it is the problem itself that gets modi�ed, whereas standard iterativeprocedures refer to sub-problems that relate to auxiliary constructs. Indeed, the separa-tion line between the iterative construction of expanders and standard iterative analysis isthe thinnest, but the similarity between it and the results of Reingold [24] and Dinur [12]may appeal to the skeptic.I wish to stress that the aforementioned iterative process that gradually transforms theinput is marked by the relative simplicity of each iteration, especially in comparison to thefull-
edged task being undertaken. In the case of Reingold's log-space algorithm [24], each5



iteration needs to be implemented in constant amount of space, which is indeed a goodindication to its simplicity. In the case of the approximation of the permanent [17], eachiteration is performed by a modi�cation of a known algorithm (i.e., of [16]). In the iterativeconstruction of expanders [25], a graph powering and a new type of graph product are usedand analyzed, where the analysis is simple in comparison to either of [20, 15, 19]. Lastly,in Dinur's proof [12] of the PCP Theorem, each iteration is admittingly quite complex,but not when compared to the original proof of the PCP Theorem [6, 5].The similarity among the iterated Zig-Zag construction of [25], the log-space algorithmfor undirected connectivity of [24], and the new approach to the PCP Theorem of [12] hasbeen noted by many researchers (see, e.g., [24, 12] themselves). However, I think that thenoted similarity was more technical in nature, and was based on the role of expanders and\Zig-Zag like" operations in these works. In contrast, my emphasis is on the sequence ofgradual modi�cations, and thus I view the permanent approximator of [17] just as closein spirit to these works. In fact, as is hinted in the foregoing discussion, I view [24, 12] ascloser in spirit to [17] than to [25].
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1 Approximating the permanent of non-negative matricesThe permanent of a n-by-n matrix (ai;j) is the sum, taken over all permutations � :[n] ! [n], of Qni=1 ai;�(i). Although de�ned very similarly to the determinant (i.e., justmissing the minus sign in half the terms), the permanent seems to have a totally di�erentcomplexity than the determinant. In particular, in a seminal work [27], Valiant showedthat the permanent is #P-complete; that is, counting the number of solutions to any NP-problem is polynomial-time reducible to computing the permanent of 0-1 matrices, whichin turn counts the number of perfect matchings in the corresponding bipartite graph.Furthermore, the reduction to the permanent of integer matrices preserves the numberof solutions (when normalized by an easy to compute factor), and hence approximatingthe permanent of such matrices seems infeasible (as it will imply P = NP). It wasnoted that the same does not hold for 0-1 matrices (or even non-negative matrices). Infact, Broder's celebrated work [11] introduced an approach having the potential to yielde�cient algorithms for approximating the permanent of non-negative matrices. Fifteenyears later, this potential was ful�lled by Jerrum, Sinclair, and Vigoda, in a work [17] tobe reviewed here.The algorithm of Jerrum, Sinclair, and Vigoda [17] follows the general paradigm ofBroder's work (which was followed by all subsequent works in the area): The approachis based on the relation between approximating the ratio of perfect and nearly perfectmatching of a graph and sampling uniformly a perfect or nearly perfect matching of agraph, where nearly perfect matchings are matchings that leave unmatched a single pairof vertices. In order to perform the aforementioned sampling, one sets-up a MarkovChain with states corresponding to the set of perfect and nearly perfect matching of thegraph. The transition probability of the Markov Chain maps each perfect matching toa nearly perfect matching obtained by omitting a uniformly selected edge (in the perfectmatching). The transition from a nearly perfect matching that misses the vertex pair (u; v)is determined by selecting a random vertex z, adding (u; v) to the matching if z 2 fu; vgand (u; v) is an edge of the graph, and adding (u; z) to the matching and omitting (x; z)from it if z =2 fu; vg and (u; z) is an edge of the graph. By suitable modi�cation, thestationary distribution of the chain equals the uniform distribution over the set of perfectand nearly perfect matchings of the graph. The stationary distribution of the chain isapproximately sampled by starting from an arbitrary state (e.g., any perfect matching)and taking a su�ciently long walk on the chain.This approach depends on the mixing time of the chain (i.e., the number of steps neededto get approximately close to its stationary distribution), which in turn is linearly relatedto the ratio of nearly perfect to perfect matchings in the underlying graph (see, [16]). (Notethat the later ratio also determines the complexity of the reduction from approximating7



