
Two Lectures on Advanced Topics in ComputabilityOded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.ilSpring 2002AbstractThis text consists of notes for two short lectures on advanced topics in computability. Thetopic of the �rst lecture is Kolmogorov Complexity, and we merely present the most basicde�nitions and results regarding this notion. The topic of the second lecture is a comparison oftwo-sided error versus one-sided error probabilistic machines, when con�ned to the domain of�nite automata.

PrefaceThese notes were prepared on the occasion of giving a guest lecture in David Harel's class onAdvanced Topics in Computability. David's request was the lecture should not rely on resourcebounds (equiv., complexity measures). This was a very challenging request for me, because all myprofessional thinking evolves around resource bounds. Still, I was able to �nd within my \knowledgebase" two topics that meet David's request, although one may claim that I \cheated": these topicstoo are \related to quantities" and not merely to \qualities".1 Kolmogorov ComplexityWe start by presenting a paradox. Consider the following description of a natural number: thelargest natural number that can be described by an English sentence of up-to 1000 letters. (Some-thing is wrong, because if the above is well-de�ned then so is the integer-successor of the largestnatural number that can be described by an English sentence of up-to 1000 letters.)Jumping ahead, we point out that the paradox presupposes that any sentence is a legal de-scription in some adequate sense. One adequate sense of legal descriptions is that there existsa procedure that given a (possibly succinct) \implicit" description of an object outputs the \ex-plicit" description of the object. Passing from implicit descriptions to explicit descriptions is whatKolmogorov Complexity is about.Let us �x a Turing machine M . The Kolmogorov Complexity (w.r.t M) of a binary string x,denoted KM (x), is the length of the shortest input y such that M(y) = x; that is, KM (x) def=minyfjyj :M(y) = xg. (In case there is no such y, we let KM (x) def= 1.)Clearly, KM (x) depends on M (and not only on x), and so a question that arises is whatmachine M should we �x? The answer is that any universal machine will do. This is justi�ed bythe following fact:Proposition 1.1 Let U be a universal Turing machine. Then for every Turing machine M , thereexists a constant c such that KU (x) � KM (x) + c, for every x 2 f0; 1g�.Thus, universal machines provides the \most expressive" syntax for describing strings. Furthermore,the Kolmogorov Complexity is the same (up-to an additive constant) for any two universal machines.Proof Sketch: Suppose that y satis�es both jyj = KM (x) and M(y) = x, and consider whathappens when the input (hMi; y) is fed to U . Clearly, U(hMi; y) = M(y) = x. Using a suitableencoding of pairs (i.e., using a pre�x-free code for the �rst input), we have KU (x) � jhMij + jyj,and the proposition follows since jhMij depends only on M .Conceptual Discussion: Kolmogorov Complexity measures the length of the most succinct de-scriptions of phenomena (or strings), where descriptions are with respect to an \e�ective" universallanguage that comes together with a procedure for generating the full description of a phenomenonout of its succinct description. Whereas some phenomena have very succinct descriptions, mostphenomena (i.e., random phenomena) do not have succinct descriptions. These facts are stated inTheorem 1.2.Properties of Kolmogorov Complexity. In light of Proposition 1.1, we may �x an arbitraryuniversal machine U , and let K(x) def= KU (x). The quantitative properties of Kolmogorov Com-plexity are captured by the following 1

Theorem 1.2 (KC { quantitative properties):1. There exists a constant c such that K(x) � jxj+ c for all x's.2. There exist in�nitely many x's such that K(x) � jxj. Furthermore, for every monotonicallyincreasing recursive function f : N! N and in�nitely many x's K(x) < f�1(jxj).3. There exists in�nitely many x's such that K(x) � jxj. Furthermore, for most x's of length n,it holds that K(x) � jxj � 1.Proof Sketch: Part 1 follows by applying Proposition 1.1 to the machine Mid that computes theidentity function (and thus satis�esMid(x) = jxj for all x's). Part 2 can be demonstrated by binarystrings of the form yy (for which K(yy) � jyj+ O(1)). Another example is provided by strings ofthe form 1n (for which K(1n) � log2 n + O(1)). The furthermore part can be shown by de�ningxn = 1f(n), and observing that K(xn) � O(1) + log2 n < f�1(f(n)) = f�1(jxnj).To prove Part 3, observe that if K(x) = i then it means that there exists an input y of lengthi that makes the universal machine U output x (i.e., U(y) = x). Since each input may yieldonly one output, there exists a one-to-one mapping of x's with K(x) = i to i-bit long strings(satisfying U(y) = x). Thus, jfx 2 f0; 1g� : K(x) = igj � jfy 2 f0; 1gi : U(y) 2 f0; 1g�gj � 2iand jfx 2 f0; 1gn : K(x) � kgj � 2k+1 � 1 follows (for all k's and in particular for k = n� 1 andk = n� 2).The main computational property of Kolmogorov Complexity is that it is not computable. Thatis:Theorem 1.3 (KC { a computational property): The Kolmogorov Complexity function K de�nedabove is not computable.The proof will be outlined at the end of the lecture. It is very related to resolving the initialparadox.Resolving the paradox. The paradox may be recast as follows. For every natural number n,we de�ne xn 2 f0; 1g� to be the largest string (according to the standard lexicographic order)that has Kolmogorov Complexity at most n; that is, xn def= maxxfx : K(x) � ng. The paradoximplicitly and wrongly presupposes that there exists an input yn of length O(log n)� n that makesthe universal machine output xn (i.e., xn = U(yn)). (Above, we assumed that the string describedby the paradox can be written in an adequate language (i.e., allowing explicit reconstruction) byusing less than 1000 symbols.)The paradox is actually a proof that xn cannot be produced by the universal machine on inputthat is much shorter than n. This is proved by considering the string x0n de�ned as the successorof xn. Observe that if yn = (�n; �) is an input that makes U produces xn then y0n = (�0n; �) makesU produces x0n, where �0n �rst invokes �n and next invokes the constant program for computingsuccessors (on the result of �n). Thus, K(x0n) � jy0nj = jynj+O(1) = K(xn) +O(1) � n (using thecontradiction hypothesis K(xn)� n), which contradicts the de�nition of xn.We comment that the wrong intuition regarding the existence of short programs for generatingxn is implicitly based on the wrong assumption that given n we can e�ectively enumerate allstrings having Kolmogorov Complexity less than n. (Note that if that was possible then we couldhave computed K(x) by enumerating all strings having Kolmogorov Complexity less than i, fori = 1; :::; jxj + O(1). This does NOT prove that K is not computable, because the reduction is inthe wrong direction.) 2

