
Texts in Computational Complexity:Randomized Complexity ClassesOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.January 5, 2006So far (in the course), our approach to computing devices was somewhat conservative: wethought of them as executing a deterministic rule. A more liberal and quite realistic approach, whichis pursued in this chapter, considers computing devices that use a probabilistic rule. This relaxationhas an immediate impact on the notion of e�cient computation, which is consequently associatedwith probabilistic polynomial-time computations rather than with deterministic (polynomial-time)ones. We stress that the association of e�cient computation with probabilistic polynomial-timecomputation makes sense provided that the failure probability of the latter is negligible (whichmeans that it may be safely ignored).Focusing on probabilistic polynomial-time algorithms, we consider various types of failure ofsuch algorithms yielding complexity classes such as BPP , RP , and ZPP . The results presentedinclude BPP � P=poly and BPP � �2.1 The general settingConsidering algorithms that utilize random choices, we extend our notion of e�cient algorithmsfrom deterministic polynomial-time algorithms to probabilistic polynomial-time algorithms.Rigorous models of probabilistic (or randomized) algorithms are de�ned by natural extensions ofthe basic machine model. We will exemplify this approach by describing the model of probabilisticTuring machines, but we stress that (again) the speci�c choice of the model is immaterial (as longas it is \reasonable"). A probabilistic Turing machine is de�ned exactly as a non-deterministicmachine, but the de�nition of its computation is fundamentally di�erent. Speci�cally, whereas thede�nition of a non-deterministic machine refers to the question of whether or not there exists acomputation of the machine that (started on a speci�c input) reaches a certain con�guration, incase of probabilistic Turing machines we refer to the probability that this event occurs, when ateach step a choice is selected uniformly among the relevant possible choices available at this step.That is, if the transition function of the machine maps the current state-symbol pair to severalpossible triples, then the probabilistic machine randomly selects one of these triples (with equalprobability) and the next con�guration is determined accordingly. These random choices may beviewed as the internal coin tosses of the machine. (Indeed, as in the case of non-deterministicmachines, we may assume without loss of generality that the transition function of the machinemaps each state-symbol pair to exactly two possible triples.)We stress the fundamental di�erence between the �ctitious model of a non-deterministic machineand the realistic model of a probabilistic machine. In the case of a non-deterministic machine we1



consider the existence of an adequate sequence of choices (leading to a desired outcome), and ignorethe question of how these choices are actually made. In fact, the selection of such a sequence ofchoices is merely a mental experiment. In contrast, in the case of a probabilistic machine, at eachstep a choice is made uniformly (among a set of predetermined possibilities), and we consider theprobability of reaching a desired outcome.In view of the foregoing, we consider the output distribution of such a probabilistic machine on�xed inputs; that is, for a probabilistic machine M and string x 2 f0; 1g�, we denote by M(x) theoutput distribution of M when invoked on input x, where the probability is taken uniformly overthe machine's internal coin tosses. Needless to say, we will consider the probability that M(x) isa \correct" answer; that is, in the case of a search problem (resp., decision problem) we will beinterested in the probability that M(x) is a valid solution for the instance x (resp., represents thecorrect decision regarding x).The foregoing description views the internal coin tosses of the machine as taking place on-the-y; that is, these coin tosses are performed on-line by the machine itself. An alternative model isone in which the sequence of coin tosses is provided by an external device, on a special \randominput" tape. In such a case, we view these coin tosses as performed o�-line. Speci�cally, we denoteby M 0(x; r) the (uniquely de�ned) output of the residual deterministic machine M 0, when giventhe (primary) input x and random input r. Indeed, M 0 is a deterministic machine that takes twoinputs (the �rst representing the actual input and the second representing the \random input"),but we consider the random variable M(x) def= M 0(x;U`(jxj)), where `(jxj) denotes the number ofcoin tosses \expected" by M 0(x; �).These two perspectives on probabilistic algorithms are clearly related: The computation of anon-line machine M is captured by the residual machine M 0, which may be viewed as receiving asequence of coin tosses (obtained o�-line), where the number of these coin tosses is determinedby the time-complexity of M . (Indeed, there is no harm in supplying more coin tosses than areactually used by M .) For sake of clarity and future reference, we state the following de�nition.De�nition 1 (on-line and o�-line formulations of probabilistic polynomial-time):� We say that M is a on-line probabilistic polynomial-time machine if there exists a polynomialp such that when invoked on any input x 2 f0; 1g�, machine M always halts within at mostp(jxj) steps (regardless of the outcome of its internal coin tosses). In such a case M(x) is arandom variable.� We say that M 0 is a o�-line probabilistic polynomial-time machine if there exists a polynomialp such that, for every x 2 f0; 1g� and r 2 f0; 1gp(jxj), when invoked on the primary input xand the random-input sequence r, machine M 0 halts within at most p(jxj) steps. In such acase, we will consider the random variable M 0(x;Up(jxj)).Clearly, the on-line and o�-line formulations are equivalent (i.e., given a on-line probabilisticpolynomial-time machine we can derive a functionally equivalent o�-line (probabilistic polynomial-time) machine, and vice versa). Thus, in the sequel, we will freely use whichever is more convenient.Failure probability. A major aspect of randomized algorithms (probabilistic machines) is thatthey may fail (see Exercise 12). That is, with some speci�ed (\failure") probability, these algorithmsmay fail to produce the desired output. We discuss two aspects of this failure: its type and itsmagnitude. 2



1. The type of failure is a qualitative notion. One aspect of this type is whether, in case offailure, the algorithm produces a wrong answer or merely an indication that it failed to �nda correct answer. Another aspect is whether failure may occur on all instances or merely oncertain types of instances. Let us clarify these aspects by considering three natural types offailure, giving rise to three di�erent types of algorithms.(a) The most liberal notion of failure is the one of two-sided error. This term originates fromthe setting of decision problems, where it means that (in case of failure) the algorithmmay err in both directions (i.e., it may rule that a yes-instance is a no-instance, andvice versa). In the case of search problems two-sided error means that, when failing, thealgorithm may output a wrong answer on any input. Furthermore, the algorithm mayfalsely rule that the input has no solution and it may also output a wrong solution (bothin case the input has a solution and in case it has no solution).(b) An intermediate notion of failure is the one of one-sided error. Again, the term originatesfrom the setting of decision problems, where it means that the algorithm may err onlyin one direction (i.e., either on yes-instances or on no-instances). Indeed, there are twonatural cases depending on whether the algorithm errs on yes-instances (but not on no-instances), or the other way around. Analogous cases occur also in the setting of searchproblems. In one case the algorithm never outputs a wrong solution but may falsely rulethat the input has no solution. In the other case the indication that an input has nosolution is never wrong, but the algorithm may output a wrong solution.(c) The most conservative notion of failure is the one of zero-sided error. In this case, thealgorithm's failure amounts to indicating its failure to �nd an answer (by outputting aspecial don't know symbol). We stress that in this case the algorithm never provides awrong answer.Indeed, the forgoing discussion ignores the probability of failure, which is the subject of thenext item.2. The magnitude of failure is a quantitative notion. It refer to the probability that the algorithmfails, where the type of failure is �xed (e.g., as in the forgoing discussion).When actually using a randomized algorithm we typically wish its failure probability to benegligible, which intuitively means that the failure event is so rare that it can be ignoredin practice. Formally, we say that a quantity is negligible if, as a function of the relevantparameter (e.g., the input length), this quantity vanishes faster than the reciprocal of anypositive polynomial.For ease of presentation, we sometimes consider alternative upper-bounds on the probabilityof failure. These bounds are selected in a way that allows (and in fact facilitates) \errorreduction" (i.e., converting a probabilistic polynomial-time algorithm that satis�es such anupper-bound into one in which the failure probability is negligible). For example, in case oftwo-sided error we need to be able to distinguish the correct answer from wrong answers bysampling, and in the other types of failure \hitting" a correct answer su�ces.In the following three sections, we will discuss complexity classes corresponding to the aforemen-tioned three types of failure. For sake of simplicity, the failure probability itself will be set to aconstant that allows error reduction. 3



