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1 Computational Tasks and ModelsWe start by introducing the general framework for a discussion of computational tasks (or prob-lems), which refers to the representation of instances and to two types of tasks (i.e., searching forsolutions and making decisions). Once the stage is set, we consider two types of models of compu-tation: uniform models that correspond to the intuitive notion of an algorithm, and non-uniformmodels (e.g., Boolean circuits) that allow for a closer look at the way computation progresses.The contents of Sections 1.1{1.3 corresponds to a traditional Computability course, and mostof this material is taken for granted in the rest of the current course. In contrast, Section 1.4presents basic preliminaries regarding non-uniform models of computation (i.e., various types ofBoolean circuits), and these are only used lightly in the rest of the current course. Thus, whereasSections 1.1{1.3 are absolute prerequisites for the rest of this course, Section 1.4 is not.Teaching note: The author believes that there is no real need for a semester-long coursein Computability (i.e., a course that focuses on what can be computed rather than onwhat can be computed e�ciently). Instead, undergraduates should take a course incomputational complexity, where the computability aspects will serve as a basis for therest of the course. Speci�cally, the former aspects should occupy at most 25% of thecourse, and the focus should be on basic complexity (i.e., P, NP and NP-completeness)and on some more advanced material. Indeed, the current text may be used as a basisfor such a course.1.1 RepresentationIn Mathematics and related sciences, it is customary to discuss objects without specifying theirrepresentation. This is not possible in the theory of computation, where the representation ofobjects plays a central role. In a sense, a computation merely transforms one representation ofan object to another representation of the same object. In particular, a computation designed tosolve some problem merely transforms the problem instance to its solution, where the latter canbe though of as a (possibly partial) representation of the instance. Indeed, the answer to any fullyspeci�ed question is implicit in the question itself.Computation refers to objects that are represented in some canonical way, where such canonicalrepresentation provides an \explicit" and \full" description of the corresponding object. We willconsider only �nite objects like sets, graphs, numbers, and functions (and keep distinguishing thesetypes of objects although, actually, they are all equivalent).Strings. We consider �nite objects, each represented by a �nite binary sequence, called a string.For a natural number n, we denote by f0; 1gn the set of all strings of length n, hereafter referredto as n-bit strings. The set of all strings is denoted f0; 1g�; that is, f0; 1g� = [n2Nf0; 1gn. Forx2f0; 1g�, we denote by jxj the length of x (i.e., x2f0; 1gjxj), and often denote by xi the ith bit ofx (i.e., x = x1x2 � � � xjxj). For x; y2f0; 1g�, we denote by xy the string resulting from concatenationof the strings x and y.At times, we associate f0; 1g��f0; 1g� with f0; 1g�; the reader should merely consider an ade-quate encoding (e.g., the pair (x1 � � � xm; y1 � � � yn)2f0; 1g��f0; 1g� may be encoded by the stringx1x1 � � � xmxm01y1 � � � yn 2 f0; 1g�). Likewise, we may represent sequences of strings (of �xed orvarying length) as single strings. When we wish to emphasize that such a sequence (or some otherobject) is to be considered as a single object we use the notation h�i (e.g., \the pair (x; y) is encodedas the string hx; yi"). 4



Numbers. Unless stated di�erently, natural numbers will be encoded by their binary expansion;that is, the string bn�1 � � � b1b0 2 f0; 1gn encodes the numberPn�1i=0 bi � 2i. Rational numbers will berepresented as pairs of natural numbers. In the rare cases in which one considers real numbers aspart of the input to a computational problem, one actually mean rational approximations of thesereal numbers.Special symbols. We denote the empty string by � (i.e., � 2 f0; 1g� and j�j = 0), and the emptyset by ;. It will be convenient to use some special symbols that are not in f0; 1g�. One such symbolis ?, which typically denotes an indication by some algorithm that something is wrong.1.2 Computational TasksTwo fundamental types of computational tasks are so-called search problems and decision problems.In both cases, the key notions are the problem's instances and the problem's speci�cation.Search problems. A search problem consists of a speci�cation of a set of valid solutions (possiblyan empty one) for each possible instance. That is, given an instance, one is required to �nd acorresponding solution (or to determine that no such solution exists). For example, consider theproblem in which one is given a system of equations and is asked to �nd a valid solution. Needlessto say, much of computer science is concerned with solving various search problems. Furthermore,search problems correspond to the daily notion of \solving a problem" and thus a discussion of thepossibility and complexity of solving search problems corresponds to the natural concerns of mostpeople. In the following de�nition of solving search problems, the potential solver is a function(which may be thought of as a solving strategy), and the sets of possible solutions associated witheach of the various instances are \packed" into a single binary relation.De�nition 1 (solving a search problem) Let R � f0; 1g� � f0; 1g�. A function f : f0; 1g� !f0; 1g� [ f?g solves the search problem of R if for every x it holds that (x; f(x)) 2 R if and only ifR(x) def= fy : (x; y) 2 Rg is not empty.Indeed, R(x) denotes the set of valid solutions for the problem instance x, and it is required thatwhenever there exist valid solutions (i.e., R(x) is not empty) the solver �nds one. It is also requiredthat the solver f never outputs a wrong solution (i.e., if R(x) 6= ; then f(x) 2 R(x)), and it followsthat if R(x) = ; then f(x) = ?, which in turn means that f indicates that x has no solution.A special case of interest is the case that jR(x)j = 1 for every x, where R is essentially a (total)function, and solving the search problem of R means computing (or evaluating) the function R (orrather the function R0 de�ned de�ned by R0(x) def= y where R(x) = fyg).Decision problems. A decision problem consists of a speci�cation of a subset of the possibleinstances. Given an instance, one is required to determine whether the instance is in the speci�edset. For example, consider the problem where one is given a natural number, and is asked todetermine whether or not the number is a prime. One important case, which corresponds to theaforementioned search problems, is the case of the set of instances having a solution; indeed, beingable to determine whether or not a solution exists is a prerequisite to being able to solve thecorresponding search problem (as per De�nition 1). In general, decision problems refer to thenatural task of making binary decision, a task that is not uncommon in daily life. In any case, inthe following de�nition of solving search problems, the potential solver is again a function (i.e., inthis case it is a Boolean function that is supposed to indicate membership in the said set).5



De�nition 2 (solving a decision problem) Let S � f0; 1g�. A function f : f0; 1g� ! f0; 1g solvesthe decision problem of S (or decides membership in S) if for every x it holds that f(x) = 1 if andonly if x 2 S.Indeed, if f solves the search problem of R then the Boolean function f 0 : f0; 1g� ! f0; 1g de�nedby f 0(x) def= 1 if and only if f(x) 6= ? solves the decision problem of S def= fx : R(x) 6= ;g. We oftenidentify the decision problem of S with S itself, and identify S with its characteristic function (i.e.,with �S : f0; 1g� ! f0; 1g de�ned such that �(x) = 1 if and only if x 2 S).Most people would consider search problems to be more natural than decision problems: typ-ically, people seeks solutions more than they stop to wonder whether or not solutions exist. De�-nitely, search problems are not less important than decision problems, it is merely that their studytends to require more cumbersome formulations. This is the main reason that most expositionschoose to focus on decision problems. The current text attempts to devote at least a signi�cantamount of attention also to search problems.Promise problems (an advanced comment). Many natural search and decision problemsare captured more naturally by the terminology of promise problems, where the domain of possibleinstances is a subset of f0; 1g� rather than f0; 1g� itself. In particular, note that the naturalformulation of many search and decision problems refers to instances of a certain types (e.g., asystem of equations, a pair of numbers, a graph), whereas the natural representation of theseobjects uses only a strict subset of f0; 1g�. A nasty convention is to postulate that every stringrepresents some legitimate object (i.e., each string that is not used in the natural representation ofthese objects is postulated as a representation of some �xed object). For the time being, we willignore this issue, but we will re-visit it in a future lecture.1.3 Uniform Models (Algorithms)We are all familiar with computers, and the ability of computer programs to manipulate data.But how does one capture all computational processes? Before being formal, we o�er a loosedescription, capturing many arti�cial as well as natural processes, whereas the former are associatedwith computers and the latter are used to model (aspects of) the natural reality (be it physical,biological, or even social).A computation is a process that modi�es an environment via repeated applications of a prede-termined rule. The key restriction is that this rule is simple: in each application it depends anda�ects only a (small) portion of the environment, called the active zone. We contrast the a-prioribounded size of the active zone (and of the modi�cation rule) with the a-priori unbounded size ofthe entire environment. We note that, although each application of the rule has a very limitede�ect, the e�ect of many applications of the rule may be very complex. Put in other words, acomputation may modify the relevant environment in a very complex way, although it is merely aprocess of repeatedly applying a simple rule.As hinted, the notion of computation can be used to model some aspects of the natural reality.In this case, the process that takes place in the natural reality is the starting point of the study,and the goal of the study is to learn the (computation) rule that underlies this natural process. Ina sense, the goal of Science at large can be phrased as learning (simple) rules that govern variousaspects of reality (or rather one's abstraction of these aspects of reality).Our focus, however, is on arti�cial computation rules designed by humans in order to achievespeci�c desired e�ects on the corresponding arti�cial environment. Thus, our starting point is a6



desired functionality, and our aim is to design computation rules that e�ect it. Such a computationrule is referred to as an algorithm. Loosely speaking, an algorithm corresponds to a computerprogram written in a high-level (abstract) programming language. Let us elaborate.We are interested in the transformation of the environment a�ected by the computationalprocess (or the algorithm). Throughout (most of) this text, we will assume that, when invokedon any �nite initial environment, the computation halts after a �nite number of steps. Typically,the initial environment to which the computation is applied encodes an input string, and the endenvironment (i.e., at termination of the computation) encodes an output string. We consider themapping from inputs to outputs induced by the computation; that is, for each possible input x, weconsider the output y obtained at the end of a computation initiated with input x, and say thatthe computation maps input x to output y. Thus, a computation rule (or an algorithm) determinesa function (computed by it): this function is exactly the aforementioned mapping of inputs tooutputs.Throughout this course, we will consider the number of steps (i.e., applications of the rule)taken by the computation for each possible input. The latter function is called the time complexityof the computational process (or algorithm). While time complexity is de�ned per input, we willoften considers it per input length, taking the maximum over all inputs of the same length.In order to de�ne computation (and computation time) rigorously, one needs to specify somemodel of computation; that is, provide a concrete de�nition of environments and a class of rulesthat may be applied to them. Such a model corresponds to an abstraction of a real computer (be ita PC, mainframe or network of computers). One simple abstract model that is commonly used isthat of Turing machines (see, x1.3.1 below). Thus, speci�c algorithms are typically formalized bycorresponding Turing machines (and their time complexity is represented by the time complexityof the corresponding Turing machines). We stress, however, that most results in the Theory ofComputation hold regardless of the speci�c computational model used, as long as it is \reason-able" (i.e., satis�es the aforementioned simplicity condition and can perform some obviously simplecomputations).What is being Computed? The above discussion has implicitly referred to computations andalgorithms as means of computing functions. Speci�cally, an algorithm A computes the functionfA : f0; 1g� ! f0; 1g� de�ned by fA(x) = y if, when invoked on input x, algorithm A halts withoutput y. However, computations can also be viewed as a means of \solving search problems" or\making decisions" (as in De�nitions 1 and 2). Speci�cally, we will say that algorithm A solves thesearch problem of R (resp., decides membership in S) if fA solves the search problem of R (resp.,decides membership in S). In the rest of this exposition we associate the algorithm A with thefunction fA computed by it; that is, we write A(x) instead of fA(x). For sake of future reference,we summarize the foregoing discussion.De�nition 3 (solution by an algorithm) We denote by A(x) the output of algorithm A on input x.Algorithm A solves the search problem R (resp., the decision problem S) if A, viewed as a function,solves R (resp., S).Organization of the rest of this section: In x1.3.1 we provide a sketchy description of themodel of Turing machines. This is done merely for sake of providing a concrete model that supportsthe study of computation and its complexity, whereas most of the material in this course will notdepend on the speci�cs of this model. In x1.3.2 and x1.3.2 we discuss two fundamental properties7



of any reasonable model of computation: the existence of uncomputable functions and the exis-tence of universal computations. The time (and space) complexity of computation is de�ned inx1.3.4. We also discuss oracle machines and restricted models of computation (in x1.3.5 and x1.3.6,respectively).1.3.1 Turing machinesThe model of Turing machines o�er a relatively simple formulation of the notion of an algorithm.The fact that the model is very simple complicates the design of machines that solve desiredproblems, but it makes the analysis of such machines simpler. Since the focus of complexity theoryis on the analysis of machines and not on their design, the choice of this model and the trade-o�that it o�ers is a good one. We stress again that the model is merely used as a concrete formulationof the intuitive notion of an algorithm, whereas we actually care about the intuitive notion and notits formulation. In particular, all results mentioned in this course hold for any other \reasonable"formulation of the notion of an algorithm.The model of Turing machines is not supposed to provide a good (or \tight") model of real-lifecomputers (although a task can be solved by a real-life computer if and only if it can be solved by aTuring machine). Historically, the model of Turing machines was invented before modern computerswere even built, and was meant to provide a concrete model of computation (as opposed to theabstract de�nition of \recursive functions" that de�nes a class of \computable" functions in termsof composition of such functions). Indeed, this concrete model clari�ed fundamental properties ofcomputable functions and plays a key role in de�ning the complexity of computable functions.The model of Turing machines was envisioned as an abstraction of the process of an algebraiccomputation carried out by a human using a sheet of paper. In such a process, at each time, thehuman looks at some location on the paper, and depending on what he/she sees and what he/shehas in mind (which is little...), he/she modi�es the contents of this location and moves its look toan adjacent location.The actual model. Following is a high-level description of the model of Turing machines; theinterested reader is referred to standard textbooks (e.g., [16]) for further details. Recall that weneed to specify the set of possible environments, the set of machines (or computation rules), andthe e�ect of applying such a rule on an environment.� The main component in the environment of a Turing machine is an in�nite sequence of cells,each capable of holding a single symbol (i.e., member of a �nite set � � f0; 1g). In addition,he environment contains the current location of the machine on this sequence, and the internalstate of the machine (which is a member of a �nite set Q). The aforementioned sequence ofcells is called the tape, and its contents combined with the machine's location and internalstate is called the instantaneous con�guration of the machine.� The Turing machine itself consists of a �nite rule (i.e., a �nite function), called the transitionfunction, which is de�ned over the set of all possible symbol-state pairs. Speci�cally, thetransition function is a mapping from ��Q to ��Q� f�1; 0;+1g, where f�1;+1; 0g cor-respond to a movement instruction (which is either \left" or \right" or \stay", respectively).In addition, the machine's description speci�es an initial state and a halting state, and thecomputation of the machine halts when the machine enters its halting state.11Envisioning the tape as extending from left to right, we also use the convention by which if the machine tries tomove left of the end of the tape then it is considered to have halted.8



In contrast to the �nite description of the machine, the tape has an a priori unbounded length(and is considered, for simplicity, as being in�nite).� A single computation step of such a Turing machine depends on its current location on thetape, on the contents of the corresponding cell and on the internal state of the machine.Based on the latter two elements, the transition function determines a new symbol-state pairas well as a movement instruction (i.e., \left" or \right" or \stay"). The machine modi�esthe contents of the said cell and its internal state accordingly, and moves as directed. Thatis, suppose that the machine is in state q and resides in a cell containing the symbol �, andsuppose that the transition function maps (�; q) to (�0; q0;D). Then, the machine modi�esthe contents of the said cell to �0, modi�es its internal state to q0, and moves one cell indirection D. Figure 1 shows a single step of a Turing machine that, when in state `b' andseeing a binary symbol �, replaces � with the symbol �+2, maintains its internal state, andmoves one position to the right.2Formally, we de�ne the successive con�guration function that maps each instantaneous con�g-uration to the one resulting by letting the machine take a single step. This function modi�esonly the contents of one cell (i.e. at which the machine resides), the internal state of themachine and its location, as described above.
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----- - - -Figure 1: A single step by a Turing machine.The initial environment (or con�guration) of a Turing machine consists of the machine residingin the �rst (i.e., left-most) cell and being in its initial state. Typically, one also mandates that, inthe initial con�guration, a pre�x of the tape's cells hold bit values, which concatenated togetherare considered the input, and the rest of the tape's cells hold a special symbol (which in Figure 1 isdenoted by `-'). Once the machine halts, the output is de�ned as the contents of the cells that areto the left of its location (at termination time).3 Thus, each machine de�nes a function mappinginputs to outputs, called the function computed by the machine.Multi-tape Turing machines. We comment that in most expositions, one refers to the locationof the \head of the machine" on the tape (rather than to the \location of the machine on the tape").The standard terminology is more intuitive when extending the basic model, which refers to a single2Figure 1 corresponds to a machine that, when in the initial state (i.e., `a'), replaces the symbol � by � + 4,modi�es its internal state to `b', and moves one position to the right. Indeed, \marking" the leftmost cell (in orderto allow for recognizing it in the future), is a common practice in the design of Turing machines.3By an alternative convention, the machine halts while residing in the left-most cell, and the output is de�ned asthe maximal pre�x of the tape contents that contains only bit values.9



tape, to a model that supports a constant number of tapes. In the model of multi-tape machines,each step of the machine depends and e�ects the cells that are at the head location of the machineon each tape. We mention that the extension of the model to multi-tape Turing machines is crucialto the de�nition of space complexity. A less fundamental advantage of the model of multi-tapeTuring machines is that it allows for an easier design of machines that compute desired functions.Teaching note: We strongly recommend avoiding the standard practice of teachingthe student to program with Turing machines. These exercises seem very painful andpointless. Instead, one should prove that a function can be computed by a Turingmachine if and only if it is computable by a model that is closer to a real-life computer (see\sanity check" below). For starters, one should prove that a function can be computedby a single-tape Turing machine if and only if it is computable by a multi-tape (e.g.,two-tape) Turing machine.The Church-Turing Thesis: The entire point of the model of Turing machines is its simplicity.That is, in comparison to more \realistic" models of computation, it is simpler to formulate themodel of Turing machines and to analyze machines in this model. The Church-Turing Thesis assertsthat nothing is lost by considering the Turing machine model: A function can be computed by someTuring machine if and only if it can be computed by some machine of any other \reasonable andgeneral" model of computation.This is a thesis, rather than a theorem, because it refers to an intuitive notion that is leftunde�ned on purpose (i.e., the notion of a reasonable and general model of computation). Themodel should be reasonable in the sense that it should refer to computation rules that are \simple"in some intuitive sense. On the other hand, the model should allow to compute functions thatintuitively seem computable. At the very least the model should allow to emulate Turing machines(i.e., compute the function that given a description of a Turing machine and an instantaneouscon�guration returns the successive con�guration).A philosophical comment. The fact that a thesis is used to link an intuitive concept to aformal de�nition is common practice in any science (or, more broadly, in any attempt to reasonrigorously about intuitive concepts). The moment an intuition is rigorously de�ned, it stops beingan intuition, and becomes a de�nition and the question of the correspondence between the originalintuition and the derived de�nition arises. This question can never be rigorously treated, becauseit relates to two objects, one being unde�ned. Thus, the question of correspondence between theintuition and the de�nition always transcends a rigorous treatment (i.e., it is always at the domainof the intuition).A sanity check: Turing machines can emulate an abstract RAM. To gain con�dence inthe Church-Turing Thesis, one may attempt to de�ne an abstract Random-Access Machine (RAM),and verify that it can be emulated by a Turing machine. An abstract RAM consists of an in�nitenumber of memory cells, each capable of holding an integer, a �nite number of similar registers, onedesignated as program counter, and a program consisting of instructions selected from a �nite set.The set of possible instructions includes the following instructions:� reset(r), where r is an index of a register, results in setting the value of register r to zero.� inc(r), where r is an index of a register, results in incrementing the content of register r.Similarly dec(r) causes a decrement. 10