this ratio to sampling the stationary distribution of the chain.) When the latter ratio ispolynomial, this approach yields a polynomial-time algorithms, but it is easy to see thatthere are graphs for which the said ratio is exponential. One key observation of [17] isthat the latter problem can be �xed by introducing auxiliary weights that when appliedto all nearly perfect matchings yield that the set of perfect matching has approximatelythe same probability mass (under the stationary distribution) as the set of nearly perfectmatchings. Speci�cally, for each pair (u; v) we consider a weight w(u; v) such that theprobability mass assigned to perfect matchings approximately equals w(u; v) times theprobability mass assigned to nearly perfect matchings that leaves the vertices u and vunmatched. Needless to say, in order to determine the corresponding weights, one needsto know the corresponding ratios, which seems to lead to a vicious cycle.Here is where the main idea of [17] kicks in: knowing the approximate sizes of theperfect and nearly perfect matching in a graph G allows to obtain these parameters fora related graph G0 that is closed to G, by running the Markov Chain that correspondsto G0 using weights as determined for G. This observation is the basis of the iterativeprocess outlined in the Introduction: We start with a trivial graph G0 for which thesaid quantities are easy to determine, and consider a sequence of graphs G1; :::; Gt suchthat Gi+1 is su�ciently close to Gi, and Gt is su�ciently close to the input graph. Weapproximate the said quantities for Gi+1 using the estimated quantities for Gi, and �nallyobtain an approximation of the number of perfect matchings in the input graph. Thealgorithm actually works with weighted graphs, where the weight of a matching is theproduct of the weights of the edges in the matching. We start with G0 that is a completegraph (i.e., all edges are present, each at weight 1), and let Gi+1 be a graph obtainedfrom Gi by reducing the weight of one of the non-edges of the input graph by a factor of� = 9=8. Using such a sequence, for t = eO(n3), we can obtain a graph Gt in which theedges of the input graph have weight 1 while non-edges of the input graph have weightlower than 1=(n!). Approximating the total weight of the weighted perfect matchings inGt provides the desired approximation to the input graph.Digest. The algorithm of Jerrum, Sinclair, and Vigoda [17] proceeds in iterations, usinga sequence of weighted graphs G0; :::; Gt such that G0 is the complete (unweighted) graph,Gi+1 is a su�ciently close approximation of Gi, and Gt is a su�ciently close approximationto the input graph. We start knowing the number of perfect and nearly perfect matchingsin G0 (which is easily determined by the number of vertices). In the ith iteration, usingapproximations for the number of perfect and nearly perfect matchings in Gi, we com-pute such approximations for Gi+1. These approximations are obtained by running anadequate Markov Chain, and the fact that we only have approximations for the quantities8



of Gi merely e�ects the mixing time of the chain (in a non-signi�cant way). Thus, gradu-ally transforming a dummy graph G0 into the input graph, we obtain approximations torelevant parameters of all the graphs, where the approximated parameters of Gi allow usto obtain the approximated parameters of Gi+1, and the approximated parameters of Gtinclude an approximation of the number of perfect matchings in the input graph.Comment. We mention that a di�erent iterative process related to the approximation ofthe permanent was previously studied in [18]. In that work, an input matrix is transformedto an approximately Doubly Stochastic (aDS) matrix, by iteratively applying row andcolumn scaling operations, whereas for any aDS n-by-n matrix the permanent is at least
(exp(�n)) and at most 1.
