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Abstract

This paper initiates the study of deterministic ampli-
fication of space-bounded probabilistic algorithms. The
straightforward implementations of known amplification
methods cannot be used for such algorithms, since they con-
sume too much space. We present a new implementation
of the Ajtai-Koml 6s-Szemerédi method, that enables to am-
plify an S-space algorithmthat uses » randombitsand errs
with probability ¢ to an O(k.S)-space algorithm that uses
r 4+ O(k) random bits and errs with probability ¢*(%).

This method can be used to reduce the error probability
of BP L algorithms below any constant, with only a con-
stant addition of new random bits. Thisisweaker than the
exponential reduction that can be achieved for BP P algo-
rithms by methods that use only O(r) random bits. How-
ever, we prove that any black-box amplification method that
uses O(r) random bits and makes at most p parallel simu-
|lations reduces the error to at most ¢°(»). Hence, in BPL,
where p should be a constant, the error cannot be reduced
to less than a constant. This means that our method is op-
timal with respect to black-box amplification methods, that
use O(r) randombits.

The new implementation of the AKS method is based on
explicit constructions of constant-space online extractors
and online expanders. These are extractors and expanders,
for which neighborhoods can be computed in a constant
space by a Turing machine with a one-way input tape.

1 Introduction
1.1 Deterministic amplification

A probabilistic algorithmfor alanguage L C {0, 1}*
is an algorithm that may use random bits during its execu-
tion and determines in the end whether the input belongsto
the language or not. We consider Monte-Carlo agorithms,
which are probabilistic algorithmsthat are allowed to err on
thelr input with some constant probability 0 < ¢ < %

A natural question that emerges when dealing with
Monte-Carlo agorithms is how to reduce their error prob-
ability (to amplify the success of the algorithm). A naive
approach would suggest to run the algorithm % times inde-
pendently and take the mgjority vote of the results. This
would yield a Monte-Carlo algorithm that errs with proba-
bility ¢2(*). However, the number of random bits the new
algorithm uses is k£ times the number of random bits used
originaly.

Moreinvolved methods are required for achievingasim-
ilar descent in the error probability without “paying” in so
many random bits. These methods enabl e deter ministic am-
plification of the probabilistic algorithm; that is, reducing
the algorithm’s error probability while adding only a small
number of new random bits.

All amplification methodsare based on a black-box simu-
lation. The general framework of these methods can be out-
lined as follows. Denote by A the original Monte-Carlo a-
gorithm, by ¢ its error probability and by » the number of
random bits it uses. An (!, r, k)-black-box simulator is a
meta algorithm, to which A is plugged in as a subroutine.



The simulator runs A & timeson itsinput = and outputsthe
majority vote of the results.! The“heart” of thesimulatoris
the mechanism in which it producesthe & »-bit strings, that
are supplied as random bits for the & executions of A. The
simulator uses a special combinatorial object, called extrac-
tor, whichisafunctionthat receivesarandom seed of length
! and produces k pseudo-random strings of length ». The
simulator isfurther called a (4, ¢)-amplifier, if it “fools’ the
copies of A, such that the error probability dropsto § < e.

1.2 BPP amplification

BPP isthe class of languages that are recognized by
polynomial-time Monte-Carlo algorithms. For this class
there exist very good amplification methods, that achieve
dramatic (up to exponential) reductions in the error proba-
bility with a small addition of random bits.

Karp, Pippenger and Sipser [8] and Chor and Goldre-
ich [2] exhibited two methods that use an optimal number
of random bits (» and 2» respectively) and reduce the error
probability linearly with the number of simulations . Im-
pagliazzo and Zuckerman [6] succeeded to achieve an ex-
ponential reductionintheerror probability (i.e., 2~2(%)), but
they requiretheuseof additional k2 random bits. If weinsist
on using an optimal number of random bits (i.e., O(r)), this
results in only a subexponential amplification of 2=(v7),
Nisan [10] improved on this by presenting an exponential
amplification in the cost of alog & factor in the number of
random bits.

Cohen and Wigderson [3] and Impagliazzo and Zucker-
man [6] independently noticed that aresult of Ajtai, Komlos
and Szemerédi [1] can be used to form an amplifier that re-
ducestheerror probability exponentially to 2~ (*) whileus-
ing only » + O(k) random bits. Hence, this method is opti-
mal up to a constant for B P P amplifications.

The construction of AKS is based on expander graphs.
These are graphs with a very high connectivity. Random
walks on such graphsrapidly yield amost uniform distribu-
tionsonthenodes. Sincethereare expanderswithaconstant
degree, they are useful for generating almost uniform distri-
butionsusing a small number of random bits.

Given ad-regular expander G on 2" nodes, the AKS am-
plifier produces a random walk w1, .. .v; of length k, that
gartsat arandomnodev € G. vy, ..., v, areused asran-
dom stringsfor the k£ simulations of A. The number of ran-
dom bitsused is » (for the starting point) + & log d (for de-
terminingthewalk), whichisr+0(k), whiletheerror prob-
ability drops exponentially in k.

1For some applicationsit is better to perform adifferent function on the
k results. Refer to [5] for examples.

1.3 Amplification of space-bounded computations

The randomness of a probabilistic agorithm may be
thought as the ability to flip an unbiased coin at each stage
of itsexecution. Freguently itismore convenient to think of
theresults of these coin flips as given to the algorithmin ad-
vanceon aspecial randomtape. Notethat inthefirst charac-
terization the algorithmmay not recall previousrandom bits
unlessit explicitly saves them onitswork tape, wherein the
second one it has amultiple access to the random bitswith-
out “paying” for additional space. Therefore, the two char-
acterizationsare equivalent only when the a gorithm’ sspace
isunbounded (e.g. in BP P). In space-bounded classes we
may use the second characterization only if we restrict the
random tape to be one-way.