� load(r1; r2), where r1 and r2 are indices of registers, results in loading to register r1 thecontents of the memory location m, where m is the current contents of register r2.� store(r1; r2), stores the contents of register r1 in the memory, analogously to load.� cond-goto(r; `), where r is an index of a register and ` does not exceed the program length,results in setting the program counter to `� 1 if the content of register r is non-negative.The program counter is incremented after the execution of each instruction, and the next instructionto be executed by the machine is the one to which the program counter points (and the machinehalts if the program counter exceeds the program's length). The input to the machine may bede�ned as the contents of the �rst n memory cells, where n is placed in a special input register. Wenote that the RAM model satis�es the Church-Turing Thesis, but in order to make it closer to areal-life computer we augment the model by instructions like add(r1; r2) (resp., mult(r1; r2)), whichresults in adding (resp., multiplying) the contents of registers r1 and r2 and placing the result inregister r1. We suggest proving that this abstract RAM can be emulated by a Turing machine.4(Hint: note that during the emulation, we only need to hold the input, the contents of all registers,and the contents of the memory cells that were accessed during the computation.)5Observe that the abstract RAM model is more cumbersome than the Turing machine model.Furthermore, the question of which instructions to allow causes a vicious cycle, which we avoided bytrusting the reader to consider only the standard instructions common in any real-life computer. (Ingeneral, we should only allow instructions that correspond to \simple" operations; i.e., operationsthat correspond to easily computable functions...)1.3.2 Uncomputable functionsStrictly speaking, the current subsection is not necessary for the rest of this course, but we feelthat it provides a useful perspective.In contrast to what every layman would think, we know that not all functions are computable.Indeed, an important message to be communicated to the world is that not every well-de�ned taskcan be solved by applying a \reasonable" procedure (i.e., a procedure that has a simple descriptionthat can be applied to any instance of the problem at hand). Furthermore, not only is it the casethat there exist uncomputable functions, but it is rather that \most" functions are uncomputable.In fact, only relatively few functions are computable.Theorem 4 (on the scarcity of computable functions): The set of computable functions is count-able, whereas the set of all functions (from strings to string) has cardinality @.We stress that the theorem holds for any reasonable model of computation. In fact, it only relieson the postulate that each machine in the model has a �nite description (i.e., can be described bya string).Proof: Since each computable function is computable by a machine that has a �nite description,there is a 1-1 correspondence between the set of computable functions and the set of strings (which4We emphasize this direction of the equivalence of the two models, because the RAM model is introduced in orderto convince the reader that Turing machines are not too weak (as a model of general computation). The fact thatthey are not too strong seems self-evident. Thus, it seems pointless to prove that the RAM model can emulate Turingmachines. Still, note that this is indeed the case, by using the RAM's memory cells to store the contents of the cellsof the Turing machine's tape.5Thus, at each time, the Turning machine's tape contains a list of the RAM's memory cells that were accessed sofar as well as their current contents. When we emulate a RAM instruction, we �rst check whether the relevant RAMcell appears on this list, and augment the list by a corresponding entry or modify this entry as needed.11



in turn is in 1-1 correspondence to the natural numbers). On the other hand, there is a 1-1correspondence between the set of Boolean functions (i.e., functions from strings to a bit) and theset of real number in [0; 1). This correspondence associates each real r 2 [0; 1) to the functionf : N ! f0; 1g such that f(i) is the ith bit in the binary expansion of r.The Halting Problem: In contrast to the preliminary discussion, at this point we consideralso machines that may not halt on some inputs. (The functions computed by such machines arepartial functions that are de�ned only on inputs on which the machine halts.) Again, we rely onthe postulate that each machine in the model has a �nite description, and denote the descriptionof machine M by hMi 2 f0; 1g�. The halting function, h : f0; 1g� �f0; 1g� ! f0; 1g, is de�ned suchthat h(hMi; x) def= 1 if and only if M halts on input x. The following result goes beyond Theorem 4by pointing to an explicit function (of natural interest) that is not computable.Theorem 5 (undecidability of the halting problem): The halting function is not computable.The term undecidability means that the corresponding decision problem cannot be solved by analgorithm. That is, Theorem 5 asserts that the decision problem associated with the set h�1(1) =f(hMi; x) : h(hMi; x) = 1g is not solvable by an algorithm (i.e., there exists no algorithm that,given a pair (hMi; x), decides whether or not M halts on input x). Actually, the following proofshows that there exists no algorithm that, given hMi, decides whether or not M halts on inputhMi.Proof: We will show that even the restriction of h to its \diagonal" (i.e., the function d(hMi) def=h(hMi; hMi)) is not computable. Note that the value of d(hMi) refers to the question of whathappens when we feed M with its own description, which is indeed a \nasty" (but legitimate) thingto do. We will actually do worse: towards the contradiction, we will consider the value of d whenevaluated at a (machine that is related to a) machine that supposedly computes d.We start by considering a related function, d0, and showing that this function is uncomputable.The function d0 : f0; 1g� ! f0; 1g is de�ned such that d0(hMi) def= 1 if and only if M halts on inputhMi with output 0. (That is, d0(hMi) = 1 if M halts on input hMi with a speci�c output, andd0(hMi) = 0 if either M does not halt on input hMi or its output does not equal the designatedvalue.) Now, suppose, towards the contradiction, that d0 is computable by some machine, denotedMd0 . Note that machine Md0 is supposed to halt on every input, and so Md0 halts on input hMd0i.But, by de�nition of d0, it holds that d0(hMd0i) = 1 if and only if Md0 halts on input hMd0i withoutput 0 (i.e., if and only if Md0(hMd0i) = 0). Thus, Md0(hMd0i) 6= d0(hMd0i) in contradiction tothe hypothesis that Md0 computes d0.We next prove that d is uncomputable, and thus h is uncomputable (because d(z) = h(z; z) forevery z). To prove that d is uncomputable, we show that if d is computable then so is d0 (which wealready know not to be the case). Let A be an algorithm for computing d (i.e., A(hMi) = d(hMi)for every machineM). Then we construct an algorithm for computing d0, which given hM 0i, invokesA on hM 00i, where M 00 is de�ned to operate as follows:1. On input x, machine M 00 emulates M 0 on input x.2. If M 0 halts on input x with output 0 then M 00 halts.3. If M 0 halts on input x with an output di�erent from 0 then M 00 enters an in�nite loop (andthus does not halt).4. Otherwise (i.e., M 0 does not halt on input x), then machine M 00 does not halt (because itjust stays stuck in Step 1 forever). 12



Note that the mapping from hM 0i to hM 00i is easily computable (by augmentingM 0 with instructionsto test its output and enter an in�nite loop if necessary), and that d(hM 00i) = d0(hM 0i), becauseM 00halts on x if and only if M 00 halts on x with output 0. We thus derived an algorithm for computingd0 (i.e., transform the input hM 0i into hM 00i and output A(hM 00i)), which contradicts the alreadyestablished fact by which d0 is uncomputable.Turing-reductions. The core of the second part of the proof of Theorem 5 is an algorithm thatsolves one problem (i.e., computes d0) by using as a subroutine an algorithm that solves anotherproblem (i.e., computes h). In fact, the �rst algorithm is actually an algorithmic scheme thatrefers to a \functionally speci�ed" subroutine rather than to an actual (implementation of such a)subroutine, which may not exist. Such an algorithmic scheme is called a Turing-reduction (i.e., wehave Turing-reduced the computation of d0 to the computation of d, which in turn Turing-reducesto h). The \natural" (\positive") meaning of a Turing-reduction of f 0 to f is that when givenan algorithm for computing f we obtain an algorithm for computing f 0. In contrast, the proofof Theorem 5 uses the \unnatural" (\negative") counter-positive: if (as we know) there exists noalgorithm for computing f 0 = d0 then there exists no algorithm for computing f = h (which is whatwe wanted to prove). Jumping ahead, we mention that resource-bounded Turing-reductions (e.g.,polynomial-time reductions) play a central role in complexity theory itself, and again they are usedmostly in a \negative" way. We will de�ne such reductions and extensively use them throughoutthe course.Rice's Theorem. The undecidability of the halting problem (or rather the fact that the functiond is uncomputable) is a special case of a more general phenomenon: Every non-trivial decisionproblem regarding the function computed by a given Turing machine has no algorithmic solution.We state this fact next, clarifying what is the aforementioned class of problems. (Again, we referto Turing machines that may not halt on all inputs.)Theorem 6 (Rice's Theorem): Let F be a non-trivial subset6 of the set of all computable partialfunctions, and let SF be the set of strings that describe machines that compute functions in F .Then deciding membership in SF cannot be solved by an algorithm.Theorem 6 can be proved by a Turing-reduction from d. We do not provide a proof because thisis too remote from the main subject matter of the course. We stress that Theorems 5 and 6hold for any reasonable model of computation (referring both to the potential solvers and to themachines the description of which is given as input to these solvers). Thus, Theorem 6 means thatno algorithm can determine any non-trivial property of the function computed by a given computerprogram (written in any programming language). For example, no algorithm can determine whetheror not a given computer program halt on each possible input. The relevance of this assertion to theproject of program veri�cation is obvious.The Post Correspondence Problem. We mention that undecidability arises also outside ofthe domain of questions regarding computing devices (given as input). Speci�cally, we consider thePost Correspondence Problem in which the input consists of two (equal length) sequences of strings,(�1; :::; �k) and (�1; :::; �k), and the question is whether or not there exists a sequence of indices6The set S is called a non-trivial subset of U if both S and U n S are non-empty. Clearly, if F is a trivial set ofcomputable functions then the corresponding decision problem can be solved by a \trivial" algorithm that outputsthe corresponding constant bit. 13



i1; :::; i` 2 f1; :::; kg such that �i1 � � ��i` = �i1 � � � �i` . (We stress that the length of this sequence isnot bounded.)7Theorem 7 The Post Correspondence Problem is undecidable.Again, the omitted proof is by a Turing-reduction from d (or h).1.3.3 Universal algorithmsSo far we have used the postulate that, in any reasonable model of computation, each machine (orcomputation rule) has a �nite description. Furthermore, we also used the fact that such modelshould allow for the easy modi�cation of such descriptions such that the resulting machine com-putes an easily related function (see the proof of Theorem 5). Here we go one step further andpostulate that the description of machines (in this model) is \e�ective" in the following naturalsense: there exists an algorithm that, given a description of a machine (resp., computation rule)and a corresponding environment, determines the environment that results from performing a singlestep of this machine on this environment (resp. the e�ect of a single application of the computationrule). This algorithm can, in turn, be implemented in the said model of computation (assuming thismodel is general; see the Church-Turing Thesis). Successive applications of this algorithm leads tothe notion of a universal machine, which (for concreteness) is formulated below in terms of Turingmachines.De�nition 8 (universal machines): A universal Turing machine is a Turing machine that on inputa description of a machine M and an input x returns the value of M(x) if M halts on x andotherwise does not halt.That is, a universal Turing machine computes the partial function u that is de�ned over pairs(hMi; x) such that M halts on input x, in which case it holds that u(hMi; x) = M(x). We notethat if M halts on all possible inputs then u(hMi; x) is de�ned for every x. We stress that themere fact that we have de�ned something does not mean that it exists. But, as hinted aboveand obvious to anyone who has written a computer program (and thought about what he/she wasdoing), universal Turing machines do exist.Theorem 9 There exists a universal Turing machine.Theorem 9 asserts that the partial function u is computable. In contrast, it can be shown thatany extension of u to a total function is uncomputable. That is, for any total function û thatagrees with the partial function u on all the inputs on which the latter is de�ned, it holds that û isuncomputable.8Proof: Given a pair (hMi; x), we just emulate the computation of machine M on input x. Thisemulation is straightforward, because by the e�ectiveness of the description ofM , we can iterativelydetermine the next instantaneous con�guration of the computation of M on input x. If the said7In contrast, the existence of an adequate sequence of a speci�ed length can be determined in time that isexponential in this length.8The claim is easy to prove for the total function û that extends u and assigns the special symbol ? to inputs onwhich u is unde�ned (i.e., û(hMi; x) def= ? if u is not de�ned on (hMi; x) and û(hMi; x) def= u(hMi; x) otherwise). Inthis case h(hMi; x) = 1 if and only if û(hMi; x) 6= ?, and so the halting function h is Turing-reducible to û. In thegeneral case, we may adapt the proof of Theorem 5 by observing that, for a machine M that halts on every input, itholds that û(hMi; x) = u(hMi; x) for every x (and in particular for x = hMi).14



computation halts then we will obtain its output and can output it (and so, on input (hMi; x),our algorithm returns M(x)). Otherwise, we turn out emulating an in�nite computation, whichmeans that our algorithm does not halt on input (hMi; x). Thus, the foregoing emulation procedureconstitutes a universal machine (i.e., yields an algorithm for computing u).As hinted above, the existence of universal machines is the fundamental fact underlying theparadigm of general-purpose computers. Indeed, a speci�c Turing machine (or algorithm) is adevice that solves a speci�c problem. A priori, solving each problem would have required buildinga new physical device that allows for this problem to be solved in the physical world (rather than asa thought experiment). The existence of a universal machine asserts that it is enough to build onephysical device; that is, a general purpose computer. Any speci�c problem can then be solved bywriting a corresponding program for the general purpose computer. In other words, the existenceof universal machines says that software can be viewed as (part of the) input.In addition to their practical importance, the existence of universal machines (and their variants)has important consequences in the theories of computability and computational complexity. Herewe merely note that Theorem 9 implies that many questions about the behavior of a universalmachine on certain input types are undecidable. In particular, there is no algorithm that, givenX def= (hMi; x), can tell whether or not a (�xed) universal machine halts on input X. Revisiting theproof of Theorem 7, it follows that the Post Correspondence Problem remains undecidable even ifthe sequences are restricted to have a speci�c length (i.e., k is �xed).A detour: Kolmogorov Complexity. The existence of universal machines, which may beviewed as universal languages for writing e�ective and succinct descriptions of objects, plays acentral role in Kolmogorov Complexity. Loosely speaking, the latter theory is concerned with thelength of (e�ective) descriptions of objects, and views the minimum such length as the inherent\complexity" of the object; that is, \simple" objects (or phenomena) are those having short de-scription (resp., short explanation), whereas \complex" objects have no short description. Needlessto say, these (e�ective) descriptions have to refer to some �xed \language" (i.e., to a �xed machinethat, given a succinct description of an object, produces its explicit description). Fixing any ma-chine M , a string x is called a description of s with respect to M if M(x) = s. The complexity ofs with respect to M , denoted KM (s), is the length of the shortest description of s with respect toM . Certainly, we want to �x M such that every string has a description with respect to M , andfurthermore that this description is not \signi�cantly" longer than the description with respect toa di�erent machine M 0. The following theorem make it natural to use a universal machine as the\point of reference" (i.e., the aforementioned M).Theorem 10 (complexity w.r.t a universal machine): Let U be a universal machine. Then, forevery machine M 0, there exists a constant c such that KU (s) � KM 0(s) + c for every string s.The theorem follows by (setting c = O(jhM 0ij) and) observing that if x is a description of s withrespect to M 0 then (hM 0i; x) is a description of s with respect to U . Here it is important to usean adequate encoding of pairs of strings (e.g., the pair (�1 � � � �k; �1 � � � �`) is encoded by the string�1�1 � � � �k�k01�1 � � � �`). Fixing any universal machine U , we de�ne the Kolmogorov Complexity ofa string s as K(s) def= KU (s). The reader may easily verify the following facts:1. K(s) � jsj+O(1), for every s.(Hint: apply Theorem 10 to the machine that computes the identity mapping.)15



2. There exist in�nitely many strings s such that K(s)� jsj.(Hint: consider s = 1n. Alternatively, consider any machine M such that jM(x)j � jxj.)3. Some strings of length n have complexity at least n. Furthermore, for every n and i,jfs 2 f0; 1gn : K(s) � n� igj < 2n�i+1(Hint: di�erent strings must have di�erent descriptions with respect to U .)It can be shown that the function K is uncomputable. The proof is related to the paradox capturedby the following \description" of a natural number: the largest natural number that can bedescribed by an English sentence of up-to a thousand letters. (The paradox amountsto observing that if the above number is well-de�ned then so is the integer-successor of thelargest natural number that can be described by an English sentence of up-to a thousandletters.) Needless to say, the above sentence presupposes that any sentence is a legitimate de-scription in some adequate sense (e.g., in the sense de�ned above). Speci�cally, the above sentencepresupposes that we can determine the Kolmogorov Complexity of each natural number, and fur-thermore e�ectively produce the largest number that has Kolmogorov Complexity not exceedingsome threshold. Indeed, the paradox provides a proof to the fact that the latter task cannot beperformed (i.e., there exists no algorithm that given t produces the lexicographically last string ssuch that K(s) � t, because if such an algorithm A would have existed then K(s) � O(jhAij)+log tand K(s0) < K(s) +O(1) < t in contradiction to the de�nition of s).1.3.4 Time and space complexityFixing a model of computation (e.g., Turing machines) and focusing on algorithms that halt oneach input, we consider the number of steps (i.e., applications of the computation rule) taken by thealgorithm on each possible input. The latter function is called the time complexity of the algorithm(or machine); that is, tA : f0; 1g� ! N is called the time complexity of algorithm A if, for every x,on input x algorithm A halts after exactly tA(x) steps.We will be mostly interested in the dependence of the time complexity on the input length,when taking the maximum over all inputs of the relevant length. That is, for tA as above, we willconsider TA : N ! N de�ned by TA(n) def= maxx2f0;1gnftA(x)g. Abusing terminology, we sometimesrefer to TA as the time complexity of A.The time complexity of a problem. As stated in the preface and in the introduction, complex-ity theory is typically unconcerned with the (time) complexity of a speci�c algorithm. It is ratherconcerned with the (time) complexity of a problem, assuming that this problem is solvable by analgorithm. Intuitively, the time complexity of such a problem is de�ned as the time complexityof the fastest algorithm that solves this problem (assuming that the latter term is well-de�ned).9More generally, we will be interested in upper and lower bounds on the (time) complexity of algo-rithms that solve the problem. However, the complexity of a problem may depend on the speci�cmodel of computation in which algorithms that solve it are implemented. The following Cobham-Edmonds Thesis asserts that the variation (in the time complexity) is not too big, and in particularis irrelevant for much of the current focus of complexity theory (e.g., for the P-vs-NP Question).9Advanced comment: As we shall see in a future lecture (cf. Blum's Speed-up Theorem), the naive assumptionthat a \fastest algorithm" for solving a problem exists is not always justi�ed. On the other hand, the assumption isjusti�ed in some important cases (see, e.g., the Optimal Algorithm for NP).16



The Cobham-Edmonds Thesis. As stated above, the time complexity of a problem may de-pend on the model of computation. For example, deciding membership in the set fxx : x 2 f0; 1g�gcan be done in linear-time on a two-tape Turing machine, but requires quadratic-time on a single-tape Turing machine.10 On the other hand, any problem that has time complexity t in the modelof multi-tape Turing machines, has complexity O(t2) in the model of single-tape Turing machines.The Cobham-Edmonds Thesis asserts that the time complexities in any two \reasonable and gen-eral" models of computation are polynomially related. That is, a problem has time complexity t insome \reasonable and general" model of computation if and only if it has time complexity poly(t)in the model of (single-tape) Turing machines.Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis. It asserts notonly that the class of solvable problems is invariant as far as \reasonable and general" models ofcomputation are concerned but also that the time complexity (of the solvable problems) in suchmodels be polynomially related.E�cient algorithms. As hinted above, much of complexity theory is concerned with e�cientalgorithms. The latter are de�ned as polynomial-time algorithms (i.e., algorithms that have a timecomplexity that is bounded by a polynomial in the length of the input). By the Cobham-EdmondsThesis, the choice of a \reasonable and general" model of computation is irrelevant to the de�nitionof this class. The association of e�cient algorithms with polynomial-time computation is groundedin the following two considerations:� Philosophical consideration: Intuitively, e�cient algorithms are those that can be imple-mented within a number of steps that is a moderately growing function of the input length.To allow for reading the entire input, at least linear time complexity should be allowed,whereas exponential time (as in \exhaustive search") must be avoided. Furthermore, a goodde�nition of the class of e�cient algorithms should be closed under natural composition ofalgorithms (as well as be robust with respect to reasonable models of computation and withrespect to simple changes in the encoding of problems' instances).Selecting polynomials as the set of time-bounds for e�cient algorithms satisfy all the aboverequirements: polynomials constitute a \closed" set of moderately growing functions, where\closure" means closure under addition, multiplication and functional composition. Theseclosure properties guarantee the closure of the class of e�cient algorithm under natural com-position of algorithms (as well as its robustness with respect to any reasonable and generalmodel of computation). Furthermore, polynomial-time algorithms can conduct computationsthat are de�nitely simple (although not totally trivial), and on the other hand they do notinclude naturally ine�cient algorithms like exhaustive search.� Empirical consideration: It is clear that algorithms that are considered e�cient in practicehave running-time that is bounded by a small polynomial (at least on the inputs that occur inpractice). The question is whether any polynomial-time algorithm can be considered e�cientin an intuitive sense. The belief, which is supported by past experience, is that every naturalproblem that can be solved in polynomial-time also has \reasonably e�cient" algorithms.10Proving the latter fact is quite non-trivial. One proof is by a \reduction" from a communication complexityproblem [10, Sec. 12.2]. Intuitively, a single-tape Turing machine that decides membership in the aforementioned setcan be viewed as a channel of communication between the two parts of the input. Focusing our attention on inputsof the form y0nz0n, for y; z 2 f0; 1gn, each time the machine passes from the �rst part to the second part it carriesO(1) bits of information (in its internal state) while making at least n steps. The proof is completed by invokingthe linear lower bound on the communication complexity of the (two-argument) identity function (i.e, id(y; z) = 1 ify = z and id(y; z) = 0 otherwise, cf. [10, Chap. 1]). 17