Outline for the proof of Theorem 1.3: For every n, consider the string zn def= minzfz : K(z) �ng. (Note that zn is well-de�ned because there exists strings with Kolmogorov Complexity greaterthan n.) It is easy to show that if K is computable then there exists an input of length log2 n+O(1)that makes the universal machine produce zn. Thus, K(zn) � log2 n+O(1), which (for su�cientlylarge n) is impossible (because K(zn) � n by de�nition of zn).A related exercise: For any unbounded function f : f0; 1g� ! N, de�ne zfn def= minzfz : f(z) �ng. (Note that zfn is well-de�ned because f is unbounded.) Prove that if f is computable thenthere exists an input of length log2 n+O(1) that makes the universal machine produce zfn. (Hint:given n, we generate zfn by computing f on �nitely many inputs (i.e., all z's that precede zfn inlexicographic order as well as zfn itself).)2 Probabilistic Finite Automata: Two-Sided versus One-SidedErrorProbabilistic computation defers from non-deterministic computation in that the former is con-cerned with the quantity of accepting computations, whereas the latter is only concerned withtheir existence. That is, a non-deterministic machine M is said to accept (or non-deterministicallyaccept) the set L if� For every x 2 L there exists a computation of M(x) that halts in accepting state.� For every x 62 L there does not exist a computation of M(x) that halts in accepting state.In contrast, a two-sided error probabilistic machine M is said to accept (or probabilistically accept)the set L if� For every x 2 L a strict majority of the computations of M(x) halt in an accepting state.� For every x 62 L a strict majority of the computations of M(x) halt in a rejecting state.We stress that (unlike in standard complexity-theoretic treatments), we only required a separationof the two cases, rather a signi�cant \separation-gap"; that is, we only required a strict majorityin each direction, rather than asking for a special majority (e.g., a 2/3-majority).We also consider one-sided error probabilistic machines. Such a machine is said to accept theset L (with one-sided error on yes-instances) if� For every x 2 L a strict majority of the computations of M(x) halt in an accepting state.� For every x 62 L there does not exist a computation of M(x) that halts in accepting state.Throughout the lecture we focus on �nite automata (i.e., M above is a �nite automaton). Wemention that similar phenomena (regarding two-sided error that is not bounded-away from 1=2)seem to occur also in other models.The power of one-sided error. Observe that acceptance by probabilistic machines with one-sided error on yes-instances is never stronger (and, in fact, is weaker in standard complexity classes)than acceptance by non-deterministic machines. In our setting, of �nite automata, both modelscoincide with deterministic machines.
3