This paper is the first to study deterministic amplifica
tion of space-bounded Monte-Carlo agorithms, that have a
read-once access to their random tape. In particular we con-
sider amplification for the class B P L., which consists of the
languages recognized by |ogspace polynomial-time Monte-
Carlo agorithmswith aone-way random tape.

For amplifying such agorithmswe need amplifiers that
can compute the % pseudo-random strings and use them in
the simulations within the same space limits of the original
algorithm. All the mentioned above amplifiers, except for
the naive one, require multiple access to their random seed
during the computation. Therefore, astraightforwardimpl e-
mentation of any of these amplifiers should storethe seed on
the work tape. However, the length of this seed may be ex-
ponential in the space limits of the algorithm.

Thus, a different approach is needed in order to utilize
the above amplifiers for a space-bounded amplification. We
look for anon-trivial implementation of one of these ampli-
fiersthat computes the pseudo-random stringswithout stor-
ing the random bits of the seed in the work space. Our first
main result succeeds to do so for the AKS amplifier.? The
result requirestheuse of specia expanders, for which neigh-
borhoods can be computed in asmall space on aTuring ma-
chine with a read-once access to its input tape. Our main
lemma (Lemma 3.4) provesthat, under a suitable encoding,
the expander of Margulis[9] has this property. Computing
a neighbor at this expander requires making a few summa-
tionsmodul o a power of 2. When choosing a proper encod-
ing for the nodes, the summations can be carried out with a
single pass on the input, while using only a constant space.
Hence, inthisexpander one can computethe:*” bit of all the
nodesin a k-length random walk, using a constant space per
node. Therefore, we should keep only O(%) bitsfrom stage
to stage. The amplifier executes simultaneoudy & copies of

2We also found a new implementation for the KPS amplifier, that en-
ablesto useit for space-bounded amplifications. However, thisimplemen-
tation has no advantage on AK'S, and reduces the error only linearly with
k.



the origina agorithm. At each stage k random bits are gen-
erated and supplied to the k copies. Thisyields a Monte-
Carlo agorithm that reduces the error probability to ¢?(),
adds O (k) random bits and uses k times the space used by
the original agorithm.

By choosing an arbitrarily large (but still constant) % we
obtain the next positive result:

Theorem (BPL Amplification — Positive Result): For
any constant 0 < J < e, there exists an (explicitly given)
(r + O(k),r, k)-black-box simulator, which is a (4, ¢)-
amplifier and can be used for B P L. amplification.

The technical result that implies this theorem is a con-
struction of a small-space online extractor, as described in
the next section.

The deterministic amplification we achieve for space-
bounded classes is not as good as the known amplification
methods for time-bounded classes. Our amplifier succeeds
to achieve only a constant reduction of the error probabil-
ity, since theamount of space it uses growslinearly withthe
number of simulations £. This connection is a direct result
of our strategy: we make the simulationsin parallel and not
sequentially, as was done in previous methods.

A natura question is whether a non-constant reduction
can be achieved a so for space-bounded computations, while
keeping the number of random bits small (e.g. O(r)). For
being able to obtain such areduction with a black-box am-
plifier, one hasto present amethod that makes at most acon-
stant number of parallel smulations at any given moment.
Our lower bound shows thisis not possible.

We prove that if a black-box amplifier, that uses O(r)
random bits, makes at most p parallel simulations, then
the error probability drops to a most ¢°(®). Since in
BPL amplifications we can make only a constant number
of parallel simulationswe obtainthefollowinglower bound:

Theorem (BPL Amplification — Negative Result): For
any (4, €)-amplifier, that runs on an (O(r), r, k)-black-box
simulator and that can be used for BP L. amplification, it
holdsthat § > ¢°(1),

Again, the technical result that implies thistheorem isa
combinatorial lower bound on the structure of small-space
online extractors, as described in the next section.

This result shows that our implementation of the AK S
amplifier isoptimal with respect to black-box amplifiers for
BPL, that use O(r) random bits.

1.4 Onlineextractorsand online expanders

The notion of extractors [13] is closdly related to de-
terministic amplification. (/, r, k)-bipartite graphs are ones

with 2! nodes on the left side, each with degree &, and
2" nodes on the right side. Such graphs are caled (9, ¢)-
extractors, if for any distribution on the l€eft that is uniform
on some subset of size 62!, the induced distribution on the
right (where the neighbor index is chosen uniformly at ran-
dom) is e-close to uniform (where the distance is the statis-
tical distance between distributions, which is half of the L
distance).

Extractors have many applications in theoretical com-
puter science. The most celebrated ones are simulation
of randomized algorithms using defective random sources,
oblivious sampling, proofs of hardness results and conver-
sion of probabilistic existence proofs to explicit construc-
tions. Refer to [12] for a survey about extractors.

Our main interest isin the connection of extractorsto de-
terministic amplification. It turns out that black-box ampli-
fiers are equivalent to weak extractors,®, a dightly weaker
notion than extractors. An (/, r, k)-bipartitegraph is called
a(d, €)-weak extractor if for any pair of sets (U, W), where
U isasubset of theleft side of size > §2, and W isa subset
of theright side that contains at least % neighbors of each
y € U, it holdsthat [WW| > €2". Every (I, r, k)-bipartite
graph can be used to construct an (!, r, k)-black-box simu-
lator and vice versa. Furthermore, the graphisa (9, ¢)-wesk
extractor iff thesimulatorisa (4, €)-amplifier. If an ({, r, k)-
bipartitegraphisa (4, ¢)-extractor itisalsoa(d, + —e¢)-wesk
extractor. Thisimpliesthat extractorstoo are useful for de-
terministic amplification.