We stress that the association of e�cient algorithms with polynomial-time computation is notessential to most of the notions, results and questions of complexity theory. Any other class ofalgorithms that supports the aforementioned closure properties and allows to conduct some simplecomputations but not overly complex ones gives rise to a similar theory, albeit the formulation ofsuch a theory may be much more complicated. Speci�cally, all results and questions treated inthis course relate the complexity of di�erent computational tasks (rather than provide absoluteassertions about the complexity of some computational tasks). These relations can be statedexplicitly, by stating how any upper-bound on the time complexity of one task gets translated toan upper-bound on the time complexity of another task. Such cumbersome statements will maintainthe contents of the standard statements; they will merely be much more complicated. Thus, wefollow the tradition of focusing on polynomial-time computations, stressing that this focus is bothnatural and provides the simplest way of addressing the fundamental issues underlying the natureof e�cient computation.Universal machines, revisited. Time complexity yields an important variant of the universalfunction u (presented in x1.3.3). De�ne u0(hMi; x; t) def= y if on input x machine M halts within tsteps and outputs the string y, and u0(hMi; x; t) def= ? if on input x machine M makes more than tsteps. Unlike u, the function u0 is computable. Furthermore, u0 is computable by a machine U 0 thaton input X = (hMi; x; t) halts after poly(t) steps. Indeed, machine U 0 is a variant of a universalmachine (i.e., on input X, machine U 0 merely emulates M for t steps rather than forever). Notethat the number of steps taken by U 0 depends on the speci�c model of computation (and that someoverhead is unavoidable because emulating each step of M requires reading the relevant portion ofthe description of M).Space complexity. Another natural measure of the \complexity" of an algorithm (or a task) isthe amount of memory consumed by the computation. We refer to the memory used for storingsome intermediate results of the computation. Since much of our focus will be on using memorythat is sub-linear in the input length, it is important to use a model in which one can di�erentiatememory used for computation from memory used for storing the initial input or the �nal output.In the context of Turing machines, this is done by considering multi-tape Turing machines suchthat the input is presented on a special read-only tape (called the input tape), the output is writtenon a special write-only tape (called the output tape), and intermediate results are stored on a work-tape. Thus, the input and output tapes cannot be used for storing intermediate results. The spacecomplexity of such a machine M is de�ned as a function sM such that sM (x) is the number of cellsof the work-tape scanned by M on input x.1.3.5 Oracle machinesThe notion of Turing-reductions, which was discussed in x1.3.2, is captured by the de�nition oforacle machines. Loosely speaking, an oracle machine is a machine that is augmented such thatit may pose questions to the outside. (A rigorous formulation of this notion is provided below.)We consider the case in which these questions, called queries, are answered consistently by somefunction f : f0; 1g� ! f0; 1g�, called the oracle. That is, if the machine makes a query q then theanswer it obtains is f(q). In such a case, we say that the oracle machine is given access to theoracle f . For an oracle machine M , a string x and a function f , we denote by Mf (x) the outputof M on input x when given access to the oracle f . (Re-examining the second part of the proof18



of Theorem 5, observe that we have actually described an oracle machine that computes h whengiven access to the oracle d0.)The notion of an oracle machine extends the notion of a standard computing device (machine),and thus a rigorous formulation of the former extends a formal model of the latter. Speci�cally,extending the model of Turing machines, we derive the following model of oracle Turing machines.De�nition 11 (using an oracle): An oracle machine is a Turing machine with an additional tape,called the oracle tape, and two special states, called oracle invocation and oracle spoke. The compu-tation of the oracle machine M on input x and access to the oracle f : f0; 1g� ! f0; 1g� is de�nedbased on the successive con�guration function. For con�gurations with state di�erent from oracleinvocation the next con�guration is de�ned as usual. Let 
 be a con�guration in which the ma-chine's state is oracle invocation and suppose that the actual contents of the oracle tape is q (i.e.,q is the contents of the maximal pre�x of the tape that holds bit values).11 Then, the con�gurationfollowing 
 is identical to 
, except that the state is oracle spoke, and the actual contents of theoracle tape is f(q). The string q is called M 's query and f(q) is called the oracle's reply.We stress that the running time of an oracle machine is the number of steps made during itscomputation, and that the oracle's reply on each query is obtained in a single step.1.3.6 Restricted modelsWe mention that restricted models of computation are often mentioned in the context of a courseon computability, but they will play no role in the current course. One such model is the model of�nite automata, which in some variant coincides with Turing machines that have space complexityzero.In our opinion, the most important motivation for the study of these restricted models ofcomputation is that they provide simple models for some natural (or arti�cial) phenomena. Thismotivation, however, seems only remotely related to the study of the complexity of various com-putational tasks. Thus, in our opinion, the study of these restricted models (e.g., any of the lowerlevels of Chomsky's Hierarchy [7, Chap. 9]) should be decoupled from the study of computabilitytheory (let alone the study of complexity theory).1.4 Non-uniform Models (Circuits and Advice)By a non-uniform model of computation we mean a model in which for each possible input lengthone considers a di�erent computing device. That is, there is no \uniformity" requirement relatingdevices that correspond to di�erent input lengths. Furthermore, this collection of devices is in�-nite by nature, and (in absence of a uniformity requirement) this collection may not even have a�nite description. Nevertheless, each device in the collection has a �nite description. In fact, therelationship between the size of the device (resp., the length of its description) and the length ofthe input that it handles will be of major concern. The hope is that the �niteness of all parameters(which refer to a single device in such a collection) will allow for the application of combinatorialtechniques to analyze the limitations of certain settings of parameters.11A common convention is that the oracle can be invoked only when the machine's head resides at the left-mostcell of the oracle tape. We comment that, in the context of space complexity, one uses two oracle tapes: a write-onlytape for the query and a read-only tape for the answer.
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In complexity theory, non-uniform models of computation are studied either towards the de-velopment of lower-bound techniques or as simpli�ed upper-bounds on the ability of e�cient algo-rithms. In both cases, the uniformity condition is eliminated in the interest of simplicity and withthe hope (and belief) that nothing substantial is lost as far as the questions in focus are concerned.We will focus on two related models of non-uniform computing devices: Boolean circuits (x1.4.1)and \machines that take advice" (x1.4.2). The former model is more adequate for the study of theevolution of computation (i.e., development of lower-bound techniques), whereas the latter is moreadequate for modeling purposes (e.g., upper-bounding the ability of e�cient algorithms).1.4.1 Boolean CircuitsThe most popular model of non-uniform computation is the one of Boolean circuits. Historically,this model was introduced for the purpose of describing the \logic operation" of real-life electroniccircuits. Ironically, nowadays this model provides the stage for some of the most practically removedstudies in complexity theory (which aim at developing methods that may eventually lead to anunderstanding of the inherent limitations of e�cient algorithms).A Boolean circuit is a directed acyclic graph with labels on the vertices, to be discussed shortly.For sake of simplicity, we disallow isolated vertices (i.e., vertices with no in-going or out-goingedges), and thus the graph vertices are of three types: sources, sinks, and internal vertices.1. Internal vertices are vertices having in-coming and out-going edges (i.e., they have in-degreeand out-degree at least 1). In the context of Boolean circuits, internal vertices are calledgates. Each gate is labeled by a Boolean operation, where the operations typically consideredare ^, _ and : (corresponding to and, or and neg). In addition, we require that gates labeled: have in-degree 1. (The in-coming degree of ^-gates and _-gates may be any number greaterthan zero, and the same holds for the out-degree of any gate.)2. The graph sources (i.e., vertices with no in-going edges) are called input terminals. Eachinput terminal is labeled by a natural number (which is to be thought of the index of aninput variable). (For sake of de�ning formulae, we allow di�erent input terminals to belabeled by the same number.)123. The graph sinks (i.e., vertices with no out-going edges) are called output terminals, and werequire that they have in-degree 1. Each output terminal is labeled by a natural numbersuch that if the circuit has m output terminals then they are labeled 1; 2; :::;m. That is, wedisallow di�erent output terminals to be labeled by the same number, and insist that thelabels of the output terminals are consecutive numbers. (Indeed, the labels of the outputterminals will correspond to the indices of locations in the circuit's output.)For sake of simplicity, we also mandate that the labels of the input terminals are consecutivenumbers.1312This is not needed in case of general circuits, because we can just feed out-going edges of the same input terminalto many gates. Note, however, that this is not allowed in case of formulae, where all non-sinks are required to haveout-degree 1.13This convention slightly complicates the construction of circuits that ignore some of the input values. Speci�cally,we use arti�cial gadgets that have in-coming edges from the corresponding input terminals, and compute an adequateconstant. To avoid having this constant as an output terminal, we feed it into an auxiliary gate such that the valueof the latter is determined by the other in-going edge (e.g., a constant 1 fed into an _-gate). See example of dealingwith x3 in Figure 2. 20
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Figure 2: A circuit computing f(x1; x2; x3; x4) = (x1 � x2; x1 ^ :x2 ^ x4).A Boolean circuit with n di�erent input labels and m output terminals induces (and indeedcomputes) a function from f0; 1gn to f0; 1gm de�ned as follows. For any �xed string x 2 f0; 1gn, weiteratively de�ne the value of vertices in the circuit such that the input terminals are assigned thecorresponding bits in x = x1 � � � xn and the values of other vertices are determined in the naturalmanner. That is:� An input terminal with label i 2 f1; :::; ng is assigned the ith bit of x (i.e., the value xi).� If the children of a gate (of in-degree d) labeled ^ have values v1; v2; :::; vd then the gate isassigned the value ^di=1vi. The value of a gate labeled _ (or :) is determined analogously.Indeed, the hypothesis that the circuit is acyclic implies that the process of determining valuesfor the circuit's vertices is well-de�ned: As long as the value of some vertex is undetermined,there exists a vertex such that its value is undetermined but the values of all its childrenare determined. Thus, the process can make progress, and terminates when the values of allvertices (including the output terminals) are determined.The value of the circuit on input x (i.e., the output computed by the circuit on input x) is y =y1 � � � ym, where yi is the value assigned by the above process to the output terminal labeled i. Wenote that there exists a polynomial-time algorithm that, given a circuit C and a corresponding inputx, outputs the value of C on input x. This algorithm determines the values of the circuit's vertices,going from the circuit's input terminals to its output terminals.We say that a family of circuits (Cn)n2N computes a function f : f0; 1g� ! f0; 1g� if for everyn the circuit Cn computes the restriction of f to strings of length n. In other words, for everyx 2 f0; 1g�, it must hold that Cjxj(x) = f(x).Bounded and unbounded fan-in. We will be most interested in circuits in which each gate hasat most two in-coming edges. In this case, the types of (two-argument) Boolean operations that weallow is immaterial (as long as we consider a \full basis" of such operations; i.e., a set of operationsthat can implement any other two-argument Boolean operation). Such circuits are called circuitsof bounded fan-in. In contrast, other studies are concerned with circuits of unbounded fan-in, where21



each gate may have an arbitrary number of in-going edges. Needless to say, in the case of circuitsof unbounded fan-in, the choice of allowed Boolean operations is important and one focuses onoperations that are \uniform" (across the number of operants; e.g., ^ and _).Circuit size as a complexity measure. The size of a circuit is the number of its edges. Whenconsidering a family of circuits (Cn)n2N that computes a function f : f0; 1g� ! f0; 1g�, we areinterested in the size of Cn as a function of n. Speci�cally, we say that this family has size complexitys : N ! N if for every n the size of Cn is s(n). The circuit complexity of a function f , denoted sf ,is the in�mum of the size complexity of all families of circuits that compute f . Alternatively, foreach n we may consider the size of the smallest circuit that computes the restriction of f to n-bitstrings (denoted fn), and set sf (n) accordingly. We stress that non-uniformity is implicit in thisde�nition, because no conditions are made regarding the relation between the various circuits usedto compute the function on di�erent input lengths.The circuit complexity of functions. We highlight some simple facts about the circuit com-plexity of functions. (These facts are in clear correspondence to facts regarding Kolmogorov Com-plexity mentioned in x1.3.3.)1. Most importantly, any Boolean function can be computed by some family of circuits, andthus the circuit complexity of any function is well-de�ned. Furthermore, each function hasat most exponential circuit complexity.(Hint: fn : f0; 1gn ! f0; 1g can be computed by a circuit of size O(n2n) that implements alook-up table.)2. Some functions have polynomial circuit complexity. In particular, any function that has timecomplexity t (i.e., is computed by an algorithm of time complexity t) has circuit complexitypoly(t). Furthermore, the corresponding circuit family is uniform (in a natural sense to bediscussion below).(Hint: consider a Turing machine that computes the function, and consider its computationon a generic n-bit long input. The corresponding computation can be emulated by a circuitthat consists of t(n) layers such that each layer represents an instantaneous con�guration ofthe machine, and the relation between consecutive con�gurations is captured by (\uniform")local gadgets in the circuit. For further details see the proof of Theorem 33, which presentsa similar emulation.)3. Almost all Boolean functions have exponential circuit complexity. Speci�cally, the number offunctions mapping f0; 1gn to f0; 1g that can be computed by a circuit of size s is at most s2s.(Hint: the number of circuits having v vertices and s edges is at most �v2�s.)Note that the �rst fact implies that families of circuits can compute functions that are uncomputableby algorithms. Furthermore, this phenomenon occurs also when restricting attention to families ofpolynomial-size circuits. See further discussion in x1.4.2.Uniform families. A family of polynomial-size circuits (Cn)n2N is called uniform if given none can construct the circuit Cn in poly(n)-time. Note that if a function is computable by auniform family of polynomial-size circuits then it is computable by a polynomial-time algorithm.The algorithm �rst constructs the adequate circuit (which can be done in polynomial-time by the22



uniformity hypothesis), and then evaluate this circuit on the given input (which can be done intime that is polynomial in the size of the circuit).Note that limitations on the computing power of arbitrary families of polynomial-size circuitscertainly hold for uniform families (of polynomial-size), which in turn yield limitations on thecomputing power of polynomial-time algorithms. Thus, lower bounds on the circuit complexityof functions yield analogous lower bounds on their time complexity. Furthermore, as is often thecase in mathematics and Science, disposing of an auxiliary condition that is not well-understood(i.e., uniformity) may turn out fruitful. Indeed, this has occured in the study of limited classes ofcircuits.1.4.2 Machines that take adviceGeneral (non-uniform) circuit families and uniform circuit families are two extremes with respect tothe \amounts of non-uniformity" in the computing device. Intuitively, in the former, non-uniformityis only bounded by the size of the device, whereas in the latter the amounts of non-uniformity iszero. Here we consider a model that allows to decouple the size of the computing device from theamount of non-uniformity, which may range from zero to the device's size. Speci�cally, we consideralgorithms that \take a non-uniform advice" that depends only on the input length. The amountof non-uniformity will be de�ned to equal the length of the corresponding advice (as a function ofthe input length).De�nition 12 (taking advice): We say that algorithm A computes the function f using advice oflength ` : N ! N if there exists an in�nite sequence (an)n2N such that1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).The sequence (an)n2N is called the advice sequence.Note that any function having circuit complexity s can be computed using advice of lengthO(s log s), where the log factor is due to the fact that a graph with v vertices and e edges canbe described by a string of length 2e log2 v. Note that the model of machines that use advice allowsfor some sharper bounds than the ones stated in x1.4.1: every function can be computed usingadvice of length ` such that `(n) = 2n, and some uncomputable functions can be computed usingadvice of length 1.Theorem 13 (the power of advice): There exist functions that can be computed using one-bitadvice but cannot be computed without advice.Proof: Taking any uncomputable Boolean function f : N ! f0; 1g, consider the function f 0de�ned as f 0(x) = f(jxj). Note that f is Turing-reducible to f 0 (e.g., on input n make any n-bitquery to f 0, and return the answer).14 Thus, f 0 cannot be computed without advice. On theother hand, f 0 can be easily computed by using the advice sequence (an)n2N such that an = f(n);that is, the algorithm merely outputs the advice bit (and indeed ajxj = f(jxj) = f 0(x), for everyx 2 f0; 1g�).14Indeed, this Turing-reduction is not e�cient (i.e., it runs in exponential time in jnj = log2 n), but this is immaterialin the current context. 23



1.4.3 Restricted modelsAs noted in x1.4.1, the model of Boolean circuits allows for the introduction of many naturalsubclasses of computing devices. Following is a laconic review of a few of these subclasses. We willrefer to various types of Boolean formulae in the rest of this course, and thus suggest not to skipthe following two paragraphs.Boolean formulae. In general Boolean circuits the non-sink vertices are allowed arbitrary out-degree. This means that the same intermediate value can be re-used (without being re-computed(while increasing the size complexity by only one unit)). Such \free" re-usage of intermediatevalues is disallowed in Boolean formulae, which corresponds to a Boolean expression over Booleanvariables. Formally, a Boolean formula is a circuit in which all non-sink vertices have out-degree 1,which means that the underlying graph is a tree (and the formula as an expression can be read bytraversing the tree scanning the leaves in order). Indeed, we have allowed di�erent input terminalsto be assigned the same label in order to allow formulae in which the same variable occurs multipletimes. As in case of general circuits, one is interested in the size of these restricted circuits (i.e., thesize complexity of families of formulae computing various functions). We mention that quadraticlower bounds are known for the formula size of simple functions (e.g., parity), whereas thesefunctions have linear circuit complexity.
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Figure 3: Recursive construction of parity circuits and formulae.Formulae in CNF and DNF. A restricted type of Boolean formulae consists of formulae thatare in conjunctive normal form (CNF). Such a formula consists of a conjunction of clauses, whereeach clause is a disjunction of literals each being either a variable or its negation. That is, suchformulae are represented by layered circuits of unbounded fan-in in which the �rst layer consists ofneg-gates that compute the negation of input variables, the second layer consist of or-gates thatcompute the logical-or of subsets of inputs and negated inputs, and the third layer consists of asingle and-gate that computes the logical-and of the values computed in the second layer. Notethat each Boolean function can be computed by a family of CNF formulae of exponential size,and that the size of CNF formulae may be exponentially larger than the size of ordinary formulaecomputing the same function (e.g., parity). For a constant k, a formula is said to be in k-CNF ifits CNF has disjunctions of size at most k. An analogous restricted type of Boolean formulae refersto formulae that are in disjunctive normal form (DNF). Such a formula consists of a disjunction of aconjunctions of literals, and when each conjunction has at most k literals we say that the formulais in k-DNF. 24



