
Texts in Computational Complexity:Space ComplexityOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.December 17, 2005Whereas the number of steps taken during a computation is the primary measure of its e�ciency,the amount of temporary storage used by the computation is also a major concern. Furthermore,in some settings, space is even more scarce than time.This text is devoted to the study of the space complexity of computations, while focusing ontwo rather extreme cases. The �rst case is that of algorithms having logarithmic space complexity.We view such algorithms as utilizing the naturally minimal amount of temporary storage, wherethe term \minimal" is used here in an intuitive (but somewhat inaccurate) sense, and note thatlogarithmic space complexity seems a more stringent requirement than polynomial time. Thesecond case is that of algorithms having polynomial space complexity. Such algorithms can performalmost all computational tasks considered in this book (i.e., the class PSPACE contains almost allcomplexity classes considered in this book).In addition to the intrinsic interest in space complexity, its study provides an interesting per-spective on the study of time complexity. For example, in contrast to the common conjecture bywhich NP 6= coNP , we shall see that analogous space complexity classes (e.g., NL) are closedunder complementation (e.g., NL = coNL).We stress that, as in the case of time complexity, the results presented in this chapter hold forany reasonable model of computation. In fact, when properly de�ned, space complexity is evenmore robust than time complexity. Still, for sake of clarity, we often refer to the speci�c model ofTuring machines.Organization. Space complexity seems to behave quite di�erently from time complexity, andseems to require a di�erent mind-set as well as auxiliary conventions. Some of these are discussedin Section 1. We then turn to the study of logarithmic space complexity (see Section 2) and thecorresponding non-deterministic version (see Section 3). Finally, we consider polynomial spacecomplexity (see Section 4).1 General preliminariesSpace complexity is meant to measure the amount of temporary storage (i.e., computer's memory)used when performing a computational task. Since much of our focus will be on using an amountof memory that is sub-linear in the input length, it is important to use a model in which one candi�erentiate memory used for computation from memory used for storing the initial input or the�nal output. That is, we do not want to count the input and output themselves within the space of1

computation, and thus formulate that they are delivered on special devices that are not consideredmemory. On the other hand, we have to make sure that the input and output devices cannotbe abused for providing work space (which is uncounted for). This leads to the convention bywhich the input device (e.g., a designated input-tape of a multi-tape Turing machine) is read-only,whereas the output device (e.g., a designated output-tape of a such machine) is write-only. Thus,space complexity accounts for the use of space on the other (storage) devices (e.g., the work-tapesof a multi-tape Turing machine)Fixing a concrete model of computation (e.g., multi-tape Turing machines), we denote byDspace(s) the class of decision problems that are solvable in space complexity s. The space com-plexity of search problems is de�ned analogously. Speci�cally, the standard de�nition of spacecomplexity refers to the number of cells of the work-tape scanned by the machine on each input.We prefer, however, an alternative de�nition, which provides a more accurate account of the actualstorage. Speci�cally, the binary space complexity of a computation refers to the the number of bitsthat can be stored in these cells, thus multiplying the number of cells by the logarithm of the �niteset of work symbols of the machine.1The di�erence between the two de�nitions is mostly immaterial, since it amounts to a constantfactor and we will discard such factors. Nevertheless, aside from being conceptually right, thede�nition of binary space complexity will facilitate some technical details (because the number ofpossible con�gurations is explicitly upper-bounded in terms of binary space complexity whereas therelation to the standard de�nition depends on the machine in question). Towards such applications,one may also count the �nite state of the machine in its space complexity. Furthermore, for sake ofsimplicity, we also assume that the machine does not scan the input-tape beyond the boundariesof the input, which are indicated by special symbols.1.1 On the minimal amount of useful computation spaceBearing in mind that one of our main objectives is identifying natural sub-classes of P, we considerthe question of what is the minimal amount of space that allows for meaningful computations.We note that regular sets [5, Chap. 2] are decidable by constant-space Turing machines and thatthis is all that the latter can decide (see, e.g., [5, Sec. 2.6]). It is tempting to say that sub-logarithmic space machines are not more useful than constant-space machines, because it seemsimpossible to allocate a sub-logarithmic amount of space. This wrong intuition is based on thepresumption that the allocation of a non-constant amount of space requires explicitly computingthe length of the input, which in turn requires logarithmic space. However, this presumptionis wrong: the input itself (in case it is of a proper form) can be used to determine its length,whereas in case the input is not of the proper form then this fact may be detectable (within sub-logarithmic space). In fact, for `(n) = log log n, the class Dspace(O(`)) is a proper superset ofDspace(O(1)); see Exercise 12. In contrast to Exercise 12, double-logarithmic space is indeed thesmallest amount of space that is more useful than constant space; that is, for `(n) = log log n, itholds that Dspace(o(`)) = Dspace(O(1)); see Exercise 13.In spite of the fact that some non-trivial things can be done in sub-logarithmic space complexity,the lowest space complexity class that we shall study in depth is logarithmic space (see Section 2).As we shall see, this class is the natural habitat of several fundamental computational phenomena.1We note that, unlike in the context of time-complexity, linear speed-up does not seem to represent an actualsaving in space resources. Indeed, time can be sped-up by using stronger hardware (i.e., a Turing machine with abigger work alphabet), but the actual space is not really a�ected by partitioning it into bigger chunks (i.e., usingbigger cells). 2

A parenthetical comment (or a side lesson). Before proceeding let us highlight the factthat a naive presumption about generic algorithms (i.e., that the use of a non-constant amount ofspace requires explicitly computing the length of the input) could have led us to a wrong conclu-sion. This demonstrates the danger in making (\reasonably looking") presumptions about arbitraryalgorithms, which in turn are the subject of a complexity lower-bound.1.2 Time versus SpaceSpace complexity behaves very di�erent from time complexity and indeed di�erent paradigms areused in studying it. One notable example is provided by the context of algorithmic composition,discussed next.1.2.1 Two composition lemmasUnlike time, space can be re-used; but, on the other hand, intermediate results of a computationcannot be recorded for free. These two con
icting aspects are captured in the following compositionlemma.Lemma 1 (naive composition): Let f1 : f0; 1g� ! f0; 1g� and f2 : f0; 1g� � f0; 1g� ! f0; 1g� becomputable in space s1 and s2, respectively.2 Then f de�ned by f(x) def= f2(x; f1(x)) is computablein space s such that s(n) = max(s1(n); s2(n+ `(n))) + `(n) +O(1) ;where `(n) = maxx2f0;1gnfjf1(x)jg.That is, f(x) is computed by �rst computing and storing f1(x), and then re-using the space (used inthe �rst computation) when computing f2(x; f1(x)). The additional term of `(n) is due to storingthe intermediate result (i.e., f1(x)). Lemma 1 is useful when ` is relatively small, but in many cases`� max(s1; s2). In these cases, the following composition lemma is more useful.Lemma 2 (emulative composition): Let f1; f2; s1; s2; ` and f be as in Lemma 1. Then f is com-putable in space s such thats(n) = s1(n) + s2(n+ `(n)) +O(log(n+ `(n))) :The alternative compositions are depicted in Figure 1 (which also shows the most straightforwardcomposition of A1 and A2 that makes no attempt to economize space).Proof: The idea is avoiding the storage of the temporary value of f1(x), by computing each ofits bits (\on the
y") whenever it is needed for the computation of f2. That is, we do not startby computing f1(x), but rather start by computing f2(x; f1(x)) although we do not have some ofthe bits of the relevant input. The missing bits will be computed (and re-computed) whenever weneed them in the computation of f2(x; f1(x)). Details follow.Let A1 and A2 be the algorithms (for computing f1 and f2, respectively) guaranteed in thehypothesis. Then, on input x 2 f0; 1gn, we invoke algorithm A2 (for computing f2). Algorithm A2is invoked on a virtual input, and so when emulating each of its steps we should provide it withthe relevant bit. Thus, we should also keep track of the location of A2 on the imaginary (virtual)2Here (and throughout the chapter) we assume, for simplicity, that all complexity bounds are monotonicallynon-decreasing. 3

x

A2

f(x)

A1

x

A2

f(x)

A1

x

A2

f(x)

