
On Teaching the Basics of Complexity Theory�Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Israel.Email: oded.goldreich@weizmann.ac.ilJuly 25, 2005AbstractWe outline a conceptual framework for teaching the basic notions and results of complexitytheory. Our focus is on using de�nitions and on organizing the presentation in a way thatreects the fundamental nature of the material. We do not attempt to provide a self-containedpresentation of the material itself, but rather outline our (non-innovative) suggestions regardinghow this material should be presented in class.We discuss the P-vs-NP Question, the general notion of a reduction, and the theory of NP-completeness. In particular, we suggest presenting the P-vs-NP Question both in terms of searchproblems and in terms of decision problems (where NP is viewed as a class of proof systems). Asfor the theory of NP-completeness, we suggest highlighting the mere existence of NP-completesets.1 IntroductionShimon Even had a passion for good teaching, and so writing this essay in his memory seems mostappropriate. Good teaching is an art, and Shimon was one of the best masters. It is hard (if at allpossible) to cultivate artistic talents, but there are certain basic principles that underly each artform, and these can be discussed.One central aspect of good teaching is putting things in the right perspective; that is, a per-spective that clari�es the motivation for the various de�nitions and results. It is easy to provide agood perspective on the basic notions and results of complexity theory, because these are of funda-mental nature and of great intuitive appeal. Unfortunately, often this is not the way this materialis taught. The annoying (and quite amazing) consequences are students that have only a vagueunderstanding of the meaning of these fundamental notions and results.1.1 The source of trouble and eliminating itIn my opinion, it all boils down to taking the time to explicitly discuss the meaning of de�nitionsand results. A related issue is using the \right" de�nitions (i.e., those that reect better thefundamental nature of the notion being de�ned) and teaching things in the (conceptually) \right"order. Two concrete examples follow.�This essay was written for the current volume. The technical presentation was adapted from earlier lecturenotes [4]. 1

Typically, NP is de�ned as the class of languages recognized by non-deterministic polynomial-time machines. Even bright students may have a hard time �guring out (by themselves) why oneshould care about such a class. On the other hand, when de�ning NP as the class of assertionsthat have easily veri�able proofs, each student is likely to understand its fundamental nature.Furthermore, the message becomes even more clear when discussing the search version analogue.Similarly, one typically takes the students throughout the detailed proof of Cook's Theorembefore communicating to them the striking message (i.e., that \universal" problems exist at all,let alone that many natural problems like SAT are universal). Furthermore, in some cases, thismessage is not communicated explicitly at all.1.2 Concrete suggestionsThe rest of this essay provides concrete suggestions for teaching the basics of complexity theory.The two most important suggestions were already mentioned above:1. The teacher should communicate the fundamental nature of the P-vs-NP Question whilereferring to de�nitions that (clearly) reect this nature.2. The teacher should communicate the striking signi�cance of the mere existence of NP-complete problems (let alone natural ones) before exhausting the students with complicatedreductions.In addition, I suggest setting the stage for the course (or series of lectures) by providing a \de�ni-tion" of complexity theory. I would say that this is a central �eld of Theoretical Computer Science,concerned with the study of the intrinsic complexity of computational tasks, where this study tendto aim at generality: It focuses on natural computational resources, and the e�ect of limiting theseresources on the class of problems that can be solved. Put in other words, Complexity Theory aimsat understanding the nature of e�cient computation.I advocate a model-independent presentation of the results. Indeed, the presentation needsto refer to the speci�cs of the model of computation only when encoding the relation betweenconsecutive instantaneous con�guration of computation (see Section 4.3).Finally, until we reach the day in which every student can be assumed to have understoodthe meaning of the P-vs-NP Question and of NP-completeness, I suggest not to assume such anunderstanding when teaching an advanced complexity theory course. Instead, I suggest startingwith a fast discussion of this basic material, making sure that the students understand its conceptualmeaning.1 In fact, this essay is based on my notes [4] for three lectures (covering the basic material),which were given in a graduate course on complexity theory.1.3 A paranthetical comment on computability versus complexityThis essay refers to the current situation in many schools, where the basics of complexity theoryare taught within a course in which material entitled \computability" plays at least an equal role.The essay is con�ned to the \complexity" part of such a course.In my opinion, complexity theory should play the main role in a course on computability andcomplexity theory. The basic concepts and results of computability theory should be regardedas an important preliminary material, which sets the stage for the study of the complexity ofthe computational tasks that can be automated at all. Thus, the computability aspects of such a1Needless to say, the rest of the course should also clarity the conceptual meaning of the material being taught.2