Randomized reductions. Before turning to the more detailed discussion, we note that ran-domized reductions play an important role in complexity theory. Such reductions can be de�nedanalogously to the standard Cook-Reductions (resp., Karp-reduction), and again a discussion ofthe type and magnitude of the failure probability is in place. For clarity, we spell-out the two-sidederror versions.� In analogy to the de�nition of Cook reductions, we say that a problem � is probabilisticpolynomial-time reducible to a problem �0 if there exists a probabilistic polynomial-time oraclemachine M such that, for every function f that solves �0 and for every x, with probabilityat least 1 � �(jxj), the output Mf (x) is a correct solution to the instance x, where � is anegligible function.� In analogy to the de�nition of Karp reductions, we say that a decision problem S is re-ducible to a decision problem S0 via a randomized Karp-reduction if there exists a probabilisticpolynomial-time algorithm A such that, for every x, it holds that Pr[�S0(A(x)) = �S(x)] �1 � �(jxj), where �S (resp., �S0) is the characteristic function of S (resp., S0) and � is anegligible function.These reductions preserve e�cient solvability and are transitive: see Exercise 13.2 Two-sided error: The complexity class BPPIn this section we consider the most liberal notion of probabilistic polynomial-time algorithms thatis still meaningful. We allow the algorithm to err on each input, but require the error probabilityto be negligible. The latter requirement guarantees the usefulness of such algorithms, because inreality we may ignore the negligible error probability.Before focusing on the decision problem setting, let us say a few words on the search problemsetting. Following the previous paragraph, we say that a probabilistic (polynomial-time) algorithmA solves the search problem of the relation R if for every x 2 SR (i.e., R(x) def= fy : (x; y)2Rg 6= ;) itholds that Pr[A(x)2R(x)] > 1��(jxj) and for every x 62 SR it holds that Pr[A(x)=?] > 1��(jxj),where � is a negligible function. Note that we did not require that, when invoked on input x thathas a solution (i.e., R(x) 6= ;), the algorithm always outputs the same solution. That is, a strongerrequirement is that for every such x there exists y 2 R(x) such that Pr[A(x)=y] > 1��(jxj). Thelatter version as well as quantitative relaxations of it allow for error-reduction (see Exercise 14),discussed next.Turning to decision problems, we consider probabilistic polynomial-time algorithms that errwith negligible probability. That is, we say that a probabilistic (polynomial-time) algorithm Adecides membership in S if for every x it holds that Pr[A(x) = �S(x)] > 1 � �(jxj), where �S isthe characteristic function of S (i.e., �S(x) = 1 if x 2 S and �S(x) = 0 otherwise) and � is a neg-ligible function. The class of decision problems that are solvable by probabilistic polynomial-timealgorithms is denoted BPP , standing for Bounded-error Probabilistic Polynomial-time. Actually,the standard de�nition refers to machines that err with probability at most 1=3.De�nition 2 (the class BPP): A decision problem S is in BPP if there exists a probabilisticpolynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x) = 1] � 2=3 and forevery x 62 S it holds that Pr[A(x) = 0] � 2=3.The choice of the constant 2=3 is immaterial, and any other constant greater than 1=2 will do (andyields the very same class). Similarly, the complementary constant 1=3 can be replaced by various4



negligible functions (while preserving the class). Both facts are special cases of the robustness ofthe class, which is established using the process of error reduction.Error reduction (or con�dence ampli�cation). For " : N ! (0; 0:5), let BPP" denote theclass of decision problems that can be solved in probabilistic polynomial-time with error probabilityupper-bounded by "; that is, S 2 BPP" if there exists a probabilistic polynomial-time algorithmA such that for every x it holds that Pr[A(x) 6= �S(x)] � "(jxj). By de�nition, BPP = BPP1=3.However, a wide range of other classes also equal BPP . In particular, we mention two extremecases:1. For every positive polynomial p and "(n) = (1=2) � (1=p(n)), the class BPP" equals BPP .That is, any error that is (\noticeably") bounded away from 1/2 (i.e., error (1=2)�(1=poly(n)))can be reduced to an error of 1=3.2. For every positive polynomial p and "(n) = 2�p(n), the class BPP" equals BPP . That is, anerror of 1=3 can be further reduced to an exponentially vanishing error.Both facts are proved by invoking the weaker algorithm (i.e., the one having a larger error proba-bility bound) for an adequate number of times, and ruling by majority. We stress that invoking arandomized machine several times means that the random choices made in the various invocationsare independent of one another. The success probability of such a process is analyzed by applyingan adequate Law of Large Numbers (see Exercise 15).2.1 On the power of randomizationA natural question arises: Did we gain anything in extending the de�nition of e�cient computationto include also probabilistic polynomial-time ones?This phrasing seems too generic. We certainly gained the ability to toss coins (and generatevarious distributions). More concretely, randomized algorithms are essential in many settings (e.g.,cryptography, probabilistic proof systems, and property testing) and seem essential in others (e.g.,studies of the complexity of �nding unique solutions and approximate counting). What we meanto ask here is whether allowing randomization increases the power of polynomial-time algorithmsalso in the restricted context of solving decision and search problems?The question is whether BPP extends beyond P (where clearly P � BPP). It is commonlyconjectured that the answer is negative. Speci�cally, under some reasonable assumptions, it holdsthat BPP = P. We note, however, that a polynomial slow-down occurs in the proof of the latterresult; that is, randomized algorithms that run in time t(�) are emulated by deterministic algorithmsthat run in time poly(t(�)). Furthermore, for some concrete problems (most notably primalitytesting (cf. Section 2.2)), the known probabilistic polynomial-time algorithm is signi�cantly faster(and conceptually simpler) than the known deterministic polynomial-time algorithm. Thus, webelieve that even in the context of decision problems, the notion of probabilistic polynomial-timealgorithms is advantageous. We note that the fundamental nature of BPP will hold even in the(rather unlikely) case that it turns out that it o�ers no computational advantage (i.e., even if everyproblem that can be decided in probabilistic polynomial-time can be decided by a deterministicalgorithm of essentially the same complexity).11Such a result would address a fundamental question regarding the power of randomness. By analogy, establishingthat IP = PSPACE does not diminish the importance of any of these classes.5