The complexity of computing neighborhoodsin a weak
extractor determines the efficiency of the resulting ampli-
fier and its applicability to specific classes of randomized
algorithms. For example, in order to use aweak extractor
in the amplification of polynomial-time randomized ago-
rithms, neighborhoodsshoul d be computed in apolynomial-
time,

We are interested in amplifiers that are applicable for
space-bounded agorithms. Hence, we seek weak extrac-
tors, in which neighborhoods can be computed with a small
space. The neighborhoods are computed on a Turing ma-
chinewithaone-way input tape and k& one-way output tapes.
When the machine is given anode on the | eft of aweak ex-
tractor, it outputsits & neighbors, one neighbor per output
tape. Anoutput tapeiscalled alive at timet, if thereis some
datathat was already written on it, and thereis still more to
be written until the execution ends. The machine is called
p-paralld, if p isthe maximal number (over al inputs) of
living output tapes at any given moment. An (S, p)-explicit
online weak extractor is one that has an S-space p-parallel
nei ghborhood-computationmachine. A black-box amplifier
can run such amachine, by supplying it input from its one-
way random tape and using itsoutput bits as random bitsfor
thek simulations. If theoriginal algorithm A uses.S 4 space,

3Also known as majority dispersers. Refer to [3].



then the amplifier isan O(S + pS4)-space a gorithm.
Therefore the next construction yields the positive result
for amplifiers stated in the previous section:

Theorem (Weak Extractors— Positive Result): For any
constant 0 < € < % there exists an (explicitly given)
(O(k), k)-explicit online (r + O(k), r, k)-bipartite graph,

whichisan (e?*) ¢)-weak extractor.

The main tool in this construction is showing that,
under a suitable encoding, the expander of Margulis is
a constant-space online expander. Online expanders are
ones, for which neighborhoods can be computed by a
Turing machine with a one-way input tape. Thisisthe first
known exampl e of such expanders:

Theorem (Online Expanders): Fix any natural number
w > 2. Then, for avarying r there exists a constant-space
online family of expanders on w?” vertices.

On the other hand, a p-parallel S-space black-box
amplifier results in an (.S, p)-explicit weak extractor. The
following lower bound shows that in small-space online
(4, €)-weak extractors 6 goes down with the pardlelism p
and not with the degree k. Thisimpliesthe negative result
for amplifiers stated in the previous section.

Theorem (Weak Extractors— Negative Result): For any
constant ¢ and for any (%, p)-explicit online (O(r), r, k)-
bipartitegraphwhichisa (9, ¢)-weak extractor, it holdsthat
§> 2700,

1.5 Conclusions

This paper presents an amplification method for space-
bounded computations, which is proven to be optimal with
respect to black-box methods. Thisdoesnot mean that other
methods, which may utilize properties of space-bounded
randomized algorithms, cannot do any better. It is plausi-
ble that non black-box methods may achieve better than a
constant reduction of the error probability.

Randomi zation in space-bounded computations seems to
be better understood than in time-bounded computations:
Specifically, utilizing the structure of space-bounded com-
putations, unconditional results such as BPL C SC (by
Nisan[11]) and BPL C L= (by Saks and Zhou [15]) were
obtained. It isthus plausible that, utilizing the structure of
space-bounded computations, one may do better than black-
box amplification.

Onthe other hand, if BPL = L then the entire question
(of amplification of BPL agorithms) is mute. Yet, trying to
come-up with better amplification of BPL algorithms may
be afruitful avenue towardstryingto provethat BPL = L.

16 Paper overview

Section 2, Definitions, presents the model s we are work-
ingwith: Monte-Carloalgorithms, black-box amplifiersand
weak extractors. It outlines the close connection between
the two latter notions.

Section 3, Formal statement of results, presentsthelist of
results obtained in this paper.

Section 4, The upper bound, presents the construction
of the (O(k), k)-explicit online wesk extractor. It begins
by a short review of expander graphs, provesthat, under a
suitable encoding, the expander of Margulis is a constant-
space onlineexpander and ends by presenting the mentioned
above construction.

Section 5, The lower bound, proves the lower bound for
small-space online weak extractors.

2 Definitions

This section sets the framework of our discussion
throughout the paper. It begins by a short review of
Monte-Carlo agorithms. It introduces the notion of
black-box amplifiers, which is the model we consider for
deterministic amplification. It presents weak extractors
and their equivalence to black-box amplifiers. Finaly, it
discusses the applicability of amplifiers to amplification
of gpecific classes and its relation to the complexity of
neighborhood-computationin weak extractors.

During the discussion we use the convention that space
is counted in binary, and accounts a so for the machine state
and the positions of the heads. Hence, the maxima number
of configurations an S-space machine hasis exactly 2°.

2.1 Black-box amplification of Monte-Carlo algo-
rithms

Definition 2.1 An (r, ¢)-Monte-Carlo algorithm for a
language . (where 0 < ¢ < % iS some constant) is a ran-
domized algorithm A with a one-way random tape, that on
inputs of length n uses » = r(n) random bits, and satisfies
forall inputsz: Pryc 0,13 [A(z,y) # xr(z)] < € (Where
x 1 isthe characteristic function of 7.).

Thispaper discusses two randomized complexity classes.
BPP isthe class of languages computed by Monte-Carlo
algorithmsthat run in a polynomia-time. BP L isthe class
of logspace polynomial-time Monte-Carlo algorithms. We
stress the one-way access of the agorithms to their random
tape. Hence, they cannot recall previousrandom bits unless
they explicitly store them in the work space.

The model for all amplification methods is black-box
simulation. A black-box simulator M is a generic ago-
rithm, into which any Monte-Carlo algorithm B can be



plugged in, yielding an algorithm A7 2. M runs k copies of
B and outputs the magjority vote of the results. M gets r,
the number of random bitsused by B, asinput. It generates
k bit-strings, each of length », and suppliesthem as random
bitsfor thesimulationsof B. For the generation of these bit-
strings M uses! = {(r) random bits.