Constant-depth circuits. Circuits have a \natural structure" (i.e., their structure as graphs).One natural parameter regarding this structure is the depth of a circuit, which is de�ned as thelongest directed path from any source to any sink. Of special interest are constant-depth circuits ofunbounded fan-in. We mention that sub-exponential lower bounds are known for the size of suchcircuits that compute a simple function (e.g., parity).Monotone circuits. The circuit model also allows for the consideration of monotone computingdevices: a monotone circuit is one having only monotone gates (e.g., gates computing ^ and _, butno negation gates (i.e., :-gates)). Needless to say, monotone circuits can only compute monotonefunctions, where a function f is called monotone if for any x < y it holds that f(x) � f(y)(where we refer to the lexicographic order on strings). One natural question is whether, as far asmonotone functions are concerned, there is a substantial loss in using only monotone circuits. Theanswer is yes: there exist monotone functions that have polynomial circuit complexity but requiresub-exponential size monotone circuits.1.5 Complexity ClassesComplexity classes are sets of computational problems. Typically, such classes are de�ned by �xingthree parameters:1. A type of computational problems (see Section 1.2). Indeed, most classes refer to decisionproblems, but classes of search problems, promise problems, and other types of problems willalso be considered.2. A model of computation, which may be either uniform (see Section 1.3) or non-uniform (seeSection 1.4).3. A complexity measure and a function (or a set of functions), which put together limit the classof computations of the previous item; that is, we refer to the class of computations that havecomplexity not exceeding the speci�ed function (or set of functions). For example, in x1.3.4,we mentioned time complexity and space complexity, which apply to any uniform model ofcomputation. We also mentioned polynomial-time computations, which are computations inwhich the time complexity (as a function) does not exceed some polynomial (i.e., a memberof the set of polynomial functions).The most common complexity classes refer to decision problems, and are sometimes de�ned asclasses of sets rather than classes of the corresponding decision problems. That is, one often saysthat a set S � f0; 1g� is in the class C rather than saying that the problem of deciding membership inS is in the class C. Likewise, one talks of classes of relations rather than classes of the correspondingsearch problems (i.e., saying that R � f0; 1g��f0; 1g� is in the class C means that the search problemof R is in the class C).2 The P versus NP QuestionOur daily experience is that it is harder to solve a problem than it is to check the correctness of asolution. Is this experience merely a coincidence or does it represent a fundamental fact of life (orproperty of the world)? This is the essence of the P versus NP Question, where P represents searchproblems that are e�ciently solvable and NP represents search problems for which solutions can bee�ciently checked. Another natural question captured by the P versus NP Question is whether25



proving theorems is harder that verifying the validity of these proofs. In other words, the questionis whether deciding membership in a set is harder than being convinced of this membership by anadequate proof. In this case, P represents decision problems that are e�ciently solvable, whereasNP represents sets that have e�ciently checkable proofs of membership. These two meanings of theP versus NP Question are rigorously presented and discussed in Sections 2.1 and 2.2, respectively.The equivalence of the two formulations is shown in Section 2.3, and the common belief that P isdi�erent from NP is further discussed in Section 2.5.Teaching note: Most students have heard of P and NP before, but we suspect that manyhave not obtained a good explanation of what the P vs NP Question actually represents.This unfortunate situation is due to using the standard technical de�nition of NP (whichrefers to the �ctitious and confusing device called a non-deterministic polynomial-timemachine). Instead, we advocate to use the more cumbersome de�nitions sketched aboveand elaborated below, which clearly capture the fundamental nature of NP.The notion of e�cient computation. Recall that we associate e�cient computation withpolynomial-time algorithms.15 Furthermore, the latter class is independent of the speci�c model ofcomputation, as long as the latter is \reasonable" (cf. the Cobham-Edmonds Thesis). Both issuesare discussed in x1.3.4.A note on the representation of problem instances. As noted in Section 1.2, many nat-ural (search and decision) problems are captured more naturally by the terminology of promiseproblems, where the domain of possible instances is a subset of f0; 1g� rather than f0; 1g� itself.For example, computational problems in graph theory presume some simple encoding of graphs asstrings, but this encoding is typically not onto (i.e., not all strings encode graphs and thus are pos-sible instances). Typically, in these cases, the set of possible instances (e.g., encodings of graphs) ise�ciently recognizable (i.e., membership in it can be decided in polynomial-time). Thus, arti�ciallyextending the set of instances to the set of all possible strings (and allowing trivial solutions forthe corresponding dummy instances) does not change the complexity of the original problem. Wefurther discuss this issue in a future lecture.2.1 The search version: �nding versus checkingTeaching note: Complexity theorists are so accustomed to focus on decision problemthat they seem to forget that search problems are at least as natural as decision problems.Furthermore, to many non-experts, search problems may seem even more natural thandecision problems: Typically, people seeks solutions more than they pause to wonderwhether or not solutions exist. Thus, we recommend starting with a formulation of the P-vs-NP Question in terms of search problems. Admittingly, the cost is more cumbersomeformulations, but it is more than worthwhile.Much of computer science is concerned with solving various search problems (as in De�nition 1).Examples of such problems include �nding solutions to systems of linear (or polynomial) equations,�nding a spanning tree in a graph, �nding a short traveling salesman tour in a metric space,15Advanced comment: Here, we consider deterministic (polynomial-time) algorithms as the basic model ofe�cient computation. A more liberal view, which includes also probabilistic (polynomial-time) algorithms is presentedin more advanced lectures. We stress that the most important facts and questions that are addressed in the currentlecture hold also with respect to probabilistic polynomial-time algorithms.26



and �nding a scheduling of jobs to machines such that various given constraints are satis�ed.Furthermore, search problems correspond to the daily notion of \solving problems" and thus areof natural general interest. In the current section, we will consider the question of which searchproblems can be solved e�ciently.One type of search problems that cannot be solved e�ciently consists of search problems forwhich the solutions are too long in terms of the problem's instances. In such a case, merely typingthe solution amounts to an activity that is deemed ine�cient. Thus, we focus our attention onsearch problems that are not in this class. That is, we consider only search problems in which thelength of the solution is bounded by a polynomial in the length of the instance. Recalling thatsearch problems are associated with binary relations (see De�nition 1), we focus our attention onpolynomially bounded relations.De�nition 14 (polynomially bounded relations): We say that R � f0; 1g��f0; 1g� is polynomially-bounded if there exists a polynomial p such that for every (x; y) 2 R it holds that jyj � p(jxj).Recall that (x; y) 2 R means that y is a solution to the problem instance x, where R representsthe problem itself. For such a relation R it makes sense to ask whether or not, given a probleminstance x, one can e�ciently �nd a solution y (i.e., y such that (x; y) 2 R). The polynomial boundon the length of the solution (i.e., y) guarantees that a negative answer is not merely due to thelength of the required solution.2.1.1 The class P as a natural class of search problemsRecall that we are interested in the class of search problems that can be solved e�ciently; thatis, problems for which solutions (whenever they exist) can be found e�ciently. Restricting ourattention to polynomially bounded relations, we identify the corresponding fundamental class ofsearch problem (or binary relation), denoted PF (standing for \Polynomial-time Find"). (Therelationship between PF and the standard de�nition of P will be discussed in Sections 2.3 and 3.3.)The following de�nition refers to the formulation of solving search problems provided in De�nition 1.De�nition 15 (e�ciently solvable search problems):� The search problem of a polynomially bounded relation R � f0; 1g� � f0; 1g� is e�cientlysolvable if there exists a polynomial time algorithm A such that, for every x, it holds thatA(x) 2 R(x) def= fy : (x; y) 2 Rg if and only if R(x) is not empty. Furthermore, if R(x) = ;then A(x) = ?, indicating that x has no solution.� We denote by PF the class of search problems that are e�ciently solvable (and correspondto polynomially bounded relations). That is, R 2 PF if R is polynomially bounded and thereexists a polynomial time algorithm that given x �nds y such that (x; y) 2 R (or asserts thatno such y exists).Note that R(x) denotes the set of valid solutions for the problem instance x. Thus, the solver Ais required to �nd a valid solution (i.e., satisfy A(x) 2 R(x)) whenever such a solution exists (i.e.,R(x) is not empty). On the other hand, if the instance x has no solution (i.e., R(x) = ;) thenclearly A(x) 62 R(x). The extra condition (also made in De�nition 1) requires that in this caseA(x) = ?. Thus, algorithm A always outputs a correct answer, which is a valid solution in the casethat such a solution exists or an indication that no solution exists.27



We have de�ned a fundamental class of problems, and we do know of many natural problemsin this class (e.g., solving linear equations over the rationals, �nding a perfect matching in a graph,etc). However, we must admit that we do not have a good understanding regarding the scope ofthis class (i.e., which problems it contains). This situation is quite common in complexity theory,and seems to be a consequence of the fact that complexity classes are de�ned in terms of the\external behavior" (of potential algorithms) rather than in terms of the \internal structure" (ofthe problem). Turning back to PF , we note that while it contains many natural search problemsthere are also many natural search problems that are not known to be in PF . A natural classcontaining a host of such problems is presented next.2.1.2 The class NP as another natural class of search problemsNatural search problems have the property that valid solutions can be e�ciently recognized. Thatis, given an instance x of the problem R and a candidate solution y, one can e�ciently determinewhether or not y is a valid solution for x (with respect to the problem R; i.e., whether or noty 2 R(x)). The class of all such search problems is a natural class per se, because it is notclear why one should care about a solution unless one can recognize a valid solution once given.Furthermore, this class is a natural domain of candidates for PF , because the ability to e�cientlyrecognize a valid solution seems to be a natural (albeit not absolute) prerequisite for a discussionregarding the complexity of �nding such solutions.We restrict our attention again to polynomially bounded relations, and consider the class ofrelations for which membership of pairs in the relation can be decided e�ciently. We stress thatwe consider deciding membership of given pairs of the form (x; y) in a �xed relation R, and notdeciding membership of x in the set SR def= fx : R(x) 6= ;g. (The relationship between the followingde�nition and the standard de�nition of NP will be discussed in Sections 2.3{2.4 and 3.3.)De�nition 16 (search problems with e�ciently checkable solutions):� The search problem of a polynomially bounded relation R � f0; 1g� � f0; 1g� has e�cientlycheckable solutions if there exists a polynomial time algorithm A such that, for every x and y,it holds that A(x; y) = 1 if and only if (x; y) 2 R.� We denote by PC (standing for \Polynomial-time Check") the class of search problems thatcorrespond to polynomially-bounded binary relations that have e�ciently checkable solutions.That is, R 2 PC if the following two conditions hold:1. For some polynomial p, if (x; y) 2 R then jyj � p(jxj).2. There exists a polynomial-time algorithm that given (x; y) determines whether or not(x; y) 2 R.The class PC contains thousands of natural problems (e.g., �nding a traveling salesman tour oflength that does not exceed a given threshold, �nding the prime factorization of a given composite,etc). In each of these natural problems, it is easy to see that the correctness of solutions can bechecked e�ciently (e.g., given a traveling salesman tour it is easy to compute its length and checkwhether or not it exceeds the given threshold).16The class PC is the natural domain for the study of which problems are in PF , because theability to e�ciently recognize a valid solution is a natural prerequisite for a discussion regarding the16In the traveling salesman problem (TSP), the instance is a matrix of distances between cities and a threshold,and the task is to �nd a tour that passes all cities and covers a total distance that does not exceed the threshold.28



complexity of �nding such solutions. We warn, however, that PF contains (unnatural) problemsthat are not in PC (see Exercise 41).2.1.3 The P versus NP question in terms of search problemsIs it the case that every search problem in PC is in PF? That is, if R has e�ciently checkablesolutions then is it necessarily the case that the search problem of R can be solved e�ciently? Inother words, if it is easy to check whether or not a given solution for a given instance is correctthen is it also easy to �nd a solution to a given instance?If PC � PF then this would mean that whenever solutions to given instances can be e�cientlychecked (for correctness) it is also the case that these solutions can be e�ciently found (when givenonly the instance). This would mean that all reasonable search problems (i.e., all problems inPC) are easy to solve. Needless to say, such a situation would contradict the intuitive feeling (anddaily experience) that some reasonable search problems are hard to solve. Furthermore, in such acase, the notion of \solving a problem" will lose its meaning (because �nding a solution will not besigni�cantly more di�cult than checking its validity).On the other hand, if PC n PF 6= ; then there exist reasonable search problems (i.e., someproblems in PC) that are hard to solve. This conforms with our basic intuition by which somereasonable problems are easy to solve whereas others are hard to solve. Furthermore, it recon�rmsthe intuitive gap between the notions of solving and checking (asserting that in some cases \solving"is signi�cantly harder than \checking").2.2 The decision version: proving versus verifyingAs we shall see in the sequel, the study of search problems (e.g., the PC-vs-PF Question) can be\reduced" to the study of decision problems. Since the latter problems have a less cumbersometerminology, complexity theory tends to focus on them (and maintains its relevance to the study ofsearch problems via the aforementioned reduction). Thus, the study of decision problems providesa convenient way to study search problems. We wish to assert, however, that decision problems areinteresting and natural per se (i.e., beyond their role in the study of search problems). After all,some people do care about the truth, and so determining whether a given object has some claimedproperty is an appealing computational problem. The P-vs-NP Question refers to the complexityof answering such questions for a wide and natural class of properties associated with the class NP.The latter class refers to properties that have \e�cient proof systems" allowing for the veri�cationof the claim that a given object has a predetermined property (i.e., is a member of a predeterminedset). Jumping ahead, we mention that the P-vs-NP Question refers to the question of whetherproperties that have e�cient proof systems can also be decided e�ciently (without proofs). Let usclarify all these notions.2.2.1 The class P as a natural class of decision problemsProperties of objects are modeled as subsets of the set of all possible objects (i.e., a property isassociated with the set of objects having this property). Thus, we focus on deciding membershipin sets (as in De�nition 2). We consider the class of decision problems that are e�ciently solvable,a class that is traditionally denoted P (standing for Polynomial-time). The following de�nitionrefers to the formulation of solving decision problems provided in De�nition 2.De�nition 17 (e�ciently solvable decision problems):29



� A decision problem S � f0; 1g� is e�ciently solvable if there exists a polynomial time algorithmA such that, for every x, it holds that A(x) = 1 if and only if x 2 S.� We denote by P the class of decision problems that are e�ciently solvable.As in De�nition 15, we have de�ned a fundamental class of problems, which contains many naturalproblems (e.g., determining whether or not a given graph is connected), but we do not have a goodunderstanding regarding its scope (i.e., which problems this class contains). Speci�cally, there aremany natural problems that are not known to reside in P, and a natural class containing a host ofsuch problems is presented next.2.2.2 The class NP and NP-proof systems(The origin of the notation NP will be discussed in Section 2.4.) We view NP as the class of decisionproblems that have e�ciently veri�able proof systems. Loosely speaking, we say that a set S has aproof system if instances in S have valid proofs of membership (i.e., proofs accepted as valid by thesystem), whereas instances not in S have no valid proofs. Indeed, proofs are de�ned as strings that(when accompanying the instance) are accepted by the (e�cient) veri�cation procedure. We saythat V is a veri�cation procedure for membership in S if it satis�es the following two conditions:1. Completeness: True assertions have valid proofs; that is, proofs accepted as valid by V .Bearing in mind that assertions refer to membership in S, this means that for every x 2 Sthere exists a string y such that V (x; y) = 1 (i.e., V accepts y as a valid proof for themembership of x in S).2. Soundness: False assertions have no valid proofs. That is, for every x 62 S and every string yit holds that V (x; y) = 0, which means that V rejects y as a proof for the membership of xin S.We note that the soundness condition captures the \security" of the veri�cation procedure; thatis, its ability not to be fooled by anything into proclaiming a wrong assertion. The completenesscondition captures the \viability" of the veri�cation procedure; that is, its ability to be convincedof any valid assertion, when presented with an adequate proof. (We stress that, in general, proofsystems are de�ned in terms of their veri�cation procedures, which must satisfy adequate complete-ness and soundness conditions.) Our focus here is on e�cient veri�cation procedures that utilizerelatively short proofs (i.e., proofs that are of length that is polynomially bounded by the lengthof the corresponding assertion).17De�nition 18 (e�ciently veri�able proof systems):� A decision problem S � f0; 1g� has an e�ciently veri�able proof system if there exists apolynomial p and a polynomial-time (veri�cation) algorithm V such that the following twoconditions hold:17Advanced comment: In continuation to Footnote 15, we note that in this lecture we consider deterministic(polynomial-time) veri�cation procedures, and consequently the completeness and soundness conditions that westate here are error-less. In contrast, in a future lecture, we will consider various types of probabilistic (polynomial-time) veri�cation procedures as well as probabilistic completeness and soundness conditions. A common theme thatunderlies both treatments is that e�cient veri�cation is interpreted as meaning veri�cation by a process that runs intime that is polynomial in the length of the assertion. In the current lecture, we use the equivalent formulation thatconsiders the running time as a function of the total length of the assertion and the proof, but require that the latterhas length that is polynomially bounded by the length of the assertion.30



1. Completeness: For every x 2 S, there exists y of length at most p(jxj) such that V (x; y) =1.(Such a string y is called an NP-witness for x 2 S.)2. Soundness: For every x 62 S and every y, it holds that V (x; y) = 0.Thus, x 2 S if and only if there exists y of length at most p(jxj) such that V (x; y) = 1.In such a case, we say that S has an NP-proof system, and refer to V as its veri�cationprocedure (or as the proof system itself).� We denote by NP the class of decision problems that have e�ciently veri�able proof systems.We note that the term NP-witness is commonly used, although in most cases V is not called aproof system (nor a veri�cation procedure of such a system). In some cases, V (or the set of pairsaccepted by V ) is called a witness relation of S. We stress that the same set S may have manydi�erent NP-proof systems (see Exercise 42), and that in some cases the di�erence is not arti�cial(see Exercise 43).Teaching note: Using De�nition 18, it is typically easy to show that natural decisionproblems are in NP . All that is needed is designing adequate NP-proofs of membership,which is typically quite straightforward and natural, because such decision problems aretypically phrased as asking about the existence of a structure (or object) that can beeasily veri�ed as valid. For example, SAT is de�ned as the set of satis�able Booleanformulae, which means asking about the existence of satisfying assignments. Indeed, wecan e�ciently check whether a given assignment satis�es a given formula, which meansthat we have (a veri�cation procedure for) an NP-proof system for SAT.We note that for any search problem R in PC, the set of instances that have a solution withrespect to R (i.e., SR def= fx : R(x) 6= ;g) is in NP . (For any R 2 PC, consider the veri�cationprocedure V such that V (x; y) def= 1 if and only if (x; y)2R, which in turn can be decided in poly(jxj)-time.) Thus, any search problem in PC can be viewed as a problem of searching for (e�cientlyveri�able) proofs (i.e., NP-witnesses for the set of instances having solutions). Furthermore, anyNP-proof system gives rise to a natural search problem in PC; that is, the problem of searching fora valid proof (i.e., an NP-witness) for the given instance. (The veri�cation procedure V yields thesearch problem that corresponds to R = f(x; y) : V (x; y)=1g.)Teaching note: The last paragraph suggests another easy way of showing that naturaldecision problems are in NP : just thinking of the corresponding natural search problem.The point is that natural decision problems (in NP) are phrased as referring to whethera solution exists (for the corresponding natural search problem). For example, in thecase of SAT, the question is whether there exists a satisfying assignment to given Booleanformula, and the corresponding search problem is �nding such an assignment. But inall these cases, it is easy to check the correctness of solutions; that is, the correspondingsearch problem is in PC, which implies that the decision problem is in NP .Observe that P � NP holds: A veri�cation procedure for claims of membership in a set S 2 Pmay just ignore the alleged NP-witness and run the decision procedure that is guaranteed by thehypothesis S 2 P; that is, V (x; y) = A(x), where A is the aforementioned decision procedure.Indeed, the latter veri�cation procedure is quite an abuse of the term (because it makes no use of31



the proof); however, it is a legitimate one. As we shall shortly see, the P-vs-NP Question refers tothe question of whether such proof-oblivious veri�cation procedures can be used for every set thathas some e�ciently veri�able proof system (i.e., whether NP � P).2.2.3 The P versus NP question in terms of decision problemsIs it the case that NP-proofs are useless? That is, is it the case that for every e�ciently veri�ableproof system one can easily determine the validity of assertions without looking at the proof? Ifthat were the case, then proofs would be meaningless, because they would have no fundamentaladvantage over directly determining the validity of the assertion. The conjecture P 6= NP assertsthat proofs are useful: there exists sets in NP that cannot be decided by a polynomial-timealgorithm, and so for these sets obtaining a proof of membership (for some instances) is useful(because we cannot e�ciently determine membership by ourselves).In the foregoing paragraph we viewed P 6= NP as asserting the advantage of obtaining proofsover deciding the truth by ourselves. That is, P 6= NP asserts that (in some cases) verifying iseasier than deciding. A slightly di�erent perspective is that P 6= NP asserts that �nding proofsis harder than verifying their validity. This is the case, because for any set S having an NP-proofsystem, the ability to e�ciently �nd proofs of membership in the set (i.e., �nding an NP-witnessof membership in S for any given x 2 S), yields the ability to decide membership in S. Thus, forS 2 NP n P, it must be harder to �nd proofs of membership in S than to verify the validity ofsuch proofs (which can be done in polynomial-time).2.3 Equivalence of the two formulationsAs hinted before, the two formulations of the P-vs-NP Questions are equivalent. That is, everysearch problem having e�ciently checkable solutions is solvable in polynomial time (i.e., PC � PF)if and only if membership in any set that has an NP-proof system can be decided in polynomialtime (i.e., NP � P). Recalling that P � NP , we proveTheorem 19 PC � PF if and only if P = NP.Proof: Suppose, on the one hand, that the inclusion holds for the search version (i.e., PC � PF).We will show that this implies the existence of an e�cient algorithm for �nding NP-witnesses forany set in NP , which in turn implies that this set is in P. Speci�cally, let S be an arbitraryset in NP, and V be the corresponding veri�cation procedure (i.e., satisfying the conditions inDe�nition 18). Then R def= f(x; y) : V (x; y) = 1g is a polynomially bounded relation in PC, and bythe hypothesis its search problem is solvable in polynomial time (i.e., R 2 PC � PF). Denoting byA the polynomial-time algorithm solving the search problem of R, we decide membership in S inthe obvious way. That is, on input x, we output 1 if and only if A(x) 6= ?, where the latter eventholds if and only if A(x) 2 R(x), which in turn occurs if and only if R(x) 6= ; (equiv., x 2 S).Thus, NP � P (and NP = P) follows.Suppose, on the other hand, that NP = P. We will show that this implies an e�cient algorithmfor determining whether a given string y0 is a pre�x of some solution to a given instance x of asearch problem in PC, which in turn yields an e�cient algorithm for �nding solutions. Speci�cally,let R be an arbitrary search problem in PC. Then the set S0R def= fhx; y0i : 9y00 s.t. (x; y0y00)2Rgis in NP and hence in P. This yields a polynomial-time algorithm for solving the search problemof R, by extending a pre�x of a potential solution bit-by-bit (while using the decision procedure todetermine whether or not the current pre�x is valid). That is, on input x, we �rst check whether32