BPP is in the Polynomial-Time Hierarchy: While it may be that BPP = P, it is not knownwhether or not BPP is contained in NP . The source of trouble is the two-sided error probabilityof BPP , which is incompatible with the absolute rejection of no-instances required in the de�nitionof NP (see Exercise 22). In view of this ignorance, it is interesting to note that BPP resides in thesecond level of the Polynomial-Time Hierarchy (i.e., BPP � �2). This is a corollary of Theorem 7.Trivial derandomization. A straightforward way of eliminating randomness from an algorithmis trying all possible outcomes of its internal coin tosses, collecting the relevant statistics and decid-ing accordingly. This yields BPP � PSPACE � EXP , which is considered the trivial derandom-ization of BPP . In later stages of this course, we will consider various non-trivial derandomizationsof BPP , which are known under various intractability assumptions. The interested reader, who maybe puzzled by the connection between derandomization and computational di�culty, is referred tothese later lectures.Non-uniform derandomization. In many settings (and speci�cally in the context of solvingsearch and decision problems), the power of randomization is superseded by the power of non-uniform advice. Intuitively, the non-uniform advice may specify a sequence of coin tosses thatis good for all (primary) inputs of a speci�c length. In the context of solving search and decisionproblems, such an advice must be good for each of these inputs2, and thus its existence is guaranteedonly if the error probability is low enough (so as to support a union bound). The latter conditioncan be guaranteed by error-reduction, and thus we get the following result.Theorem 3 BPP is (strictly) contained in P=poly.Proof: Recall that P=poly contains undecidable problems, which are certainly not in BPP . Thus,we focus on showing that BPP � P=poly. By the discussion regarding error-reduction, for everyS 2 BPP there exists a (deterministic) polynomial-time algorithm A and a polynomial p suchthat for every x it holds that Pr[A(x;Up(jxj)) 6= �S(x)] < 2�jxj. Using a union bound, it followsthat Prr2f0;1gp(n) [9x2f0; 1gn s.t. A(x; r) 6=�S(x)] < 1. Thus, for every n 2 N , there exists a stringrn 2 f0; 1gp(n) such that for every x 2 f0; 1gn it holds that A(x; rn) = �S(x). Using such a sequenceof rn's as advice, we obtain the desired non-uniform machine (establishing S 2 P=poly).2.2 A probabilistic polynomial-time primality testTeaching note: Although primality has been recently shown to be in P , we believe thatthe following example provides a nice illustration to the power of randomized algorithms.We present a simple probabilistic polynomial-time algorithm for deciding whether or not a givennumber is a prime. The only Number Theoretic facts that we use are:Fact 1: For every prime p > 2, each quadratic residue mod p has exactly two square roots mod p(and they sum-up to p).3Fact 2: For every (odd and non-integer-power) composite numberN , each quadratic residue modNhas at least four square roots mod N .2In other contexts (e.g., one-way functions and pseudorandomness), it su�ces to have an advice that is good onthe average, where the average is taken over all relevant (primary) inputs.3That is, for every r 2 f1; :::; p� 1g, the equation x2 � s2 (mod p) has two solutions modulo p (i.e., s and p� s).6



Our algorithm uses as a black-box an algorithm, denoted sqrt, that given a prime p and a quadraticresidue mod p, denoted s, returns the smallest among the two modular square roots of s. Thereis no guarantee as to what the output is in the case that the input is not of the aforementionedform (and in particular in the case that p is not a prime). Thus, we actually present a probabilisticpolynomial-time reduction of testing primality to extracting square roots modulo a prime (whichis a search problem with a promise).Construction 4 (the reduction): On input a natural number N > 2 do1. If N is either even or an integer-power4 then reject.2. Uniformly select r 2 f1; :::; N � 1g, and set s r2 mod N .3. Let r0  sqrt(s;N). If r0 � �r (mod N) then accept else reject.Indeed, in the case that N is composite, the reduction invokes sqrt on an illegitimate input (i.e.,it makes a query that violates the promise of the problem at the target of the reduction). In sucha case, there is not guarantee as to what sqrt answers, but actually a bluntly wrong answer onlyplays in our favor. In general, we will show that if N is composite, then the reduction rejectswith probability at least 1=2, regardless of how sqrt answers. We mention that there exists aprobabilistic polynomial-time algorithm for implementing sqrt (see Exercise 25).Proposition 5 Construction 4 constitutes a probabilistic polynomial-time reduction of testing pri-mality to extracting square roots module a prime. Furthermore, if the input is a prime then thereduction always accepts, and otherwise it rejects with probability at least 1=2.We stress that Proposition 5 refers to the reduction itself; that is, sqrt is viewed as a (\per-fect") oracle that, for every prime P and quadratic residue s (mod P ), returns r < s=2 such thatr2 � s (mod P ). Combining Proposition 5 with a probabilistic polynomial-time algorithm thatcomputes sqrt with negligible error probability, we obtain that testing primality is in BPP .Proof: By Fact 1, on input a prime number N , Construction 4 always accepts (because in thiscase, for every r 2 f1; :::; N � 1g, it holds that sqrt(r2 mod N;N) = �r ). On the other hand,suppose that N is an odd composite that is not an integer-power. Then, by Fact 2, each quadraticresidue s has at least four square roots, and each of these square roots is equally likely to be chosenat Step 2 (in other words, s yields no information regarding which of its modular square roots wasselected in Step 2). Thus, for every such s, the probability that either sqrt(s;N) or N�sqrt(s;N)equal the root chosen in Step 2 is at most 2=4. It follows that, on input a composite number, thereduction rejects with probability at least 1=2.Reection. Construction 4 illustrates an interesting aspect of randomized algorithms (or ratherreductions); that is, the ability to hide information from a subroutine. Speci�cally, Construction 4generates a problem instance (N; s) without disclosing any additional information. Furthermore,a correct solution to this instance is likely to help the reduction; that is, a correct answer tothe instance (N; s) provides probabilistic evidence regarding whether N is a prime, where theprobability space refers to the missing information (regarding how s was generated).4This can be checked by scanning all possible powers e 2 f2; :::; log2Ng, and (approximately) solving the equationxe = N for each value of e (i.e., �nding the smallest integer i such that ie � N). Such a solution can be found bybinary search. 7



Comment. Testing primality is actually in P, however, the deterministic algorithm demonstrat-ing this fact is more complex (and its analysis is even more complicated).3 One-sided error: The complexity classes RP and coRPIn this section we consider notions of probabilistic polynomial-time algorithms having one-sidederror. The notion of one-sided error refers to a natural partition of the set of instances; that is,yes-instances versus no-instances in the case of decision problems, and instances having solutionversus instances having no solution in the case of search problems. We focus on decision problems,and comment that an analogous treatment can be provided for search problems (see the secondparagraph of Section 2).De�nition 6 (the class RP)5: A decision problem S is in RP if there exists a probabilisticpolynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x) = 1] � 1=2 andfor every x 62 S it holds that Pr[A(x)=0] = 1.The choice of the constant 1=2 is immaterial, and any other constant greater than zero will do(and yields the very same class). Similarly, this constant can be replaced by 1� �(jxj) for variousnegligible functions � (while preserving the class). Both facts are special cases of the robustness ofthe class (see Exercise 16).Observe that RP � NP (see Exercise 22) and that RP � BPP (by the aforementioned error-reduction). De�ning coRP = ff0; 1g� n S : S 2 RPg, note that coRP corresponds to the oppositedirection of one-sided error probability. That is, a decision problem S is in coRP if there exists aprobabilistic polynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x)=1] = 1and for every x 62 S it holds that Pr[A(x)=0] � 1=2.Relating BPP to RPA natural question regarding probabilistic polynomial-time algorithms refers to the relation betweentwo-sided and one-sided error probability. For example, is BPP contained in RP? Loosely speak-ing, we show that BPP is reducible to coRP by one-sided error randomized Karp-reductions. Notethat BPP is trivially reducible to coRP by two-sided error randomized Karp-reductions whereas adeterministic reduction of BPP to coRP would imply BPP = coRP = RP (see Exercise 19). Theactual statement refers to the promise problem versions of both classes, which are briey de�nednext.First, we refer the reader to the general discussion of promise problems in [6]. We say thatthe promise problem � = (Syes; Sno) is in (promise problem extension of) BPP if there existsa probabilistic polynomial-time algorithm A such that for every x 2 Syes it holds that Pr[A(x) =1] � 2=3 and for every x 2 Sno it holds that Pr[A(x) = 0] � 2=3. Similarly, � is in coRP iffor every x 2 Syes it holds that Pr[A(x) = 1] = 1 and for every x 2 Sno it holds that Pr[A(x) =0] � 1=2. Probabilistic reductions among promise problems are de�ned by adapting the standradconventions; speci�cally, queries that violate the promise at the target of the reduction may beanswered arbitrarily.5The initials RP stands for Random Polynomial-time, which fails to convey the restricted type of error allowed inthis class. The only nice feature of this notation is that it is reminiscent of NP, thus reecting the fact that RP is arandomized polynomial-time class contained in RP. 8