course should be con�ned to establishing that the intuitive notion of an algorithm can be rigorouslyde�ned, and to emphasizing the uncomputability of most functions and of some natural functions(e.g., the Halting predicate). This includes introducing the idea of a universal algorithm, but doesnot included extensive programming with Turing machines or extensive study of (complexity-free)Turing reductions. Needless to say, I oppose the teaching of �nite automata (let alone context-freegrammers) within such a course.Articulating the opinions expresses in the last paragraph is beyond the scope of the currentessay. On the other hand, the rest of this essay is independent of the foregoing controversy. Thatis, it refers to the basic material of complexity theory, independent of the question within whichcourse this material is taught and what role does it play in such a course.1.4 ContentsThis essay is intended for computer scientists who teach or plan to teach a course on computabilityand complexity theory. It focuses on material that is typically taught in such a course, and isprobably well-known to the reader. Thus, the focus is not on the material itself, but rather on howit should be presented in class.In addition, the essay mentions some topics that are typically not covered in a basic course oncomputability and complexity theory. These topics include self-reducibility (of search problems),the existence of NP-sets that are neither in P nor NP-complete, the e�ect of having coNP-sets thatare NP-complete, the existence of optimal search algorithms for NP-relations, and the notion ofpromise problems.Organization: Section 2 contains a presentation of the P-vs-NP Question both in terms of searchproblems and in terms of decision problems. Section 3 contains a general treatment of reductionsas well as a subsection of self-reducibility. Section 4 contains a presentation of the basic de�nitionsand results of the theory of NP-completeness. Section 5 covers three additional topics.2 P versus NPMost students have heard of P and NP before, but we suspect that many have not obtained agood explanation of what the P vs NP Question actually represents. This unfortunate situation isdue to using the standard technical de�nition of NP (which refers to non-deterministic polynomial-time) rather than more cumbersome de�nitions that clearly capture the fundamental nature of NP.Below, we take the alternative approach. In fact, we present two fundamental formulations of theP vs NP Question, one in terms of search problems and the other in terms of decision problems.E�cient computation. The teacher should discuss the association of e�ciency with polynomial-time, stressing that this association merely provides a convenient way of addressing fundamentalissues. In particular, polynomials are merely a \closed" set of moderately growing functions, where\closure" means closure under addition, multiplication and functional composition. These closureproperties guarantee the closure of the class of e�cient algorithm under natural composition ofalgorithms. (The speci�cs of the model of computation are also immaterial, as long as the modelis \reasonable"; this strengthening of the Church{Turing Thesis is called the Cobham{EdmondsThesis.) 3

2.1 The search version: �nding versus checkingIn the eyes of non-experts, search problems are more natural than decision problems: typically,people seeks solutions more than they stop to wonder whether or not solutions exist. Thus, werecommend to start by discussing the fundamental implication of the P-vs-NP Question on searchproblems. Admittingly, the cost is more cumbersome formulations, but it is more than worth-while. Furthermore, the equivalence to the decision problem formulation gives rise to conceptuallyappealing exercises.We focus on polynomially-bounded relations, where a relation R � f0; 1g��f0; 1g� is polynomially-bounded if there exists a polynomial p such that for every (x; y) 2 R it holds that jyj � p(jxj). Forsuch a relation it makes sense to ask whether, given an \instance" x, one can e�ciently �nd a\solution" y such that (x; y) 2 R. The polynomial bound on the length of the solution (i.e., y)guarantees that the intrinsic complexity of outputting a solution may not be due to the length (ormere typing) of the required solution.The class P as a natural class of search problems. With each polynomially-bounded relationR, we associate the following search problem: given x �nd y such that (x; y) 2 R or state thatno such y exists. The class P corresponds to the class of search problems that are solvable inpolynomial-time; that is, a relation R (or rather the search problem of R) is polynomial-time solvableif there exists a polynomial-time algorithm that given x �nd y such that (x; y) 2 R or state thatno such y exists.The class NP as another natural class of search problems. A polynomially-bounded rela-tion R is called an NP-relation if, given an alleged instance-solution pair, one can e�ciently checkwhether or not the pair is valid; that is, there exists a polynomial-time algorithm that given x and ydetermines whether or not (x; y) 2 R. It is reasonable to focus on search problems for NP-relations,because the ability to e�ciently recognize a valid solution seems to be a natural prerequisite fora discussion regarding the complexity of �nding such solutions. (Indeed, one can introduce (un-natural) non-NP-relations for which the search problem is solvable in polynomial-time; still therestriction to NP-relations is very natural.)The P versus NP question in terms of search problems: Is it the case that the searchproblem of any NP-relation can be solved in polynomial-time? In other words, if it is easy to checkwhether or not a given solution for a given instance is correct then is it also easy to �nd a solutionto a given instance?If P = NP then this would mean that if solutions to given instances can be e�ciently veri�edfor correctness then they can also be e�ciently found (when given only the instance). This wouldmean that all reasonable search problems (i.e., all NP-relations) are easy to solve. Needless to say,such a situation would contradict the intuitive feeling that some reasonable search problems arehard to solve. On the other hand, if P 6= NP then there exist reasonable search problems (i.e.,some NP-relations) that are hard to solve. This conforms with our basic intuition by which somereasonable problems are easy to solve whereas others are hard to solve.2.2 The decision version: proving versus verifyingWe suggest starting by asserting the natural stature of decision problems (beyond their role in thestudy of search problems). After all, some people do care about the truth, and so determiningwhether a given object has some claimed property is an appealing problem. The P-vs-NP Question4