or not (x; �) 2 S0R and output ? (indicating R(x) = ;) in case (x; �) 62 S0R. Next, we proceedin iterations, maintaining the invariant that (x; y0) 2 S0R. In each iteration, we set y0  y00 if(x; y00) 2 S0R and y0  y01 if (x; y01) 2 S0R. If none of these conditions hold (which happens afterat most polynomially many iterations) then the current y0 satis�es (x; y0) 2 R. Thus, PC � PFfollows.Re
ection: The �rst part of the proof of Theorem 19 associates with each set S in NP a naturalrelation R (in PC). Speci�cally, R consists of all pairs (x; y) such that y is an NP-witness formembership of x in S. Thus, the search problem of R consists of �nding such an NP-witness, whengiven x as input. Indeed, R is called the witness relation of S, and solving the search problem of Rallows to decide membership in S. In the second part of the proof, we associate with each R 2 PCa set S0R (in NP), but S0R is not the natural set SR def= fx : 9y s.t. (x; y)2Rg (which gives rise toR as its witness relation). Speci�cally, S0R consists of strings that encode pairs (x; y0) such that y0is a pre�x of some string in R(x) = fy : (x; y) 2 Rg. Thus, deciding membership in S0R allows tosolve the search problem of R.Conclusion: Theorem 19 justi�es the traditional focus on the decision version of the P-vs-NPQuestion. Indeed, given that both formulations of the question are equivalent, we may just studythe less cumbersome one.2.4 The traditional de�nition of NPUnfortunately, De�nition 18 is not the commonly used de�nition of NP . Traditionally, NP isde�ned as the class of sets that can be decided by a �ctitious device called a non-deterministicpolynomial-time machine (which explains the source of the notation NP). The reason that thisclass of �ctitious devices is important is because it captures (indirectly) the de�nition of NP-proofs.Since the reader may come across the traditional de�nition of NP when studying di�erent works,the author feels obliged to provide the traditional de�nition as well as a proof of its equivalence toDe�nition 18.De�nition 20 (non-deterministic polynomial-time Turing machines):� A non-deterministic Turing machine is de�ne as in x1.3.1, except that the transition functionmaps symbol-state pairs to subsets of triples (rather than to a single triple) in � � Q �f�1; 0;+1g. Accordingly, the con�guration following a speci�c instantaneous con�gurationmay be one of several possibilities, each determine by a di�erent possible triple. Thus, thecomputations of a non-deterministic machine on a (�xed) given input may result in di�erentoutputs.In the context of decision problems one typically considers the question of whether or notthere exists a computation that starting with a �xed input halts with output 1. We say thatthe non-deterministic machine M accept x if there exists a computation of M , on input x, thathalts with output 1. The set accepted by a non-deterministic machine is the set of inputs thatare accepted by the machine.� A non-deterministic polynomial-time Turing machine is de�ned as one that makes a number ofsteps that is polynomial in the length of the input. A set is in NP if there exists a non-deterministic polynomial-time machine that accepts it.33



We stress that De�nition 20 makes no reference to the number (or fraction) of possible computationsof the machine that yield a speci�c output (on a speci�c input).18 De�nition 20 only refers towhether or not computations leading to a certain output exist (for a speci�c input). The questionof what does the mere existence of such possible computations mean in terms of real-life is notaddressed, because the model of a non-deterministic machine is not meant to provide a reasonablemodel of a real-life computer. The model is meant to capture something completely di�erent (i.e., itis meant to provide an elegant de�nition of the class NP , while relying on the fact that De�nition 20is equivalent to De�nition 18).Teaching note: Whether or not De�nition 20 is elegant is a matter of taste. For sure,many students �nd De�nition 20 quite confusing, possibly because they assume thatit represents some natural model of computation and allow themselves to be fooled bytheir intuition regarding such models. (Needless to say, the students' intuition regardingcomputation is irrelevant when applied to a �ctitious model.)Note that, unlike other de�nitions in this lecture, De�nition 20 makes explicit reference toa speci�c model of computation. Still, a similar extension can be applied to other models ofcomputation by considering adequate non-deterministic computation rules. Also note that, withoutloss of generality, we may assume that the transition function maps each possible symbol-state pairto exactly two triples (cf. Exercise 44).Theorem 21 De�nition 18 is equivalent to De�nition 20. That is, a set S has an NP-proof systemif and only if there exists a non-deterministic polynomial-time machine that accepts S.Proof Sketch: Suppose, on one hand, that the set S has an NP-proof system, and let us denotethe corresponding veri�cation procedure by V . We construct a non-deterministic polynomial-timemachine M that accepts S as follows. On input x, machine M makes an adequate m = poly(jxj)number of non-deterministic steps producing (non-deterministically) a string y 2 f0; 1gm, and thenemulates V (x; y). We stress that these non-deterministic steps may result in producing any m-bitstring y. Recall that x 2 S if and only if there exists y of length at most poly(jxj) such thatV (x; y) = 1, which implies that M accepts S.Suppose, on the other hand, that there exists a non-deterministic polynomial-time machine Mthat accepts S. Consider a deterministic machine M 0 that on input (x; y), where y has adequatelength, emulates a computation of M on input x using y to determine the non-deterministic stepsof M . That is, the ith step of M on input x is determined by the ith bit of y (which indicates whichof the two possible moves to make at the current step). Note that x 2 S if and only if there existsy of length at most poly(jxj) such that M 0(x; y) = 1. Thus, M 0 gives rise to an NP-proof systemfor S.2.5 In support of P di�erent from NPIntuition and concepts constitute... the elements of all our knowl-edge, so that neither concepts without an intuition in some waycorresponding to them, nor intuition without concepts, can yieldknowledge.18Advanced comment: In contrast, the de�nition of a probabilistic machine refers to this number (or, equiv-alently, to the probability that the machine produces a speci�c output, when the probability is essentially takenuniformly over all possible computations). Thus, a probabilistic machine refers to a natural model of computationthat can be realized provided we can equip the machine with a source of randomness.34



Immanuel Kant (1724{1804)It is widely believed that P is di�erent than NP; that is, that PC contains search problems thatare not e�ciently solvable, and that there are NP-proof systems for sets that cannot be decidede�ciently. This belief is supported by both philosophical and empirical considerations.� Philosophical considerations: Both formulations of the P-vs-NP Question refer to naturalquestions about which we have strong intuition. The notion of solving a (search) problemseems to presume that, at least in some cases (if not in general), �nding a solution is sig-ni�cantly harder than checking whether a presented solution is correct. This translates toPC n PF 6= ;. Likewise, the notion of a proof seems presume that, at least in some cases (ifnot in general), the proof is useful in determining the validity of the assertion; that is, thatdeciding the validity of an assertion may be made signi�cantly easier when provided with aproof. This translates to P 6= NP , which also implies that it is signi�cantly harder to �ndproofs than to verify their correctness, which again coincides with the daily experience ofresearchers and students.� Empirical considerations: The class NP (or rather PC) contains thousands of di�erent prob-lems for which no e�cient solving procedure is known. Many of these problems have arisen invastly di�erent disciplines, and were the subject of extensive research of numerous di�erentcommunities of scientists and engineers. These essentially independent studies have all failedto provide e�cient algorithms for solving these problems, a failure that is extremely hard toattribute to sheer coincidence or a stroke of bad luck.Throughout the rest of this course, we will adopt the common belief that P is di�erent from NP.At some places, we will explicitly use this conjecture (or even stronger assumptions), whereas inother places we will present results that are interesting (if and) only if P 6= NP (e.g., the entiretheory of NP-completeness becomes uninteresting if P = NP).The P 6= NP conjecture is indeed very appealing and intuitive. The fact that this naturalconjecture is unsettled seems to be one of the sources of frustration of complexity theory. Theauthor's opinion, however, is that this feeling of frustration is not in place. In contrast, the factthat complexity theory evolves around natural questions that are so di�cult to resolve makes itsstudy very exciting.2.6 Two technical comments regarding NPRecall that when de�ning PC (resp., NP) we have explicitly con�ned our attention to search prob-lems of polynomially bounded relations (resp., NP-witnesses of polynomial length). An alternativeformulation may allow a binary relation R to be in PC (resp., S 2 NP) if membership of (x; y) inR can be decided in time that is polynomial in the length of x (resp., the veri�cation of a candidateNP-witness y for membership of x in S is required to be performed in poly(jxj)-time). Indeed, thismean that the validity of y can be determined without reading all of it (which means that somesubstring of y can be used as the e�ective y in the original de�nitions).We comment that problems in PC (resp., NP) can be solved in exponential-time (i.e., timeexp(poly(jxj)) for input x). This can be done by an exhaustive search among all possible candidatesolutions (resp., all possible candidate NP-witnesses). Thus, NP � EXP , where EXP denote theclass of decision problems that can be solved in exponential-time (i.e., time exp(poly(jxj)) for inputx). 35



3 Polynomial-time ReductionsWe present the general notion of (polynomial-time) reductions among computational problems,and view the notion of a \Karp-reduction" as an important special case that su�ces (and is moreconvenient) in many cases. Such reductions play a key role in the theory of NP-completeness, whichis the topic of Section 4, but we stress that the fundamental nature of the notion of a reductionand highlight two speci�c applications (i.e., reducing search and optimization problems to decisionproblems). Furthermore, in the latter applications, it will be important to use the general notionof a reduction (i.e., \Cook-reduction" rather than \Karp-reduction").Teaching note: We assume that many students have heard of reductions, but we fearthat most have obtained a conceptually poor view of their fundamental nature. Inparticular, we fear that reductions are identi�ed with the theory of NP-completeness,while in our opinion they only play a key role there. Furthermore, we believe it isimportant to show that natural search and optimization problems can be reduced todecision problems.3.1 The general notion of a reductionReductions are procedures that use \functionally speci�ed" subroutines. That is, the functionalityof the subroutine is speci�ed, but its operation remains unspeci�ed and its running-time is countedat unit cost. Analogously to algorithms, which are modeled by Turing machines, reductions canbe modeled as oracle (Turing) machines. A reduction solves one computational problem (whichmay be either a search or a decision problem) by using oracle (or subroutine) calls to anothercomputational problem (which again may be either a search or a decision problem).The notion of a general algorithmic reduction was discussed in x1.3.1 and x1.3.5. These reduc-tions, called Turing-reductions (cf. x1.3.1) and modeled by oracle machines (cf. x1.3.5), made noreference to the time complexity of the main algorithm (i.e., the oracle machine). Here, we focuson e�cient (i.e., polynomial-time) reductions, which are often called Cook reductions. That is, weconsider oracle machines (as in De�nition 11) that run in time polynomial in the length of theirinput. We stress that the running time of an oracle machine is the number of steps made duringits computation, and that the oracle's reply on each query is obtained in a single step.The key property of e�cient reductions is that they allow for the transformation of e�cientimplementations of the subroutine into e�cient implementations of the task reduced to it. That is,as we shall see, if one problem is Cook-reducible to another problem and the latter is polynomial-time solvable then so is the former. The most popular case is that of reducing decision problemsto decision problems, but we will also consider reducing search problems to search problems andreducing search problems to decision problems. Note that when reducing to a decision problem, theoracle is determined as the single valid solver of the decision problem (i.e., the function f : f0; 1g� !f0; 1g solves the decision problem of membership in S if, for every x, it holds that f(x) = 1 if x 2 Sand f(x) = 0 otherwise). In contrast, when reducing to a search problem, there may be manydi�erent valid solvers (i.e., each function f that satis�es (x; f(x)) 2 R for every (x; y) 2 R is a validsolver of the search problem of R). We capture both cases below.De�nition 22 (Cook reduction): A problem � is Cook-reducible to a problem �0 if there exists apolynomial-time oracle machine M such that for every function f that solves �0 it holds that Mfsolves �, where Mf (x) denotes the output of M on input x when given oracle access to f .36



Note that � (resp., �0) may be either a search problem or a decision problem (or even a yet unde�nedtype of a problem). At this point the reader should verify that if � is Cook-reducible to �0 and �0 issolvable in polynomial-time then so is �. (See Exercise 45 for other properties of Cook-reductions.)Also observe that the second part of the proof of Theorem 19 is actually a Cook-reduction of thesearch problem of any R in PC to a decision problem regarding a related set S0R in NP . Thus, thatproof establishes that any search problem in PC is Cook-reducible to some decision problem in NP .We shall see a tighter relation between search and decision problems in Section 3.3 (i.e., R will bereduced to SR = fx : 9y s.t. (x; y)2Rg rather than to S0R = f(x; y0) : 9y00 s.t. (x; y0y00)2Rg).A Karp-reduction is a special case of a reduction (from a decision problem to a decision problem).Speci�cally, for decision problems S and S0, we say that S is Karp-reducible to S0 if there is areduction of S to S0 that operates as follows: On input x (an instance for S), the reductioncomputes x0, makes query x0 to the oracle S0 (i.e., invokes the subroutine for S0 on input x0), andanswers whatever the latter returns. This reduction is often represented by the polynomial-timecomputable mapping of x to x0; that is, the standard de�nition of a Karp-reduction is actually asfollows.De�nition 23 (Karp reduction): A polynomial-time computable function f is called a Karp-reductionof S to S0 if, for every x, it holds that x 2 S if and only if f(x) 2 S0.Thus, syntactically speaking, a Karp-reduction is not a Cook-reduction, but it trivially gives riseto one (i.e., on input x, the oracle machine makes query f(x), and returns the oracle answer).Being slightly inaccurate but essentially correct, we shall say that Karp-reductions are special casesof Cook-reductions. Needless to say, Karp-reductions constitute a very restricted case of Cook-reductions. Still, this restricted case su�ces for many applications (e.g., most importantly for thetheory of NP-completeness (when developed for decision problems)), but not for reducing a searchproblem to a decision problem. Furthermore, whereas each decision problem is Cook-reducible to itscomplement, some decision problems are not Karp-reducible to their complement (see Exercises 47and 66).We comment that Karp-reductions may (and should) be augmented in order to handle reduc-tions of search problems to search problems. Such an augmented Karp-reduction of the searchproblem of R to the search problem of R0 operates as follows: On input x (an instance for R), thereduction computes x0, makes query x0 to the oracle R0 (i.e., invokes the subroutine for searchingR0 on input x0) obtaining y0 such that (x0; y0) 2 R0, and uses y0 to compute a solution y to x(i.e., y 2 R(x)). Thus, such a reduction can be represented by two polynomial-time computablemappings, f and g, such that (x; g(x; y0)) 2 R for any y0 that solves f(x) (i.e., for y0 that satis�es(f(x); y0) 2 R0). (Indeed, in general, unlike in the case of decision problems, the reduction cannotjust return y0 as an answer to x.) This augmentation is called a Levin-reduction and, analogously tothe case of a Karp-reduction, is often represented by the two polynomial-time computable mappings(i.e., of x to x0, and of (x; y0) to y).De�nition 24 (Levin reduction): A pair of polynomial-time computable functions, f and g, iscalled a Levin-reduction of R to R0 if for every x 2 SR and y0 2 R0(f(x)) it holds that (x; g(x; y0)) 2R, where SR = fx : 9y s.t. (x; y) 2 Rg and R0(x0) = fy0 : (x0; y0) 2 R0g. In addition, as anaugmentation of a Karp-reduction, for every x 62 SR it must hold that R0(f(x)) = ;.Indeed, the �rst function in a Levin-reduction (i.e., f) constitutes a Karp-reduction. As for thesecond function (i.e., g), it maps any solution y0 for the reduced instance f(x) to a solution for x(where this mapping may also depend on x). 37



Terminology: In the sequel, whenever we neglect to mention the type of a reduction, we refer toa Cook-reduction. Two additional terms, which will be particularly useful in the advanced lectures,are presented next.� We say that two problems are computationally equivalent if they are reducible to one another.This means that the two problems are essentially as hard (or as easy).� We say that a class of problems, C, is reducible to a problem �0 if every problem in C, isreducible to �0. We say that the class C is reducible to the class C0 if for every � 2 C thereexists �0 2 C0 such that � is reducible to �0.3.2 Reducing optimization problems to search problemsMany search problems involve a set of potential solutions, per each problem instance, such thatdi�erent solutions are assigned di�erent \values" (resp., \costs"). In such a case, one is interestedin �nding a solution that has value exceeding some threshold (resp., cost below some threshold),or (even better) in �nding a solution of maximum value (resp., minimum cost). For simplicity,let us focus on the case of a value which we wish to maximize. Still, there are two di�erentobjectives (i.e., exceeding a threshold and optimizing), giving rise to two di�erent (auxiliary) searchproblems related to the same relation R. Speci�cally, for a binary relation R and a value functionf : f0; 1g� � f0; 1g� ! R, we consider two search problems.1. Exceeding a threshold: Given a pair (x; v) the task is to �nd y 2 R(x) such that f(x; y) � v,where R(x) = fy : (x; y)2Rg. That is, we are actually referring to the search problem of therelation Rf def= f(hx; vi; y) : (x; y)2R ^ f(x; y) � vg; (1)where hx; vi denotes a string that encodes the pair (x; v).2. Maximization: Given x the task is to �nd y 2 R(x) such that f(x; y) = vx, where vx is themaximum value of f(x; y0) over all y0 2 R(x). That is, we are actually referring to the searchproblem of the relationR0f def= f(x; y)2R : f(x; y) = maxy02R(x)ff(x; y0)gg: (2)Examples of value functions include the size of a clique in a graph, the amount of 
ow in a network(with link capacities), etc. The task may be to �nd a clique of size exceeding a given threshold ina given graph or to �nd a maximum-size clique in a given graph. Note that, in these examples, the\base" search problem (i.e., the relation R) is quite easy to solve, and the di�culty arises from theauxiliary condition on the value of a solution (presented in Rf and R0f ). Indeed, one may trivializeR (i.e., let R(x) = f0; 1gpoly(jxj) for every x), and impose all necessary structure by the function f(see Exercise 48).We con�ne ourselves to the case that f is polynomial-time computable, which in particularmeans that f(x; y) can be represented by a rational number of length polynomial in jxj+ jyj. Wewill show next that, in this case, the two aforementioned search problems (i.e., of Rf and R0f ) arecomputationally equivalent.Theorem 25 For any polynomial-time computable f : f0; 1g��f0; 1g� ! R and a polynomiallybounded binary relation R, let Rf and R0f be as in Eq. (1) and Eq. (2), respectively. Then thesearch problems of Rf and R0f are computationally equivalent.38



It follows that, for R 2 PC and polynomial-time computable f , both the Rf and R0f are reducibleto NP . We note, however, that, while Rf 2 PC always holds, it is not necessarily the case thatR0f 2 PC. See further discussion following the proof.Proof: The search problem of Rf is reduced to the search problem of R0f by �nding an optimalsolution (for the given instance) and comparing its value to the given threshold value. That is, weconstruct an oracle machine that solves Rf by making a single query to R0f . Speci�cally, on input(x; v), the machine issues the query x (to a solver for R0f ), obtaining the optimal solution y (or anindication ? that R(x) = ;), computes f(x; y), and returns y if f(x; y) � v. Otherwise (i.e., eithery = ? or f(x; y) < v), the machine returns an indication that Rf (x; v) = ;.Turning to the opposite direction, we reduce the search problem of Rf to the search problemof R0f by �rst �nding the optimal value vx = maxy2R(x)ff(x; y)g (by binary search on its possiblevalues), and next �nding a solution of value (at least) vx. In both steps, we use oracle calls to Rf .For simplicity, we assume that f assigns positive integer values, and let ` = poly(jxj) be such thatf(x; y) � 2`�1 for every y 2 R(x). Then, on input x, we �rst �nd vx = maxff(x; y) : y2R(x)g, bymaking oracle calls of the form hx; vi. The point is that vx < v if any only if Rf (hx; vi) = ;, whichin turn is indicated by the oracle answer ? (to the query hx; vi). Making ` queries, we determine vx(see Exercise 49). Note that in case R(x) = ;, all answers will indicate that Rf (hx; vi) = ;, whichwe treat as if vx = 0. Finally, we make the query (x; vx), and halt returning the oracle's answer.Proof's digest. Note that the �rst direction uses the hypothesis that f is polynomial-time com-putable, whereas the opposite direction only used the fact that the optimal value lies in a �nitespace of exponential size that can be \e�ciently searched". Whereas the �rst direction can beproved using a Levin-reduction, this seems impossible for the opposite direction (in general).On the complexity of Rf and R0f . We focus on the natural case in which R 2 PC and f ispolynomial-time computable. In this case, Theorem 25 implies that Rf and R0f are computationallyequivalent. A closer look reveals, however, that Rf 2 PC always holds, whereas R0f 2 PC doesnot necessarily hold. That is, the problem of �nding a solution (for a given instance) that exceedsa given threshold is in the class PC, whereas the problem of �nding an optimal solution is notnecessarily in the class PC. For example, the problem of �nding a clique of a given size K in agiven graph G is in PC, whereas the problem of �nding a maximum size clique in a given graph Gis not known (and quite unlikely) to be in PC (although it is Cook-reducible to PC). Indeed, theclass of problems that are reducible to PC is a natural and interesting class (which is contained in�2); indeed, for every R 2 PC and polynomial-time computable f , the former class contains R0f .3.3 Self-reducibility of search problemsThe results presented in this section further justify the focus on decision problems. Loosely speak-ing, these results show that for many natural relations R, the question of whether or not the searchproblem of R is e�ciently solvable (i.e., is in PF) is determined by the question of whether or notthe \decision problem implicit in R" (i.e., SR = fx : 9y s.t. (x; y)2Rg) is e�ciently solvable (i.e.,is in P). Note that the latter decision problem is easily reducible to the search problem of R, andso our focus is on the other direction. That is, we focus on relations R for which the search problemof R is reducible to the decision problem of SR. 39