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2 The iterative (Zig-Zag) construction of expander graphsBy expander graphs (or expanders) of degree d and eigenvalue bound � < d, we meanan in�nite family of d-regular graphs, fGngn2S (S � N), such that Gn is a d-regulargraph over n vertices and the absolute value of all eigenvalues, save the biggest one, of theadjacency matrix of Gn is upper-bounded by �. This algebraic de�nition is related to thecombinatorial de�nition of expansion in which one requires that any (not too big) set ofvertices in the graph have relatively a large set of strict neighbors (i.e., is \expanding"):See [3] and [2]. It is often more convenient to refer to the relative eigenvalue bound de�nedas �=d.We are interested in explicit constructions of expander graphs, where the minimalnotion of explicitness requires that the graph be constructed in time polynomial in itssize (i.e., there exists a polynomial time algorithm that, on input 1n, outputs Gn).3 Astronger notion of explicitness requires that there exists a polynomial-time algorithm thaton input n (in binary), a vertex v 2 Gn and an index i 2 [d] def= f1; :::; dg, returns theith neighbor of v. Many explicit constructions of expanders were given, starting in [20](where S is the set of all quadratic integers), and culminating in the optimal constructionof [19] (where � = 2pd� 1 and S is somewhat complex). These constructions are quitesimple to present, but their analysis is based on non-elementary results from variousbranches of mathematics. In contrast, the following construction of Reingold, Vadhan,and Wigderson [25] is based on an iterative process, and its analysis is based on a relativelysimple algebraic fact regarding the eigenvalues of matrices.The starting point of the construction (i.e., the base of the iterative process) is a verygood expander G of constant size, which may be found by an exhaustive search. Theconstruction of a large expander graph proceeds in iterations, where in the ith iterationthe graphs Gi and G are combined to obtain the larger graph Gi+1. The combination stepguarantees that the expansion property of Gi+1 is at least as good as the expansion of Gi,while Gi+1 maintains the degree of Gi and is a constant times larger than Gi. The processis initiated with G1 = G2 and terminates when we obtain a graph Gt of approximatelythe desired size (which requires a logarithmic number of iterations).The heart of the combination step is a new type of \graph product" called Zig-Zagproduct. This operation is applicable to any pair of graphsG = ([D]; E) andG0 = ([N ]; E0),provided that G0 (which is typically larger than G) is D-regular. For simplicity, we assumethat G is d-regular (where typically d � D). The Zig-Zag product of G0 and G, denotedG0
z G, is de�ned as a graph with vertex set [N ]�[D] and an edge set that includes an edge3We also require that the set S for which Gn's exist is su�ciently \tractable": say, that given anyn 2 N one may e�ciently �nd s 2 S so that n � s < 2n.10
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Figure 1: Extract of a zig-zag produce of G0 with the 3-regular graph G having six vertices.In G0 the 2nd edge of u is incident at v, as its 5th edge.between hu; ii 2 [N ]�[D] and hv; ji if and only if (i; k); (`; j) 2 E and the kth edge incidentat u equals the `th edge incident at v. (See Figure 1, where vertex hu; 3i is connected inG0
z G to hv; 2i, using the G-edges (3; 2) and (5; 2).) It will be convenient to representgraphs like G0 by their edge rotation function4, denoted R0 : [N ] � [D] ! [N ] � [D], suchthat R0(u; i) = (v; j) if (u; v) is the ith edge incident at u as well as the jth edge incidentat v. For simplicity, we assume that G is edge-colorable with d colors, which in turn yieldsa natural edge rotation function (i.e., R(i; �) = (j; �) if the edge (i; j) is colored �). Wewill denote by E�(i) the vertex reached from i 2 [D] by following the edge colored � (i.e.,E�(i) = j i� R(i; �) = (j; �)). The Zig-Zag product of G0 and G, denoted G0