Recall that search problems refer to binary relations. For such a relation R, the corresponding searchproblem is given x to �nd y such that (x; y) 2 R (or assert that no such y exists). We suggest de�ningtwo classes of search problems.� PF (standing for \Poly-Find") denotes the class of search problems that are solvable inpolynomial-time. That is, R 2 PF if there exists a polynomial time algorithm that givenx �nds y such that (x; y) 2 R (or assert that no such y exists).� PC (standing for \Poly-Check") denotes the class of search problems that correspond topolynomially-bounded binary relations that are \checkable" in polynomial-time. That is,R 2 PC if the following two conditions hold1. For some polynomial p, if (x; y) 2 R then jyj � p(jxj).2. There exists a polynomial-time algorithm that given (x; y) determines whether or not(x; y) 2 R.� In terms of search problems the P-vs-NP Question consists of asking whether or not PC iscontained in PF . The conjectured inequality P 6= NP implies that PC n PF 6= ;.Figure 1: P-vs-NP in terms of search problems: notational suggestions.refers to the complexity of answering such questions for a wide and natural class of propertiesassociated with the class NP. The latter class refers to properties that have e�cient proof systemsallowing for the veri�cation of the claim that a given object has a predetermined property (i.e., isa member of a predetermined set).For an NP-relation R, we denote the set of instances having a solution by LR; that is, LR = fx :9y (x; y) 2 Rg. Such a set is called an NP-set, and NP denotes the class of all NP-sets. Intuitively,an NP-set is a set of valid statements (i.e., statements of membership of a given x in LR) thatcan be e�ciently veri�ed when given adequate proofs (i.e., a corresponding NP-witness y such that(x; y) 2 R). This leads to viewing NP-sets as proof systems.NP-proof systems. Proof systems are de�ned in terms of their veri�cation procedures. Herewe focus on the natural class of e�cient veri�cation procedures, where e�ciency is represented bypolynomial-time computations. (We should either require that the time is polynomial in terms ofthe statement or con�ne ourselves to \short proofs" { that is, proofs of length that is bounded by apolynomial in the length of the statement.) NP-relations correspond to proof systems with e�cientveri�cation procedures. Speci�cally, the NP-relation R corresponds to the (proof system with a)veri�cation procedure that checks whether or not the alleged statement-proof pair is in R. Thisproof system satis�es the natural completeness and soundness conditions: every true statement (i.e.,x 2 LR) has a valid proof (i.e., an NP-witness y such that (x; y) 2 R), whereas false statements(i.e., x 62 LR) have no valid proofs (i.e., (x; y) 62 R for all y's).The P versus NP question in terms of decision problems: Is it the case that NP-proofsare useless? That is, is it the case that for every e�ciently veri�able proof system one can easilydetermine the validity of assertions (without being given suitable proofs). If that were the case,then proofs would be meaningless, because they would have no fundamental advantage over directlydetermining the validity of the assertion. Denoting by P the class of sets that can be decidede�ciently (i.e., by a polynomial-time algorithm), the conjecture P 6= NP asserts that proofs are5

useful: there exists NP-sets that cannot be decided by a polynomial-time algorithm, and so for thesesets obtaining a proof of membership (for some instances) is useful (because we cannot e�cientlydetermine membership by ourselves).Recall that decision problems refer to membership in sets. We suggest de�ning two classes of decisionproblems, which indeed coincide with the standard de�nitions of P and NP .� P denotes the class of decision problems that are solvable in polynomial-time. That is, S 2 Pif there exists a polynomial time algorithm that given x determines whether or not x 2 S.� NP denotes the class of decision problems that have NP-proof systems. The latter are de�nedin terms of a (deterministic) polynomial-time veri�cation algorithm. That is, S 2 NP if thereexists a polynomial p and a polynomial-time algorithm V that satisfy the following completenessand soundness conditions:1. Completeness: if x 2 S then there exists y of length at most p(jxj) such that V (x; y) = 1.(Such a string y is called an NP-witness for x 2 S.)2. Soundness: if x 62 S then for every y it holds that V (x; y) = 0.Indeed, the point is de�ning NP as a class of sets of assertions having e�cient veri�cationprocedures.� In terms of decision problems the P-vs-NP Question consists of asking whether or not NP iscontained in P . Since P � NP , the question is phrase as whether or not NP equals P .Figure 2: P-vs-NP in terms of decision problems: notational suggestions.2.3 Equivalence of the two formulationsWe strongly recommend proving in class that the two formulations of the P-vs-NP Questions areequivalent. That is, the search problem of every NP-relation is solvable in polynomial time if andonly if membership in any NP-set can be decided in polynomial time.2 This justi�es the focus onthe latter (simpler) formulation.We also suggest mentioning that NP is sometimes de�ned as the class of sets that can bedecided by a �ctitious device called a non-deterministic polynomial-time machine (and that thisis the source of the notation NP). The reason that this class of �ctitious devices is important isbecause it captures (indirectly) the de�nition of NP-proofs. We suggest proving that indeed thede�nition of NP in terms of non-deterministic polynomial-time machine equals our de�nition ofNP (in terms of the class of sets having NP-proofs).2Using the notations of Figure 1, we prove that PC � PF if and only if NP = P. Suppose, on the one hand, thatthe inclusion holds for the search version (i.e., PC � PF). Let L be an arbitrary NP-set and RL be the correspondingwitness relation. Then RL is a NP-relation, and by the hypothesis its search problem is solvable in polynomial time(i.e., RL 2 PC � PF). This yields a polynomial-time decision procedure for L; i.e., given x try to �nd y such that(x; y) 2 RL (and output \yes" i� such a y was found). Thus, NP = P follows. Suppose, on the other hand, thatNP = P (as classes of sets), and let R be an arbitrary NP-relation. Then the set SR def= f(x; y0) : 9y00 s.t. (x; y0y00)2Rgis in NP and hence in P. This yields a polynomial-time algorithm for solving the search problem of R, by extendinga pre�x of a potential solution bit-by-bit (while using the decision procedure to determine whether or not the currentpre�x is valid). Thus, PC � PF follows. 6