The power of two-sided error. In contrast to the above, we will show that a probabilisticmachine with two-sided error probability can accept non-regular sets, and thus this model is morepowerful than non-deterministic machines. Speci�cally, we will show a probabilistic machine withtwo-sided error probability that accepts the set fw 2 f0; 1g� : #0(w) < #1(w)g, where #�(w)denotes the number of �'s in w.The basic idea is to let the machine scan the input while tossing a coin per each 0-symbol itsees, and maintain a record of whether all these coin tosses turned out to be head. (This recordcan be encoded in the machine's state.) Similarly (and in parallel), while scanning the input, themachine tosses a coin per each 1-symbol it sees, and maintain a record of whether all these cointosses turned out to be head. (The latter fact is recorded in a separate part of the state.)We say a 0-win occurred if all coins tossed for 0-symbols turned out to be head. Similarly,we de�ne the notion of a 1-win. Note that it may be that we have both a 0-win and a 1-winor neither a 0-win nor a 1-win (the latter is most likely for most su�ciently long inputs). Theprobability that there is 0-win (resp., 1-win) on an input x is exactly 2�#0(x) (resp., 2�#1(x)).Thus, if #0(x) < #1(x) then the probability of a 0-win smaller by a factor of at least two than theprobability of a 1-win, whereas if #0(x) � #1(x) then these the probability of a 0-win is greater orequal to the probability of a 1-win. This motivates the following procedure.1. We run the procedure described above, while recording whether a 0-win and/or a 1-win hasoccurred.2. If either no win has occurred or both wins have occurred then we accept with probabilityexactly 1=2.3. Otherwise (i.e., exactly one win has occurred) then we decide as follows: If a 0-win hasoccured then we accept else (i.e., a 1-win has occurred) we reject.Note that on input x, we reach Step 3 with probability exactly�(x) def= �2�#0(x) � (1� 2�#1(x)) + 2�#1(x) � (1� 2�#0(x))�which may be exponentially vanishing with jxj. Still conditioned on reaching Step 3, we acceptwith probabilityPr [0-win has occured j a single win has occured] = 2�#0(x)2�#0(x) + 2�#1(x)= 11 + 2#0(x)�#1(x)(Veri�cation of the �rst equality is left as an exercise.) Let us denote �(x) def= #0(x) � #1(x).Thus, if #0(x) < #1(x) (i.e., �(x) � �1) then, conditioned on reaching Step 3, we accept withprobability 1=(1+2�(x)) � 1=(1+0:5) = 2=3. On the other hand, if #0(x) � #1(x) (i.e., �(x) � 0)then, conditioned on reaching Step 3, we accept with probability 1=(1+2�(x)) � 1=(1+1) = 1=2. Itfollows that if #0(x) < #1(x) (resp., #0(x) � #1(x)) then the above �nite automaton accepts withprobability at least (1��(x))� 12+�(x)� 23 = 12+exp(�jxj) (resp., at most (1��(x))� 12+�(x)� 12 = 12).We conclude that x's in the langauge are accepted with probability strictly greater than 1=2,whereas x's not in the language are rejected with probability at least 1=2. This almost meetsthe de�nition of two-sided probabilistic acceptance. All that is needed is to \shift the acceptanceprobabilities" a little. Towards doing so, observe that x's in the langauge are actually accepted with4

probability at least (1��(x)) � 12+�(x) � 23 = 12+ �(x)6 , where �(x) > 2�#0(x) �(1�2�#1(x)) > 2�jxj=2.Thus, if unconditionally decrease the acceptance probability of each x by 2�jxj (or so) then we'll be�ne. This can be achieved by performing the above process in parallel to tossing a coin per eachinput bit (regardless of its value), and rejecting if all the latter coins turned out HEAD.A more complex exampleThe above example of a non-regular set that is accepted by a �nite automaton was suggested inclass by Amos Gilboa, after I have presented the following more complex example. Speci�cally, Ishowed a probabilistic machine with two-sided error probability that accepts the (non-regular) setfw 2 f0; 1g� : #0(w) = #1(w)g.Following the above discussion, observe that if #0(x) = #1(x) then the probability of a 0-winequals the probability of a 1-win, whereas if #0(x) 6= #1(x) then these probabilities are at leasta factor of 2 away from one another. Thus, to decide membership in the language we shouldapproximate both probabilities, or rather the ratio between them. This cannot be done by runningthe above procedure, which provides us (in case we reach Step 3) with the result of one lotterywith odds 2�#0(x) : 2�#1(x) for 0-win versus 1-win. In order to approximate the odds (or ratherdistinguish the 50:50 case from the other cases), we need to obtain several results of the samelottery. This motivates the following procedure.1. We run 1000 (parallel) copies of the basic procedure (described above), where each copyrecords whether a 0-win and/or a 1-win has occurred.2. If in at least one of these 1000 copies either no win has occurred or both wins have occurredthen we accept with probability exactly 1=2.3. Otherwise (i.e., in each of the 1000 copies exactly one win has occurred) then we decide asfollows: If the number of 0-wins is between 400 and 600 then we accept else we reject.Note that on input x, we reach Step 3 with probability exactly�(x) def= �2�#0(x) � (1� 2�#1(x)) + 2�#1(x) � (1� 2�#0(x))�1000which may be exponentially vanishing with jxj. Still conditioned on reaching Step 3, if #0(x) =#1(x) then we accept with high probability (e.g., higher than 2=3). On the other hand, if #0(x) 6=#1(x) then in Step 3 we accept with low probability (e.g., lower than 1=3). Proving the last twostatements is left as an exercise. It follows that if #0(x) = #1(x) (resp., #0(x) 6= #1(x)) then theabove �nite automaton accepts with probability at least (1 � �(x)) � 12 + �(x) � 23 > 12 + exp(�jxj)(resp., at most (1� �(x)) � 12 + �(x) � 13 < 12 � exp(�jxj)).Exercise. Present a probabilistic machine with two-sided error probability that accepts the setf0n1n : n 2 Ng. Same for f0an1bn+c : n 2 Ng, where a; b and c are �xed (positive) integers. Finally,show that the restriction on (a; b and) c being positive can be removed.
5