z G, is thende�ned as a graph with the vertex set [N ]� [D] and the edge rotation function(hu; ii; h�; �i) 7! (hv; ji; h�; �i) if R0(u;E�(i)) = (v;E�(j)). (1)That is, edges are labeled by pairs over [d], and the h�; �ith edge out of vertex hu; ii 2 [N ]�[D] is incident at the vertex hv; ji (as its h�; �ith edge) if R(u;E�(i)) = (v;E�(j)). (Thatis, based on h�; �i, we take a G-step from hu; ii to hu;E�(i)i, then viewing hu;E�(i)i �(u;E�(i)) as an edge of G0 we rotate it to (v; j0) def= R0(u;E�(i)), and take a G-stepfrom hv; j0i to hv;E�(j0)i, while de�ning j = E�(j0) and using j0 = E�(E�(j0)) = E�(j).)4In [25] (and [24]) these functions are called rotation maps. As these functions are actually involutions(i.e., R(R(x)) = x for every x 2 [N ]� [D]), one may prefer terms as \edge rotation permutations" or \edgerotation involutions". 11



Clearly, the graph G0
z G is d2-regular and has D �N vertices. The key fact, proved in [25],is that the relative eigenvalue of the zig-zag produce is upper-bounded by the sum of therelative eigenvalues of the two graphs (i.e., �(G0
z G) � �(G0) + �(G), where �(�) denotesthe relative eigenvalue of the relevant graph).5The iterated expander construction uses the aforementioned zig-zag product as wellas graph squaring. Speci�cally, the construction starts with the d2-regular graph G1 =G2 = ([D]; E2), where D = d4 and �(G) < 1=4, and proceeds in iterations such thatGi+1 = G2i
z G for i = 1; 2; :::; t � 1. That is, in each iteration, the current graph is �rstsquared and then composed with the �xed graph G via the zig-zag product. This processmaintains the following two invariants:1. The graph Gi is d2-regular and has Di vertices.(This follows from the fact that a zig-zag product with the d-regular graph alwaysyields a d2-regular graph.)2. The relative eigenvalue of Gi is smaller than one half.(Here we use the fact that �(G2i�1
z G) � �(G2i�1) + �(G), which in turn equals�(Gi�1)2 + �(G) < (1=2)2 + (1=4). Note that graph squaring is used to reduce therelative eigenvalue of Gi before increasing it by zig-zag product with G.)To ensure that we can construct Gi, we should show that we can actually construct theedge rotation function that correspond to its edge set. This boils down to showing that,given the edge rotation function of Gi�1, we can compute the edge rotation function ofG2i�1 as well as of its zig-zag product with G. Note that this computation amounts to tworecursive calls to computations regarding Gi�1 (and two computations that correspond tothe constant graph G). But since the recursion is logarithmic in the size of the �nal graph,the time spend in the recursive computation is polynomial in the size of the �nal graph.This su�ces for the minimal notion of explicitness, but not for the stronger one.To achieve a strongly explicit construction, we slightly modify the iterative construc-tion. Rather than letting Gi+1 = G2i
z G, we let Gi+1 = (Gi � Gi)2
z G, where G0 � G0denotes the tensor product of G0 with itself (i.e., if G0 = (V 0; E0) then G0 � G0 =(V 0 � V 0; E00), where E00 = f(hu1; u2i; hv1; v2i) : (u1; v1); (u2; v2) 2 E0g with an edge ro-tation function R00(hu1; u2i; hi1; i2i) = (hv1; v2i; hj1; j2i) where R0(u1; i1) = (v1; j1) andR0(u2; i2) = (v2; j2)). (We still use G1 = G2.) Using the fact that tensor product pre-serves the relative eigenvalue and using a d-regular G = ([D]; E) with D = d8, we note thatthe modi�ed Gi = (Gi�1 �Gi�1)2
z G is a d2-regular graph with (D2i�1�1)2 �D = D2i�15In fact, a stronger upper-bound is proved in [25].12



vertices, and �(Gi) < 1=2 (because �((Gi�1 �Gi�1)2
z G) � �(Gi�1)2 + �(G)). Comput-ing the neighbor of a vertex in Gi boils down to a constant number of such computationsregarding Gi�1, but due to the tensor product operation the depth of the recursion is onlydouble-logarithmic in the size of the �nal graph (and hence logarithmic in the length ofthe description of vertices in it).Digest. In the �rst construction, the zig-zag product was used both in order to increasethe size of the graph and to reduce its degree. However, as indicated by the secondconstruction (where the tensor product of graphs is the main vehicle for increasing thesize of the graph), the primary e�ect of the zig-zag product is to reduce the degree, andthe increase in the size of the graph is merely a side-e�ect (which is actually undesired inSection 3). In both cases, graph squaring is used in order to compensate for the modestincrease in the relative eigenvalue caused by the zig-zag product. In retrospect, the secondconstruction is the \correct" one, because it decouples three di�erent e�ects, and uses anatural operation to obtain each of them: Increasing the size of the graph is obtainedby tensor product of graphs (which in turn increases the degree), a degree reduction isobtained by the zig-zag product (which in turn increases the relative eigenvalue), andgraph squaring is used in order to reduce the relative eigenvalue.A second theme. In continuation to the previous comment, we note that the successiveapplication of several operations, each improving a di�erent parameter (while not harmingtoo much the others), reappears in the works of Reingold [24] and Dinur [12]. This themehas also appeared before in several other works (including [6, 5, 13]).6