3 Reductions and Self-reducibilityWe assume that all students have heard of reductions, but again we fear that most have obtaineda conceptually-poor view of their nature. We present �rst the general notion of (polynomial-time) reductions among computational problems, and view the notion of a Karp-reduction as animportant special case that su�ces (and is more convenient) in many cases.3.1 The general notion of a reductionReductions are procedures that use \functionally speci�ed" subroutines. That is, the functionalityof the subroutine is speci�ed, but its operation remains unspeci�ed and its running-time is countedat unit cost. Analogously to algorithms, which are modeled by Turing machines, reductions can bemodeled as oracle (Turing) machines. A reduction solves one computational problem (which may beeither a search or decision problem) by using oracle (or subroutine) calls to another computationalproblem (which again may be either a search or decision problem). We focus on e�cient (i.e.,polynomial-time) reductions, which are often called Cook reductions.The key property of reductions is that they translate e�cient procedures for the subroutine intoe�cient procedures for the invoking machine. That is, if one problem is Cook-reducible to anotherproblem and the latter is polynomial-time solvable then so is the former.The most popular case is of reducing decision problems to decision problems, but we will alsoconsider reducing search problems to search problems or reducing search problems to decisionproblems. (Indeed, a good exercise is to show that the search problem of any NP-relation can bereduced to deciding membership in some NP-set (see Footnote 2).)A Karp-reduction is a special case of a reduction (from a decision problem to a decision problem).Speci�cally, for decision problems L and L0, we say that L is Karp-reducible to L0 if there is areduction of L to L0 that operates as follows: On input x (an instance for L), the reduction computesx0, makes query x0 to the oracle L0 (i.e., invokes the subroutine for L0 on input x0), and answerswhatever the latter returns. This Karp-reduction is often represented by the polynomial-timecomputable mapping of x to x0; that is, a polynomial-time computable f is called a Karp-reductionof L to L0 if for every x it holds that x 2 L i� f(x) 2 L0.Indeed, a Karp-reduction is a syntactically restricted notion of a reduction. This restricted casesu�ces for many cases (e.g., most importantly for the theory of NP-completeness (when developedfor decision problems)), but not in case we want to reduce a search problem to a decision problem.Furthermore, whereas each decision problem is reducible to its complement, some decision problemsare not Karp-reducible to their complement (e.g., the trivial decision problem).3 Likewise, eachdecision problem in P is reducible to any computational problem by a reduction that does not usethe subroutine at all, whereas such a trivial reduction is disallowed by the syntax of Karp-reductions.(Nevertheless, a popular exercise of dubious nature is to show that any decision problem in P isKarp-reducible to any non-trivial decision problem.)We comment that Karp-reductions may (and should) be augmented in order to handle reduc-tions of search problems to search problems. Such an augmented Karp-reduction of the searchproblem of R to the search problem of R0 operates as follows: On input x (an instance for R), thereduction computes x0, makes query x0 to the oracle R0 (i.e., invokes the subroutine for searchingR0 on input x0) obtaining y0 such that (x0; y0) 2 R0, and uses y0 to compute a solution y to x (i.e.,(x; y) 2 R). Thus, such a reduction can be represented by two polynomial-time computable map-pings, f and g, such that (x; g(x; y0)) 2 R for any y0 that solves f(x) (i.e., y0 satis�es (f(x); y0) 2 R0).3We call a decision problem trivial if it refers to either the empty set or the set of all strings.7

(Indeed, in general, unlike in the case of decision problems, the reduction cannot just return y0 asan answer to x.)We say that two problems are computationally equivalent if they are reducible to one another.This means that the two problems are essentially as hard (or as easy).3.2 Self-reducibility of search problemsWe suggest introducing the notion of self-reducibility4 for several reasons. Most importantly, itfurther justi�es the focus on decision problems (see discussion following Proposition 1). In addition,it illustrates the general notion of a reduction, and asserts its relevance beyond the theory of NP-completeness.The search problem of R is called self-reducible if it can be reduced to the decision problem ofLR = fx : 9y (x; y) 2 Rg. Note that the decision problem of LR is always reducible to the searchproblem for R (e.g., invoke the search subroutine and answer YES if and only if it returns somestring (rather than the \no solution" symbol)).We will see that all NP-relations that correspond to NP-complete sets are self-reducible, mostlyvia \natural reductions". We start with SAT, the set of satis�able Boolean formulae (in CNF).Let RSAT be the set of pairs (�; �) such that � is a satisfying assignment to the formulae �. Notethat RSAT is an NP-relation (i.e., it is polynomially-bounded and easy to decide (by evaluating aBoolean expression)).Proposition 1 (RSAT is self-reducible): The search problem of RSAT is reducible to SAT .Thus, the search problem of RSAT is computationally equivalent to deciding membership in SAT .Hence, in studying the complexity of SAT , we also address the complexity of the search problem ofRSAT . This justi�es the relevance of decision problems to search problems in a stronger sense thanestablished in Section 2.3: The study of decision problems determines not only the complexity ofthe class of \NP-search" problems but rather determines the complexity of each individual searchproblem that is self-reducible.Proof: Given a formula �, we use a subroutine for SAT in order to �nd a satisfying assignmentto � (in case such an assignment exists). First, we query SAT on � itself, and return \no solution"if the answer we get is `false'. Otherwise, we let � , initiated to the empty string, denote a pre�xof a satisfying assignment of �. We proceed in iterations, where in each iteration we extend � byone bit. This is done as follows: First we derive a formula, denoted �0, by setting the �rst j� j + 1variables of � according to the values �0. Next we query SAT on �0 (which means that we askwhether or not �0 is a pre�x of a satisfying assignment of �). If the answer is positive then we set� �0 else we set � �1 (because if � is a pre�x of a satisfying assignment of � and �0 is not apre�x of a satisfying assignment of � then �1 must be a pre�x of a satisfying assignment of �).A key point is that each formula �0 (which contains Boolean variables as well as constants) canbe simpli�ed to contain no constants (in order to �t the canonical de�nition of SAT, which disallowsBoolean constants). That is, after replacing some variables by constants, we should simplify clausesaccording to the straightforward boolean rules (e.g., a false literal can be omitted from a clauseand a true literal appearing in a clause yields omitting the entire clause).4Our usage of this term di�ers from the traditional one. Traditionally, a decision problem is called self-reducibleif it is Cook-reducible to itself via a reduction that on input x only makes queries that are smaller than x (accordingto some appropriate measure on the size of strings). Under some natural restrictions (i.e., the reduction takes thedisjunction of the oracle answers) such reductions yield reductions of search to decision (as discussed in the maintext). 8