Theorem 7 Any problem in BPP is reducible by a one-sided error randomized Karp-reduction tocoRP, where coRP (and possibly also BPP) denotes the corresponding class of promise problems.Speci�cally, the reduction always maps a no-instance to a no-instance.It follows that BPP is reducible by a one-sided error randomized Cook-reduction to RP . Thus,referring to classes of promise problems, we may write BPP � RPRP . In fact, since RPRP �BPPBPP = BPP , we have BPP = RPRP . Theorem 7 may be paraphrased as saying that thecombination of the one-sided error probability of the reduction and the one-sided error probabilityof coRP can account for the two-sided error probability of BPP . We warn that this statement is nota triviality like 1+1 = 2, and in particular we do not know whether it holds for classes of standarddecision problems (rather than for the classes of promise problems considered in Theorem 7).Proof: Recall that we can easily reduce the error probability of BPP-algorithms, and deriveprobabilistic polynomial-time algorithms of exponentially vanishing error probability. But thisdoes not eliminate the error (even on \one side") altogether. In general, there seems to be no hopeto eliminate the error, unless we (either do something earth-shaking or) change the setting as donewhen allowing a one-sided error randomized reduction to a problem in coRP . The latter settingcan be viewed as a two-move randomized game (i.e., a random move by the reduction followed bya random move by the decision procedure of coRP), and it enables applying di�erent quanti�ersto the two moves (i.e., allowing error in one direction in the �rst quanti�er and error in the otherdirection in the second quanti�er). In the next paragraph, which is inessential to the actual proof,we illustrate the potential power of this setting.Teaching note: The following illustration represents an alternative way of provingTheorem 7. This way seems conceptual simpler but it requires a starting point (orrather an assumption) that is much harder to establish, where both comparisons arewith respect to the actual proof of Theorem 7 (which follows the illustration).An illustration. Suppose that for some set S 2 BPP there exists a polynomial p0 and an o�-lineBPP-algorithm A0 such that for every x it holds that Prr2f0;1g2p0(jxj)[A0(x; r) 6=�S(x)] < 2�(p0(jxj)+1);that is, the algorithm uses 2p0(jxj) bits of randomness and has error probability smaller than2�p0(jxj)=2. Note that such an algorithm cannot be obtained by standard error-reduction (seeExercise 20). Anyhow (by applying a union bound), such a small error probability allows formeaningful outcomes even if only half of the string r is random. Thus, for every x 2 S, it holdsthat Prr02f0;1gp0(jxj) [(8r00 2 f0; 1gp0(jxj))A0(x; r0r00) = 1] > 1=2, whereas for every x 62 S and everyr0 2 f0; 1gp0(jxj) it holds that Prr002f0;1gp0(jxj) [A0(x; r0r00)=1] < 1=2. That is, the error on yes-instancesis \pushed" to the selection of r0, whereas the error on no-instances is pushed to the selection of r00.This yields a one-sided error randomized Karp-reduction that maps x to (x; r0), where r0 is uniformlyselected in f0; 1gp0(jxj), such that deciding S is reduced to the coRP problem (regarding pairs (x; r0))that is decided by the (on-line) randomized algorithm A00 de�ned by A00(x; r0) def= A0(x; r0Up0(jxj)).For details, see Exercise 21. The actual proof, which avoids the aforementioned hypothesis, follows.The actual starting point. Consider any BPP-problem with a characteristic function � (which, incase of a promise problem, is a partial function, de�ned only over the promise). By standard error-reduction, there exists a probabilistic polynomial-time algorithm A such that for every x on which� is de�ned it holds that Pr[A(x) 6= �(x)] < �(jxj), where � is a negligible function. Looking atthe corresponding o�-line algorithm A0 and denoting by p the polynomial that bounds the runningtime of A, we have Prr2f0;1gp(jxj) [A0(x; r) 6=�(x)] < �(jxj) < 12p(jxj) (1)9



for all su�ciently long x's on which � is de�ned. We show a randomized one-sided error Karp-reduction of � to a promise problem in coRP.The main idea. As in the illustrating paragraph, the basic idea is \pushing" the error probabilityon yes-instances (of �) to the reduction, while pushing the error probability on no-instances to thecoRP-problem. Focusing on the case that �(x) = 1, this is achieved by augmenting the input xwith a random sequence of \modi�ers" that act on the random-input of algorithm A such thatfor a good choice of modi�ers it holds that for every r 2 f0; 1gp(jxj) there exists a modi�er in thissequence that when applied to r yields r0 that satis�es A(x; r0) = 1. Indeed, not all sequences ofmodi�ers are good, but a random sequence will be good with high probability and bad sequenceswill be accounted for in the error probability of the reduction. On the other hand, using onlymodi�ers that are permutations guarantees that the error probability on no-instances only increaseby a factor that equals the number of modi�ers we use, and this error probability will be accountedfor by the error probability of the coRP-problem. Details follow.The aforementioned modi�ers are implemented by shifts (of the set of all strings by �xed o�sets).Thus, we augment the input x with a random sequence of shifts, denoted s1; :::; sm 2 f0; 1gp(jxj),such that for a good choice of (s1; :::; sm) it holds that for every r 2 f0; 1gp(jxj) there exists an i 2 [m]such that A0(x; r � si) = 1. We will show that, for any yes-instance x and a suitable choice of m,with very high probability, a random sequence of shifts is good. Thus, for A00(hx; s1; :::; smi; r) def=_mi=1A0(x; r�si), it holds that, with very high probability over the choice of s1; :::; sm, a yes-instancex is mapped to an augmented input hx; s1; :::; smi that is accepted by A00 with probability 1. Onthe other hand, the acceptance probability of augmented no-instances (for any choice of shifts) onlyincreases by a factor of m. In further detailing the foregoing idea, we start by explicitly statingthe simple randomized mapping (to be used as a randomized Karp-reduction), and next de�ne thetarget promise problem.The randomized mapping. On input x 2 f0; 1gn, we set m = p(jxj), uniformly select s1; :::; sm 2f0; 1gm, and output the pair (x; s), where s = (s1; :::; sm). Note that this mapping, denoted M , iseasily computable by a probabilistic polynomial-time algorithm.The promise problem. We de�ne the following promise problem, denoted � = (�yes;�no), havinginstances of the form (x; s) such that jsj = p(jxj)2.� The yes-instances are pairs (x; s), where s = (s1; :::; sm) and m = p(jxj), such that for everyr 2 f0; 1gm there exists an i satisfying A0(x; r � si) = 1.� The no-instances are pairs (x; s), where again s = (s1; :::; sm) and m = p(jxj), such that forat least half of the possible r 2 f0; 1gm, for every i it holds that A0(x; r � si) = 0.To see that � is indeed a coRP promise problem, we consider the following randomized algorithm.On input (x; (s1; :::; sm)), where m = p(jxj) = js1j = � � � = jsmj, the algorithm uniformly selectsr 2 f0; 1gm, and accepts if and only if A0(x; r�si) = 1 for some i 2 f1; :::;mg. Indeed, yes-instancesof � are accepted with probability 1, whereas no-instances of � are rejected with probability atleast 1=2.Analyzing the reduction: We claim that the randomized mapping M reduces � to � with one-sidederror. Speci�cally, we will prove two claims.Claim 1: If x is a yes-instance (i.e., �(x) = 1) then Pr[M(x) 2 �yes] > 1=2.Claim 2: If x is a no-instance (i.e., �(x) = 0) then Pr[M(x) 2 �no] = 1.10