6We are aware of half a dozen of other works, but guess that they are many more. We choose tocite here only works that were placed in the reference list for other reasons. Indeed, this second themeappears very clearly in PCP constructions (e.g., �rst optimizing randomness at the expense of number ofqueries and then reducing the latter at the expense of a bigger alphabet (not to mention the very elaboratecombination in [13])). 13



3 The log-space algorithm for undirected connectivityFor more than two decades, undirected connectivity was one of the most appealing exam-ples of the computational power of randomness. Whereas every graph can be e�cientlytraversed by a deterministic algorithm, the classical (deterministic) linear-time algorithms(e.g., BFS and DFS) require an extensive use of (extra) memory (i.e., space linear in thesize of the graph). On the other hand, in 1979 Aleliunas et. al. [1] showed that, with highprobability, a random walk of polynomial length visits all vertices (in the correspond-ing connected component). Thus, the randomized algorithm requires a minimal amountof auxiliary memory (i.e., logarithmic in the size of the graph). In the early 1990's,Nisan [21, 22] showed that any graph can be traversed in polynomial-time and poly-logarithmic space, but despite more than a decade of research attempts (see, e.g., [4]),a signi�cant gap remained between the space complexity of randomized and determinis-tic polynomial-time algorithms for this natural and ubiquitous problem. This gap wasrecently closed by Reingold, in a work [24] reviewed next.Reingold presented a deterministic polynomial-time algorithm that traverses any graphwhile using a logarithmic amount of auxiliary memory. His algorithm is based on a novelapproach that departs from previous attempts, which tried to derandomize the random-walk algorithm. Instead, Reingold's algorithm traverses a virtual graph, which (being anexpander) is easy to traverse (in deterministic logarithmic-space), and maps the virtualtraversal of the virtual graph to a real traversal of the actual input graph. The virtualgraph is constructed in (logarithmically many) iterations, where in each iteration the graphbecomes easier to traverse. Speci�cally, in each iteration, each connected component ofthe graph becomes closer to a constant-degree expander in the sense that (the graphhas constant degree and) the gap between its relative eigenvalue and 1 doubles.7 Hence,after logarithmically many iterations, each connected component becomes a constant-degree expander, and thus has logarithmic diameter. Such a graph is easy to traversedeterministically using logarithmic space (e.g., by scanning all paths of logarithmic lengthgoing out of a given vertex, while noting that each such path can be represented by abinary string of logarithmic length).The key point is to maintain the connected components of the graph while makingeach of them closer to an expander. Towards this goal, Reingold applies a variant of theiterated zig-zag construction (presented in Section 2), starting with the input graph, anditeratively composing the current graph with a constant-size expander. Details follow.For adequate positive integers d and c, we �rst transform the actual input graph intoa d2-regular graph (e.g., by replacing each vertex v with a (multi-edge) cycle Cv and using7See Section 2 for de�nition of expander and its relative eigenvalue.14



each vertex on Cv to take care of an edge incident to v). Denoting the resulting graph byG1 = (V1; E1), we go through a logarithmic number of iterations letting Gi+1 = Gci