Advanced comment: A reduction analogous to the one used in the proof of Proposition 1 can bepresented also for other NP-search problems (and not only for NP-complete ones).5 Consider, forexample, the problem Graph 3-Colorability and pre�xes of a 3-coloring of the input graph. Note,however, that in this case the process of getting rid of constants (representing partial solutions)is more involved. Details are left as an exercise.6 In general, if you don't see a \natural" self-reducibility process for some NP-complete relation, you should know that a self-reduction processdoes exist (alas it maybe not be a natural one).Theorem 2 The search problem of the NP-relation of any NP-complete set is self-reducible.Proof: Let R be an NP-relation of the NP-complete set LR. In order to reduce the search problemof R to deciding LR, we compose the following three reductions:1. The search problem of R is reducible to the search problem of RSAT (by the NP-completenessof the latter).2. The search problem of RSAT is reducible to SAT (by Proposition 1).3. The decision problem SAT is reducible to the decision problem LR (by the NP-completenessof the latter).The theorem follows.4 NP-completenessSome (or most) students heard of NP-completeness before, but we suspect that many have missedimportant conceptual points. Speci�cally, we stress that the mere existence of NP-complete sets(regardless of whether this is SAT or some other set) is amazing.4.1 De�nitionsThe standard de�nition is that a set is NP-complete if it is in NP and every set in NP is reducibleto it via a Karp-reduction. Indeed, there is no reason to insist on Karp-reductions (rather thanusing arbitrary reductions), except that the restricted notion su�ces for all positive results and iseasier to work with.We will also refer to the search version of NP-completeness. We say that a binary relation isNP-complete if it is an NP-relation and every NP-relation is reducible to it.We stress that the mere fact that we have de�ned something (i.e., NP-completeness) does notmean that this thing exists (i.e., that there exist objects that satisfy the property). It is indeedremarkable that NP-complete problems do exist. Such problems are \universal" in the sense thatsolving them allows to solve any other (reasonable) problem.5We assume that the students have heard of NP-completeness. If this assumption does not hold for your class,then the presentation of the following material should be postponed (to Section 4.1 or to an even later stage).6Hint: At each iteration we wish to determine the relation between the color of the current vertex and the colorsof the vertices determined so far. We may test equality (and inequality) between the colors that may be assigned totwo vertices by using adequate gadgets, which are connected to the end-points of the vertices we wish to test.
9

4.2 The existence of NP-complete problemsWe suggest not to confuse the mere existence of NP-complete problems, which is remarkable byitself, with the even more remarkable existence of \natural" NP-complete problems. We believethat the following proof allows to deliver this message as well as to focus on the essence of NP-completeness, rather than on more complicated technical details.Theorem 3 There exist NP-complete relations and sets.Proof: The proof (as well as any other NP-completeness proof) is based on the observation thatsome NP-relations (resp., NP-sets) are \rich enough" to encode all NP-relations (resp., NP-sets).This is most obvious for the \generic" NP-relation, denoted RU (and de�ned below), which is usedto derive the simplest proof of the current theorem.The relation RU consists of pairs (hM;x; 1ti; y) such that M is a description of a (deterministic)Turing machine that accepts the pair (x; y) within t steps, where jyj � t. (Instead of requiringthat jyj � t, one may require that M is canonical in the sense that it reads its entire input beforehalting.) It is easy to see that RU is an NP-relation, and thus LU def= fX : 9y (X; y) 2 RUg is anNP-set. Indeed, RU is recognizable by a universal Turing machine, which on input (hM;x; 1ti; y)emulates (t steps of) the computation of M on (x; y), and U indeed stands for universal (machine).(Thus, the proof extends to any reasonable model of computation, which has adequate universalmachines.)We now turn to showing that any NP-relation is reducible to RU . As a warm-up, let us �rst showthat any NP-set is Karp-reducible to LU . Let R be an NP-relation, and LR = fx : 9y (x; y) 2 Rgbe the corresponding NP-set. Let pR be a polynomial bounding the length of solutions in R (i.e.,jyj � pR(jxj) for every (x; y) 2 R), let MR be a polynomial-time machine deciding membership(of alleged (x; y) pairs) in R, and let tR be a polynomial bounding its running-time. Then, theKarp-reduction maps an instance x (for L) to the instance hMR; x; 1tR(jxj+pR(jyj))i.Note that this mapping can be computed in polynomial-time, and that x 2 L if and only ifhMR; x; 1tR(jxj+pR(jyj))i 2 LU .To reduce the search problem of R to the search problem of RU , we use essentially the samereduction. On input an instance x (for R), we make the query hMR; x; 1tR(jxj+pR(jyj))i to thesearch problem of RU and return whatever the latter returns. Note that if x 62 LR then theanswer will be \no solution", whereas for every x and y it holds that (x; y) 2 R if and only if(hMR; x; 1tR(jxj+pR(jyj))i; y) 2 RU .Advanced comment. Note that the role of 1t in the de�nition of RU is to make RU an NP-relation. In contrast, consider the relation RH def= f(hM;xi; y) : M(xy) = 1g (which correspondsto the halting problem). Indeed, the search problem of any relation (an in particular of any NP-relation) is Karp-reducible to the search problem of RH , but the latter is not solvable at all (i.e.,there exists no algorithm that halts on every input and on input X outputs y such that (x; y) 2 RHi� such a y exists).4.3 CSAT and SATWe suggest establishing the NP-completeness of SAT by a reduction from the circuit satisfactionproblem (CSAT), after establishing the NP-completeness of the latter. Doing so allows to decoupletwo technical issues in the proof of the NP-completeness of SAT: the emulation of Turing machines10