A1

f (x)1 f (x)1 f (x)1

counters

The leftmost �gure shows the trivial composition (which just invokesA1 and A2 without attempt to economize storage), the middle �gureshows the naive composition (of Lemma 1), and the rightmost �gureshows the emulative composition (of Lemma 2). In all �gures the �lledrectangles represent designated storage spaces. The dotted rectanglerepresents a virtual storage device.Figure 1: Algorithmic composition for space-bounded computationinput tape. Whenever A2 seeks to read the ith bit of its input, where i 2 [n+ `(n)], we provide A2with this bit by reading it from x if i � n and invoke A1(x) otherwise. When invoking A1(x) weprovide it with a virtual output tape, which means that we get the bits of its output one-by-oneand do not record them anywhere. Instead, we count until reaching the (i�n)th output bit, whichwe then pass to A2 (as the ith bit of hx; f1(x)i).Note that while invoking A1(x), we suspend the execution of A2 but keep its current con�gura-tion such that we can resume the execution (of A2) once we get the desired bit. Thus, we need toallocate separate space for the computation of A2 and for the computation of A1. In addition, weneed to allocate separate storage for maintaining the aforementioned counters (i.e., the bit-locationcurrently read by A2 and the index of the bit currently produced in the current invocation of A1).1.2.2 An obvious boundThe time complexity of an algorithm is essentially upper-bounded by an exponential in its spacecomplexity. This is due to an upper-bound on the number of possible instantaneous \con�gurations"of the algorithm (as formulated in the proof of Theorem 3) and the fact that if the computationpasses through the same con�guration twice then it must loop forever.Theorem 3 If an algorithm A has binary space complexity s and halts on every input then it hastime complexity t such that t(n) = n � 2s(n)+log2 s(n).Note that for s(n) =
(log n), the factor of n can be absorbed by 2O(s(n)), and so we may just writet(n) = 2O(s(n)). 4

Proof: The proof refers to the notion of an instantaneous con�guration (in a computation). Beforestarting, we warn the reader that this notion may be given di�erent de�nitions, each tailored tothe application at hand. All these de�nitions share the desire to specify variable information thattogether with some �xed information determines the next step of the computation being analyzed.In the current proof, we �x an algorithm A and an input x, and consider as variable the contentsof the storage device (e.g., work-tape of a Turing machine) and the machine's location on the inputdevice and on the storage device. Thus, an instantaneous con�guration of A(x) consists of the latterthree objects (i.e., the contents of the storage device and a pair of locations), and can be encodedby a binary string of length `(jxj) = s(jxj) + log2 jxj+ log2 s(jxj).The key observation is that the computation A(x) cannot pass through the same computationtwice, because otherwise the computation A(x) passes through this con�guration in�nitely manytimes, which means that it does not halt. Intuitively, the point is that the �xed information(i.e., A and x) together with the con�guration, determines the next step of the computation.Thus, whatever happens (i steps) after the �rst time that the computation A(x) passes throughcon�guration
, will also happen (i steps) after the second time that the computation A(x) passesthrough
.By the forgoing observation, we infer that t(jxj) < 2`(jxj), and the theorem follows.1.2.3 Subtleties regarding space-bounded reductionsLemmas 1 and 2 su�ce for the analysis of the a�ect of many-to-one reductions in the context ofspace-bounded computations. Speci�cally:1. (In spirit of Lemma 1:)3 If f is reducible to g via a many-to-one reduction that can becomputed in space s1, and g is computable in space s2, then f is computable in space s suchthat s(n) = max(s1(n); s2(`(n)))+`(n), where `(n) denotes the maximum length of the imageof the reduction when applied to some n-bit string.2. (In spirit of Lemma 2:) For f and g as in Item 1, it follows that f is computable in space ssuch that s(n) = s1(n) + s2(`(n)) +O(log `(n)).Note that by Theorem 3, it holds that `(n) � 2s1(n)+log2 s1(n) � n. We stress the fact that ` is notbounded by s1 (as in the analogous case of time-bounded computation), but rather by exp(s1).Things gets much more complicated when we turn to general (space-bounded) reductions, espe-cially when referring to such reductions that make a non-constant number of queries. A preliminaryissue is de�ning the space complexity of general reductions (i.e., of oracle machines). In the stan-dard de�nition, the length of the queries and answers is not counted in the space complexity, but thequeries of the reduction (resp., answers given to it) are written on (resp., read from) a special de-vice that is write-only (resp., read-only) for the reduction (and read-only (resp., write-only) for theinvoked oracle). Note that these convention are analogous to the conventions regarding input andoutput (as well as �t the de�nitions of space-bounded many-to-one reductions (see Section 2.2)).The rest of the discussion, which is quite advanced and laconic (and is inessential to the rest of thechapter), concerns two additional issues.Recall that the complexity of the algorithm resulting from the composition of an oracle machineand an actual algorithm depends on the length of the queries made by the oracle machine. Thelength of the �rst query is upper-bounded by an exponential function in the space complexity of3Here and in the next item, we refer to the case that f(x) = g(f1(x)) rather than to the more general case wheref(x) = g(x; f1(x)). Consequently, s2 is applied to `(n) rather than to n + `(n).5

the oracle machine, but the same does not necessarily hold for subsequent queries, unless someconventions are added to enforce it. For example, consider a reduction, that on input x and accessto the oracle f such that f(z) = 12jzj, invokes the oracle jxj times, where each time it uses as aquery the answer obtained to the previous query. This reduction uses constant space, but producesqueries that are exponentially longer than the input, whereas the �rst query of any constant-spacereduction has length that is linear in its input. This problem can be resolved by placing explicitbounds on the length of the queries that space-bounded reductions are allowed to make; for example,we may bound the length of all queries by the obvious (exponential in the space complexity) boundthat holds for the length of the �rst query.With the aforementioned convention (or restriction) in place, let us consider the compositionof general space-bounded reductions with a space-bounded implementation of the oracle. Specif-ically, we say that a reduction is (`; `0)-restricted if, on input x, all oracle queries are of length atmost `(jxj) and the corresponding oracle answers are of length at most `0(jxj). It turns out thatnaive composition (in the spirit of Lemma 1) remains valid, whereas the emulative composition ofLemma 2 breaks down (in the sense that it yield very weak results).1. Following Lemma 1, we claim that if � can be computed in space s1 when given (`; `0)-restricted oracle access to �0 and �0 is solvable is space s2, then � is solvable in space s suchthat s(n) = s1(n) + s2(`(n)) + `(n) + `0(n). The claim is proved by using a naive emulationthat allocates separate space for the reduction (i.e., oracle machine) itself, the emulation ofits query and answer devices, and the algorithm solving �0. Note that here we cannot re-usethe space of the reduction when running the algorithm that solves �0, because the reduction'scomputation continues after the oracle answer is obtained.A related composition result is presented in Exercise 15. It yields s(n) = 2s1(n) + s2(`(n)) +2`0(n) + log2 `(n), which for `(n) < 22s1(n) means s(n) = 4s1(n) + s2(`(n)) + 2`0(n).2. Turning to the approach underlying Lemma 2, we get into more serious trouble. Recomputingthe answer of the ith query requires recomputing the query itself, which unlike in Lemma 2is not the input to the reduction but rather depends on the answers to prior queries, whichneed to be recomputed as well. Thus, the space required for such an emulation may be linearin the number of queries. In fact, we should not expect any better, because any computationof space complexity s can be performed by a constant-space (2s; 2s)-restricted reduction to aproblem that is solvable in constant-space (see Exercise 16).An alternative notion of space-bounded reductions is presented in [4]. This notion is more cum-bersome and more restricted, but it allows recursive composition with a smaller overhead than thetwo options explored above.1.2.4 Complexity hierarchies and gapsRecall that more space allows for more computation, provided that the space-bounding functionis \nice" in an adequate sense. Actually, the proofs of space-complexity hierarchies and gaps aresimpler than in the analogous proofs for time-complexity, because emulations are easier in thecontext of space-bounded algorithms.1.2.5 Simultaneous time-space complexityRecall that, for space complexity that is at least logarithmic, the time of a computation is alwaysupper-bounded by an exponential function in the space complexity (see Theorem 3). Thus, polylog-6