We start with Claim 2, which is easier to establish. Recall that M(x) = (x; (s1; :::; sm)), wheres1; :::; sm are uniformly and independently distributed in f0; 1gm. We note that (by Eq. (1) and�(x) = 0), for every possible choice of s1; :::; sm 2 f0; 1gm and every i 2 f1; :::;mg, the fraction of r'sthat satisfy A0(x; r � si) = 1 is at most 12m . Thus, for every possible choice of s1; :::; sm 2 f0; 1gm,the fraction of r's for which there exists an i such that A0(x; r � si) = 1 holds is at most 1=2.Hence, the reduction M always maps the no-instance x (i.e., �(x) = 0) to a no-instance of � (i.e.,an element of �no).Turning to Claim 1 (which refers to �(x) = 1), we will show shortly that in this case, with veryhigh probability, the reduction M maps x to a yes-instance of �. We upper-bound the probabilitythat the reduction fails (in case �(x) = 1) as follows:Pr[M(x) 62 �yes] = Prs1;:::;sm[9r 2 f0; 1gm s.t. (8i) A0(x; r � si) = 0]� Xr2f0;1gm Prs1;:::;sm[(8i) A0(x; r � si) = 0]= Xr2f0;1gm mYi=1Prsi [A0(x; r � si) = 0]< 2m � � 12m�mwhere the last inequality is due to Eq. (1). It follows that if �(x) = 1 then Pr[M(x) 2 �yes]� 1=2.Thus, the randomized mappingM reduces � to �, with one-sided error on yes-instances. Recallingthat � 2 coRP , the theorem follows.Corollaries. The traditional presentation uses the foregoing reduction for showing that BPPis in the Polynomial-Time Hierarchy (where both classes refer to standard decision problems).Speci�cally, to prove that BPP � �2, de�ne the polynomial-time computable predicate '(x; s; r) def=Wmi=1(A0(x; si � r) = 1), and observe that�(x) = 1 ) 9s8r '(x; s; r) (2)�(x) = 0 ) 8s9r :'(x; s; r) (3)(where Eq. (3) is equivalent to :9s8r '(x; s; r)). Note that Claim 1 (in the proof of Theorem 7)establishes that most sequences s satisfy 8r '(x; s; r), whereas Eq. (2) only requires the existenceof at least one such s. Similarly, Claim 2 establishes that for every s most choices of r violate'(x; s; r), whereas Eq. (3) only requires that for every s there exists at least one such r. Wecomment that the same proof idea yields a variety of similar statements (e.g., BPP �MA, whereMA is a randomized version of NP).64 Zero-sided error: The complexity class ZPPWe now consider probabilistic polynomial-time algorithms that never err, but may fail to providean answer. Focusing on decision problems, the corresponding class is denoted ZPP (standing for6Speci�cally, the class MA is de�ned by allowing the veri�cation algorithm V in the de�nition of NP to beprobabilistic and err on no-instances; that is, for every x 2 S there exists y 2 f0; 1gpoly(jxj) such that Pr[V (x; y)=1] = 1, whereas for every x 62 S and every y it holds that Pr[V (x; y)= 0] � 1=2. We note that MA can be viewedas a hybrid of the two aforementioned pairs of conditions; speci�cally, each problem in MA satisfy the conjunctionof Eq. (2) and Claim 2. (Note that it makes no sense to require zero error on yes-instances, whereas the two-sidederror version is equivalent to MA; see Exercise 23.) 11



Zero-error Probabilistic Polynomial-time). The standard de�nition of ZPP is in terms of machinesthat output ? (indicating failure) with probability at most 1=2. That is, S 2 ZPP if thereexists a probabilistic polynomial-time algorithm A such that for every x 2 f0; 1g� it holds thatPr[A(x) 2 f�S(x);?g] = 1 and Pr[A(x) = �S(x)] � 1=2, where �S(x) = 1 if x 2 S and �S(x) = 0otherwise. Again, the choice of the constant (i.e., 1=2) is immaterial, and \error-reduction" can beperformed showing that algorithms that yield a meaningful answer with noticeable probability canbe ampli�ed to algorithms that fail with negligible probability (see Exercise 17).Theorem 8 ZPP = RP \ coRP.Proof Sketch: The fact that ZPP � RP (as well as ZPP � coRP) follows by a trivial trans-formation of the ZPP-algorithm; that is, replacing the failure indicator ? by a \no" verdict (resp.,\yes" verdict). Note that the choice of what to say in case the ZPP-algorithm fails is determinedby the type of error that we are allowed.In order to prove that RP \ coRP � ZPP we combine the two algorithm guaranteed for a setin RP \ coRP . The point is that we can trust the RP-algorithm (resp., coNP-algorithm) in thecase that it says \yes" (resp., \no"), but not in the case that it says \no" (resp., \yes"). Thus, weinvoke both algorithms, and output a de�nite answer only if we obtain an answer that we can trust(which happen with high probability). Otherwise, we output ?.Expected polynomial-time. In some sources ZPP is de�ned in terms of randomized algorithmsthat run in expected polynomial-time and always output the correct answer. This de�nition isequivalent to the one we used (see Exercise 18).5 Randomized Log-SpaceIn this section we discuss probabilistic polynomial-time algorithms that are further restricted suchthat they are allowed to use only a logarithmic amount of space.5.1 De�nitional issuesWhen de�ning space-bounded randomized algorithms, we face a problem analogous to the onediscussed in the context of non-deterministic space-bounded computation. Speci�cally, the on-lineand the o�-line versions (formulated in De�nition 1) are no longer equivalent, unless we restrict theo�-line machine to access its random-input tape in a uni-directional manner. The issue is that, inthe context of space-bounded computation (and unlike in the case that we only care about time-bounds), the results of the internal coin tosses (in the on-line model) cannot be recorded for free.Bearing in mind that, in the current context, we wish to model real algorithms (rather than presenta �ctitious model that captures a fundamental phenomena as in the case of space complexity), itis clear that using the on-line version is the natural choice.An additional issue that arises is the need to explicitly bound the running-time of space-boundedrandomized algorithms. Recall that, without loss of generality, the number of steps taken by aspace-bounded non-deterministic machine is at most exponential in its space complexity, becausethe shortest path between two con�gurations in the (directed) graph of possible con�gurations isupper-bounded by its size (which in turn is exponential in the space-bound). This reasoning failsin the case of randomized algorithms, because the shortest path between two con�gurations doesnot bound the expected number of random steps required for going from the �rst con�guration to12