B dready comeswithitsinput. B can be thought as the
computation of a Monte-Carlo agorithm A on an input «.
Therefore, at any given configuration of B, only therandom
bit it reads determines to which of two possible configura-
tionsit should move.

M isnot an oracle machine with respect to B itself, but
rather to its transition function. The transition function, de-
noted by fz, maps pairsof theform (u, b), where« isacon-
figurationof B and b isabit, tothe configuration », to which
B moves from u after reading the random bit b.

For making sure M uses the queries to fg to form le-
gal executionsof B, weimpose severa restrictionson these
queries. First, M isrestricted toquery fp with either anini-
tial configuration or with aconfigurationreturned by aprevi -
ouscal to fg. Each query islabeled by anumber. When M
queries fg with an initia configuration, it labels the query
with a new number. When it queries fg with a configura
tion returned from a previous call to fg, it labels the new
guery withthe number of the query that returned thisconfig-
uration. A sequence of queries labeled by the same number
formsasinglesimulationof B. Hence, the number of query
labels M usesisthenumber of simulationsit makes (i.e., k).

Thesteps, at which M calstheoracle fg, arecalled sim-
ulationsteps. Therest are called computation steps. We fur-
ther postulate that during the computation steps A/ has no
access to any of the configurationsof B. Thismeansthat the
computation stepsof M arenot affected by the choice of the
algorithm B, because al it sees from every algorithm B we
pluginis asequence of r requests for random bits. Hence,
fixing  and the random string y € {0, 1}'(") uniquely de-
termines the computation steps of A/

Definition 2.2 An (1, », k)-black-box simulator (where
k = k(r)and! = I(r)) isan algorithm M as speci-
fied above. M is further called a (4, €)-amplifier (where
d = d(e, r)), if for any (r, €)-Monte-Carlo algorithm B the
machine M /# isan ({, §)-Monte-Carloalgorithm. Inthese-
quel, we use M P as shorthand for A/ /5.

Without loss of generality, we assume that M storesthe
last configuration reached in each simulation (which is the
configuration returned by the last query labeled by the sm-
ulation number). The reason isthat if A/ manages to store
less bits than those required for holding the configuration
(for every configuration), and then succeeds to restore the
configuration before the next cal to fgz, then there is some
shorter description of the configurationsof B. If the encod-
ing of B’s configurationsis chosen to be the most efficient

one, then thisis not possible.

We call the space used by A during itscomputation steps
the private storage. The space used for holding the config-
urations of the currently executed simulationsis called the
simulation storage.

Definition 2.3 A simulation made by a black-box simula-
tor M iscalled activeattimet, if M holds an intermediate
(not accepting or rejecting) configuration of thissimulation
attimet. M iscalled p-paralld, if p isthe maximal number
(over all inputsand all time steps) of active simulations M
has.

If the private storage of a black-box simulator M is S, it
is p-parallel and the space used by B is Sg, then M ¥ uses
O(S+ pSg) space. Hence, the parallelism of asimulator is
an important factor in estimating its space requirements.

Definition 2.4 A smulator M iscalled (S, p)-efficient, if
itisp-parallel and uses S private space.

The next definition determines when asimul ator can be used
for amplification of agorithms of a specific class:

Definition 2.5 Let C be some randomized complexity class.
A simulator M is called C-applicableif for any algorithm
B € Citholdsthat M*” € C.

We are interested in B P L-applicable amplifiers. It is
easy to see that such amplifiers should be (O(log ), O(1))-
efficient* The naive amplifier described in the intro-
duction reduces the error probability exponentially and is
(O(logr), 1)-efficient, thusis BP L-applicable. However,
it consumes alot of random bits (i.e., k). The other am-
plifiers mentioned in theintroduction a so manage to reduce
the error substantially, and even with asmall number of ran-
dom bits. Unfortunately, the straightforward implementa-
tions of these amplifiers are only (O(r), 1)-€efficient, hence
arenot B P L-applicable. Welook for an amplifier that keeps
both the space and the number of random bits small.

2.2 Weak extractors

Note that black-box amplifiers utilize the original algo-
rithm only through its output interface and not by analysis
of theway it works. This observation resultsin a combina
toria characterization of black-box amplifiers.

Definition 2.6 An (I, », k)-bipartite graph is a bipartite
graph, whose left sideis V; = {0, 1}, its right side is
V5 = {0, 1}" and each nodein V; isof degree k.

4B P L-applicable amplifiers should also run in a polynomial-time.
However, time is not a crucial issuein this discussion. It is easy to verify
that all the amplifiers we consider run in a polynomial-time.



Consider an (/, r, k)-black-box simulator M and fix a
number + and a random string y of length ! = {(r). The
computation stepsof A are uniquely determined by » and y.
It followsthat the bit stringsthat are supplied to the £ ssimu-
lations as random bitsare functionsof » and y only. Denote
these stringsby 1, ... , yx. Wedefinean ({, r, k)-bipartite
graph Gz, as follows: V) corresponds to &l the possible
random strings of length ! = {(r) fed to M, when itsin-
putisr. V correspondsto all the possiblerandom strings of
length » fed to an »-bit Monte-Carlo algorithm. Each node
y € V isconnected tothenodes yq, ... ,yx € V5.

The being of M a (4, ¢)-amplifier trand ates to a combi-
natorial property of Gaz .

Definition 2.7 An (I, r, k)-bipartite graph is called a
(4, €)-weak extractor if for every subset W C 15, where
|W| < e2r, theset {y € Vi : |T(y) N W] > &}isofsize
< 62!, where I'(y) is the neighbor-set of y.

Lemma2.8 M is an (/,r, k)-black-box simulator if and
only if for all » the graph Gy, is an ({, r, k)-bipartite
graph. Furthermore, M isa (4, ¢)-amplifier iff for all » the
graph Gr - isa (4, €)-weak extractor.

The proof of thislemmaisfairly smple, and can be found
in[12].