arithmic space complexity may extend beyond polynomial-time, and it make sense to de�ne a classlike SC that consists of all decision problems that may be solved by a polynomial-time algorithmof polylogarithmic space complexity. The class SC is indeed a natural sub-class of P (and containsthe class L, which is de�ned in Section 2.1).4In general, one may de�neDTiSp(t; s) as the class of decision problems solvable by an algorithmthat has time complexity t and space complexity s. Note that DTiSp(t; s) � Dtime(t)\Dspace(s)and that a strict containment may hold. Lower bounds on time-space trade-o�s (see, e.g., [2,Sec. 4.3]) may be stated as referring to the classes DTiSp(�; �).1.3 Circuit EvaluationRecall that there exists a polynomial-time algorithm that, given a circuit C : f0; 1gn ! f0; 1gmand an n-bit long string x, returns C(x). For circuits of bounded fan-in, the space complexity ofsuch an algorithm can be made linear in the depth of the circuit and logarithmic in its size. Thisis obtained by the following DFS-type algorithm.The algorithm (recursively) determines the value of a gate in the circuit by �rst determiningthe value of its �rst in-coming edge and next determining the value of the second in-coming edge.Thus, the recursive procedure, started at each output terminal of the circuit, needs only store thepath that leads to the currently processed vertex as well as the temporary values computed for eachancestor. Note that this path is determined by indicating, for each vertex on the path, whetherwe currently process its �rst or second in-coming edge. In case we currently process the vertex'ssecond in-coming edge, we need also store the value computed for its �rst in-coming edge.The temporary storage used by the foregoing algorithm, on input (C; x), is thus 2dC+O(log jxj+log jC(x)j), where dC denotes the depth of C. The �rst term in the space-bound accounts for thecore activity of the algorithm (i.e., the recursion), whereas the other terms account for the overheadinvolved in assigning the bits of x to the corresponding input terminals of C and in scanning alloutput terminals of C.2 Logarithmic SpaceAlthough Exercise 12 asserts that \there is life below log-space," logarithmic space seems to be thesmallest amount of space that supports interesting computational phenomena. In fact, logarithmicspace su�ces for solving many natural computational problems, for establishing reductions amongmany natural computational problems, and for a stringent notion of uniformity (of families ofBoolean circuits). Indeed, an important feature of logarithmic space computations is that they area natural subclass of the polynomial-time computations (see Theorem 3).2.1 The class LFocusing on decision problems, we denote by L the class of decision problems that are solvable byalgorithms of logarithmic space complexity; that is, L = [cDspace(`c), where `c(n) def= c log2 n.Note that, by Theorem 3, L � P. As hinted, many natural computational problems are in L (seeExercises 14 and 17 as well as Section 2.4). On the other hand, it is widely believed that L 6= P.4We also mention that BPL � SC, where BPL is the \BPP analogue" of L.
7

2.2 Log-Space ReductionsAnother class of important log-space computations is the class of logarithmic space reductions. Inlight of the subtleties discussed in x1.2.3 we con�ne ourselves to the case of many-to-one reductions.Analogously to the de�nition of Karp-reductions, we say that f is a log-space many-to-one reductionof S to S0 if f is log-space computable and, for every x, it holds that x 2 S if and only if f(x) 2 S0.Clearly, if S is so reducible to S0 2 L then S 2 L. Similarly, one can de�ne a log-space variant ofLevin-reductions. Both types of reductions are transitive (see Exercise 18). Note that Theorem 3applies in this context and implies that these reductions run in polynomial-time. Thus, the notionof a log-space many-to-one reduction is a special case of a Karp-reduction.We observe that all known Karp-reductions establishing NP-completeness results are actuallylog-space reductions. For example, consider the generic reduction to CSAT presented in the proofof the NP-completeness of CSAT: The constructed circuit is \highly uniform" and can be easilyconstructed in logarithmic-space (see Section 2.3). A degeneration of this reduction su�ces forproving that every problem in P is log-space reducible to the problem of evaluating a given circuiton a given input. Note that the latter problem is in P, and thus we may say that it is P-completeunder log-space reductions.Theorem 4 (The complexity of Circuit Evaluation): Let CEVL denote the set of pairs (C;�) suchthat C is a Boolean circuit and C(�) = 1. Then CEVL is in P and every problem in P is log-spaceKarp-reducible to CEVL.Proof: Recall that the observation underlying the proof of the NP-completeness of CSAT is thatthe computation of a Turing machine can be emulated by a \highly uniform" circuit. In that proofone hardwires the input to the reduction (denoted x) into the circuit (denoted Cx) and introducedinput terminals corresponding to the bits of the NP-witness (denoted y). In the current contextwe leave x as an input to the circuit, while noting that the auxiliary NP-witness does not exists(or has length zero). Thus, the reduction from S 2 P to CEVL maps the instance x (for S) to thepair (Cjxj; x), where Cjxj is a circuit that emulates the computation of the machine that decidesmembership in S (on any jxj-bit long input).The impact of P-completeness under log-space reductions. Indeed Theorem 4 impliesthat L 6= P if any only if CEVL 62 L. Other natural problems were proved to have the same property(i.e., being P-complete under log-space reductions; cf. [3]).Log-space reductions are used to de�ne completeness with respect to other classes that areassumed to extend beyond L. This restriction of the power of the reduction is de�nitely neededwhen the class of interest is contained in P (e.g., NL, see Section 3.2). In general, we say that aproblem � is C-complete under log-space reductions if � is in C and every problem in C is log-space(many-to-one) reducible to �. In such a case, if � 2 L then C � L.As in the case of polynomial-time reductions, we wish to stress that the relevance of log-spacereductions extends beyond being a tool for de�ning complete problems.2.3 Log-Space uniformity and stronger notionsStrengthening the standard de�nition of (polynomial-time) uniformity, we say that a family ofcircuits (Cn)n is log-space uniform if there exists an algorithm A that on input n outputs Cn whileusing space that is logarithmic in the size of Cn. As implied by Theorem 5 (and implicitly provedin Theorem 4), the computation of any polynomial-time algorithm can be emulated by a log-space8

uniform family of (bounded fan-in) polynomial-size circuits. On the other hand, in continuation toSection 1.3, we note that log-space uniform circuits of bounded fan-in and logarithmic depth can beemulated by an algorithm of logarithmic space complexity (i.e., NC1 is in log-space; see Exercise 17).Stronger notions of uniformity have been considered. Speci�cally, we say that (Cn)n has astrongly explicit construction if there exists an algorithm that runs in polynomial-time and linear-space such that, on input n and v, the algorithm returns the label of vertex v in Cn as well as thelist of its children (or an indication that v is not a vertex in Cn). Note that if (Cn)n has a stronglyexplicit construction then it is log-space uniform, because the length of the description of a vertexin Cn is logarithmic in the size of Cn. The proof of Theorem 4 actually establishes the following.Theorem 5 (strongly uniform circuits emulating P): For every polynomial-time algorithm Athere exists a strongly explicit construction of a family of polynomial-size circuits (Cn)n such thatfor every x it holds that Cjxj(x) = A(x).2.4 Undirected ConnectivityExploring a graph (e.g., towards determining its connectivity) is one of the most basic and ubiq-uitous computational tasks regarding graphs. The standard graph exploration algorithms (e.g.,BFS and DFS) require temporary storage that is linear in the number of vertices. In contrast, thealgorithm presented in this section uses temporary storage that is only logarithmic in the numberof vertices. In addition to demonstrating the power of log-space computation, this algorithm (orrather its actual implementation) provides a taste of the type of issues arising in the design ofsophisticated log-space algorithms.The intuitive task of \exploring a graph" is captured by the task of deciding whether a givengraph is connected. In addition to the intrinsic interest in this natural computational problem,we note that related versions of the problem seem harder. For example, determining directedconnectivity (in directed graphs) captures the essence of the class NL (see Section 3.2). In viewof this situation, we emphasize the fact that the computational problem considered here refers toundirected graphs by calling it undirected connectivity.Theorem 6 Deciding undirected connectivity (UCONN) is in LThe starting point of the algorithm is the fact that any expander is easy to traverse in deterministiclogarithmic-space, and thus the algorithm gradually transforms any graph into an expander, whilemaintaining the ability to map a traversal of the latter into a traversal of the former. Thus, thealgorithm traverses a virtual graph, which being an expander is easy to traverse in deterministiclogarithmic-space, and maps the virtual traversal of the virtual graph to a real traversal of the actualinput graph. The virtual graph is constructed in (logarithmically many) iterations, where in eachiteration the graph becomes easier to traverse. Speci�cally, in each iteration the expansion propertyof the graph improves by a constant factor, while the graph itself only grows by a constant factor,and each iteration can be performed (or rather emulated) in constant space. Since each graphhas some noticeable expansion (i.e., expansion inversely related to the size of the graph), afterlogarithmically many steps this process yields a good expander (i.e., constant expansion). Thedetails are presented in a seperate text [4], which uses a more abstract presentation than the onein the original work [7]. 9