the second one. In fact, as we shall shortly see, failing to upper-bound the running time of log-space randomized algorithms seems to allow them too much power; that is, such (unrestricted) log-space randomized algorithms can emulate non-deterministic log-space computations (in exponentialtime). The emulation consists of repeatedly invoking the NL-machine, while using random choicesin the role of the non-deterministic moves. If the input is a yes-instance then, in each attempt, withprobability at least 2�t, we \hit" an accepting t-step (non-deterministic) computation, where t ispolynomial in the input length. Thus, the randomized machine accepts such a yes-instance afteran expected number of 2t trials. To allow for the rejection of no-instances (rather than loopingin�nitely in vain), we wish to implement a counter that counts till 2t (or so) and reject the input ifthis number of trials have failed. We need to implement such a counter within space O(log t) ratherthan t (which is easy). In fact, it su�ces to have a \randomized counter" that, with high probability,counts to approximately 2t. The implementation of such a counter is left to Exercise 26, and usingit we may obtain a randomized algorithm that halts with high probability (on every input), alwaysrejects a no-instance, and accepts each yes-instance with probability at least 1=2.In light of the foregoing discussion, when de�ning randomized log-space algorithms we explicitlyrequire that the algorithms halt in polynomial-time. Under this convention, the class RL relatesto NL analogously to the relation of RP to NP . That is, the probabilistic acceptance conditionin RL is as in the case of RP. The class BPL is de�ned similarly, when using a probabilisticacceptance condition as in the case of BPP .De�nition 9 (the classes RL and BPL): We say that a randomized log-space algorithm is admis-sible if it always halts in a polynomial number of steps.� A decision problem S is in RL if there exists an admissible (on-line) randomized log-spacealgorithm A such that for every x 2 S it holds that Pr[A(x) = 1] � 1=2 and for every x 62 Sit holds that Pr[A(x) = 0] = 1.� A decision problem S is in BPL if there exists an admissible (on-line) randomized log-spacealgorithm A such that for every x 2 S it holds that Pr[A(x) = 1] � 2=3 and for every x 62 Sit holds that Pr[A(x) = 0] � 2=3.Clearly, RL � NL � P and BPL � P. Note that the classes RL and BPL remain unchangedeven if we allow the algorithms to run for expected polynomial-time and have non-halting compu-tations. Such algorithms can be easily transformed into admissible algorithms by truncating longcomputations, while using a (standard) counter (which can be implemented in logarithmic-space).Also note that error-reduction is applicable in the current setting (while essentially preserving boththe time and space bounds).5.2 The accidental tourist sees it allAn appealing example of a randomized log-space algorithm is presented next. It refers to theproblem of deciding undirected connectivity, and demonstrated that this problem is in RL. (Recallthat this problem is actually in L, but the algorithm and its analysis were more complicated.) Recallthat Directed Connectivity is complete for NL (under log-space reductions). For sake of simplicity,we consider the following version of undirected connectivity, which is equivalent under log-spacereductions to the version in which one needs to determine whether or not the input (undirected)graph is connected. In the current version, the input consists of a triple (G; s; t), where G is anundirected graph, s; t are two vertices in G, and the task is to determine whether or not s and t areconnected in G. 13



Construction 10 On input (G; s; t), the randomized algorithm starts a poly(jGj)-long randomwalk at vertex s, and accepts the triplet if and only if the walk passed through the vertex t. By arandom walk we mean that at each step the algorithm selects uniformly one of the neighbors of thecurrent vertex and moves to it.Observe that the algorithm can be implemented in logarithmic space (because we only need tostore the current vertex as well as the number of steps taken so far). Obviously, if s and t are notconnected in G then the algorithm always rejects (G; s; t). Proposition 11 implies that undirectedconnectivity is indeed in RL.Proposition 11 If s and t are connected in G = (V;E) then a random walk of length O(jV j � jEj)starting at s passes through t with probability at least 1=2.In other words, a random walk starting at s visits all vertices of the connected component of s (i.e.,it sees all that there is to see).Proof Sketch: We will actually show that if G is connected then, with probability at least 1=2, arandom walk starting at s visits all the vertices of G. For any pair of vertices (u; v), let Xu;v be arandom variable representing the number of steps taken in a random walk starting at u until v is �rstencountered. The reader may verify that for every edge fu; vg 2 E it holds that E[Xu;v] � 2jEj; seeExercise 27. Next, we let cover(G) denote the expected number of steps in a random walk startingat s and ending when the last of the vertices of V is encountered. Our goal is to upper-boundcover(G). Towards this end, we consider an arbitrary directed cyclic-tour C that visits all verticesin G, and note that cover(G) � X(u;v)2C E[Xu;v] � jCj � 2jEj:In particular, selecting C as a traversal of some spanning tree of G, we conclude that cover(G) <4 � jV j � jEj. Thus, with probability at least 1=2, a random walk of length 8 � jV j � jEj starting at svisits all vertices of G.NotesMaking people take an unconventional step requires compelling reasons, and indeed the study ofrandomized algorithms was motivated by a few compelling examples. Ironically, the appeal of thetwo most famous examples (discussed next) has diminished due to subsequent �nding, but thefundamental questions that emerged remain fascinating regardless of the status of these and otherappealing examples (see Section 2.1).The �rst example: primality testing. For more than two decades, primality testing was thearchetypical example of the usefulness of randomization in the context of e�cient algorithms. Thecelebrated algorithms of Solovay and Strassen [15] and of Rabin [11], proposed in the late 1970's,established that deciding primality is in coRP (i.e., these tests always recognize correctly primenumbers, but they may err on composite inputs). (The approach of Construction 4, which onlyestablishes that deciding primality is in BPP, is commonly attributed to M. Blum.) In the late1980's, Adleman and Huang [1] proved that deciding primality is in RP (and thus in ZPP). Inthe early 2000's, Agrawal, Kayal, and Saxena [2] showed that deciding primality is actually in P.One should note, however, that strong evidence to the fact that deciding primality is in P wasactually available from the start: we refer to Miller's deterministic algorithm [9], which relies onthe Extended Riemann Hypothesis. 14