Weak extractors were introduced by Cohen and Wigder-
son in [3] (they caled them majority dispersers), and they
lie between the two more familiar notions of extractorsand
dispersers.

Definition 29 An (I, r, k)-bipartite graph is called a
(4, e)-extractor if for every subset U C V4, where
|U| > 42!, when choosing at random a node from U/
and then a random neighbor of this node, the induced
distributionon theright is ¢-close to uniform.

Definition 2.10 An (!, r, k)-bipartite graph is called
a (4,¢)-disperser if for every subset U C V7,
where [U| > 62!, it holds that [['(U)] > €27, where
F(U) = UueUF(u).

We should notethat these notationsdeviatefrom the stan-
dard definitions in a few technical non significant details.®
Our choice best illustrates the connection to amplification
exhibited in Lemma 2.8.

Ifan (I, r, k)-bipartitegraphisa (4, €)-extractor thenitis
asoa(d, 5 — e)-weak extractor, and if itisa (6, ¢)-weak ex-
tractor thenitisa(d, )-disperser. Hence, extractorsare use-
ful in constructing black-box amplifiers, and analysis of dis-
persers may shed light on the limitations of black-box am-
plifiers. Moreover, dispersers are equivalent to black-box

5k is usually the logarithm of the left degree and § is the min-entropy
of the distribution on the |eft.

amplifiersthat perform an OR function on the results of the
simulations. Such amplifiers are useful in amplification of
one-sided-error Monte-Carlo agorithms.

2.3 Bipartite graph explicitness

The equivaence between black-box simulators and bi-
partite graphs can be used in the context of simulator appli-
cability too. Explicit bipartite graphs (onesin which neigh-
borhoodsare easy to compute) yield efficient simul atorsand
viceversa

We begin by introducing two new Turing machine vari-
ants.

Definition 2.11 Anonline Turing machineisa Turing ma-
chinewith a one-way read-only input tape.

Definition 2.12 A k-output Turing machine is a Turing
machine that has & one-way write-only output tapes. The
machine has a special address tape, fromwhich it takes the
index of the output tape to be accessed next.

Such a machine computes a function f : {0,1}* —
({0,1}*)*, where the:*" coordinate of the output is written
on the i*” output tape. The machine needs the specia ad-
dresstape, since k isalowed to grow with the input length.
For space cal cul ationsthistapeis considered as awork tape,
hence the machine is charged for the space it consumes.

We present below notionsthat correspond to active sim-
ulationsand simulator parallelism in the setting of %-output
machines. k-output machines will be used later to com-
pute the & neighbors of a node on the left of an (I, r, k)-
bipartitegraph. These neighborswill be used by asimulator
as pseudo-random stringsfor the simulations of the original
algorithm. A simulationis active if it received some of its
random bitsbut not all of them. This happens exactly when
the corresponding output tape contai ns some of the bits, that
should be written on it, but not al of them. Thisis the mo-
tivation for the next definition:

Definition 2.13 Fix aninput y for a k-output machine, and
consider its execution on this input. We denote by ¢?

1,8tart
and ¢!, thetime stepsin which thefirst and the last bits

(respectively) arewritten onthe:'” output tape. We say that
thistape is alive at timet¢ on the input y if ¢¥ <t <

1,8tart
y

iend”

Definition 2.14 A k-output machineis called p-paralld, if
pisthemaximal (over all inputsy and all time steps¢) num-
ber of living output tapes.

Definition 2.15 An online k-output machine is called
(S, p)-efficient, if it isp-parallel and uses S space.

We are now ready for the explicitness definition:



Definition 2.16 A family of (, », k)-bipartite graphs {G, }
(where! = I(r) and & = k(r)) iscalled (S, p)-explicit,
if there is an (S, p)-efficient k-output machine N¢ (called
the neighborhood machine) with two input tapes: a two-
way input tape on which it gets the parameter » and a one-
way input tape on which it gets a node » on the left side of
G,. Ng outputsthe k neighborsof v onitsoutput tapes, one
neighbor per tape.

Note that there is no requirement that the :*» neighbor
will be written on the :** output tape. Any permutation of
the neighborsis acceptable.

The next theorem demonstrates the equival ence between
bipartite graph explicitness and simulator efficiency. This,
together with Lemma 2.8, enables usto concentrate on the
study of weak extractors, and obtain conclusions about am-
plifiers.

Theorem 2.17 (Equivalence Theorem) For S > logk
an ({, r, k)-black-box simulator A is (O(S), p)-€efficient if
andonly if thefamily of (I, », k)-bipartitegraphs {G'as , } is
(0(S), p)-explicit.

Proof: Assume M is (O(S), p)-€efficient. We construct an
(S, p)-€efficient neighborhood algorithm N for the family
{Gpr+}, which is based on M. When given r on its two-
way input tape and y on its one-way input tape, N runs
M, while supplying it » as input and y as a random string.
N¢ ignores the smulation steps of A/. When M submits
arandom bit to the i** simulation, N¢; writesthisbit onits
it" output tape. 1t can be easily verified that N computes
neighborhoodsin Gz .

N¢ follows the computation steps of M accurately.
Hence, it uses the same space (O(S)). Moreover, Ng's
schedulefor itsoutput tapesisthe same as M ’sschedulefor
itssimulations. Therefore, a any given moment the num-
ber of living output tapes N has isidentical to the num-
ber of active smulations M has. It follows that since M
is p-parallel then so is Ng. We conclude that {Gay -} is
(0(S), p)-explicit.

The oppositedirection is quite similar. |

3 Formal statement of results

Thispaper hastwo main results. Thefirst one showsthat
the AKS weak extractor is (O(k), k)-explicit. This isthe
first construction of a small-space online weak extractor.

Theorem 3.1 (Upper Bound) Fix any constant 0 < ¢ <
L. Then, for any k& = k(r) there exists an (O(k), k)-
explicit family of (r + O(k), r, k)-bipartitegraphs, that are

(¢51F) | ¢)-weak extractors.