Teaching note: Our usage of the term self-reducibility di�ers from the traditional one.Traditionally, a decision problem is called self-reducible if it is Cook-reducible to itselfvia a reduction that on input x only makes queries that are smaller than x (accordingto some appropriate measure on the size of strings). Under some natural restrictions(i.e., the reduction takes the disjunction of the oracle answers) such reductions yieldreductions of search to decision (as discussed in the main text).De�nition 26 (the decision implicit in a search and self-reducibility): The decision problem implicitthe search problem of R is deciding membership in the set SR = fx : R(x) 6= ;g, where R(x) =fy : (x; y) 2 Rg. The search problem of R is called self-reducible if it can be reduced to the decisionproblem of SR.Note that the search problem of R and the problem of deciding membership in SR refer to the sameinstances: The search problem requires �nding an adequate solution (i.e., given x �nd y 2 R(x)),whereas the decision problem refers to the question of whether such solutions exist (i.e., given xanswer whether or not R(x) is non-empty). Thus, SR is really the \decision problem implicit inR," because it is a decision problem that one implicitly solves when solving the search problemof R. Indeed, the decision problem of SR is always reducible to the search problem for R19 (andif R is in PC then SR is in NP). It follows that if a search problem R is self-reducible then it iscomputationally equivalent to the decision problem SR.Self-reducibility means a reduction of the search problem to the decision problem implicit init. We shall see that self-reducibility is a property of many natural search problems (including allNP-complete search problems). This justi�es the relevance of decision problems to search problemsin a stronger sense than established in Section 2.3: Recall that in Section 2.3 we showed that thefate of the search problem class PC (w.r.t PF) is determined by the fate of the decision problemclass NP (w.r.t P). Here we show that, for many natural search problems in PC (i.e., self-reducibleones), the fate of such a problem R (w.r.t PF) is determined by the fate of the decision problemSR (w.r.t P), where SR is the decision problem implicit in R.We now present a few search problems that are self-reducible. We start with SAT, the set ofsatis�able Boolean formulae (in CNF), and consider the search problem in which given a formulaone should provide a truth assignment that satis�es it. The corresponding relation is denoted RSAT;that is, (�; �) 2 RSAT if � is a satisfying assignment to the formulae �. The decision problem implicitin RSAT is indeed SAT. Note that RSAT is in PC (i.e., it is polynomially-bounded and membershipof (�; �) in RSAT is easy to decide (by evaluating a Boolean expression)).Proposition 27 (RSAT is self-reducible): The search problem of RSAT is reducible to SAT.Thus, the search problem of RSAT is computationally equivalent to deciding membership in SAT.Hence, in studying the complexity of SAT, we also address the complexity of the search problem ofRSAT.Proof: We present an oracle machine that solves the search problem of RSAT by making oraclecalls to SAT. Given a formula �, we �nd a satisfying assignment to � (in case such an assignmentexists) as follows. First, we query SAT on � itself, and return an indication that there is no solutionif the oracle answer is 0 (indicating � 62 SAT). Otherwise, we let � , initiated to the empty string,denote a pre�x of a satisfying assignment of �. We proceed in iterations, where in each iteration19For example, the reduction invoke the search oracle and answer 1 if and only if the oracle returns some string(rather than the \no solution" symbol). 40



we extend � by one bit. This is done as follows: First we derive a formula, denoted �0, by settingthe �rst j� j+ 1 variables of � according to the values �0. We then query SAT on �0 (which meansthat we ask whether or not �0 is a pre�x of a satisfying assignment of �). If the answer is positivethen we set �  �0 else we set �  �1. This procedure relies on the fact that if � is a pre�x of asatisfying assignment of � and �0 is not a pre�x of a satisfying assignment of � then �1 must be apre�x of a satisfying assignment of �.We wish to highlight a key point that has been blurred in the foregoing description. Recallthat the formula �0 is obtained by replacing some variables by constants, which means that �0 perse contains Boolean variables as well as Boolean constants. However, the standard de�nition ofSAT disallows Boolean constants in its instances.20 Nevertheless, �0 can be simpli�ed such that theresulting form contains no Boolean constants. This simpli�cation is according to the straightforwardboolean rules: That is, the constant false can be omitted from any clause, but if a clause containsonly occurrences of the constant false then the entire formula simpli�es to false. Likewise, ifthe constant true appears in a clause then the entire clause can be omitted, but if all clauses areomitted then the entire formula simpli�es to true.) Needless to say, if the simpli�cation processyields a Boolean constant then we may skip the query, and otherwise we just use the simpli�edform of �0 as our query.Reductions analogous to the one used in the proof of Proposition 27 can be presented also forother search problems (and not only for NP-complete ones). Two such examples are searching fora 3-coloring of a given graph and searching for an isomorphism between a given pair of graphs(where the �rst problem is known to be NP-complete and the second problem is believed not to beNP-complete). In both cases, the reduction of the search problem to a decision problem involvesextending a pre�x of a valid solution by making suitable queries in order to decide which extensionto use. Note, however, that in these cases the process of getting rid of constants (representingpartial solutions) is more involved. For example, in the case of Graph 3-Colorability (resp., GraphIsomorphism) we need to enforce a partial coloring of a given graph (resp., a partial isomorphismbetween a given pair of graphs); see Exercises 50 and 51, respectively.Re
ection: The proof of Proposition 27 (as well as the proofs of similar results) consists of twoobservations.1. For every relation R in PC, it holds that the search problem of R is reducible to the decisionproblem of S0R = f(x; y0) : 9y00 s.t. (x; y0y00)2Rg. Such a reduction is explicit in the proof ofTheorem 19 and is implicit in the proof of Proposition 27.2. For speci�c R 2 PC (e.g., SSAT), deciding membership in S0R is reducible to deciding mem-bership in SR = fx : 9y s.t. (x; y)2Rg. This is where the speci�c structure of SAT was used,allowing for a direct and natural transformation of instances of S0R to instances of SR.(We comment that if SR is NP-complete then S0R, which is always in NP , is reducible to SRby the mere fact that SR is NP-complete; this comment is related to the following advancedcomment.)For an arbitrary R 2 PC, deciding membership in S0R is not necessarily reducible to decidingmembership in SR. Furthermore, deciding membership in S0R is not necessarily reducible to thesearch problem of R. (See Exercises 52 and 53.)20While the problem seems rather technical at the current setting (as it merely amounts to whether or not thede�nition of SAT allows Boolean constants in its instances), it is far from being so technical in other cases (seeExercises 50 and 51). 41



Teaching note: In the rest of this section, we assume that the students have heardof NP-completeness. Speci�cally, all we need the students to know is that a set S isNP-complete if S 2 NP and every set in NP is reducible to S. Yet, the teacher mayprefer postponing the presentation of the following material to Section 4.1 (or even to alater stage).Advanced comment: In general, self-reducibility is a property of the search problem and notof the decision problem implicit in it. Assuming that P 6= NP , there exists relations R1; R2 2 PChaving the same implicit-decision problem (i.e., fx : R1(x) 6= ;g = fx : R2(x) 6= ;g) such that R1is self-reducible but R2 is not (see Exercise 54). However, this phenomenon does not arise whenNP-complete problems are involved; that is, all search problems that refer to �nding NP-witnessesfor any NP-complete decision problem are self-reducible.Theorem 28 For every R in PC such that SR is NP-complete, the search problem of R is reducibleto deciding membership in SR.In many cases, as in the proof of Proposition 27, the reduction of the search problem to thecorresponding decision problem is quite natural. The following proof presents a generic reduction(which may be \unnatural" in some cases).Proof: In order to reduce the search problem of R to deciding SR, we compose the following tworeductions:1. A reduction of the search problem of R to deciding membership in S0R = f(x; y0) : 9y00 s.t. (x; y0y00)2Rg.As stated in the foregoing paragraph (titled \re
ection"), such a reduction is implicit in theproof of Proposition 27 (as well as being explicit in the proof of Theorem 19).2. A reduction of S0R to SR.This reduction exists by the hypothesis that SR is NP-complete and the fact that S0R 2 NP .(Note that we do not assume that this reduction is a Karp-reduction, and furthermore it maybe a \unnatural" reduction).The theorem follows.4 NP-CompletenessIn light of the di�culty of settling the P-vs-NP Question, when faced with a hard problem H inNP, we cannot expect to prove that H is not in P (unconditionally). The best we can expect is toprove that H is not in P, assuming that NP is di�erent from P. The contrapositive is proving thatif H is in P, then so is any problem in NP (i.e., NP equals P). One possible way of proving such anassertion is showing that any problem in NP is polynomial-time reducible to H. This is the essenceof the theory of NP-completeness.Teaching note: Some students heard of NP-completeness before, but we suspect thatmany have missed important conceptual points. Speci�cally, we fear that they missedthe point that the mere existence of NP-complete problems is amazing (let alone thatthese problems include natural ones such as SAT). We believe that this situation is aconsequence of presenting the detailed proof of Cook's Theorem as the very �rst thingright after de�ning NP-completeness. 42



4.1 De�nitionsThe standard de�nition of NP-completeness refers to decision problems. Below we will alsopresent a de�nition of NP-complete (or rather PC-complete) search problems. In both cases,NP-completeness of a problem � combines two conditions:1. � is in the class (i.e., � being in NP or PC, depending on whether � is a decision or a searchproblem).2. Each problem in the class is reducible to �. This condition is called NP-hardness.Although a perfectly good de�nition could have allowed arbitrary Cook-reductions (for establishingNP-hardness), it turns out that Karp-reductions (resp., Levin-reductions) su�ce for establishingthe NP-hardness of all natural NP-complete decision (resp., search) problems. Consequently, NP-completeness is usually de�ned using this restricted notion of a polynomial-time reduction.De�nition 29 (NP-completeness of decision problems, restricted notion): A set S is NP-completeif it is in NP and every set in NP is Karp-reducible to S.A set is NP-hard if every set in NP is Karp-reducible to it. Indeed, there is no reason to insist onKarp-reductions (rather than using arbitrary Cook-reductions), except that the restricted notionsu�ces for all known demonstrations of NP-completeness and is easier to work with. An analogousde�nition applies to search problems.De�nition 30 (NP-completeness of search problems, restricted notion): A binary relation R isPC-complete if it is in PC and every relation in PC is Levin-reducible to R.In the sequel, we will sometimes abuse the terminology and refer to search problems as NP-complete(rather than PC-complete). Likewise, we will say that a search problem is NP-hard (rather thanPC-hard) if every relation in PC is Levin-reducible to it.We stress that the mere fact that we have de�ned something (i.e., NP-completeness) does notmean that this thing exists (i.e., that there exist objects that satisfy the property). It is indeedremarkable that NP-complete problems do exist. Such problems are \universal" in the sense thatsolving them allows to solve any other (reasonable) problem.4.2 The existence of NP-complete problemsWe suggest not to confuse the mere existence of NP-complete problems, which is remarkable byitself, with the even more remarkable existence of \natural" NP-complete problems. The followingproof delivers the �rst message as well as focuses on the essence of NP-completeness, rather than onmore complicated technical details. The essence of NP-completeness is that a single computationalproblem may \e�ectively encode" a wide class of seemingly unrelated problems.Theorem 31 There exist NP-complete relations and sets.Proof: The proof (as well as any other NP-completeness proof) is based on the observation thatsome decision problems in NP (resp., search problems in PC) are \rich enough" to encode alldecision problems in NP (resp., all search problems in PC). This fact is most obvious for the\generic" decision and search problems, denoted Su and Ru (and de�ned next), which are used toderive the simplest proof of the current theorem.43



We consider the following relation Ru and the decision problem Su implicit in Ru (i.e., Su =fx : 9y s.t. (x; y)2Rug). Both problems refer to the same type of instances, which in turn havethe form x = hM;x; 1ti, where M is a description of a (deterministic) Turing machine, x is a stringand t is a natural number. The number t is given in unary (rather than in binary) in order to allowvarious complexity measures, which depend on the instance length, to be polynomial in t (ratherthan poly-logarithmic in t).The relation Ru consists of pairs (hM;x; 1ti; y) such that M accepts the input pair (x; y)within t steps, where jyj � t.(Instead of requiring that jyj � t, one may require that M is canonical in the sense that it readsits entire input before halting.) The corresponding set Su def= fx : 9y s.t. (x; y) 2 Rug consists oftriples hM;x; 1ti such that machine M accepts some input of the form (x; �) within t steps.It is easy to see that Ru is in PC and that Su is in NP . Indeed, Ru is recognizable by auniversal Turing machine, which on input (hM;x; 1ti; y) emulates (t steps of) the computation ofM on (x; y). (The fact that Su 2 NP follows similarly.) We comment that u indeed stands foruniversal (machine), and the proof extends to any reasonable model of computation (which hasadequate universal machines).We now turn to show that Ru and Su are NP-hard in the adequate sense (i.e., Ru is PC-hardand Su is NP-hard). We �rst show that any set in NP is Karp-reducible to Su. Let S be a set inNP and let us denote its witness relation by R; that is, R is in PC and x 2 S if and only if thereexists y such that (x; y) 2 R. Let pR be a polynomial bounding the length of solutions in R (i.e.,jyj � pR(jxj) for every (x; y) 2 R), let MR be a polynomial-time machine deciding membership (ofalleged (x; y) pairs) in R, and let tR be a polynomial bounding its running-time. Then, the desiredKarp-reduction maps an instance x (for S) to the instance hMR; x; 1tR(jxj+pR(jxj))i (for Su); that is,x 7! f(x) def= hMR; x; 1tR(jxj+pR(jxj))i: (3)Note that this mapping can be computed in polynomial-time, and that x 2 S if and only iff(x) = hMR; x; 1tR(jxj+pR(jxj))i 2 Su. Details follow.First, note that the mapping f does depend (of course) on S, and so it may depend on the �xedobjects MR, pR and TR (which depend on S). Thus, computing f on input x calls for printing the�xed string MR, copying x, and printing a number of 1's that is a �xed polynomial in the lengthof x. Second, note that x 2 S if and only if there exists y such that jyj � pR(jxj) and (x; y) 2 R.Since MR accepts (x; y) 2 R within tR(jxj + jyj) steps, it follows that x 2 S if and only if thereexists y such that jyj � pR(jxj) and MR accepts (x; y) within tR(jxj + jyj) steps. It follows thatx 2 S if and only if f(x) 2 Su.To reduce the search problem of any R in PC to the search problem of Ru, we use essentiallythe same reduction. On input an instance x (for R), we make the query hMR; x; 1tR(jxj+pR(jxj))ito the search problem of Ru and return whatever the latter returns. Note that if x 62 S thenthe answer will be \no solution", whereas for every x and y it holds that (x; y) 2 R if and onlyif (hMR; x; 1tR(jxj+pR(jxj))i; y) 2 Ru. Thus, a Levin-reduction of R to Ru consists of the pair offunctions (f; g), where f is the foregoing Karp-reduction and g(x; y) = y. Note that indeed, forevery (f(x); y) 2 Ru, it holds that (x; g(x; y)) = (x; y) 2 R.Advanced comment. Note that the role of 1t in the de�nition of Ru is to allow placing Ru inPC. In contrast, consider the relation R0u that consists of pairs (hM;x; ti; y) such that M acceptsxy within t steps. Then, as will become obvious in a future lecture, membership in R0u cannot be44



decided in polynomial time (even in the special case where x and y are �xed). Omitting t altogetherfrom the problem instance yields a search problem that is not solvable at all. That is, considerthe relation RH def= f(hM;xi; y) : M(xy) = 1g (which is related to the halting problem). Indeed,the search problem of any relation (an in particular of any relation in PC) is Karp-reducible tothe search problem of RH , but the latter is not solvable at all (i.e., there exists no algorithm thathalts on every input and on input x = hM;xi outputs y such that (x; y) 2 RH if and only such a yexists).Bounded Halting and Non-HaltingWe note that the problem shown to be NP-complete in the proof of Theorem 31 is related to thefollowing two problems, called Bounded Halting and Bounded Non-Halting. Fixing any program-ming language, the instance to each of these problems consists of a program � and a time boundt (presented in unary). The decision version of Bounded Halting (resp., Bounded Non-Halting)consists of determining whether or not there exists an input (of length at most t) on which theprogram � halts (resp., does not halt) in t steps, whereas the search problem consists of �ndingsuch an input.Thus, the decision version of Bounded Non-Halting refers to a fundamental computationalproblem in the area of program veri�cation; speci�cally, the question of whether a given programhalts within a given time-bound on all inputs of a given length.21 We mention the Bounded Haltingproblem because it is often referred to in the literature, but we believe that Bounded Non-Haltingis more relevant to the project of program veri�cation (because one seeks programs that halt onall inputs rather than programs that halt on some input).It is easy to prove that both problems are NP-complete (see Exercise 58). The fact that BoundedNon-Halting is probably intractable (i.e., is intractable provided that P 6= NP) is even morerelevant to the project of program veri�cation than the fact that the Halting Problem is undecidable.The reason being that the latter problem (as well as other related undecidable problems) refersto arbitrarily long computations, whereas the former problem refers to computations of explicitlybounded number of steps. Speci�cally, Bounded Non-Halting is concerned with the existenceof an input that causes the program to violate a certain condition (i.e., halting) within a giventime-bound.In light of the above, the common practice of bashing Bounded (Non-)Halting as an \unnat-ural" problem seems very odd at an age in which computer programs plays such a central role.(Nevertheless, we will use the term \natural" in this traditionally odd sense in the next title.)4.3 Some natural NP-complete problemsHaving established the mere existence of NP-complete problems, we now turn to prove the existenceof NP-complete problems that do not (explicitly) refer to computation in the problem's de�nition.We stress that thousands of such problems are known (and a list of several hundreds can be foundin [6]).We will prove that deciding the satis�ability of propositional formulae is NP-complete (i.e.,Cook's Theorem), and also present some combinatorial problems that are NP-complete. Thispresentation is aimed at providing a (small) sample of natural NP-completeness results as well as21The length parameter need not equal the time-bound. Indeed, a more general version of the problem refers totwo bounds, ` and t, and to whether the given program halts within t steps on each possible `-bit input. It is easy toprove that the problem remains NP-complete also in the case that the instances are restricted to have parameters `and t such that t = p(`), for any �xed polynomial p (e.g., p(n) = n2, rather than p(n) = n as used in the main text).45