z G fori = 1; :::; t�1, where G is a �xed d-regular graph with d2c vertices. Thus, Gi is a d2-regulargraph with d2c�i � jV1j vertices, and 1��(Gi) > max(2(1��(Gi�1)); 1=2), where the latterupper-bound on �(Gi) is due to [25]. We infer that 1��(Gi) > max(2i � (1��(G1)); 1=2),and using the fact that �(G1) < 1�(1=poly(jV1j)), which holds for any connected and non-bipartite graph, it follows that �(Gt) < 1=2 for t = O(log jV1j). (Indeed, it is instructiveto assume throughout the analysis that (the original input and thus) G1 is connected, andto guaranteed that it is non-bipartite (e.g., by adding self-loops).)One detail of crucial importance is the ability to transform G1 into Gt via a log-spacecomputation. It is easy to see that the transformation of Gi to Gi+1 can be performedin constant-space, but the standard composition lemma for space complexity incurs alogarithmic space overhead per each composition (and thus cannot be applied here). Still,taking a closer look at the transformation of Gi to Gi+1, one may note that it is highlystructured and supports a stronger composition result that incurs only a constant spaceoverhead per composition. An alternative implementation, outlined in [24], is obtained byunraveling the composition. The details of these alternative implementations are beyondthe scope of the current essay.8A minor variant. It is simpler to present a direct implementation of a minor variant ofthe above process. Speci�cally, rather than using the zig-zag product G0
z G (of Section 2),one may use the replacement product G0
r G de�ned as follows for a D-regular graphG0 = (V 0; E0) and a d-regular graph G = ([D]; E):9 The resulting 2d-regular graph hasvertex set V 0 � [D] and the following edge rotation function (which actually induces an8We cannot refrain from saying that we prefer an implementation based on composition, and providea few hints regarding such an implementation. Firstly, we suggest to consider the task of computing theneighbor of a given vertex in Gi, where the original graph is viewed as an oracle and the actual input is theaforementioned vertex. This computation can be performed by a constant-space oracle machine providedthat its queries are answered by a similar machine regarding Gi�1. (A proper formulation requires read-only and write-only oracle tapes of length bounded by the actual input (i.e., vertex) length, where thesetapes are not accounted in the space complexity.) Applying standard composition for this computationintroduces an overhead that is logarithmic in the length of the input (i.e., the vertex name), which isdouble-logarithmic in the size N of the input graph. Thus, we obtain a deterministic algorithm usingspace O(logN log logN). Getting rid of the excessive double-logarithmic factor requires introducing amodel of \shared memory for procedural calls" (including \shared pointers" for such calls).9Since this product yields a 2d-regular graph, in the context of the log-space algorithm one should setD = (2d)c.
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edge coloring) (hu; ii; h0; �i) 7! (hu;E�(i)i; h0; �i)and (hu; ii; h1; �i) 7! (R0(u; i); (1; �)); (2)where E� is as in Section 2. That is, every hu; ii 2 V 0 � [D] has d incident edges thatcorrespond to the edges incident at i in G, and d parallel copies of the ith edge of u in G0.It can be shown that, in the relevant range of parameters, the replacement product e�ectthe eigenvalues in a way that is similar to the a�ect of the zig-zag product (because thetwo resulting graphs are su�ciently related).A major variant. A more signi�cant variant on the construction was recently presentedin [26]. As a basic composition, they utilize a derandomized graph squaring of a large D-regular graph G0 = (V 0; E0) using a d-regular (expander) graph G = ([D]; E): Unlike theprevious composition operations, the resulting graph, which is a subgraph of the squareof G0, has V 0 itself as the vertex set but the edge density of the resulting graph is largerthan that of G0. Speci�cally, the edge rotation function is(u; hi; �i) 7! (v; hj; �i) if R0(u; i) = (w; k) and R0(w;E�(k)) = (v; j). (3)where E� is as in Section 2. That is, the edge set contains a subset of the edges of thestandard graph square, where this subset corresponds to the edges of the small (expander)graph G. It can be shown that the derandomized graph squaring e�ect the eigenvaluesin a way that is similar to the combination of squaring and zig-zag product, but theproblem is that the edge density does not remain constant through the iterated procedure.Nevertheless, two alternatives ways of obtaining a log-space algorithm are known, one ofwhich is presented in [26].