Using Lemma 2.8 and the Equivalence Theorem (Theo-
rem 2.17) we obtain afirst example for amplifierswhich use
both a small space and a small number of random bits:

Corollary 3.2 (Space Efficient Amplifiers) Fix any con-
stant 0 < e < <. Then, for any k = k(r) there exists
an (O(k), k)-efficient (r + O(k), r, k)-black-boxsimulator,

whichisan (%) ¢)-amplifier.

The restriction on ¢ is not a significant obstacle, since if
the origina algorithm has a higher error probability, we can
repedat it a constant number of times and take the majority
vote of the answers. Using the amplifier with this repeated
algorithmwould change our estimationsby a constant factor
only.

Since this amplifier uses only O(k) space and runs at
most % parallel smulations, thenfor aconstant k itis BP L-
applicable:

Corollary 3.3 For any two constants 0 < § < € < 11—6
there exists a BP L-applicable (» + O(1),r, O(1))-black-
box simulator, whichisa (4, ¢)-amplifier.

The main tool in the efficient weak extractor construc-
tion is a constant-space online expander. The main lemma
proves that, under a suitable encoding, neighborhoods in
the expander of Margulis[9] can be computed in a constant
space on an online Turing machine. Thisresultisinteresting
for itsef:

Lemma3.4 Fix any natural number w > 2. Then, for a
varying » there exists a family of constant-space online ex-
pander graphs on w?" vertices.

The amplifier we presented cannot achieve more than
a constant reduction of the error probability for BPL al-
gorithms, since this probability goes down with %, and &
is bounded to be a constant due to the space limitations.
Our second main result shows that this construction is op-
timal with respect to B P L-applicable black-box amplifiers
that use O(r) random bits. The result derives from a lower
bound on § in dispersers that are small-space-explicit. The
lower bound showsthat in such dispersers § goes downwith
the disperser parallelism and not with the degree :

Theorem 3.5 (Lower Bound) For constants(0 < ¢ < %

and f > 4,foranyc = ¢(r), k = k(r) < 27,8 = §(r) and
for an (? p)-explicit family of (cr, r, k)-bipartite graphs,
that are (9, ¢)-dispersers, it holdsthat § > 2-9(9), where

q=pcf.
Using Lemma 2.8 and the Equiva ence Theorem we obtain
the following conclusion for space-bounded amplification:

Corollary 3.6 For aconstante,foranyk = k(r),d = d(r)
and for a BP L-applicable (O(r), r, k)-black-box simula-
tor, whichisa (J, ¢)-amplifier, it holdsthat § > ¢©(1),



4 Theupper bound

This section presents the construction of (O(k), k)-
explicit online weak extractors. The main tool in the con-
struction is constant-space online expanders.

The section begins by a review of expander graphs, a
presentation of the Margulis construction and a definition
of online expanders. It presents an encoding for the Mar-
gulisconstruction, under which it is aconstant-space online
expander. Then, it provesthat raising a constant-space on-
line expander to a constant power yields a better expander,
which is gtill constant-space and online. Finaly, it shows
the AKSwesk extractor is (O(k), k)-explicit, by presenting
a neighborhood a gorithm that uses a constant-space online
expander.

41 Expander graphs

We call agraph &G a~y-expander if every subset S of at
most half of its nodes has a neighborhood of size at least
(14-4)|S].® Thereisastrong connection between the expan-
sion factor () of an expander graph and the second eigen-
value of its adjacency matrix. Let M be the adjacency ma-
trix of an expander graph GG and let A1,..., Ay beits N
eigenvaluesin adecreasing order of absolutevalues. It turns
out that the smaller theratio % the greater the expansion
factor. Therefore, the second eigenvalue is sometimes used
to measure the expansion quality of a graph. Furthermore,
Ao isthe actua parameter which matters in the AK'S con-
struction (employed bel ow).

Definition 4.1 An undirected multi-graph G on N vertices
iscalled an (N, d, A)-expander if it is d-regular and the
absol uteval ue of the second eigenval ue of itsadjacency ma-
trixisA.

Margulis[9] introduced afamily of graphs {G y } for in-
tegers NV that have an integer squareroot m. Let 7} and 75
be 2 x 2 matrices over thering 7, and let b, and b, be 2-
dimensional vectorsover 7,,,. We definetwo affine transfor-
mations, A;z =Tz +b; and Ayz = Thz + by. Thevertex
set of Gy isZ,, x Z,,. Each nodeisapair (z,y) where
x,y € Zm. (x,y) isconnected to T} (z),Al(z),Tz @ and
As(y).

G n isan 8-regular graph. Margulis proved that its sec-
ond eigenvalueisless than 8, hinting it may be a good ex-
pander. However, he did not achieve abound ontheratio %.
Gabber and Galil [4] were thefirst to present such a bound.
Jimbo and Maruoka[7] obtained the best estimation known
for the second elgenval ue of this graph:

6 Actually, the standard definition requiresthe neighborhood set to be of

sizeatleast (14 v(1 — 251)|s].

Theorem 4.2 (Margulis, Gabber—Galil, Jimbo—M ar uoka)

The graph Gy with 7} = (é 1),191 = (é)

T, = (} ?)andbz = (?)isan(N,8,5\/§)-

expander graph.

We will need expander graphs which are easy to com-
pute by space-bounded algorithmsthat have aread-once ac-
cess to their input tape. For this we introduce the next no-
tion of online graphs. These are graphs in which neigh-
borhoods can be computed on an online machine with a
bounded space. An onlinegraph of order ¢ isone, on which
walks of length ¢ are computable by space-bounded online
machines.