3 Non-Deterministic Space ComplexityThe di�erence between space-complexity and time-complexity is quite striking in the context ofnon-deterministic computations. One aspect is the huge gap between the power of two formulationof non-deterministic space complexity (see Section 3.1), while in contrast the analogous formulationsare equivalent in the context of time-complexity. Another aspect is the contrast between the resultsregarding (the standard model of) non-deterministic space-bounded computation (see Section 3.2)and the analogous questions in the context of time-complexity.3.1 Two modelsRecall that non-deterministic time-bounded computations were de�ned via two equivalent models.In the o�-line model (underlying the de�nition of NP as a proof system), non-determinism iscaptured by reference to the existential choice of the contents of the auxiliary (\non-deterministic")input tape. In the on-line model (underlying the traditional de�nition of NP, non-determinism iscaptured by reference to the non-deterministic choices of the machine itself. These models areequivalent because the latter on-line choices can be recorded (almost) for free. That is, while it isclear that the o�-line model can emulate the on-line model (i.e., the o�-line machine can emulateon-line choices by using the contents of its non-deterministic input tape), the emulation of theo�-line model by the on-line model is enabled by the fact that an on-line machine may store (andre-use) a sequence of non-deterministic (on-line) choices.The naive emulation of the o�-line model on the on-line model is not possible in the contextof space-bounded computation, because the number of non-deterministic choices is typically muchlarger than the space-bound. The models become equivalent only if the o�-line model is restrictedto access its non-deterministic input tape in a uni-directional manner. Let us formulate the twomodels and consider them more closely.In the standard model, called the on-line model, the machine makes non-deterministic choices\on the
y" (or alternatively reads a non-deterministic input from a read-only tape that can beread only in a uni-directional way). Thus, if the machine needs to refer to such a non-deterministicchoice at a latter stage in its computation, then it must store the choice on its storage device (andbe charged for it). In the so-called o�-line model, the non-deterministic choices (or the bits of thenon-deterministic input) are read from a special read-only device (or tape) that can be scanned inboth directions like the main input.We denote by Nspaceon-line(s) (resp., Nspaceo�-line(s)) the class of sets that are acceptableby an on-line (resp., o�-line) non-deterministic machine having space complexity s. We stressthat, as in the traditional de�nition of NP , the set accepted by a non-deterministic machine Mis the set of strings x such that there exists a computation of M(x) that is accepting. Clearly,Nspaceon-line(s) � Nspaceo�-line(s). On the other hand, not only that Nspaceon-line(s) 6=Nspaceo�-line(s) but rather Nspaceon-line(s) = Nspaceo�-line(�(log s)), provided that s is at leastlinear. For details, see Exercise 19.Before proceeding any further, let us justify the focus on the on-line model in the rest of thissection. Indeed, the o�-line model �ts better the motivations to NP , but the on-line model seemsmore adequate for the study of non-deterministic in the context of space complexity. One reason isthat an o�-line non-deterministic tape can be used to code computations (see Exercise 19), and ina sense allows to \cheat" with respect to the \actual" space complexity of the computation. This isre
ected in the fact that the o�-line model can emulate the on-line model while using space that islogarithmic in the space used by the on-line model. A related phenomenon is that Nspaceo�-line(s)is only known to be contained in Dtime(22s), whereas Nspaceon-line(s) � Dtime(2s). This fact10

motivates the study of NL = Nspaceon-line(log), as a study of a (natural) sub-class of P. Indeed,the various results regarding NL justify its study in retrospect.In light of the foregoing, we adopt the standard conventions and letNspace(s) = Nspaceon-line(s).Our main focus will be the study of NL = Nspace(log).3.2 NL and directed connectivityThis section is devoted to the study of NL, which we view as the non-deterministic analogue ofL. Speci�cally, NL = [cNspace(`c), where `c(n) = c log2 n (and the de�nitional issues pertainingNspace = Nspaceon-line are discussed in Section 3.1).We �rst note that the proof of Theorem 3 can be easily extended to the (on-line) non-deterministiccontext. The reason being that moving from the deterministic model to the current model does nota�ect the number of instantaneous con�gurations (as de�ned in the proof of Theorem 3), whereasthis number bounds the time complexity. Thus, NL � P.The following problem, called directed connectivity (st-CONN), captures the essence of non-deterministic log-space computations (and, in particular, is complete for NL under log-space re-ductions). The input to st-CONN consists of a directed graph G = (V;E) and a pair of vertices(s; t), and the task is to determine whether there exists a directed path from s to t (in G).5 Indeed,the study of NL is often conducted via st-CONN. For example, note that NL � P follows easilyfrom the fact that st-CONN is in P (and the fact that NL is log-space reducible to st-CONN).3.2.1 Completeness and beyondClearly, st-CONN is in NL (see Exercise 20). The NL-completeness of st-CONN under log-spacereductions follows by noting that the computation of any non-deterministic space-bounded machineyields a directed graph in which vertices correspond to possible con�gurations and edges representthe \successive" relation of the computation. In particular, for log-space computations the graphhas polynomial size, but in general the relevant graph is strongly explicit (in a natural sense; seeExercise 21).Theorem 7 Every problem in NL is log-space reducible to st-CONN (via a many-to-one reduction).Proof Sketch: Fixing a non-deterministic (on-line) machine M and an input x, we consider thefollowing directed graphGx = (Vx; Ex). The vertices of Vx are possible instantaneous con�gurationsof M(x), where each con�guration consists of the contents of the work-tape, the machine's locationon it, and the machine's location on the input. The directed edges represent possible single movesin such a computation. Note that such a move depends on the machineM as well as on the (single)bit of x that resides in the location speci�ed by the �rst con�guration (i.e., the one correspondingto the start-point of the potential edge). Thus, the question of whether x 2 S is represented bythe existence of a directed path from the vertex that corresponds to the initial con�guration to thevertex that corresponds to a canonical accepting con�guration.We believe that the proof of Theorem 7 (see also Exercise 21) justi�es our choice to say thatst-CONN captures the essence of non-deterministic log-space computations (rather than merelysaying that st-CONN is NL-complete under log-space reductions).We note the discrepancy between the status of undirected connectivity (see Theorem 6) anddirected connectivity (see Theorem 7). In this context it is worthwhile to note that determining the5We note that, here (and in the sequel), s stands for start and t stands for terminate.11

existence of relatively short paths (rather than arbitrary paths) in undirected (or directed) graphsis also NL-complete under log-space reductions; see Exercise 23.3.2.2 Relating NSPACE to DSPACERecall that in the context of time complexity, converting non-deterministic computation to deter-ministic computation is known only when allowing an exponential blow-up in the complexity. Incontrast, space complexity allows such a conversion at the cost of a polynomial blow-up in thecomplexity.Theorem 8 (Non-deterministic versus deterministic space): For any space-constructible s : N !N that is at least logarithmic, it holds that Nspace(s) � Dspace(O(s2)).In particular, non-deterministic polynomial-space is contained in deterministic polynomial-space(and non-deterministic poly-logarithmic space is contained in deterministic poly-logarithmic space).Proof Sketch: We focus on the special case of NL and the argument extends easily to the generalcase. Alternatively, the general statement can be derived from the special case by using a suitableupwards-translation lemma (see, e.g., [5, Sec. 12.5]). The special case boils down to presenting alog-square space algorithm for deciding directed connectivity.The basic idea is that checking whether or not there is a path of length at most ` from u to vin G, reduces (in log-space) to checking whether there is an intermediate vertex w such that thereis a path of length at most d`=2e from u to w and a path of length at most b`=2c from w to v. Let�G(u; v; `) def= 1 if there is a path of length at most ` from u to v in G and �G(u; v; `) def= 0 otherwise.Thus, �G(u; v; `) can be decided recursively by scanning all vertices w in G, and checking for eachw whether both �G(u;w; d`=2e) = 1 and �G(w; v; b`=2c) = 1 hold.Thus, given a directed graph G = (V;E) and a pair of vertices (s; t), we should compute�G(s; t; jV j). This is done by invoking a recursive procedure that computes �G(u; v; `) by scanningall vertices in G, and computing for each vertex w the values of �G(u;w; d`=2e) and �G(w; v; b`=2c).We return the value 1 if and only if for some w it holds that �G(u;w; d`=2e) = �G(w; v; b`=2c) = 1.Needless to say, �G(u; v; 1) and �G(u; v; 0) can be decided easily in logarithmic space.The amount of space taken by each level of the recursion is log2 jV j (for storing the currentvalue of w), and the number of levels is log2 jV j. We stress that when computing �G(u; v; `), wemake polynomially many recursive calls, but all these calls re-use the same work space. That is,when we compute �G(u;w; d`=2e) we re-use the space that was used for computing �G(u;w0; b`=2c)for the previous w0, and we re-use the same space when we compute �G(w; v; b`=2c). The theoremfollows.Placing NL in NC2. The simple formulation of st-CONN facilitates placing NL in complexityclasses such as NC2. All that is needed is observing that st-CONN can be solved by raising theadequate matrix (i.e., the adjacency matrix of the graph augmented with 1-entries on the diagonal)to the adequate power (i.e., its dimension). Squaring a matrix can be done by a uniform family oflogarithmic depth bounded fan-in circuits (i.e., in NC1), and by repeated squaring the nth powerof an n-by-n matrix can be computed by a uniform family of bounded fan-in circuits of polynomialsize and depth O(log2 n); thus, NL � NC2. 12