by circuits, and the encoding of circuits by formulae with auxiliary variables. Following is a roughoutline, which focuses on the decision version.CSAT. De�ne Boolean circuits as directed acyclic graphs with internal vertices, called gates,labeled by Boolean operations (of arity either 2 or 1), and external vertices called terminals thatare associated with either inputs or outputs. When setting the inputs of such a circuit, all internalnodes are assigned values in the natural way, and this yields a value to the output(s), called anevaluation of the circuit on the given input. De�ne the satis�ability problem of such circuits asdetermining, for a given circuit, whether there exists a setting to its inputs that makes its (�rst)output evaluate to 1. Prove the NP-completeness of the circuit satisfaction problem (CSAT),by reducing any NP-set to it (where the set is represented by the machine that recognizes thecorresponding NP-relation). The reduction boils down to encoding possible computations of aTuring machine by a corresponding layered circuit, where each layer represents an instantaneouscon�guration of the machine, and the relation between consecutive con�gurations is captured by(\uniform") local gadgets in the circuit. (The proof extends to any other \reasonable" model ofe�cient computation.)Speci�cally, for a machine MR (as in the proof of Theorem 3), we represent the computationof MR on input (x; y), where x is the input to the reduction and y is undetermined, by a circuitCx that takes such a string y as input. That is, Cx(y) = 1 if and only if MR accepts (x; y), and soCx is satis�able if and only if x 2 LR. The circuit Cx consists of layers such that the ith layers ofwires (connecting the i � 1st and ith layers of vertices) represents the instantaneous con�gurationof MR(x; y) just before the ith step. In particular, the gates of the i + 1st layer are designed toguaranteed that the instantaneous con�guration of MR(x; y) just before the ith step is transformedto the instantaneous con�guration of MR(x; y) just before the i+ 1st step.The above reduction is called \generic" because it (explicitly) refers to any (generic) NP-set.However, the common practice is to establish NP-completeness by a reduction from some NP-complete set (i.e., a set already shown to be NP-complete). This practice is based on the fact thatif an NP-complete problem � is reducible to some problem �0 in NP then �0 is NP-complete. Theproof of this fact boils down to asserting the transitivity of reductions.SAT. De�ne Boolean formulae, which may be viewed as Boolean circuits with a tree structure.Prove the NP-completeness of the formula satisfaction problem (SAT), even when the formula isgiven in a nice form (i.e., CNF). The proof is by a reduction from CSAT, which in turn boilsdown to introducing auxiliary variables in order to cut the computation of a deep circuit into aconjunction of related computations of shallow (i.e., depth-2) circuits (which may be presented asCNF formulae). The aforementioned auxiliary variables hold the possible values of the internalwires of the circuit.3SAT. Note that the formulae resulting from the latter reduction are in conjunctive normal form(CNF) with each clause referring to three variables (i.e., two corresponding to the input wires ofa node/gate and one to its output wire). Thus, the above reduction actually establishes the NP-completeness of 3SAT (i.e., SAT restricted to CNF formula with up to three variables per clause).Alternatively, reduce SAT (for CNF formula) to 3SAT (i.e., satis�ability of 3CNF formula), byreplacing long clauses by conjunctions of three-variable clauses using auxiliary variables.In order to establish the NP-completeness of the search version of the aforementioned problemswe need to present a polynomial-time mapping of solutions for the target problem (e.g., SAT) to11

solutions for the origin problem (e.g., CSAT). Note that such a mapping is typically explicit in theargument establishing the validity of the Karp-reduction.4.4 NP sets that are neither in P nor NP-completeMany (to say the least) other NP-sets have been shown to be NP-complete. A very partial list in-cludes Graph 3-Colorability, Subset Sum, (Exact) Set Cover, and the Traveling Salesman Problem.(Hundreds of other natural problems can be found in [3].) Things reach a situation in which peopleseem to expect any NP-set to be either NP-complete or in P. This naive view is wrong:Theorem 4 Assuming NP 6= P, there exist NP-sets that are neither NP-complete nor in P.We mention that some natural problems (e.g., factoring) are conjecture to be neither solvable inpolynomial-time nor NP-hard, where a problem � is NP-hard if any NP-set is reducible to solving�. See discussion following Theorem 5. We recommend to either state Theorem 4 without a proofor merely provide the proof idea.Proof idea. The proof is by modifying a set in NPnP such that to fail all possible reductions (tothis set) and all possible polynomial-time decision procedures (for this set). Speci�cally, we startwith some L 2 NP nP and derive L0 � L (which is also in NP nP) by making each reduction (sayof L) to L0 fail by dropping �nitely many elements from L (until the reduction fails), whereas allpossible polynomial-time fail to decide L0 (which di�er from L only on a �nite number of inputs).We use the fact that any reduction (of some set in NP nP) to a �nite set (i.e., a �nite subset of L)must fail (and this failure is due to a �nite set of queries), whereas any e�cient decision procedurefor L (or L modi�ed on �nitely many inputs) must fail on some �nite portion of all possible inputs(of L). The process of modifying L into L0 proceeds in iterations, alternatively failing a potentialreduction (by dropping su�ciently many strings from the rest of L) and failing a potential decisionprocedure (by including su�ciently many strings from the rest of L). This can be done e�cientlybecause it is inessential to determine the optimal points of alternation (where su�ciently manystrings were dropped (resp., included) to fail a potential reduction (resp., decision procedure)).Thus, L0 is the intersection of L and some set in P, which implies that L0 2 NP n P.5 Three additional topicsThe following topics are typically not mentioned in a basic course on complexity. Still, pending ontime constraints, we suggest covering them at some minimal level.5.1 The class coNP and NP-completenessBy prepending the name of a complexity class (of decision problems) with the pre�x \co" we meanthe class of complement sets; that is,coC def= ff0; 1g� n L : L 2 CgSpeci�cally, coNP = ff0; 1g� n L : L 2 NPg is the class of sets that are complements of NP-sets. That is, if R is an NP-relation and LR = fx : 9y (x; y) 2 Rg is the associated NP-set thenf0; 1g� n LR = fx : 8y (x; y) 62 Rg is the corresponding coNP-set.12