Definition 4.3 Afamily of d-regular multi-graphs{ Fy } on
N verticesiscalled S-spaceonlineof order ¢ ifthefollow-
ing hold:’

1. Thereexistsan encoding ey for thevertex set of /'y by
binary strings of length O(log V).

2. There exists an encoding ¢, for {1, ... d} by binary
strings of length O(log d).

3. There is an S-space g-output online machine R
(called the order-g neighborhood machine),
that on input (eq(ji),...,ea(jq),ev(v)), where
Ji,---,dq € {1,...,d} and v isa nodein Fy,
outputs ey (v1), . .. , ev (vg) ONits ¢ output tape (one
node per tape), where vq,...,v, are the nodes in
the walk on Fy that starts at v and is specified by

jla"' ajq'8

Some applications require highly expanding graphs. We
presented a construction that has a relatively moderate ex-
pansion factor. It is standard to increase expansion by |ook-
ing a powers of the graph.

Definition 4.4 Given a graph G whose adjacency matrixis
M, define the ¢** power of G (denoted by G(9)) to be the
multi-graph whose adjacency matrixis M 9.

Proposition 45 Let G be an (N, d, A)-expander. Then
G isan (N, d?, \7)-expander.

We leave the proof of thissimple proposition to the reader.

4.2 Mainlemmas

The following isthe main lemma of the upper bound. It
exhibits an encoding for the expander of Margulis, under
which it is an online constant-space graph:

“When agraph is online of order 1, we call it smply an online graph.
8vq = v andv; isthe ¢ neighbor of v; 1.



Lemma4.6 (Lemma 3.4 restated) Fix any natural num-
ber w > 2. Then, for a varying » the Margulis expander
family (of Theorem 4.2), {G,2- }, is constant-space online.

Proof: The encoding we present for the Margulis family
uses an alphabet of sizew. For simplicity weassume w = 2,
in which case we can use abinary aphabet.

Every nodein (52~ corresponds to a pair (z, y), where
z,y € Zs. We encode a node by the seguence
Z1,Y1,%2,Y2, .-, X, Yr, Wherez, and y; aretheleast sig-
nificant bitsof « and y respectively, and «,- and y, are their
most significant bits. The neighbor indices {1,...,8} are
encoded standardly.

Fix aninput (e4(4), ev (v)) for thealgorithm, and denote
by v’ the j** neighbor of v (ey (v') should be the output of
the algorithm). For v = (#,y) and v’ = («',y), both &’
and y’ are obtained by linear combinationsof =,y and 1 with
coefficientsin{—1,0, 1} (eg., z — y — 1). The combination
itself is determined by ;.

For computing ey ((z',y')) from ey ((z,y)) (and j),
one just performs a straightforward addition, while taking
advantage of two facts: (1) For every ¢, thebitsz; and y; in
ev ((x,y)) are adjacent. (2) The r bits of the sum modulo
2" are exactly the r least significant bits of the sum without
amodulo. O

The next lemma shows that computing walks of length ¢ on
online graphs can be done by only multiplying the space by
afactor of q.

Lemmad.7 Let {Fv} be a family of S-space online
graphs. Then, itisalso O(¢.S)-space online of order .

Proof: Let R be the order-1 neighborhood machine of
{Fn}. The order-¢ neighborhood machine, M, runs ¢
copies R4, ..., R, of R simultaneously. R; computes the
it" nodein the walk.

M startsby running R4, . .. , R, (inthisorder) until each
R; reads al the bits of e4(j;) from theinput tape. The way
eq(j1), ... ,ea(jq) areput ontheinput tape enablesto do it
serially. Noticethat R cannot output any bit before it starts
to read the bits of v. Therefore, R4,..., R, do not try to
output anything at this stage.

M startsthe second stage of its execution by running 2,
until it demands an input bit. Thishbit should come from the
output of 12,_. Therefore, M suspends iz, and runs R,_;
until it requires an input bit. This goes on, until R, needs
aninputbit. R, can simply read itsinput bitsfrom the input
tape of M.

When R; outputsabit, itsexecutionissuspended and this
bit is used twice. Firgt, it iswritten on the ' output tape.
Then, itistransferred to R; 1, asaninput. The execution of
R;41 isresumed until it demands again an input bit or until
it generates an output bit.

Per each R;, themachine M keeps O(S) bitsonitswork
tape to store the configuration of R;. Therefore, it runsin
0(qS) space. Clearly, M isan onlinemachine. m]

As acorollary, we obtain that neighborhoodsin a ¢-power
of an online graph can be computed in the cost of a ¢-factor
only in the space.

Corollary 4.8 Let {Fx} be a family of S-space online d-
regular graphs. Then, {FJ(V‘I)} is a family of O(¢.S)-space
online d?-regular graphs.

Proof: Note that every neighbor index j in FJ(V‘I) corre-
spondsto awalk of length ¢ ji, ..., j, on Fi. Hence, the

nei ghborhood machi ne of FJ(V‘I ) hasto computethelast node
a ¢-length walks on Fly. It can use the order-¢ neighbor-
hood machine of Iy, by considering only its last output
tape. By Lemma4.7 thismachineusesonly O(¢.S) space. O

By taking an arbitrarily large constant power ¢ of the Mar-
gulis expanders, we obtain the following useful result:

Corollary 4.9 Fix any constant o > 0 and a natural num-
ber w > 2. Then, for a varying r there exists a constant-
space online family of (w?", d, \)-expanders, for which d is
constantand 3 < a.

4.3 Theweak extractor construction

In the following construction we use the AKS random-
walk method with graphsasin Lemma 4.7 as expanders.

Theorem 4.10 (Theorem 3.1 restated) Fix any constant
0 < € < 1= Then forany k = k(r) there exists
an (O(k), k)-explicit family of (r + O(k), r, k)-bipartite
graphs, that are (%) ¢)-weak extractors.