3.2.3 Complementation or NL=coNLRecall that (natural) non-deterministic time-complexity classes are not known to be closed undercomplementation. Furthermore, it is widely believed that NP 6= coNP . In contrast, (natural)non-deterministic space-complexity classes are closed under complementation, as captured by theresult NL = coNL, where coNL def= ff0; 1g� n S : S 2 NLg. Before proving this result, let us takea closer look at the problem it resolves (which we rephrase as NL versus NL\ coNL).Recall that a set S is in NL if there exists a non-deterministic log-space machine M thataccepts S, and that the acceptance condition of non-deterministic machines is asymmetric in nature.That is, x 2 S implies the existence of an accepting computation of M on input x, whereasx 62 S implies that all computations of M on input x are non-accepting. Thus, the existence of aaccepting computation of M on input x is an absolute indication for x 2 S, but the existence of arejecting computation of M on input x is not an absolute indication for x 62 S. We note that, forS 2 NL\ coNL, there exist absolute indications both for x 2 S and for x 62 S (or, equivalently forx 2 S def= f0; 1g� n S), where each of the two types of indication is provided by a di�erent machine(i.e., the one accepting S or the one accepting S). Combining both machines, we obtain a singlenon-deterministic machine that, for every input, sometimes outputs the correct answer and alwaysoutputs either the correct answer or a special (\don't know") symbol. This yields the followingde�nition, which refers to Boolean functions as a special case.De�nition 9 (non-deterministic computation of functions): We say that a non-deterministic ma-chine M computes the function f : f0; 1g� ! f0; 1g� if for every x 2 f0; 1g� the following twoconditions hold.1. Every computation of M on input x yields an output in ff(x);?g, where ? 62 f0; 1g� is aspecial symbol (indicating \don't know").2. There exists a computation of M on input x that yields the output f(x).Note that S 2 NL \ coNL if and only if there exists a non-deterministic log-space machine thatcomputes �S, where �S(x) = 1 if x 2 S and �S(x) = 0 otherwise (see Exercise 25). It follows thatNL = coNL if and only if for every S 2 NL there exists a non-deterministic log-space machinethat computes �S.Theorem 10 (NL = coNL): For every S 2 NL there exists a non-deterministic log-space ma-chine that computes �S.As in the case of Theorem 8, the result extends to any space-constructible s : N ! N that is at leastlogarithmic; that is, for such s and every S 2 Nspace(s), it holds that f0; 1g� nS 2 Nspace(O(s)).This extension can be proved either by generalizing the following proof or by using an adequateupwards-translation lemma.Proof Sketch: It su�ces to present a non-deterministic (on-line) log-space machine that computesthe characteristic function of st-CONN, denoted � (i.e., �(G; s; t) = 1 if there is a directed pathfrom s to t in G and �(G; s; t) = 0 otherwise).We �rst show that the computation of � is log-space reducible (by two queries)6 to determiningthe number of vertices that are reachable from a given vertex in a given graph. On input (G; s; t),6We stress the fact that two queries are used in the reduction, because this avoids the di�culties (discussed inx1.2.3) regarding emulative composition for general space-bounded reduction. Alternatively, we may use a version ofthe naive composition, while relying on the fact that the oracle queries are \highly related" to the input and that theanswers have logarithmic length. For details, see Exercises 28 and 29.13

the reduction computes the number of vertices that are reachable from s in the graph G andcompares it to the number of vertices reachable from s in the graph obtained by deleting t fromG. (An alternative reduction that uses a single query is presented in Exercise 27.) Note that ifcomputing f is log-space reducible by a constant number of queries to computing some function gand there exists a non-deterministic log-space machine that computes g, then there exists a non-deterministic log-space machine that computes f (see Exercise 28). Thus, we focus on providing anon-deterministic log-space machine that compute the number of vertices that are reachable froma given vertex in a given graph.Fixing an n-vertex graph G = (V;E) and a vertex v, we consider the set of vertices that arereachable from v by a path of length at most i. We denote this set by Ri, and observe that R0 = fvgand that for every i = 1; 2; :::, it holds thatRi = Ri�1 [fu : 9w 2 Ri�1 s.t. (w; u) 2 Eg (1)Our aim is to compute jRnj. This will be done in n iterations such that at the ith iteration wecompute jRij. When computing jRij we rely on the fact that jRi�1j is known to us, which meansthat we shall store jRi�1j in memory. We stress that we discard jRi�1j from memory as soon as wecomplete the computation of jRij, which we store instead. Thus, at each iteration i, our record ofpast iterations only contains jRi�1j.Computing jRij. Given jRi�1j, we non-deterministically compute jRij by making a guess (for jRij),denoted g, and verifying its correctness as follows:1. We verify that jRij � g in a straightforward manner. That is, scanning V in some canonicalorder, we verify for g vertices that they are each in Ri. That is, during the scan, we selectnon-deterministically g vertices, and for each selected vertex w we verify that w is reachablefrom v by a path of length at most i, where this veri�cation is performed by just guessingand verifying an adequate path (see Exercise 20).We use log2 n bits to store the currently scanned vertex (i.e., w), and another O(log n) bitsfor implementing the veri�cation of the existence of a path of length at most i from v to w.2. The veri�cation of the condition jRij � g is the interesting part of the procedure. Here werely on the fact that we know jRi�1j, which allows for a non-deterministic enumeration ofRi�1 itself, which in turn allows for proofs of non-membership in Ri (via the use of Eq. (1)).Details follows (and an even more structured description is provided in Figure 2).Scanning V (again), we verify for n�g (guessed) vertices that they are not in Ri (i.e., are notreachable from v by paths of length at most i). By Eq. (1), verifying that u 62 Ri amounts toproving that for every w 2 Ri�1, it holds that u 6= w and (w; u) 62 E. As hinted, the knowledgeof jRi�1j allows for the enumeration of Ri�1, and thus we merely check the aforementionedcondition on each vertex in Ri�1. Thus, verifying that u 62 Ri is done as follows.(a) We scan V guessing jRi�1j vertices that are in Ri�1, and verify each such guess in thestraightforward manner (i.e., as in Step 1).7(b) For each w 2 Ri�1 that was guessed and veri�ed in Step 2a, we verify that both u 6= wand (w; u) 62 E.7Note that implicit in Step 2a is a non-deterministic procedure that computes the mapping (G; v; i; jRi�1j)! Ri�1,where Ri�1 denotes the set of vertices that are reachable in G by a path of length at most i from v.14

By Eq. (1), if u passes the foregoing veri�cation then indeed u 62 Ri.Note that we use log2 n bits to store the vertex u, another log2 n bits to count the numberof vertices that are veri�ed to be in Ri�1, another log2 n bits to store such a vertex w, andanother O(log n) bits for verifying that w 2 Ri�1 (as in Step 1).If any of the foregoing veri�cations fails, then the procedure halts outputting the \don't know"symbol ?. Otherwise, it outputs g.Given jRi�1j and a guess g, the claim g � jRij is veri�ed as follows.Set c 0. (initializing the main counter)For u = 1; :::; n do begin (the main scan)Guess whether or not u 2 Ri.For a negative guess (i.e., u 62 Ri), do begin(Verify that u 62 Ri via Eq. (1).)Set c0 0. (initializing a secondary counter)For w = 1; :::; n do begin (the secondary scan)Guess whether or not w 2 Ri�1.For a positive guess (i.e., w 2 Ri�1), do beginVerify that w 2 Ri�1 (as in Step 1).Verify that u 6= w and (w; u) 62 E.If some veri�cation failedthen halt with output ? otherwise increment c0.End (of handling a positive guess for w 2 Ri�1).End (of secondary scan). (c0 vertices in Ri�1 were checked)If c0 < jRi�1j then halt with output ?.Otherwise (c0 = jRi�1j), increment c. (u veri�ed to be outside of Ri)End (of handling a negative guess for u 62 Ri).End (of main scan). (c vertices were shown outside of Ri)If c < n� g then halt with output ?.Otherwise n� jRij � c � n� g is veri�ed.Figure 2: The main step in proving NL = coNL.It can be veri�ed that, when given the correct value of jRi�1j, the foregoing non-deterministiclog-space procedure computes the value of jRij. That is, if all veri�cations are satis�ed then it musthold that g = jRij, and if g = jRij then there are adequate non-deterministic choices that satisfyall veri�cations.Recall that Rn is computed iteratively, starting with jR0j = 1 and computing jRij based onjRi�1j. Each iteration i = 1; :::; n is non-deterministic, and is either completed with the correctvalue of jRij (at which point jRi�1j is discarded) or halts in failure (in which case we halt the entireprocess and output ?). This yields a non-deterministic log-space machine for computing jRnj, andthe theorem follows.
15