It is widely believed that NP is not closed under complementation (i.e., NP 6= coNP). Indeed,this conjecture implies P 6= NP (because P is closed under complementation). The conjectureNP 6= coNP means that some coNP-sets (e.g., the complements of NP-complete sets) do not haveNP-proof systems; that is, there is no NP-proof system for proving that a given formula is notsatis�able.If indeed NP 6= coNP then some (non-trivial) NP-sets cannot be Karp-reducible to coNP-sets.7However, all NP-sets are reducible to coNP-sets (by a straightforward Cook-reduction that justips the answer), and so the non-existence of Karp-reduction does not seem to represent anythingreally fundamental. In contrast, we mention that NP 6= coNP implies that some NP-sets cannotbe reduced to sets in the intersection NP \ coNP (even under general (i.e., Cook) reductions).Speci�cally,Theorem 5 If NP \ coNP contains an NP-hard set then NP = coNP.Recall that a set is NP-hard if every NP-set is reducible to it (possibly via a general reduction).Since NP \ coNP is conjectured to be a proper superset of P, it follows (using the conjectureNP 6= coNP) that there are NP-sets that are neither in P nor NP-hard (i.e., speci�cally, the setsin (NP \ coNP) n P). Notable candidates are sets related to the integer factorization problem(e.g., the set of pairs (N; s) such that s has a square root modulo N that is a quadratic residuemodulo N and the least signi�cant bit of s equals 1).Proof: Suppose that L 2 NP \ coNP is NP-hard. Given any L0 2 coNP , we will show thatL0 2 NP . We will merely use the fact that L0 reduces to L (which is in NP \ coNP). Such areduction exists because L0 is reducible L0 def= f0; 1g�nL0 (via a general reduction), whereas L0 2 NPand thus is reducible to L (which is NP-hard).To show that L0 2 NP, we will present an NP-relation, R0, that characterizes L0 (i.e., L0 =fx : 9y (x; y) 2 R0g). The relation R0 consists of pairs of the form (x; ((z1; �1; w1); :::; (zt; �t; wt)),where on input x the reduction of L0 to L accepts after making the queries z1; :::; zt, obtaining thecorresponding answers �1; :::; �t, and for every i it holds that if �i = 1 then wi is an NP-witness forzi 2 L, whereas if �i = 0 then wi is an NP-witness for zi 2 f0; 1g� n L.We stress that we use the fact that both L and L def= f0; 1g� n L are NP-sets, and refer to thecorresponding NP-witnesses. Note that R0 is indeed an NP-relation: The length of solutions isbounded by the running-time of the reduction (and the corresponding NP-witnesses). Membershipin R0 is decided by checking that the sequence of (zi; �i)'s matches a possible query-answer sequencein an accepting execution of the reduction8 (ignoring the correctness of the answers), and that allanswers (i.e., �i's) are correct. The latter condition is easily veri�ed by use of the correspondingNP-witnesses.5.2 Optimal search algorithms for NP-relationsThe title of this section sounds very promising, but our guess is that the students will be less excitedonce they see the proof. We claim the existence of an optimal search algorithm for any NP-relation.7Recall that the empty set cannot be Karp-reducible to f0; 1g�. Thus, the current assertion refers to (non-trivial)NP-sets. Now, suppose that L Karp-reduces to L0 2 coNP, which means that L def= f0; 1g� n L Karp-reduces toL00 def= f0; 1g� n L0 2 NP. Then L 2 NP by virtue of the NP-relation f(x; y) : (f(x); y) 2 R00g, where R00 is thewitness relation of L00. It follows that L 2 coNP.8That is, we need to verify that on input x, after obtaining the answers �1; :::; �i�1 to the �rst i � 1 queries, theith query made by the reduction equals zi. 13