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4 The alternative proof of the PCP TheoremThe PCP Theorem [5, 6] is one of the most in
uential and impressive results of complexitytheory. Proven in the early 1990's, the theorem asserts that membership in any NP-setcan be veri�ed, with constant error probability (say 1%), by a veri�er that probes a poly-nomially long (redundant) proof at a constant number of randomly selected locations.The PCP Theorem led to a breakthrough in the study of the complexity of combinatorialapproximation problems (see, e.g., [14, 5]). Its original proof is very complex and involvesthe composition of two highly non-trivial proof systems, each minimizing a di�erent pa-rameter of the asserted PCP system (i.e., proof length and number of probed locations).An alternative approach to the proof of the PCP Theorem was recently presented byDinur [12], and is reviewed below. In addition to yielding a simpler proof of the PCPTheorem, Dinur's approach resolves an important open problem regarding PCP systems(i.e., constructing a PCP system having proofs of almost-linear rather than polynomiallength).The original proof of the PCP Theorem focuses on the construction of two PCP systemsthat are highly non-trivial and interesting by themselves, and combines them in a naturalmanner. Loosely speaking, this combination (via proof composition) preserves the goodfeatures of each of the two systems; that is, it yields a PCP system that inherits the(logarithmic) randomness complexity of one system and the (constant) query complexityof the other. In contrast, Dinur's approach is focused at the \ampli�cation" of PCPsystems, via a gradual process of logarithmically many steps. It start from a trivial\PCP" system that rejects false assertions with probability inversely proportional to theirlength, and double the rejection probability in each step. In each step, the constant querycomplexity is preserved and the length of the PCP oracle is increased only by a constantfactor. Thus, the process gradually transforms a very weak PCP system into a remarkablePCP system as postulated in the PCP Theorem.In order to describe the aforementioned process we need to rede�ne PCP systems soto allow arbitrary soundness error. In fact, for technical reasons it is more convenient todescribe the process as an iterated reduction of a \constraint satisfaction" problem to itself.Speci�cally, we refer to systems of 2-variable constraints, which are readily represented by(labeled) graphs.De�nition 4.1 (CSP with 2-variable constraints): For a �xed �nite set �, an instanceof CSP consists of a graph G = (V;E) (which may have parallel edges and self-loops)and a sequence of 2-variable constraints � = (�e)e2E associated with the edges, whereeach constraint has the form �e : �2 ! f0; 1g. The value of an assignment � : V !� is the number of constraints satis�ed by �; that is, the value of � is jf(u; v) 2 E :17



�(u;v)(�(u); �(v)) = 1gj. We denote by vlt(G;�) the fraction of unsatis�ed constraintsunder the best possible assignment; that is,vlt(G;�) = min�:V!f0;1gfjf(u; v) 2 E : �(u;v)(�(u); �(v)) = 0gj=jEjg (4)For various functions t : N! [0; 1], we will consider the promise problem gapCSP�t , havinginstances as above, such that the yes-instances are fully satis�able instances (i.e., vlt = 0)and the no-instances are pairs (G;�) satisfying vlt(G;�) > t(jGj), where jGj denotes thenumber of edges in G.Note that 3SAT (and analogously other sets in NP) is reducible to gapCSPf1;:::;7gt fort(m) = 1=m. Our goal is to reduce 3SAT (or rather gapCSPf1;:::;7gt ) to gapCSP�c , for some�xed �nite � and constant c > 0. The PCP Theorem will follow by showing a simplePCP system for gapCSP�c . The desired reduction is obtained by iteratively applying thefollowing reduction logarithmically many times.Lemma 4.2 (amplifying reduction of gapCSP to itself): For some �nite � and constantc > 0, there exists a polynomial-time reduction of gapCSP� to itself such that the followingconditions hold with respect to the mapping of any instance (G;�) to the instance (G0;�0).1. If vlt(G;�) = 0 then vlt(G0;�0) = 0.2. vlt(G0;�0) � min(2 � vlt(G;�); c).3. jG0j = O(jGj).Proof Sketch: The reduction consists of three steps. We �rst apply a pre-processingstep that makes the underlying graph suitable for further analysis. The value of vlt maydecrease during this step by a constant factor. The heart of the reduction is the secondstep in which we may increase vlt by any desired constant factor. The latter step alsoincreases the alphabet �, and thus a post-processing step is employed to regain the originalalphabet (by using any inner PCP systems; e.g., the Hadamard-based one presented in [5]).Details follow.We �rst note that the aforementioned � and c, as well as the auxiliary parameters dand t, are �xed constants that will be determined to satisfy various conditions that arisein the course of our argument.We start with the pre-processing step. Our aim in this step is to reduce the input(G;�) of gapCSP� to an instance (G1;�1) such that G1 is a d-regular expander graph.18