4 PSPACE and GamesAs stated up-front, we will rarely treat computational problems that require less than logarithmicspace. On the other hand, we will rarely treat computational problems that require more thanpolynomial space. The class of decision problems that are solvable in polynomial-space is denotedPSPACE def= [cDspace(pc), where pc(n) = nc.To get a sense of the power of PSPACE , we observe that PH � PSPACE ; for example, apolynomial-space algorithm can easily verify the quanti�ed condition underlying the de�nition of�k. In fact, such an algorithm can handle an unbounded number of alternating quanti�ers (seeTheorem 11). On the other hand, by Theorem 3, PSPACE � EXP , where EXP = [cDtime(2pc)for pc(n) = nc.The class PSPACE can be interpreted as capturing the complexity of determining the winnerin certain e�cient two-party game; speci�cally, the very games considered in the context of thePolynomial-Time hierarchy. Recall that we refer to two-party games that satisfy the followingthree conditions:1. The parties alternate in taking moves that e�ect the game's (global) position, where eachmove has a description length that is bounded by a polynomial in the length of the initialposition.2. The current position is updated based on the previous position and the current party's move.This updating can be performed in time that is polynomial in the length of the initial position.(Equivalently, we may require a polynomial-time updating procedure and postulate that thelength of the current position be bounded by a polynomial in the length of the initial position.)3. The winner in each position can be determined in polynomial-time.A set S 2 PSPACE can be viewed as the set of initial positions (in a suitable game) for whichthe �rst party has a winning strategy consisting of a polynomial number of moves. Speci�cally,x2S if starting at the initial position x, there exists move y1 for the �rst party, such that for everyresponse move y2 of the second party, there exists move y3 for the �rst party, etc, such that afterpoly(jxj) many moves the parties reach a position in which the �rst party wins, where the �nalposition as well as which party wins in it can be computed in polynomial-time (from the initialposition x and the sequence of moves y1; y2; :::). The fact that every set in PSPACE correspondsto such a game follows from Theorem 11, which refers to the satis�ability of quanti�ed Booleanformulae (QBF).Theorem 11 QBF is complete for PSPACE under polynomial-time many-to-one reductions.Proof: As note before, QBF is solvable by a polynomial-space algorithm that just evaluates thequanti�ed formula. Speci�cally, consider a recursive procedure that eliminates a Boolean quanti�erby evaluating the value of the two residual formulae, and note that the space used in the �rst(recursive) evaluation can be re-used in the second evaluation. (Alternatively, consider a DFS-typeprocedure as in Section 1.3.) Note that the space used is linear in the depth of the recursion, whichin turn is linear in the length of the input formula.We now turn to show that any set S 2 PSPACE is many-to-one reducible to QBF. The proof issimilar to the proof of Theorem 8, except that here we work with an implicit graph (rather thanwith an explicitly given graph). Speci�cally, we refer to the directed graph of con�guration (ofthe algorithm A deciding membership in S) as de�ned in Exercise 21. Actually, here we use a16

di�erent notion of a con�guration that includes also the input. That is, in the rest of this proof,a con�guration consists of the contents of all storage devices of the algorithm (including the inputdevice) as well as the location of the algorithm on each device.Recall that for a graph G, we de�ned �G(u; v; `) = 1 if there is a path of length at most `from u to v in G (and �G(u; v; `) = 0 otherwise). We need to determine �G(s; t; 2m) for s thatencodes the initial con�guration of A(x) and t that encodes the canonical accepting con�guration,where G depends on the algorithm A and m = poly(jxj) is such that A(x) uses at most m spaceand runs for at most 2m steps. By the speci�c de�nition of a con�guration (which contains allrelevant information including the input x), the value of �G(u; v; 1) can be determined easily basedsolely on the �xed algorithm A (i.e., either u = v or v is a con�guration following u). Recall that�G(u; v; 2`) = 1 if and only if there exists a con�guration w such that both �G(u;w; `) = 1 and�G(w; v; `) = 1 hold. Thus, we obtain the recursion�G(u; v; 2`) = 9w 2 f0; 1gm�G(u;w; `) ^ �G(w; v; `); (2)where the bottom of the recursion (i.e., �G(u; v; 1)) is a simple propositional formula (see foregoingdiscussion). The problem with Eq. (2) is that the expression for �G(�; �; 2`) involves two occur-rences of �G(�; �; `), which doubles the length of the recursively constructed formula (yielding anexponential blow-up).Our aim is to express �G(�; �; 2`) while using �G(�; �; `) only once. The extra restriction, whichprevents an exponential blow-up, corresponds to the re-using of space in the (two evaluationsof �G(�; �; `) that take place in the) computation of �G(u; v; 2`). The main idea is replacing thecondition �G(u;w; `) = �G(w; v; `) = 1 by the condition 8(u0v0)2f(u;w); (w; v)g�G(u0; v0; `). Next,we reformulate the \non-standard quanti�er" (which ranges over a speci�c pair of strings) by usingadditional quanti�ers as well as some simple boolean conditions. That is, 8(u0v0) 2 f(u;w); (w; v)gis replaced by 8� 2 f0; 1g9u0; v0 2 f0; 1gm and the auxiliary condition[(�=0)) (u0=u ^ v0=w)] ^ [(�=1)) (u0=w ^ v0=v)]: (3)Thus, �G(u; v; 2`) holds if and only if there exist w such that for every � there exists (u0; v0) suchthat both Eq. (3) and �G(u0; v0; `) hold. Note that the length of this expression for �G(�; �; 2`)equals the length of �G(�; �; `) plus an additive overhead term of O(m). Thus, using a recursiveconstruction, the length of the formula grows only linearly in the number of recursion steps.The reduction itself maps an instance x (of S) to the quanti�ed Boolean formula �(sx; t; 2m),where sx denotes the initial con�guration of A(x), (t and m = poly(jxj) are as above), and � isrecursively de�ned as follows�(u; v; 2`) def= 9w2f0; 1gm 8�2f0; 1g9u0; v02f0; 1gm[(�=0)) (u0=u ^ v0=w)]^ [(�=1)) (u0=w ^ v0=v)]^ �(u0; v0; `) (4)with �(u; v; 1) = 1 if and only if either u = v or there is an edge from u to v. Note that �(u; v; 1) isa propositional formula with Boolean variables representing the bits of u and v such that �(u; v; 1)is satis�es if and only if either u = v or v is a con�guration that follows the con�guration u in acomputation of A. On the other hand, note that �(sx; t; 2m) is a quanti�ed formula in which thequanti�ed variables are not shown in the notation.We stress that the mapping of x to �(sx; t; 2m) can be computed in polynomial-time. Firstly,note that the propositional formula �(u; v; 1), having Boolean variables representing the bits of u17