Furthermore, we will explicitly present such an algorithm, and prove that it is optimal in a verystrong sense: for any algorithm correctly solving the same search problem, it holds that up-to some�xed additive polynomial term (which may be disregarded in case the NP-problem is not solvablein polynomial-time), our algorithm is at most a constant factor slower than the other algorithm.That is:Theorem 6 For every NP-relation R there exists an algorithm A that satis�es the following:1. A correctly solves the search problem of R.2. There exists a polynomial p such that for every algorithm A0 that correctly solves the searchproblem of R and for every x 2 LR it holds that tA(x) = O(tA0(x) + p(jxj)), where tA (resp.,tA0) denotes the number of steps taken by A (resp., A0) on input x.We stress that the hidden constant in the O-notation depends only on A0, but in the followingproof the dependence is exponential in the length of the description of algorithm A0 (and it isnot known whether a better dependence can be achieved). On the other hand, the optimality ofalgorithm A refers only to inputs that have a solution (i.e., x 2 LR). Interestingly, we establish theoptimality of A without knowing what its (optimal) running-time is. Thus, the P-sv-NP Questionis \reduced" to determining the running time of a single explicitly presented algorithm (i.e., theoptimal algorithm A).Proof sketch: Fixing R, we let M be a polynomial-time algorithm that decides membership inR, and let p be a polynomial bounding the running-time of M . We present the following algorithmA that merely runs all possible search algorithms \in parallel" and checks the results provided byeach of them (using M), halting whenever it obtains a correct solution.Since there are in�nitely many possible algorithms, we should clarify what we mean by \runningthem all in parallel". What we mean is to run them at di�erent rates such that the in�nitesum of rates converges to 1 (or any other constant). Speci�cally, we will run the ith possiblealgorithm at rate 1=(i + 1)2. Note that a straightforward implementation of this idea may createa signi�cant overhead, involved in switching frequently from the computation of one machine toanother. Instead we present an alternative implementation that proceeds in iterations. In the jthiteration, for i = 1; :::; 2j=2, we emulate 2j=(i+1)2 steps of the ith machine. Each of these emulationsis conducted in one chunk, and thus the overhead of switching between the various emulations isinsigni�cant (in comparison to the total number of steps being emulated). We stress that in casesome of these emulations halts with output y, algorithm A invokes M on input (x; y) and outputy if and only if M(x; y) = 1. Furthermore, the veri�cation of a solution provided by a candidatealgorithm is also emulated at the expense of its step-count. (Put in other words, we augment eachalgorithm with a canonical procedure (i.e., M) that checks the validity of the solution o�ered bythe algorithm.)(In case we want to guarantee that A also halts on x 62 LR, we may let it run an exhaustivesearch for a solution, in parallel to all searches, and halt with output ? in case this exhaustivesearch fails.)Clearly, whenever A(x) outputs y (i.e., y 6= ?) it must hold that (x; y) 2 R. To show theoptimality of A, we consider an arbitrary algorithm A0 that solves the candid search problem ofR. Our aim is to show that A is not much slower than A0. Intuitively, this is the case because theoverhead of A results from emulating other algorithms (in addition to A0), but the total number ofemulation steps wasted (due to these algorithms) is inversely proportional to the rate of algorithmA0, which in turn is exponentially related to the length of the description of A0. The punch-line isthat since A0 is �xed, the length of its description is a constant.14

5.3 Promise ProblemsPromise problems are a natural generalization of decision problems (and search problems can begeneralized in a similar manner). In fact, in many cases, promise problems provide the more naturalformulation of a decision problem. Formally, promise problems refer to a three-way partition of theset of all strings into yes-instances, no-instances and instances that violate the promise. Standarddecision problems are obtained as a special case by insisting that all inputs are allowed (i.e., thepromise is trivial), but intuitive formulations of decision problems reads like \given a planar graph,determine whether or not ..." (i.e., the promise is that the input represents a planar graph).We comment that the aforementioned discrepancy can be easily addressed in the case thatthere exists an e�cient algorithm for determining membership in the \promise set" (i.e., the set ofinstances that satisfy the promise). In this case, the promise problem is computationally equivalentto deciding membership in the set of yes-instances. However, in case the promise set is not tractable,the terminology of promise problems is unavoidable. Examples include the notion of \uniquesolutions" and the formulation of \gap problems" as capturing various approximation tasks. For arecent survey on promise problems and their applications, the reader is referred to [5].Historical NotesMany sources provide historical accounts of the developments that led to the formulation of theP vs NP Problem and the development of the theory of NP-completeness (see, e.g., [3]). We thusrefrain from attempting to provide such an account.One technical point that we mention is that the three \founding papers" of the theory of NP-completeness (i.e., [1, 6, 8]) use the three di�erent terms of reductions used above. Speci�cally,Cook uses the general notion of polynomial-time reduction [1], often referred to as Cook-reductions.The notion of Karp-reductions originates from Karp's paper [6], whereas its augmentation to searchproblems originates from Levin's paper [8]. It is worth noting that unlike Cook and Karp's works,which treat decision problems, Levin's work is stated in terms of search problems.The existence of NP-sets that are neither in P nor NP-complete (i.e., Theorem 4) was proven byLadner [7], Theorem 5 was proven by Selman [9], and the existence of optimal search algorithms forNP-relations (i.e., Theorem 6) was proven by Levin [8]. (Interestingly, the latter result was provedin the same paper in which Levin presented the discovery of NP-completeness, independently ofCook and Karp.) Promise problems were explicitly introduced by Even, Selman and Yacobi [2].References[1] S.A. Cook. The Complexity of Theorem Proving Procedures. In 3rd STOC, pages 151{158,1971.[2] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Applicationsto Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159{173, 1984.[3] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.[4] O. Goldreich. Introduction to Complexity Theory { notes for a one-semester course. Weiz-mann Institute of Science, Spring 2002. Available from http://www.wisdom.weizmann.ac.il/�oded/cc.html 15

[5] O. Goldreich. On Promise Problems: A Survey. This volume.[6] R.M. Karp. Reducibility among Combinatorial Problems. In Complexity of Computer Com-putations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pages 85{103, 1972.[7] R.E. Ladner. On the Structure of Polynomial Time Reducibility. Jour. of the ACM, 22, 1975,pages 155{171.[8] L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9, pages 115{116, 1973.Translated in problems of Information Transmission 9, pages 265{266.[9] A. Selman. On the structure of NP. Notices Amer. Math. Soc., Vol 21 (6), page 310, 1974.

16