Furthermore, each vertex in G1 will have at least d=2 self-loops, jG1j = O(jGj), andvlt(G1;�1) = �(vlt(G;�)). This step is quite simple.The main step is aimed at increasing the fraction of violated constraints by a su�cientlylarge constant factor. This is done by reducing the instance (G1;�2) of gapCSP� to aninstance (G2;�2) of gapCSP�0 such that �0 = �dt . Speci�cally, the vertex set of G2is identical to the vertex set of G1, and each t-edge long path in G1 is replaced by acorresponding edge in G2, which is thus a dt-regular graph. The constraints in �2 arethe natural ones, viewing each element of �0 as a �-labeling of the (\distance � t")neighborhood of a vertex, and checking that two such labelings are consistent and satisfy�1. That is, suppose that there is a path of length at most t in G1 going from vertex u tovertex v and passing through vertex w. Then, there is an edge in G1 between vertices uand v, and the constraint associated with it with mandates that the entries correspondingto vertex w in the �0-labeling of vertices u and v are identical. In addition, if the G1-edge(w;w0) is on a path of length at most t starting at v then the corresponding edge in G2 isassociated a constraint that enforces the constraint that is associated to (w;w0) in �1.Clearly, if vlt(G1;�1) = 0 then vlt(G2;�2) = 0. The interesting fact is that thefraction of violated constraints increases by a factor of 
(pt); that is, vlt(G2;�2) �min(
(pt � vlt(G1;�1)); c). The intuition is that any �0-labeling to the vertices of G2must either be consistent with a �-labeling of G1 or violate many edges in G2. Focusingon the �rst case and relying on the hypothesis that G1 is an expander, it follows thatthe set of violated edge-constraints (of �1) with respect to the aforementioned �-labelingcauses many more edge-constraints of �2 to be violated. The point is that a set F of edgesof G1 is likely to appear on a min(
(t) � jF j=jG1j;
(1)) fraction of the edges of G2 (i.e.,t-paths of G1). (Note that the claim is obvious if G1 were a complete graph, but it alsoholds for an expander.)10The factor of 
(pt) gained in the second step, makes up for the constant factor lost inthe �rst step (as well as the constant factor to be lost in the last step), while allowing us aconstant factor ampli�cation, for a suitable choice of the constant t. However, we obtainedan instance of gapCSP�0 rather than an instance of gapCSP�, where �0 = �dt . The purposeof the last step is to reduce the latter instance to an instance of gapCSP�. This is doneby viewing the instance of gapCSP�0 as a (weak) PCP system and composing it with aninner-veri�er, using the proof composition paradigm (of [9, 13], which in turn follow [6]).We stress that the inner-veri�er used here needs only handle instances of constant size (i.e.,having description length O(dt log j�j)), and so the one presented in [5] (or [8]) will do. Theresulting PCP-system uses randomness r def= log2 jG2j+(dt log j�j)2 and a constant number10We also note that due to a technical di�culty it is easier to establish the claimed bound of 
(pt �vlt(G1;�1)) rather than 
(t � vlt(G1;�1)). 19



of binary queries, and has rejection probability 
(vlt(G2;�2)), which is independent ofthe choice of the constant t. For � = f0; 1gO(1), we obtain an instance of gapCSP� that hasa 
(vlt(G2;�2)) fraction of violated constraints. Furthermore, the size of the resultinginstance is O(2r) = O(jG2j), because d and t are constants. This completes the last stepas well as the proof of the entire lemma. 2Application to short PCPs. Recall that the PCP Theorem asserts that membershipin any NP-set can be veri�ed, with constant error probability, by a veri�er that probes apolynomially long (redundant) proof at a constant number of randomly selected locations.Denoting by N the length of the standard proof, the length of the redundant proof wasreduced in [9] to exp((logN)�) �N , for any � > 0. An open problem, explicitly posed in [9],is whether the length of the redundant proof can be reduced to poly(logN) �N . Buildingon prior work of [10], this seemingly di�cult open problem was resolved by Dinur [12]:Speci�cally, viewing the system of [10] (which makes poly(logN) queries into a proof oflength poly(logN) �N) as a PCP system with rejection probability 1=poly(logN), Dinurampli�es the rejection probability for a double-logarithmic number of times, thus derivingthe desired PCP system.
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