and v, expresses extremely simple conditions and can certainly be constructed in polynomial-time(i.e., polynomial in the number of Boolean variables, which in turn equals 2m). Next note that,given �(u; v; `), which (for ` > 1) contains quanti�ed variables that are not shown in the notation,we can construct �(u; v; 2`) by merely replacing variables names and adding quanti�ers and Booleanconditions as in the recursive de�nition of Eq. (4). This is certainly doable in polynomial-time.Lastly, note that the construction of �(sx; t; 2m) depends mainly on the length of x, where x itselfonly a�ects sx (and does so in a trivial manner). Recalling that m = poly(jxj), it follows thateverything is computable in time polynomial in jxj. Thus, given x, the formula �(sx; t; 2m) can beconstructed in polynomial-time.Finally, note that x 2 S if and only if the formula �(sx; t; 2m) is satis�able. The theoremfollows.Other PSPACE-complete problems. Several generalizations of natural games give rise toPSPACE-complete problems (see [9, Sec. 8.3]). This further justi�es the title of the current section.NotesThe material presented in the current text is based on a mix of \classical" results (proven in the1970's if not earlier) and \modern" results (proven in the late 1980's and even later). What wewish to emphasize is the time gap between the formulation of some questions and their resolution.Details follow.We �rst mention the \classical" results. These include the NL-completeness of st-CONN, theemulation of non-deterministic space-bounded machines by deterministic space-bounded machines(i.e., Theorem 8 due to Savitch [8]), the PSPACE -completeness of QBF, and the connections betweencircuit depth and space complexity (see Section 1.3 and Exercise 17 due to Borodin [1]).Before turning to the \modern" results, we mention that some people tend to be discouraged bythe impression that \decades of research have failed to answer any of the famous open problems ofcomplexity theory." In addition to the fact that substantial progress towards the understanding ofmany fundamental issues has been achieved, people tend to forget that some famous open problemswere actually resolved. Two such examples were presented in this chapter.The question of whether NL = coNL was a famous open problem for almost two decades.Furthermore, this question is related to an even older open problem dating to the early days ofresearch in the area of formal languages (i.e., to the 1950's).8 This open problem was resolvedin 1988 by Immerman [6] and Szelepcsenyi [10], who (independently) proved Theorem 10 (i.e.,NL = coNL).For more than two decades, undirected connectivity was one of the most appealing examplesof the computational power of randomness. Recall that the classical (deterministic) linear-timealgorithms (e.g., BFS and DFS) require an extensive use of (extra) memory (i.e., space linear inthe size of the graph). On the other hand, it was known (since 1979) that, with high probability, arandom walk of polynomial length visits all vertices (in the corresponding connected component).Thus, the randomized algorithm requires a minimal amount of auxiliary memory (i.e., logarithmicin the size of the graph). In the early 1990's, this algorithm (as well as the entire class BPL) was8Speci�cally, the class of sets recognized by linear-space non-deterministic machines equals the class of context-sensitive languages (see, e.g., [5, Sec. 9.3]), and thus Theorem 10 resolves the question of whether the latter class isclosed under complementation. 18

derandomized in polynomial-time and poly-logarithmic space, but despite more than a decade ofresearch attempts, a signi�cant gap remained between the space complexity of randomized anddeterministic polynomial-time algorithms for this natural and ubiquitous problem. This gap wasclosed by Reingold [7], who established Theorem 6 in 2004.ExercisesExercise 12 (on the power of double-logarithmic space) For any k 2 N , let wk denote theconcatenation of all k-bit long strings (in lexicographic order) separated by �'s (i.e., wk = 0k�200 �0k�201 � 0k�210 � 0k�211 � � � � � 1k). Show that the set S def= fwk : k 2 Ng � f0; 1; �g is not regularand yet is decidable in double-logarithmic space.Guideline: The non-regularity of S can be shown using standard techniques. Towards developing analgorithm, note that jwkj > 2k, and thus O(log k) = O(log log jwkj). Membership of x in S is determined byiteratively checking whether x = wi, for i = 1; 2; :::. Note that the ith iteration can be implemented in spaceO(log i), and that on input x 62 S we halt and reject after at most log jxj iterations.Exercise 13 (on the weakness of less than double-logarithmic space) Prove that for `(n) =log log n, it holds that Dspace(o(`)) = Dspace(O(1)).Guideline: Let s denote the machine's (binary) space complexity (see Footnote 1). Assuming that s isunbounded, consider for each m the shortest string x such that on input x the machine uses space at leastm. Consider, for each location on the input, the sequence of the residual con�gurations of the machine(i.e., the contents of its temporary storage)9 at the times in which the machine crosses (or rather passesthrough) this input location. For starters, note that the length of this \crossing sequence" is upper-boundedby the number of possible con�gurations, which is at most t def= 2s(jxj) � s(jxj). Thus, the number of suchcrossing sequences is upper-bounded by (t+1)! < tt. Now, if tt < jxj=2 then there exist three input locationsthat have the same crossing sequence, and two of them hold the same bit value. Contracting the stringat these two locations, we get a shorter input on which the machine behaves in exactly the same manner,contradicting the hypothesis that x is the shortest input on which the machine uses space at least m. Weconclude that tt � jxj=2 must hold, and s(jxj) =
(log t) =
(log log jxj) follows.Exercise 14 (some log-space algorithms) Present log-space algorithms for the following com-putational problems.1. Addition and multiplication of a pair of integers.Guideline: Relying on Lemma 2, �rst transform the input to a more convenient format, thenperform the operation, and �nally transform the result to the adequate format. For example, whenadding x =Pn�1i=0 xi2i and y =Pn�1i=0 yi2i a convenient format is ((x0; y0); :::; (xn�1; yn�1)).2. Transforming the adjacency matrix representation of a graph to its incidence list representa-tion, and vice versa.3. Deciding whether the input graph is acyclic (i.e., has no simple cycles).Guideline: Consider a scanning of the graph that proceeds as follows. Upon entering a vertex v viathe ith edge incident at it, we exit this vertex using its i + 1st if v has degree at least i + 1 and exit9Note that, unlike in the proof of Theorem 3, the machine's location on the input is not part of the notion ofa con�guration used here. On the other hand, although not stated explicitly, the con�guration also encodes themachine's location on the storage tape. 19

via the �rst edge otherwise. Note that when started at any vertex of any tree, this scanning performsa DFS. On the other hand, for every cyclic graph there exists a vertex v and an edge e incident to vsuch that if this scanning is started by traversing the edge e from v then it returns to v via an edgedi�erent from e.4. Deciding whether the input graph is a tree.Guideline: Use the fact that a graph G = (V;E) is a tree if and only if it is acyclic and jEj = jV j�1.Exercise 15 (another composition result) In continuation to the discussion in x1.2.3, provethat if � can be computed in space s1 when given an (`; `0)-restricted oracle access to �0 and �0is solvable is space s2, then � is solvable in space s such that s(n) = 2s1(n) + s2(`(n)) + 2`0(n) +log2 `(n).Guideline: Combine the ideas underlying the proofs of Lemmas 1 and 2. Speci�cally, view the oracle-aidedcomputation of � as consisting of iterations such that in the ith iteration the ith query is determined basedon the initial input, the i�1st oracle answer and the contents of the work tape at the time the i�1st answerwas given. Composing each iteration with the computation of �0 using Lemma 2, we conclude that the ithanswer can be computed (without storing the ith query) in space s1(n) + s2(`(n)) + log2 `(n). Thus, we canemulate the entire computation using space s(n), where the extra space s1(n)+2`0(n) is used for storing thework-tape of the oracle machine and the i� 1st and ith oracle answers.Exercise 16 Referring to the discussion in x1.2.3, prove that any problem having space complexitys can be solved by a constant-space (2s; 2s)-restricted reduction to a problem that is solvable inconstant-space.Guideline: The reduction is to the \next con�guration function" associated with the said algorithm (of spacecomplexity s). To facilitate the computation of this function, represent each con�guration in a redundantmanner (e.g., as a sequence over a 4-ary rather than a binary alphabet). The reduction consists of iterativelycopying strings from the (input or) oracle-answer tape to the oracle-query (or output) tape.Exercise 17 (log-space uniform NC1 is in L) Suppose that a problem � is solvable by a fam-ily of log-space uniform bounded fan-in circuits of depth d such that d(n) � log n. Prove that � issolvable by an algorithm having space complexity O(d).Guideline: Combine the algorithm outlined in Section 1.3 with the de�nition of log-space uniformity (usingLemma 2).Exercise 18 (transitivity of log-space reductions) Prove that log-space Karp-reductions aretransitive. De�ne log-space Levin-reductions and prove that they are transitive.Guideline: Use Lemma 2, noting that such reductions are merely log-space computable functions.Exercise 19 (relating the two models of NSPACE) Referring to the de�nitions in Section 3.1,prove that for every function s such that log s is space contructible and at least logarithmic, it holdsthat Nspaceon-line(s) = Nspaceo�-line(�(log s)).Guideline (for Nspaceon-line(s) � Nspaceo�-line(O(log s))): Use the non-deterministic tape of the o�-line machine for encoding an accepting computation of the on-line machine; that is, this tape should containa sequence of consecutive con�gurations leading from the initial con�guration to an accepting con�guration,where each con�guration contains the contents of the work-tape as well as the machine's location on thework-tape and on the input tape. The emulating o�-line machine (which veri�es the correctness of the20