some tools towards proving NP-completeness of new problems of interest. We start by making acomment regarding the latter issue.The reduction presented in the proof of Theorem 31 is called \generic" because it (explicitly)refers to any (generic) NP-problem. That is, we actually presented a scheme for design of reductionsfrom any desired NP-problem to the single problem proved to be NP-complete. Indeed, in doingso, we have followed the de�nition of NP-completeness. However, once we know some NP-completeproblems, a di�erent route is open to us. We may establish the NP-completeness of a new problemby reducing a known NP-complete problem to the new problem. This alternative route is indeed acommon practice, and it is based on the following simple proposition.Proposition 32 If an NP-complete problem � is reducible to some problem �0 in NP then �0 isNP-complete. Furthermore, reducibility via Karp-reductions (resp., Levin-reductions) is preserved.Proof: The proof boils down to asserting the transitivity of reductions. That is, every problemin NP is reducible to �, which in turn is reducible to �0. Thus, by transitivity of reduction (seeExercise 46), every problem in NP is reducible to �0, which means that �0 is NP-hard and theproposition follows.4.3.1 Circuit and formula satis�ability: CSAT and SATWe consider two related computational problems, CSAT and SAT, which refer (in the decisionversion) to the satis�ability of circuits and formulae, respectively. (We refer the reader to thede�nition of Boolean circuits, formulae and CNF formulae that appear in x1.4.1.)Teaching note: We suggest to establish the NP-completeness of SAT by a reductionfrom the circuit satisfaction problem (CSAT), after establishing the NP-completeness ofthe latter. Doing so allows to decouple two important issues in the proof of the NP-completeness of SAT: the emulation of Turing machines by circuits, and the encoding ofcircuits by formulae with auxiliary variables.CSAT. Recall that Boolean circuits are directed acyclic graphs with internal vertices, called gates,labeled by Boolean operations (of arity either 2 or 1), and external vertices called terminals thatare associated with either inputs or outputs. When setting the inputs of such a circuit, all internalnodes are assigned values in the natural way, and this yields a value to the output(s), called anevaluation of the circuit on the given input. The evaluation of circuit C on input z is denotedC(z). We focus on circuits with a single output, and let CSAT denote the set of satis�able Booleancircuits (i.e., a circuit C is in CSAT if there exists an input z such that C(z) = 1). We also considerthe related relation RCSAT = f(C; z) : C(z) = 1g.Theorem 33 (NP-completeness of CSAT): The set (resp., relation) CSAT (resp., RCSAT) is NP-complete (resp., PC-complete).Proof: As usual it is easy to see that CSAT 2 NP (resp., RCSAT 2 PC). Thus, we turn to showingthat these problems are NP-hard. We will focus on the decision version (but also discuss the searchversion).We will present (again, but for the last time in this text) a generic reduction, this time of anyNP-problem to CSAT. The reduction is based on the observation, mentioned in x1.4.1, that thecomputation of polynomial-time algorithms can be emulated by polynomial-size circuits. In the46



current context, we wish to emulate the computation of a �xed machine M on input (x; y), wherex is �xed and y varies (but jyj = poly(jxj) and the total number of steps of M(x; y) is polynomialin jxj+ jyj). Thus, x will be \hard-wired" into the circuit, whereas y will serve as the input to thecircuit. The circuit itself, denoted Cx, will consists of \layers" such that each layer represents aninstantaneous con�guration of the machineM , and the relation between consecutive con�gurationsin a computation of this machine is captured by (\uniform") local gadgets in the circuit. Thenumber of layers will depend on the polynomial that upper-bounds the running-time of M , andan additional gadget will be used to detect whether the last con�guration is accepting. Thus, onlythe �rst layer of the circuit Cx will depend on x. The punch-line is that determining whether, fora given x, there exists a y (jyj = poly(jxj)) such that M(x; y) = 1 (in a given number of steps)reduces to the question of whether there exists a y such that Cx(y) = 1. Performing this reductionfor any machine MR that corresponds to any R 2 PC (as in the proof of Theorem 31), we establishthe fact that CSAT is NP-complete. Details follow.Recall that we wish to reduce an arbitrary set S 2 NP to CSAT. Let R, pR, MR and tR be as inthe proof of Theorem 31 (i.e., R is the witness relation of S, whereas pR bounds the length of theNP-witnesses, MR is the machine deciding membership in R, and tR is its polynomial time-bound).Without loss of generality (and for simplicity), suppose that MR is a one-tape Turing machine. Wewill construct a Karp-reduction that maps an instance x (for S) to a circuit, denoted f(x) def= Cx,such that Cx(y) = 1 if and only if MR accepts the input (x; y) within tR(jxj+ pR(jxj)) steps. Thus,it will follow that x 2 S if and only if there exists y 2 f0; 1gpR(jxj) such that Cx(y) = 1 (i.e., if andonly if Cx 2 CSAT). The circuit Cx will depend on x as well as on MR; pR and tR. (We stress thatMR; pR and tR are �xed, whereas x is varies and thus explicit in our notation.)Before describing the circuit Cx, let us consider a possible computation of MR on input (x; y),where x is �xed and y represents a generic string of length at most pR(jxj). Such a computationproceeds for t = tR(jxj + pR(jxj)) steps, and corresponds to a sequence of t + 1 instantaneouscon�gurations, each of length t. Each such con�guration can be encoded by t pairs of symbols,where the �rst symbol in each pair indicates the contents of a cell and the second symbol indicateseither a state of the machine or that the machine is not located in this cell. Thus, each pair is amember of ��(Q[f?g), where � is the �nite \work alphabet" ofMR, Q is its �nite set of internalstates, and ? is an indication that the machine is not present at a cell. The initial con�gurationincludes xy as input, and the decision of MR(x; y) can be read from (the leftmost cell of) thelast con�guration.22 With the exception of the �rst row, the values of the entries in each row aredetermined by the entries of the row just above it, where this determination re
ects the transitionfunction of MR. Furthermore, the value of each entry in the said array is determined by the valuesof (up to) three entries that reside in the row above it (see Exercise 59). Thus, the aforementionedcomputation is represented by a (t+ 1)� t array, where each entry encodes one out of a constantnumber of possibilities, which in turn can be encoded by a constant-length bit string. See Figure 4.The circuit Cx has a structure that corresponds to the aforementioned array. Each entry in thearray is represented by a constant number of gates such that when Cx is evaluated at y these gateswill be assigned values that encode the contents of the said entry. In particular, the entries of the�rst row of the array are \encoded" by hard-wiring the reduction's input (i.e., x), and feeding thecircuit's input (i.e., y) to the adequate input terminals. That is, the circuit has pR(jxj) (\real")input terminals, and the hard-wiring of constants to other gates that represent the �rst row is doneby a simple gadget (as in Figure 2). Indeed, additional hard-wiring in the �rst row correspondsto the other �xed elements of the initial con�guration (i.e., the blank symbols and the encoding22We refer to the output convention presented in x1.3.1, by which the output is written in the leftmost cells andthe machine halts at the cell to its right. 47
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Blank characters as well as the indication that the machine is not present in thecell are marked by a hyphen (-). The three arrows represent the determinationof an entry by the three entries that reside above it. This machine accept theinput if and only if it contains a zero.Figure 4: An array representing ten computation steps on input 110y1y2.of the initial state and the initial location; cf. Figure 4). The entries of subsequent rows will be\encoded" (or rather computed at evaluation time) by using constant-size circuits that determinethe value of an entry based on the three relevant entries in the row above it. Recall that each entryis encoded by a constant number of gates, and thus these constant-size circuits merely compute theconstant-size function described in Exercise 59. In addition, the circuit will have a few extra gatesthat check the values of the entries of the last row in order to determine whether or not it encodesan accepting con�guration.23 Note that the circuit Cx can be constructed in polynomial time fromthe string x, because we just need to encode x in an appropriate manner as well as generate a\highly uniform" grid-like circuit of size O(tR(jxj+ pR(jxj))2).24Although the foregoing construction of Cx capitalizes on various speci�c details of the (one-tape) Turing machine model, it can be adapted to any other \reasonable" model of e�cientcomputation.25 Alternatively, we recall the Cobham-Edmonds Thesis asserting that any deci-23In continuation to Footnote 22, we note that it su�ces to check the values of the two leftmost entries of the lastrow. We assumed here that the circuit propagates a halting con�guration to the last row. Alternatively, we maycheck for the existence of an accepting/halting con�guration in the entire array, since this condition is quite simple.24Advanced comment: A more e�cient construction, which generate almost-linear sized circuits (i.e., circuits ofsize eO(tR(jxj+ pR(jxj)))) is known; see [12].25Advanced comment: Note that it is actually inessential that each entry in each con�guration is determinedby a constant number of entries in the previous con�guration. Any polynomial-time computable transformation ofcon�gurations will do since we can emulate such a transformation by a polynomial-size circuit. Indeed, this emulationwill be based on presenting the said transformation in some concrete model of computation, which brings us to thenext comment (invoking the Cobham-Edmonds Thesis). 48



sion problem that is solvable in polynomial-time (on some \reasonable" model) can be solved inpolynomial-time by a (one-tape) Turing machine.Turning back to the circuit Cx, we observe that indeed Cx(y) = 1 if and only if MR accepts theinput (x; y) while making at most t = tR(jxj + pR(jxj)) steps. Recalling that S = fx : 9y s.t. jyj�pR(jxj) ^ (x; y)2Rg and that MR decides membership in R in time tR, we infer that x 2 S if andonly if f(x) = Cx 2 CSAT. Furthermore, (x; y) 2 R if and only if (f(x); y) 2 RCSAT. It follows thatf is a Karp-reduction of S to CSAT, and, for g(x; y) def= y it holds that (f; g) is a Levin-reduction ofR to RCSAT. The theorem follows.SAT. Recall that Boolean formulae are special types of Boolean circuits (i.e., circuits having atree structure). We further restrict our attention to formulae given in conjunctive normal form(CNF). We denote by SAT the set of satis�able CNF formulae (i.e., a CNF formula � is in SATif there exists an truth assignment � such that �(�) = 1). We also consider the related relationRSAT = f(�; �) : �(�) = 1g.Theorem 34 (NP-completeness of SAT): The set (resp., relation) SAT (resp., RSAT) is NP-complete(resp., PC-complete).Proof: Since the set of possible instances of SAT is a subset of the set of instances of CSAT, it isclear that SAT 2 NP (resp., RSAT 2 PC). To prove that SAT is NP-hard, we reduce CSAT to SAT(and use Proposition 32). The reduction boils down to introducing auxiliary variables in order to\cut" the computation of an arbitrary (\deep") circuit into a conjunction of related computationsof \shallow" circuits (i.e., depth-2 circuits) of unbounded fan-in, which in turn may be presentedas a CNF formula. The aforementioned auxiliary variables hold the possible values of the internalgates of the input circuit, and the clauses of the CNF formula enforce the consistency of thesevalues with the corresponding gate operation. For example, if gatei and gatej feed into gatek,which is a ^-gate, then the corresponding variables gi; gj ; gk should satisfy gk � (gi ^ gj) (whichcan be written as a 3CNF with four clauses). Details follow.We start by Karp-reducing CSAT to SAT. Given a Boolean circuit C, with n input terminalsand m gates, we �rst construct m constant-size formulae on n + m variables, where the �rst nvariables correspond to the input terminals of the circuit, and the other m variables correspond toits gates. The ith formula will depend on the variable that correspond to the ith gate and the 1-2variables that correspond to the vertices that feed into this gate (i.e., 2 vertices in case of ^-gate or_-gate and a single vertex in case of a :-gate, where these vertices may be either input terminals orother gates). This (constant-size) formula will be satis�ed by a truth assignment if and only if thisassignment matches the gate's functionality (i.e., feeding this gate with the corresponding valuesresult in the corresponding output value). Note that these constant-size formulae can be writtenas constant-size CNF formulae (in fact, as 3CNF formulae).26 Taking the conjunction of these mformulae as well as the variable associated with the gate that feeds into the output terminal, weobtain a formula � in CNF (see Figure 5, where n = 3 and m = 4).Note that � can be constructed in polynomial-time from the circuit C; that is, the mapping ofC to � = f(C) is polynomial-time computable. We claim that C is in CSAT if and only if � is in SAT.Suppose that for some string s it holds that C(s) = 1. Then, assigning the ith auxiliary variable26Recall that any Boolean function can be written as a CNF (or even 3CNF) formula having size that is exponentialin the length of its input, which in this case is a constant. Alternatively, note that the Boolean functions that werefer to here depends on 2-3 Boolean variables (and merely indicates whether or not the corresponding values respectthe gate's functionality). 49
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Using auxiliary variables (i.e., the gi's) to \cut" a depth-5 circuit (into a CNF).The dashed regions will be replaced by equivalent CNF formulae. The dashed cy-cle representing an unbounded fan-in and-gate is the conjunction of all constant-size circuits (which enforce the functionalities of the original gates) and the vari-able that represents the gate that feed the output terminal in the original circuit.Figure 5: The idea underlying the reduction of CSAT to SAT.the value that corresponds to the one assigned to the ith gate of C when evaluated on s, we obtain(together with s) a truth assignment that satis�es � (because such an assignment satis�es all mconstant-size CNFs as well as the variable associated with the output of C). On the other hand, if� satis�es � then the �rst n bits in � correspond to an input on which C evaluates to 1 (becausethe m constant-size CNFs guarantee that the variables of � are assigned values that correspond tothe evaluation of C on the �rst n bits of �). Note that the latter mapping (of � to its n-bit pre�x)is the second mapping required by the de�nition of a Levin-reduction. Thus, we have establishedthat f is a Karp-reduction of CSAT to SAT, and that augmented with the second mapping it yieldsa Levin-reduction of RCSAT to RSAT.Comment. The fact that the second mapping required by the de�nition of a Levin-reductionis explicit in the proof of the validity of the corresponding Karp-reduction is a fairly commonphenomenon. Actually, typical presentations of Karp-reductions provide two auxiliary polynomial-time computable mappings (in addition to the main mapping for instances from one problem (e.g.,CSAT) to another (e.g., SAT)): The �rst auxiliary mapping is of solutions for the preimage instance(e.g., of CSAT) to solutions for the image instance of the reduction (e.g., of SAT), whereas thesecond mapping goes the other way around. (Note that only the main mapping and the secondauxiliary mapping are required in the de�nition of a Levin-reduction.) For example, the proof of thevalidity of the Karp-reduction of CSAT to SAT, denoted f , speci�ed two mappings h and g such that(C; s) 2 RCSAT implies (f(C); h(C; s)) 2 RSAT and (f(C); �) 2 RSAT implies (C; g(C; �)) 2 RCSAT.Speci�cally, in the proof of Theorem 34, we used h(C; s) = (s; a1; :::; am) where ai is the valueassigned to the ith gate in the evaluation of C(s), and g(C; �) being the n-bit pre�x of � . SeeExercise 56.3SAT. Note that the formulae resulting from the Karp-reduction presented in the proof of Theo-rem 34 are in conjunctive normal form (CNF) with each clause referring to at most three variables.Thus, the above reduction actually establishes the NP-completeness of 3SAT (i.e., SAT restricted50



to CNF formula with up to three variables per clause). Alternatively, one may Karp-reduce SAT(for CNF formula) to 3SAT (i.e., satis�ability of 3CNF formula), by replacing long clauses withconjunctions of three-variable clauses using auxiliary variables (see Exercise 60). Either way, weget the following result, where the furthermore part is proved by an additional reduction.Proposition 35 3SAT is NP-complete. Furthermore, the problem remains NP-complete also if werestrict the instances such that each variable appears in at most three clauses.Proof Sketch: The furthermore part is proved by reduction from 3SAT. We just replace eachoccurrence of each Boolean variable by a new copy of this variable, and add clauses to enforcethat all these copies are assigned the same value. Speci�cally, replacing the variable z by copiesz(1); :::; z(m), we add the clauses z(i+1) _:z(i) for i = 1:::;m (where m+1 is understood as 1).4.3.2 Combinatorics and graph theoryTeaching note: The purpose of this subsection is to expose the students to a sampleof NP-completeness results and proof techniques (i.e., the design of reductions amongcomputational problems). The author believes that this traditional material is insightful,but one may skip it in the context of a complexity class.We present just a few of the many appealing combinatorial problems that are known to be NP-complete. Throughout this section, we focus on the decision versions of the various problems, andadopt a more informal style. Speci�cally, we will present a typical decision problem as a problem ofdeciding whether a given instance, which belongs to a set of relevant instances, is a \yes-instance"or a \no-instance" (rather than referring to deciding membership of arbitrary strings in a set ofyes-instances). For further discussion of this style and its rigorous formulation, see a discussion ofpromise problems. We will also neglect to show that these decision problems are in NP.We start with the set cover problem, in which an instance consists of a collection of �nite setsS1; :::; Sm and an integer K and the question (for decision) is whether or not there exist (at most)27K sets that cover Smi=1 Si (i.e., indices i1; :::; iK such that SKj=1 Sij = Smi=1 Si).Proposition 36 Set Cover is NP-complete.Proof Sketch: We sketch a reduction of SAT to Set Cover. For a CNF formula � with m clausesand n variables, we consider the sets S1;t; S1;f; ::; Sn;t; Sn;f � f1; :::;mg such that Si;t (resp., Si;f)is the set of the indices of the clauses (of �) that are satis�ed by setting the ith variable to true(resp., false). That is, if the ith variable appears unnegated (resp., negated) in the jth clause thenj 2 Si;t (resp., j 2 Si;f). Note that the union of these 2n sets equals f1; :::;mg. Now, on input �,the reduction outputs the Set Cover instance f(�) def= ((S1; ::; S2n); n), where S2i�1 = Si;t[fm+ igand S2i = Si;f [ fm+ ig for i = 1; :::; n.Note that f is computable in polynomial-time, and that if � is satis�ed by �1 � � � �n then thecollection fS2i��i : i = 1; :::; ng covers f1; :::;m+ng. Thus, � 2 SAT implies that f(�) is a positiveSet Cover instance. On the other hand, each cover of fm + 1; :::;m + ng � f1; :::;m + ng mustinclude either S2i�1 or S2i for each i. Thus, a cover of f1; :::;m + ng using n of the Sj's mustcontain, for every i, either S2i�1 or S2i but not both. Setting �i accordingly (i.e., �i = 1 if and onlyif S2i�1 is in the cover) implies that fS2i��i : i = 1; :::; ng covers f1; :::;mg, which in turn impliesthat �1 � � � �n satis�es �. Thus, if f(�) is a positive Set Cover instance then � 2 SAT.27Clearly, in case of Set Cover, the two formulations (i.e., asking for exactly K sets or at most K sets) arecomputationally equivalent. 51