Proof: We follow the [3, 6] construction of extractors us-
ing random walks on expander graphs [1]. Specificaly, we
construct a weak-extractor H, using a constant power of
the Margulis expander G»-, for which 3 < 1), Call
this expander G. The nodes in V; correspond to walks of
length £ on G and the nodesin V5 correspond to the nodes
of . Each walk is connected to al the nodes that appear in
it. To encode awak we need r bits for the starting point
and k log d bits for the neighbor indices. Hence, H isan
(r + klogd, r, k)-bipartitegraph.

For the proof that 7 isan (¢°*(F) | ¢)-wesk extractor refer
to[1, 3, 6].

Note that Ny, the neighborhood agorithm of H, has
to compute walks of length & on the online expander .
Lemma 4.7 provesthat thiscan bedoneon a k-output online
machine, while increasing the space by a factor of % only.
Hence, since (¢ isaconstant-space onlinegraph, Ny needs
only O(k) space. Ny usesall the & output tapes throughout
the whole computation, implyingit is k-parall€l. |



5 Thelower bound

This section presents the lower bound we obtained for
dispersers, that have 2°(") nodes on their | eft, and that have
7-space neighborhood algorithms. We show that in such
dispersers § depends only on the parallelism of the neigh-
borhood agorithm, and not on . It follows, that no matter
how largeis k, if the pardleismissmall, then é islarge.

For the proof of thelower bound we introduce a new no-
tion regarding computations on k-output Turing machines.
This notion tries to capture the influence of the input on the
output written on the i*” tape.

Definition 5.1 Let M be an online k-output Turing ma-
chine, and let y be some input for it. Denote by ¢; thetime
inwhich y;, the j** bit of y, isread fromthe input tape. We
say that y; isseen by the i output tape, if t¥ .., < t; <
t{ .nq- InOther words, y; isread during i's lifetime. We de-

note by ¥ the number of input bits seen by the ¥ output
tape. We say that i ism-rich on input y if I > m.

The next lemma provesthat if adisperser hasa p-parallel
nei ghborhoodal gorithm, then for each fixed inputonly O(p)
of the outputsare substantially affected by the input.

Lemmab.2 Let D be a (cr,r, k)-bipartite graph whose
neighborhoodalgorithm Ny isp-parallel. Then, for anyin-
put y of Np there are at most pcf output tapes, which are
Z-rich.

f

Proof: Since the machine is online, each of the ¢r input
bits is read only once. Therefore, it is seen by a most p
output tapes (i.e. a most p output tapes are alive when this
bit isread). It follows that there are at most [p pairs of the
form (4, y;), where ¢ is an output tape index and y; is a
bit seen by 7 during its lifetime. Since the i” output tape
contributes I such pairs, then there are at most wp tapes
forwhich/ > L. Substituting! = ¢r and w = cf yields
what is stated in the lemma. O

The richness notion becomes crucia in determining the
influence of the input on each of the output tapes when the
machine can use only asmall space. Thelower bound proof
uses this fact to prove that in “good” dispersers (ones that
have 2°(") nodes on their €ft), which have only an % -space
neighborhood a gorithm, § depends on the neighborhood al -
gorithm parallelism.

Theorem 5.3 (Theorem 3.5restated) For constants 0 <
e<iandf >4, foranyc=c(r), k =k(r) < 27,6 =
d(r) and for an (7, p)-explicit family of (cr, 7, k)-bipartite
graphs, that are (J, ¢)-dispersers, it holdsthat § > 2-°(9),
where ¢ = pcf.

Proof: Let D be some disperser as in the theorem, and let
Np beits neighborhood a gorithm.

Radhakrishnan and Ta-Shma show in [14] that for a con-
stant 0 < ¢ < % andforany  and [, if G isan (I, r, k)-
bipartite graph, which is a (9, ¢)-disperser, then necessar-
ily s > 2-90) We will congtruct from D a (cr, r, ¢)-
bipartite graph, which is a (J, £)-disperser, implying that
§ > 2700,

For each node y € V4, consider the execution of N, on
y. Denoteby 1V = {4}, ... , 74 } theg richest output tapesin
thisexecution, and by JY = {;7,... ,jZ_q} therest of the
output tapes. Lemma 5.2 impliesthat thetapesin JY are al
a most %-rich ony.

Foreachi € {1,..., k} denoteby S; theset of al y'sfor
which i € JY. The string written on the ;' output tapeisa
deterministic function of the configuration of the machine,
when it starts to write on thistape, and of the input portion
read during the tape's lifetime. Hence, the total number of
possible outputs on the i*” tape going over al theinputsin
S; isa most the product of: (1) The number of configura-
tions when the machine starts to write on this tape. Since
Np usesat most % space, thisnumber is at most 27 (recall
our space accounting convention). (2) The number of pos-
sible input portionsread during the tape' s lifetime. For any
input y € S; it holdsthat i € J¥, implying that the i*" tape
sees on y an input portion of length at most ? (el < ?).
Therefore, the number of possible input portionsis at most
27+! Hence, thetotal isat most 27 1.

Denote by U; C V5, the set of nodes that are written on
the i** output tape when the input isin .S;. Denote by U
the unionover al i: U = UF_,U;. The above observation
meansthat || < YO U] < k2F+ < 27+ < £or,
for a sufficiently large .

Color the edges of D by red and blue as follows: the
edges between y and the neighborswritten onthetapesin 7Y
are colored by red and the edges between y and the neigh-
bors written on the tapes in JY are colored by blue. We
decompose D into two dispersers: D, contains al the red
edges and D, dl the blue edges. Note that every y has de-
gree ¢ in Dy, and that al the edges in D, lead to nodesin
U.

By the disperser property, every subset of V; of size at
least §2¢" has at least ¢2" neighbors. After dropping the
edgesof Dy, whichonly lead to nodesin U, each such subset
has at least 52" neighbors. Therefore, D, isthe (cr, r, q)-
bipartite graph, whichis a (4, §)-disperser, we looked for.
O
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