sequence of con�gurations recorded on its non-deterministic input tape) needs only store its location withinthe current pair of consecutive con�gurations that it examines, which requires space logarithmic in the lengthof a single con�guration (which in turn equals s(n) + log2 s(n) + log2 n). (Note that this veri�cation relieson a two-directional access to the non-deterministic input tape.)Guideline (for Nspaceo�-line(s0) � Nspaceon-line(exp(s0))): Here we refer to the notion of a crossing-sequence. Speci�cally, for each location on the o�-line non-deterministic tape, consider the sequence of theresidual con�gurations of the machine, where such a residual con�guration consists of the bit residing in thisnon-deterministic tape location, the contents of the machine's temporary storage and the machine's locationson the input and storage tapes (but not its location on the non-deterministic tape). Show that the lengthof such a crossing-sequence is exponential in the space complexity of the o�-line machine, and that the timecomplexity of the o�-line machine is at most double-exponential in its space complexity (see Exercise 13).The on-line machine merely generates a sequence of crossing-sequences (\on the
y") and checks that eachconsecutive pair of crossing-sequences is consistent. This requires holding two crossing-sequences in storage,which require space linear in the length of such sequences (which, in turn, is exponential in the spacecomplexity of the o�-line machine).Exercise 20 (st-CONN and variants of it are in NL) Prove that the following computationalproblem is in NL. The instances have the form (G; v;w; `), where G=(V;E) is a directed graph,v; w 2 V , and ` is an integer, and the question is whether G contains a path of length at most `from v to w.Guideline: Consider a non-deterministic (on-line) machine that generates and veri�ers an adequate pathon the
y. That is, starting at v0 = v, the machine proceeds in iterations, such that in the ith iteration itnon-deterministically generates vi, veri�ers that (vi�1; vi) 2 E, and checks whether i � ` and vi = w. Notethat this machine need only store the last two vertices on the path (i.e., vi�1 and vi) as well as the number ofedges traversed so far (i.e., i). Using a careful implementation, it su�ces to store only one of these vertices(as well as i).Exercise 21 (NSPACE and directed connectivity) Our aim is to establish a relation be-tween general non-deterministic space-bounded computation and directed connectivity in \stronglyconstructible" graphs that have size exponential in the space bound. Let s be space constructibleand at least logarithmic. For every S 2 Nspace(s), present a linear-time oracle machine that givenoracle access to x provides oracle access to a directed graph Gx of size exp(s(jxj)) such that x 2 Sif and only if there is a directed path between the �rst and last vertices of Gx. That is, on inputa pair (u; v) and oracle access to x, the machine decides whether or not (u; v) is a directed edge inGx.Guideline: Follow the proof of Theorem 7.Exercise 22 (an alternative presentation of the proof of Theorem 8) We refer to directedgraphs in which each vertex has a self-loop.1. Viewing the adjacency matrices of directed graphs as oracles (cf. Exercise 21), present alinear space oracle machine that determines whether a given pair of vertices is connectedby a directed path of length two in the input graph. Note that this machine computes theadjacency relation of the square of the graph represented in the oracle.2. Using naive composition (as in Lemma 1), present a quadratic space oracle machine thatdetermines whether a given pair of vertices is connected by a directed path in the inputgraph. 21

Note that the machine in Item 2 implies that st-CONN can be decided in log-square space. Inparticular, justify the self-loop assumption made up-front.Exercise 23 (�nding shortest paths in undirected graphs) Prove that the following com-putational problem isNL-complete under (many-to-one) log-space reductions: Given an undirectedgraph G = (V;E), two designated vertices, s and t, and an integer K, determine whether there isa path of length at most K from s to t in G.Guideline (for NL-hardness): Reduce from st-CONN. Speci�cally, given a directed graph G = (V;E)and vertices s; t, consider a (\layered") graph G0 = (V 0; E0) such that V 0 = [jV j�1i=0 fhi; vi : v 2 V g andE0 = [jV j�2i=0 ffhi; ui; hi+ 1; vig : (u; v)2E _ u=vg. Note that there exists a directed path from s to t in G ifand only if there exists a path of length jV j � 1 between hs; 0i and ht; jV j � 1i in G0.Exercise 24 (deciding strong connectivity) A directed graph is called strongly connected ifthere exists a directed path between every ordered pair of vertices in the graph (or, equivalently, adirected cycle passing through every two vertices). Prove that the problem of deciding whether adirected graph is strongly connected is NL-complete under (many-to-one) log-space reductions.Guideline (for NL-hardness): Reduce from st-CONN, noting that (G; s; t) is a yes-instance of st-CONN,where G=(V;E), if and only if the graph G0 = (V;E[f(v; s) : v2V g[f(t; v) : v2V g) is strongly connected.Exercise 25 (an operational interpretation of NL \ coNL, NP \ coNP, etc) Referring toDe�nition 9, prove that S 2 NL \ coNL if and only if there exists a non-deterministic log-spacemachine that computes �S , where �S(x) = 1 if x 2 S and �S(x) = 0 otherwise. State and provean analogous result for NP \ coNP .Guideline: A non-deterministic machine computing any function f yields, for each value v, a machine ofsimilar complexity that accept fx : f(x) = vg. (Extra hint: Invoke the machine M that computes f and acceptif and only if M outputs v.) On the other hand, for any function f of �nite range, combining machines thataccept the various Sv def= fx : f(x) = vg, we obtain a machine of similar complexity that computes f . (Extrahint: On input x, the combined machine invokes each of the aforementioned machines on input x and outputs thevalue v if and only if the machine accepting Sv has accepted. In the case that none of the machines accepts, thecombined machine outputs ?.)Exercise 26 (a graph algorithmic interpretation of NL = coNL) Show that there exists alog-space computable function f such that for every (G; s; t) it holds that (G; s; t) is a yes-instanceof st-CONN if and only if (G0; s0; t0) = f(G; s; t) is a no-instance of st-CONN.Exercise 27 As an alternative to the two-query reduction presented in the proof of Theorem 10,show that computing the characteristic function of st-CONN is log-space reducible via a single queryto the problem of determining the number of vertices that are reachable from a given vertex in agiven graph.(Hint: On input (G; s; t), where G = ([N]; E), consider the number of vertices reachable from s in the graphG0 = ([2N]; E [f(t; N + i) : i = 1; :::; Ng).)Exercise 28 (reductions and non-deterministic computations) Suppose that computing fis log-space reducible by a constant number of queries to computing some function g. Referring tothe non-deterministic computations as in De�nition 9, prove that if there exists a non-deterministiclog-space machine that computes g then there exists a non-deterministic log-space machine thatcomputes f . 22

Guideline: Use the emulative composition (as in Lemma 2). If any of the non-deterministic computationsof g returns the value ? then return ? as the value of f . Otherwise, use the non-? values provided by thenon-deterministic computations of g to compute the value of f .Exercise 29 (reductions and non-deterministic computations, revisited) Suppose that com-puting f is log-space reducible (by any number of queries) to computing some function g such thatfor every x it holds that jg(x)j = O(log jxj). Referring to the non-deterministic computations as inDe�nition 9, prove that if there exists a non-deterministic log-space machine that computes g thenthere exists a non-deterministic log-space machine that computes f . As a warm-up consider thespecial case in which every query to g is computable in log-space based on the input to f .Guideline: As in Exercise 28, except that here we use di�erent composition techniques. Speci�cally, in thewarm-up we use the naive composition (as in Lemma 1), whereas in the general case we use the semi-naivecomposition of Exercise 15.Exercise 30 Prove that the problem of determining whether or not the input graph is bipartite(2-colorable) is in NL.Guideline: A graph is bipartite if and only if it contains no odd-length cycles. (Extra hint: UseNL = coNL.)Exercise 31 Referring to De�nition 9, prove that there exists a non-deterministic log-space ma-chine that computes the distance between two given vertices in a given undirected graph.Guideline: Relate this computational problem to the decision problem considered in Exercise 23, and useNL = coNL.References[1] A. Borodin. On Relating Time and Space to Size and Depth. SIAM Journal on Computing,Vol. 6 (4), pages 733{744, 1977.[2] S.A. Cook. A overview of Computational Complexity. Turing Award Lecture. CACM,Vol. 26 (6), pages 401{408, 1983.[3] S.A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Information and Control,Vol. 64, pages 2{22, 1985.[4] O. Goldreich. Proving that Undirected Connectivity is in L (with a long appendixon expander graphs). Unpublished note, December 2005. Availabe from the webpagehttp://www.wisdom.weizmann.ac.il/�oded/cc-texts.html[5] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computa-tion. Addison-Wesley, 1979.[6] N. Immerman. Nondeterministic Space is Closed Under Complementation. SIAM Journalon Computing, Vol. 17, pages 760{778, 1988.[7] O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Symposium on theTheory of Computing, pages 376{385, 2005.23

[8] W.J. Savitch. Relationships between nondeterministic and deterministic tape complexities.JCSS, Vol. 4 (2), pages 177-192, 1970.[9] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.[10] R. Szelepcsenyi. A Method of Forced Enumeration for Nondeterministic Automata. ActaInformatica, Vol. 26, pages 279{284, 1988.

24