The second example: undirected connectivity. Another celebrated example to the power ofrandomization, speci�cally in the context of log-space computations, was provided by testing undi-rected connectivity. The random-walk algorithm presented in Construction 10 is due to Aleliunas,Karp, Lipton, Lov�asz, and Racko� [3]. Recall that a deterministic log-space algorithm was foundtwenty-�ve years later (see [12]).Other randomized algorithms. Although randomized algorithms are more abundant in thecontext of approximation problems (let alone in other computational settings (cf. Section 2.1)),quite a few such algorithms are known also in the context of search and decision problems. Wemention the algorithms for �nding perfect matchings and minimum cuts in graphs (see, e.g., [5,Apdx. B.1] or [10, Sec. 12.4&10.2]), and note the prominent role of randomization in computationalnumber theory (see, e.g., [4] or [10, Chap. 14]). For a general textbook on randomized algorithms,we refer the interested reader to [10].On the general study of BPP. Turning to the general study of BPP, we note that our pre-sentation of Theorem 7 follows the proof idea of Lautemann [8]. A di�erent proof technique, whichyields a weaker result but found more applications (e.g., in the context of approximate countingand interactive proof systems), was presented (independently) by Sipser [14].On the role of promise problems. In addition to their use in the formulation of Theorem 7,promise problems allow for establishing time hierarchy theorems for randomized computation. Wemention that such results are not known for the corresponding classes of standard decision problems.The technical di�culty is that we do not know how to enumerate probabilistic machines that utilizea non-trivial probabilistic decision rule.On the feasibility of randomized computation. Di�erent perspectives on this question areo�ered by [5, Chap. 3]. Speci�cally, generating uniformly distributed bit sequences is not reallynecessary for implementing randomized algorithms; it su�ces to generate sequences that look as ifthey are uniformly distributed. A less radical approach (see [13]) deals with the task of extractingalmost uniformly distributed bit sequences from sources of weak randomness. Needless to say, thesetwo approaches are complimentary and can be combined.ExercisesExercise 12 Show that if a search (resp., decision) problem can be solved by a probabilisticpolynomial-time algorithm having zero error probability, then the problem can be solve by a de-terministic polynomial-time algorithm.(Hint: replace the internal coin tosses by a �xed outcome.)Exercise 13 (randomized reductions) In continuation to the de�nitions presented at the be-ginning of the main text, prove the following:1. If a problem � is probabilistic polynomial-time reducible to a problem that is solvable inprobabilistic polynomial-time then � is solvable in probabilistic polynomial-time, where bysolving we mean solving correctly except with negligible probability.15



Warning: Recall that in the case that �0 is a search problem, we required that on input x thesolver provides a correct solution with probability at least 1� �(jxj), but we did not requirethat it always returns the same solution.(Hint: without loss of generality, the reduction does not make the same query twice.)2. Prove that probabilistic polynomial-time reductions are transitive.3. Prove that randomized Karp-reductions are transitive and that they yield a special case ofprobabilistic polynomial-time reductions.De�ne one-sided error and zero-sided error randomized (Karp and Cook) reductions, and considerthe foregoing items when applied to them. Note that the implications for the case of one-sidederror are somewhat subtle.Exercise 14 (on the de�nition of probabilistically solving a search problem) In continu-ation to the discussion at the beginning of Section 2, suppose that for some probabilistic polynomial-time algorithm A and a positive polynomial p the following holds: for every x 2 SR def= fz : R(z) 6=;g there exists y 2 R(x) such that Pr[A(x) = y] > 0:5 + (1=p(jxj)), whereas for every x 62 SR itholds that Pr[A(x) = ?] > 0:5 + (1=p(jxj)).1. Show that there exists a probabilistic polynomial-time algorithm that solves the search prob-lem of R with negligible error probability.(Hint: See Exercise 15 for a related procedure.)2. Reect on the need to require that one (correct) solution occurs with probability greaterthan 0:5 + (1=p(jxj)). Speci�cally, what can we do if it is only guaranteed that for everyx 2 SR it holds that Pr[A(x) 2 R(x)] > 0:5 + (1=p(jxj)) (and for every x 62 SR it holds thatPr[A(x) = ?] > 0:5 + (1=p(jxj)))?Exercise 15 (error-reduction for BPP) For " : N ! [0; 1], let BPP" denote the class of de-cision problems that can be solved in probabilistic polynomial-time with error probability upper-bounded by ". Prove the following two claims:1. For every positive polynomial p and "(n) = (1=2) � (1=p(n)), the class BPP" equals BPP .2. For every positive polynomial p and "(n) = 2�p(n), the class BPP equals BPP".Formulate a corresponding version for the setting of search problem. Speci�cally, for every inputthat has a solution, consider the probability that a speci�c solution is output.Guideline: Given an algorithm A for the syntactically weaker class, consider an algorithm A0 that oninput x invokes A on x for t(jxj) times, and rules by majority. For Part 1 set t(n) = O(p(n)2) and applyChebyshev's Inequality. For Part 2 set t(n) = O(p(n)) and apply the Cherno� Bound.Exercise 16 (error-reduction for RP) For � : N ! [0; 1], we de�ne the class of decision prob-lem RP� such that it contains S if there exists a probabilistic polynomial-time algorithm A suchthat for every x 2 S it holds that Pr[A(x) = 1] � �(jxj) and for every x 62 S it holds thatPr[A(x) = 0] = 1. Prove the following two claims:1. For every positive polynomial p, the class RP1=p equals RP.16



2. For every positive polynomial p, the class RP equals RP�, where �(n) = 1� 2�p(n).(Hint: The one-sided error allows using an \or-rule" (rather than a \majority-rule") for the decision.)Exercise 17 (error-reduction for ZPP) For � : N ! [0; 1], we de�ne the class of decisionproblem ZPP� such that it contains S if there exists a probabilistic polynomial-time algorithm Asuch that for every x it holds that Pr[A(x) = �S(x)] � �(jxj) and Pr[A(x) 2 f�S(x);?g] = 1, where�S(x) = 1 if x 2 S and �S(x) = 0 otherwise. Prove the following two claims:1. For every positive polynomial p, the class ZPP1=p equals ZPP .2. For every positive polynomial p, the class ZPP equals ZPP�, where �(n) = 1� 2�p(n).Exercise 18 (an alternative de�nition of ZPP) We say that the decision problem S is solv-able in expected probabilistic polynomial-time if there exists a randomized algorithm A and a poly-nomial p such that for every x 2 f0; 1g� it holds that Pr[A(x) = �S(x)] = 1 and the expectednumber of steps taken by A(x) is at most p(jxj). Prove that S 2 ZPP if and only if S is solvablein expected probabilistic polynomial-time.Guideline: Repeatedly invoking a ZPP algorithm until it yields an output other than ?, results in an ex-pected probabilistic polynomial-time solver. On the other hand, truncating runs of an expected probabilisticpolynomial-time algorithm once they exceed twice the expected number of steps (and outputting ? on suchruns), we obtain a ZPP algorithm.Exercise 19 Let BPP and coRP be classes of promise problems (as in Theorem 7).1. Prove that every problem in BPP is reducible to the set f1g 2 P by a two-sided errorrandomized Karp-reduction.(Hint: Such a reduction may e�ectively decide membership in any set in BPP.)2. Prove that if a set S is Karp-reducible to RP (resp., coRP) via a deterministic reductionthen S 2 RP (resp., S 2 coRP).Exercise 20 (randomness-e�cient error-reductions) Note that standard error-reduction (seeExercise 15) yields error probability � at the cost of increasing the randomness complexity by afactor of O(log(1=�)). Using a randomness-e�cient error-reductions, show that error probability �can be obtained at the cost of increasing the randomness complexity by a constant factor and an ad-ditive term of 1:5 log2(1=�). Note that this allows satisfying the hypothesis made in the illustrativeparagraph of the proof of Theorem 7.Exercise 21 In continuation to the illustrative paragraph of the proof of Theorem 7, consider thepromise problem �0 = (�0yes;�0no) such that �0yes = f(x; r0) : jr0j=p(jxj)=2^(8r00 2 f0; 1gjr0 j)A0(x; r0r00) =1g and �0no = f(x; r0) : x 62Sg. Recall that for every x it holds that Prr2f0;1gp(jxj) [A0(x; r) 6=�S(x)] <2�((p(jxj)=2)+1).1. Show that mapping x to (x; r0), where r0 is uniformly distributed in f0; 1gp(jxj)=2, constitutesa one-sided error randomized Karp-reduction of S to �0.17



2. Show that �0 is in the promise problem class coRP .Exercise 22 Prove that for every S 2 NP there exists a probabilistic polynomial-time algorithmA such that for every x 2 S it holds that Pr[A(x) = 1] > 0 and for every x 62 S it holds thatPr[A(x) = 0] = 1. That is, A has error probability at most 1 � exp(�poly(jxj)) on yes-instancesbut never errs on no-instances. Thus, NP may be �ctitiously viewed as having a huge one-sidederror probability.Exercise 23 (randomized versions of NP) In continuation to Footnote 6, consider the follow-ing two variants ofMA (which we consider the main randomized version of NP).1. S 2 MA(1) if there exists a probabilistic polynomial-time algorithm V such that for everyx 2 S there exists y 2 f0; 1gpoly(jxj) such that Pr[V (x; y)=1] � 1=2, whereas for every x 62 Sand every y it holds that Pr[V (x; y)=0] = 1.2. S 2 MA(2) if there exists a probabilistic polynomial-time algorithm V such that for everyx 2 S there exists y 2 f0; 1gpoly(jxj) such that Pr[V (x; y)=1] � 2=3, whereas for every x 62 Sand every y it holds that Pr[V (x; y)=0] � 2=3.Prove thatMA(1) = NP whereasMA(2) =MA.Guideline: For the �rst part, note that a sequence of internal coin tosses that makes V accept (x; y) can beincorporated into y itself (yielding a standard NP-witness). For the second part, apply the ideas underlyingthe proof of Theorem 7.Exercise 24 (time hierarchy theorems for promise problem versions of BPtime) Fixinga model of computation, let BPtime(t) denote the class of promise problems that are solvable bya randomized algorithm of time complexity t that has a two-sided error probability at most 1=3.(The common de�nition refers only to decision problems.) Formulate and prove results analogousto those stated and proved for deterministic algorithms.Guideline: Analogously to the proof of the deterministic time hierarchy, we construct a Boolean functionf by associating with each admissible machine M an input xM , and making sure that Pr[f(xM ) 6=M 0(x)] �2=3, where M 0(x) denotes the emulation of M(x) suspended after t1(jxj) steps. The key point is that f is apartial function (corresponding to a promise problem) that is de�ned only for machines that have two-sidederror at most 1=3 (on every input). This allows for a randomized computation of f with two-sided errorprobability at most 1=3 (on each input on which f is de�ned).Exercise 25 (extracting square roots modulo a prime) Using the following guidelines, presenta probabilistic polynomial-time algorithm that, on input a prime P and a quadratic residues (mod P ), returns r such that r2 � s (mod P ).1. Prove that if P � 3 (mod 4) then s(P+1)=4 mod P is a square root of the quadratic residues (mod P ).2. Note that the procedure suggested in Item 1 relies on the ability to �nd an odd power esuch that se � 1 (mod P ). (In Item 1, we used e = (P � 1)=2, which is odd since P � 3(mod 4).) Once such a power is found, we may output s(e+1)=2 mod P .Show that it su�ces to �nd an odd power e together with a residue r and an even power e0such that sere0 � 1 (mod P ). 18



3. Given a prime P � 1 (mod 4), a quadratic residue s, and a quadratic non-residue r (equiv.,r(P�1)=2 � �1 (mod P )), show that e and e0 as in Item 2 can be e�ciently found.74. Prove that, for a prime P , with probability 1=2 a uniformly chosen r 2 f1; :::; Pg satis�esr(P�1)=2 � �1 (mod P ).Note that randomization is used only in the last item, which in turn is used only for P � 1(mod 4).Exercise 26 (small-space randomized step-counter) A step-counter is an algorithm that runsfor a number of steps that is speci�ed in its input. Actually, such an algorithm may run for a some-what larger number of steps but halt after issuing a number of \signals" as speci�ed in its input,where these signals are de�ned as entering (and leaving) a designated state (of the algorithm). Astep-counter may be run in parallel to another procedure in order to suspend the execution aftera desired number of steps (of the other procedure) has elapsed. We note that there exists a simpledeterministic machine that, on input n, halts after issuing n signals while using O(1)+ log2 n space(and eO(n) time). The goal of this exercise is presenting a (randomized) step-counter that allowsfor many more signals while using the same amount of space. Speci�cally, present a (randomized)algorithm that, on input n, uses O(1) + log2 n space (and eO(2n) time) and halts after issuing anexpected number of 2n signals. Furthermore, prove that, with probability at least 1� 2�k+1, thisstep-counter halts after issuing a number of signals that is between 2n�k and 2n+k.Guideline: Repeat the following experiment till reaching success. Each trial consists of uniformly selectingn bits (i.e., tossing n unbiased coins), and is deemed successful if all bits turn out to equal the value 1 (i.e.,all outcomes equal head). Note that such a trial can be implemented by using space O(1) + log2 n (mainlyfor implementing a standard counter for determining the number of bits). Thus, each trial is successful withprobability 2�n, and the expected number of trials is 2n.Exercise 27 (analysis of random walks on arbitrary undirected graphs) In order to com-plete the proof of Proposition 11, prove that if fu; vg is an edge of the graph G = (V;E) thenE[Xu;v] � 2jEj. Recall that, for a �xed graph, Xu;v is a random variable representing the numberof steps taken in a random walk that starts at the vertex u until the vertex v is �rst encountered.Guideline: Let Zu;v(n) be a random variable counting the number of minimal paths from u to v thatappear along a random walk of length n, where the walk starts at the stationary vertex distribution (whichis well-de�ned assuming the graph is not bipartite, which in turn may be enforced by adding a self-loop).On one hand, E[Xu;v +Xv;u] = limn!1(n=E[Zu;v(n)]), due to the memoryless property of the walk. On theother hand, letting �v;u(i) def= 1 if the edge fu; vg was traversed from v to u in the ith step of such a randomwalk and �v;u(i) def= 0 otherwise, we have Pni=1 �v;u(i) � Zu;v(n) + 1 and E[�v;u(i)] = 1=2jEj (because, ineach step, each directed edge appears on the walk with equal probability). It follows that E[Xu;v] < 2jEj.Exercise 28 (the class PP � BPP and its relation to #P) In contrast to BPP , which refersto useful probabilistic polynomial-time algorithms, the class PP does not capture such algorithmsbut is rather closely related to #P. A decision problem S is in PP if there exists a probabilistic7Write (P � 1)=2 = (2j + 1) � 2i0 , and note that s(2j+1)�2i0 � 1 (mod P ). Assuming we have that if for somei0 > i > 0 and j0 it holds that s(2j+1)�2ir(2j0+1)�2i0 � 1 (mod P ), show how to �nd i00 > i � 1 and j00 such thats(2j+1)�2i�1r(2j00+1)�2i00 � 1 (mod P ). (Extra hint: s(2j+1)�2i�1r(2j0+1)�2i0�1 � �1 (mod P ) and r(2j+1)�2i0 � �1(mod P ).) Note that for i = 1 we obtain what we need.19
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