Exact Cover and 3XC. The exact cover problem is similar to the set cover problem, exceptthat here the sets used in the cover are not allowed to intersect. That is, each element in theuniverse is covered by exactly one set in the cover. Restricting the set of instances to sequences ofsubsets each having exactly three elements, we get the restricted problem 3-Exact Cover (3XC),where it is unnecessary to specify the number of sets to be used in the cover. The problem 3XC israther technical, but it is quite useful for demonstrating the NP-completeness of other problems(by reducing 3XC to them).Proposition 37 3-Exact Cover is NP-complete.Indeed, it follows that the Exact Cover (in which sets of arbitrary size are allowed) is NP-complete.This follows both for the case that the number of sets in the desired cover is unspeci�ed and for thevarious cases in which this number is bounded (i.e., upper-bounded or lower-bounded or both).Proof Sketch: The reduction is obtained by composing three reductions. We �rst reduce arestricted case of 3SAT (proved to be NP-complete in Proposition 35) to a restricted version of SetCover, denoted 3SC, in which each set has at most three elements (and an instance consists, as inthe general case, of a sequence of �nite sets as well as an integer K). Consider an instance � of theaforementioned restricted case of 3SAT (in which each variable appears in at most three clauses). Ifall three occurrences of a variable are of the same type (i.e., they are all negated or all non-negated)then this variable can be assigned a value that satis�es all clauses in which it appears, and so thevariable and the clauses in which it appear can be omitted from the instance. In other words, wecan reduce this restriction of 3SAT to one in which each literal appears in at most two clauses.28Now, we reduce the new version of 3SAT to 3SC by using exactly the reduction presented in theproof of Proposition 36, and observing that the size of the generated sets is at most 3 (i.e., onemore than the number of occurrences of the corresponding literal).Next, we reduce 3SC to the following restricted case of Exact Cover, denoted 3XC', in which eachset has at most three elements, an instance consists of a sequence of �nite sets as well as an integerK, and the question is whether there exists an exact cover with at most K sets. The reductionmaps an instance ((S1; :::; Sm);K) of 3SC to the instance (C 0;K) such that C 0 is a collection of allsubsets of each of the sets S1; :::; Sm. Since each Si has size at most 3, we introduce at most 7non-empty subsets per each such set, and the reduction can be computed in polynomial-time. Thereader may easily verify the validity of this reduction.Finally, we reduce 3XC' to 3XC. Consider an instance ((S1; :::; Sm);K) of 3XC', and suppose thatSmi=1 Si = [n]. If n > 3K then this is de�nitely a no-instance, which can be mapped to a dummyno-instance of 3XC, and so we assume that x def= 3K � n � 0. Note that x represents the \excess"covering ability of an exact cover having K sets, each having three elements. Thus, we augment theset system with x new elements, denoted n+ 1; :::; 3K, and replace each Si such that jSij < 3 by asub-collection of 3-sets that cover Si as well as arbitrary elements from fn+1; :::; 3Kg. That is, incase jSij = 2, the set Si is replaced by the sub-collection (Si [ fn + 1g; :::; Si [ f3Kg), whereas asingleton Si is replaced by the sets Si [fj1; j2g for every j1 < j2 in fn+1; :::; 3Kg. In addition, weadd all possible 3-subsets of fn+1; :::; 3Kg. This completes the description of the third reduction,the validity of which is left as an exercise.Vertex Cover, Independent Set, and Clique. Turning to graph theoretic problems, we startwith the Vertex Cover problem, which is a special case of the Set Cover problem. The instances28Actually, a closer look at the proof of Proposition 35 reveals the fact that the reduced instances satisfy thisproperty anyhow. 52



consists of pairs (G;K), where G = (V;E) is a simple graph and K is an integer, and the problemis whether or not there exists a set of (at most) K vertices that is incident to all graph edges (i.e.,each edge in G has at least one endpoint in this set). Indeed, this instance of Vertex Cover canbe viewed as an instance of Set Cover by considering the collection of sets (Sv)v2V , where Svdenotes the set of edges incident at vertex v (i.e., Sv = fe 2 E : v 2 eg). Thus, the NP-hardnessof Set Cover follows from the NP-hardness of Vertex Cover. On the other hand, the VertexCover problem is computationally equivalent to the Independent Set and Clique problems (seeExercise 62), and thus it su�ces to establish the NP-hardness of one of these problems.Proposition 38 The problems Vertex Cover, Independent Set and Clique are NP-complete.Proof Sketch: We show a reduction from 3SAT to Independent Set. On input a 3CNF formula� with m clauses and n variables, we construct a graph with 7m vertices, denoted G�. The verticesare grouped in m cliques, each corresponding to one of the clauses and containing 7 vertices thatcorrespond to the 7 truth assignments (to the 3 variables in the clause) that satisfy the clause.In addition to the internal edges in these m cliques, we add an edge between two such partialassignments that are inconsistent. That is, if a speci�c (satisfying) assignment to the variables ofthe ith clause is inconsistent with some (satisfying) assignment to the variables of the jth clausethen we connect the corresponding vertices by an edge. Thus, on input �, the reduction outputsthe pair (G�;m).Note that if � is satis�able by a truth assignment � then there are no edges between the mvertices that correspond to the partial satisfying assignment (derived from �). (We stress thatany truth assignment to � yields an independent set, but only a satisfying assignment guaranteesthat this independent set contains a vertex from each of the m cliques.) Thus, � 2 SAT impliesthat G� has an independent set of size m. On the other hand, an independent set of size m inG� must contain exactly one vertex in each of the m cliques, and thus induces a truth assignmentthat satis�es �. (We stress that each independent set induces a consistent truth assignment to�, because the partial assignments selected in the various cliques must be consistent, and that anindependent set containing a vertex from a speci�c clique induces an assignment that satis�es thecorresponding clause.) Thus, if G� has an independent set of size m then � 2 SAT.Graph 3-Colorability (G3C). In this problem the instances are graphs and the question iswhether or not the graph can be colored using three colors (such that neighboring vertices are notassigned the same color).Proposition 39 Graph 3-Colorability is NP-complete.Proof Sketch: We reduce 3SAT to G3C by mapping a 3CNF formula � to the graph G�, whichconsists of two designated vertices and gadgets per each variable and per each clause of �.� The two designated vertices are called ground and false, and are connected by an edge thatensures that they must be given di�erent colors. We will refer to the color assigned to thevertex ground (resp., false) as color ground (resp., false). The third color will be calledtrue.� The gadget associated with variable x is a pair of vertices, associated with the two literalsof x (i.e., x and :x). These vertices are connected by an edge, and each of them is alsoconnected to the vertex ground. Thus, in a 3-coloring of G� one of the vertices associatedwith the variable is colored true and the other is colored false.53
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4.4 NP sets that are neither in P nor NP-completeAs stated in Section 4.3, thousands of problems have been shown to be NP-complete (cf., [6, Apdx.],which contains a list of more than three hundreds main entries). Things reached a situation in whichpeople seem to expect any NP-set to be either NP-complete or in P. This naive view is wrong:Assuming NP 6= P, there exist sets in NP that are neither NP-complete nor in P, where hereNP-hardness allows also Cook-reductions.Theorem 40 Assuming NP 6= P, there exist sets in NP n P such that some set in NP is notCook-reducible to them.We mention that some natural problems (e.g., factoring) are conjectured to be neither solvablein polynomial-time nor NP-hard. One candidate class of such problems is NP \ coNP , wherecoNP = ff0; 1g� n S : S 2 NPg. Speci�cally, if � def= NP \ coNP 6= P and NP 6= coNP then �is a class of sets that satisfy the conclusion of Theorem 40.29 Below, the existence of sets satisfyingthis conclusion is proved based on the weaker assumption that NP 6= P (which is actually anecessary condition for this conclusion).Teaching note: We recommend either stating Theorem 40 without a proof or merelyproviding the proof idea.Proof Sketch: The basic idea is modifying an arbitrary set in NP n P so as to fail all possiblereductions (fromNP to the modi�ed set) as well as all possible polynomial-time decision procedures(for the modi�ed set). Speci�cally, starting with S 2 NP n P, we derive S0 � S such that on onehand there is no polynomial-time reduction of S to S0 while on the other hand S0 2 NP n P. Theprocess of modifying S into S0 proceeds in iterations, alternatively failing a potential reduction (bydropping su�ciently many strings from the rest of S) and failing a potential decision procedure (byincluding su�ciently many strings from the rest of S). Speci�cally, each potential reduction of Sto S0 can be failed by dropping �nitely many elements from the current S0, whereas each potentialdecision procedure can be failed by keeping �nitely many elements of the current S0. These twoassertions are based on the following two corresponding facts:1. Any polynomial-time reduction (of any set not in P) to a �nite set (i.e., a �nite subset of S)must fail, because only sets in P are Cook-reducible to a �nite set. Thus, for any potentialreduction (i.e., a polynomial-time oracle machine), there exists an input x on which thisreduction fails. It follows that this failure is due to a �nite set of queries (i.e., the set of allqueries made by the reduction when invoked on an input that is smaller or equal to x). Thus,for every �nite set F � S, any reduction of S to S0 can be failed by dropping a �nite numberof elements from S0 and without dropping elements of F .2. For every �nite set F , any polynomial-time decision procedure for S n F must fail, becauseS is (trivially) Cook-reducible to S n F . Thus, for any potential decision procedure (i.e., apolynomial-time algorithm), there exists an input x on which this procedure fails. It followsthat this failure is due to a �nite pre�x of S (i.e., the set fz 2 S : z � xg). Thus, for every�nite set F , any polynomial-time decision procedure for S nF can be failed by keeping a �nitesubset of S n F .29This implication is based on the fact that NP 6= coNP implies that sets in coNP are not NP-complete.55



As stated, the process of modifying S into S0 proceeds in iterations, alternatively failing a potentialreduction (by dropping �nitely many strings from the rest of S) and failing a potential decisionprocedure (by including �nitely many strings from the rest of S). This can be done e�cientlybecause it is inessential to determine the �rst possible points of alternation (in which su�cientlymany strings were dropped (resp., included) to fail the next potential reduction (resp., decisionprocedure)). It su�ces to guarantee that adequate points of alternation (albeit highly non-optimalones) can be e�ciently determined. Thus, S0 is the intersection of S and some set in P, whichimplies that S0 2 NP n P. Following are some comments regarding the implementation of theforegoing idea.The foregoing plan calls for an (\e�ective") enumeration of all polynomial-time oracle machines(resp., polynomial-time algorithms). However, none of these sets can be enumerated (by an al-gorithm). Instead, we enumerate all corresponding machines along with all possible polynomials,and for each pair (M;p) we consider executions of machine M with time bound speci�ed by thepolynomial p. That is, we use the machine Mp obtained from the pair (M;p) by suspending theexecution of M on input x after p(jxj) steps. We stress that we do not know whether machine Mruns in polynomial-time, but the computations of any polynomial-time machine is \covered" bysome pair (M;p).Let us clarify the process in which reductions and decision procedures are ruled out. We presenta construction of a \�lter" set F in P such that the �nal set S0 will equal S\F . Recall that we needto select F such that each polynomial-time reduction of S to S\F fails, and each polynomial-timeprocedure for deciding S \ F fails. The key observation is that for every �nite F each polynomial-time reduction of S to S \ F fails, whereas for every co-�nite F (i.e., �nite f0; 1g� n F ) eachpolynomial-time procedure for deciding S \ F fails. Furthermore, each of these failures occur onsome input, and this input is determined by �nite portions of S and F . Thus, we alternate betweenfailing possible reductions and decision procedures, while not trying to determine the \optimal"points of alternation but rather determining points of alternation in a way that allows for e�cientlydeciding membership in F . Speci�cally, we let F = fx : f(jxj) � 0 mod 2g, where f : N ! f0g [Nis de�ned next such that f(n) can be computed in time poly(n).The value of f(n) is de�ned by the the following experiment that consists of exactly n3 com-putation steps (where cubic time is selected to allow for some non-trivial manipulations of dataas conducted next). For i = 0; 1; :::, we scan all inputs in lexicographic order trying to �nd aninput on which the i + 1st (modi�ed) machine fails (where this machine is an oracle machine if iis even and a standard machine otherwise). In order to determine whether or not a failure occurson a particular input, we may need to know the value of f(n0) for some n0, which we just computerecursively (while counting the recursive steps in our total number of steps).30 The point is that,when considering an input x, we may need the values of f only on f1; :::; pi+1(jxj)g, where pi+1 isthe polynomial bounding the running-time of the i+1st (modi�ed) machine, and obtaining such avalue takes at most pi+1(jxj)3 steps Also note that we may need to decide membership in S 2 NP ,which we do by running the straightforward exponential-time algorithm (which tries all possibleNP-witnesses). If we detect a failure of the i + 1st machine, we increase i and proceed to thenext iteration. When we reach the allowed number of steps (i.e., n3 steps), we halt outputting thecurrent value of i (i.e., the current i is output as the value of f(n)). Indeed, it is most likely thatwe will reach n3 steps before examining inputs of length 3 log2 n, but this does not matter. Whatmatters is that f is monotonically non-decreasing (because more steps allow to fail at least as manymachines) as well as unbounded (see Exercise 67). Furthermore, by construction, f(n) is computed30We do not bother to present an e�cient implementation of this process. That is, we may a�ord to recomputef(n0) every time we need it (rather than store it for later use).56



in poly(n) time.Comment: The proof of Theorem 40 actually establishes that for every S 62 P there exists S0 62 Psuch that S0 is Karp-reducible to S but S is not Cook-reducible to S0.31 Thus, if P 6= NP thenthere exists an in�nite sequence of sets S1; S2; ::: in NP n P such that Si+1 is Karp-reducible to Sibut Si is not Cook-reducible to Si+1. That is, there exists an in�nite hierarchy of problems (albeitunnatural ones), all in NP , such that each problem is \easier" than the previous ones (in the sensethat it can be reduced to the previous problems while these problems cannot be reduced to it).NotesIt is quite remarkable that the theories of uniform and non-uniform computational devices haveemerged in two single papers. We refer to Turing's paper [18], which introduced the model ofTuring machines, and to Shannon's paper [15], which introduced Boolean circuits.In addition to introducing the Turing machine model and arguing that it corresponds to theintuitive notion of computability, Turing's paper [18] introduces universal machines and containsproofs of undecidability (e.g., of the Halting Problem). Rice's Theorem is proven in [14], and theundecidability of the Post Correspondence Problem is proven in [13].The formulation of machines that take advice (as well as the equivalence to the circuit model)originates in [9].The association of e�cient computation with polynomial-time algorithms is attributed to thepapers of Cobham [2] and Edmonds [4]. It is interesting to note that Cobham's starting point washis desire to present a philosophically sound concept of e�cient algorithms, whereas Edmonds'sstarting point was his desire to articulate why certain algorithms are \good" in practice.Many sources provide historical accounts of the developments that led to the formulation of theP vs NP Problem and to the development of the theory of NP-completeness (see, e.g., [6, Sec. 1.5]and [17]). Still, we feel that we should not refrain from o�ering our own impressions, which arebased on the text of the original papers.Nowadays, the theory of NP-completeness is commonly attributed to Cook [3], Karp [8], andLevin [11]. It seems that Cook's starting point was his interest in theorem proving procedures forpropositional calculus [3, P. 151]. Trying to provide evidence to the di�culty of deciding whetheror not a given formula is a tautology, he identi�ed NP as a class containing \many apparentlydi�cult problems" (cf, e.g., [3, P. 151]), and showed that any problem inNP is reducible to decidingmembership in the set of 3DNF tautologies. In particular, Cook emphasizes the importance of theconcept of polynomial-time reductions and of the complexity class NP (both explicitly de�nedfor the �rst time in his paper). He also showed that CLIQUE is computationally equivalent toSAT, and envisioned a class of problems of the same nature. Karp's paper [8] can be viewed asful�lling Cook's prophecy: Stimulated by Cook's work, Karp demonstrates that a \large numberof classic di�cult computational problems, arising in �elds such as mathematical programming,graph theory, combinatorics, computational logic and switching theory, are [NP-]complete (andthus equivalent)" [8, P. 86]. Speci�cally, his list of twenty-one NP-complete problems includesInteger Linear Programming, Hamilton Circuit, Chromatic Number, Exact Set Cover, SteinerTree, Knapsack, Job Scheduling, and Max Cut. Karp de�nes NP in terms of De�nition 18, pointsto its relation to \backtrack search of polynomial bounded depth" and views it as the residenceof a \wide range of important computational problems" (which are not in P). Independently31The said Karp-reduction (of S0 to S) maps x to itself if x 2 F and otherwise maps x to a �xed no-instance of S.57



of these developments, while being in the USSR, Levin proved the existence of \universal searchproblems" (where universality meant NP-completeness [11]). The starting point of Levin's workwas his interest in the \perebor" conjecture asserting the inherent need for brute-force in somesearch problems that have e�ciently checkable solutions (i.e., problems in PC). He emphasizesthe implication of polynomial-time reductions on the relation between the time complexity of therelated problem (for any growth rate of the time complexity), asserts the NP-completeness of six\classical search problems" and claims that the underlying method \provides a mean for readilyobtaining" similar results for \many other important search problems."It is interesting to note that although the works of Cook [3], Karp [8], and Levin [11] werereceived with di�erent levels of enthusiasm, none of the contemporaries realized the depth of thediscovery and the di�culty of the question posed (i.e., the P-vs-NP Question). This fact is evidentin every account from the early 1970's, and may explain the frustration of the relevant generationof researchers, which expected the P-vs-NP Question to be resolved in their life-time (if not in amatter of years). Needless to say, the author's opinion is that there was absolutely no justi�cationfor these expectations, and that one should have actually expected quite the opposite.We mention that the three \founding papers" of the theory of NP-completeness (i.e., Cook [3],Karp [8], and Levin [11]) use the three di�erent types of reductions used in these notes. Speci�cally,Cook uses the general notion of polynomial-time reduction [3], often referred to as Cook-reductions(De�nition 22). The notion of Karp-reductions (De�nition 23) originates from Karp's paper [8],whereas its augmentation to search problems (i.e., De�nition 24) originates from Levin's paper [11].It is worth noting that unlike Cook and Karp's works, which treat decision problems, Levin's workis stated in terms of search problems.The reductions presented in x4.3.2 are not necessarily the original ones. Most notably, thereduction establishing the NP-hardness of the Independent Set problem (i.e., Proposition 38) isadapted from [5]. In contrast, the reductions presented in x4.3.1 are merely a re-interpretationof the original reduction as presented in [3]. The equivalence of the two de�nitions of NP (i.e.,Theorem 21) was proved in [8].We mention that the standard reductions used to establish natural NP-completeness resultshave several additional properties or can be modi�ed to have such properties. These propertiesinclude an e�cient transformation of solutions in the direction of the reduction (see Exercise 56),the preservation of the number of solutions (see Exercise 57), being computable by a log-spacealgorithm, and being invertible in polynomial-time (see [1], which actually refers to a strongernotion).ExercisesExercise 41 (PF contains problems that are not in PC) Show that PF contains some (un-natural) problems that are not in PC.Guideline: Consider the relation R = f(x; 1) : x 2 f0; 1g�g [ f(x; 0) : x 2 Sg, where S is some undecidableset. Note that R is the disjoint union of two binary relations, denoted R1 and R2, where R1 is in PF whereasR2 is not in PC. Furthermore, for every x it holds that R1(x) 6= ;.Exercise 42 Show that any S 2 NP has many di�erent NP-proof systems (i.e., veri�cation pro-cedures V1; V2; ::: such that Vi(x; y) = 1 does not imply Vj(x; y) = 1 for i 6= j).Guideline: For V and p be as in De�nition 18, de�ne Vi(x; y) = 1 if jyj = p(jxj) + 1 and there exists apre�x y0 of y such that V (x; y) = 1. 58



Exercise 43 Relying on the fact that primality is decidable in polynomial-time and assumingthat there is no polynomial-time factorization algorithm, present two \natural but fundamentallydi�erent" NP-proof systems for the set of composite numbers.Guideline: Consider the following veri�cation procedures V1 and V2 for the set of composite numbers. LetV1(n; y) = 1 if and only if y = n and n is not a prime, and V2(n;m) = 1 if and only if m is a non-trivialdivisor of n. Show that valid proofs with respect to V1 are easy to �nd, whereas valid proofs with respect toV2 are hard to �nd.Exercise 44 Regarding De�nition 20, show that if S is accepted by some non-deterministic ma-chine of time complexity t then it is accepted by a non-deterministic machine of time complexityO(t) that has a transition function that maps each possible symbol-state pair to exactly two triples.Exercise 45 Verify the following properties of Cook-reductions:1. If � is Cook-reducible to �0 and �0 is solvable in polynomial-time then so is �.2. Cook-reductions are transitive (i.e., if � is Cook-reducible to �0 and �0 is Cook-reducible to�00 then � is Cook-reducible to �00).3. If � is solvable in polynomial-time then it is Cook-reducible to any problem �0.In continuation to the last item, show that a problem � is solvable in polynomial-time if and onlyif it is Cook-reducible to a trivial problem (e.g., deciding membership in the empty set).Exercise 46 Show that Karp-reductions (and Levin-reductions) are transitive.Exercise 47 Show that some decision problems are not Karp-reducible to their complement (e.g.,the empty set is not Karp-reducible to f0; 1g�).A popular exercise of dubious nature is to show that any decision problem in P is Karp-reducibleto any non-trivial decision problem, where the decision problem regarding a set S is called non-trivial if S 6= ; and S 6= f0; 1g�. It follows that every non-trivial set in P is Karp-reducible to itscomplement.Exercise 48 (reducing search problems to optimization problems) For every polynomiallybounded relation R, present a polynomial-time computable function f such that the search problemof R is computationally equivalent to the search problem in which given (x; v) one has to �nd ay 2 f0; 1gpoly(jxj) such that f(x; y) � v.(Hint: use a Boolean function.)Exercise 49 (binary search) Show that using ` binary queries of the form \is z � v" it is possibleto determine the value of an integer z that is a priori known to reside in the interval [0; 2` � 1].Guideline: Consider a process that iteratively halves the interval in which z is known to reside in.Exercise 50 Show that the standard search problem of Graph 3-Colorability is self-reducible,where this search problem consists of �nding a 3-coloring for a given input graph.(Hint: Iteratively extend the current pre�x of a 3-coloring of the graph by making adequate oracle calls to thedecision problem of Graph 3-Colorability. Speci�cally, encode the question of whether or not (�1; :::; �t) 2 f1; 2; 3gtis a pre�x of a 3-coloring of the graph G as a query regarding the 3-colorability of an auxiliary graph G0.)3232Note that we merely need to check whether G has a 3-coloring in which the equalities and inequalities inducedby (�1; :::; �t) hold. This can be done by adequate gadgets (e.g., inequality is enforced by an edge between thecorresponding vertices, whereas equality is enforced by an adequate subgraph that includes the relevant vertices aswell as auxiliary vertices). 59



Exercise 51 Show that the standard search problem of Graph Isomorphism is self-reducible, wherethis search problem consists of �nding an isomorphism between a given pair of graphs.(Hint: Iteratively extend the current pre�x of an isomorphism between the two N -vertex graphs by making adequateoracle calls to the decision problem of Graph Isomorphism. Speci�cally, encode the question of whether or not(�1; :::; �t) 2 [N ]t is a pre�x of an isomorphism between G1 = ([N ]; E1) and G2 = ([N ]; E2) as a query regardingisomorphism between two auxiliary graphs G01 and G02.)33Exercise 52 (NP problems that are not self-reducible) Assuming that P 6= NP , show thatthere exists a search problem R in PC that is not self-reducible (i.e., the search problem of R is notCook-reducible to the decision problem SR implicit in R). Prove that it follows that S0R = f(x; y0) :9y00 s.t. (x; y0y00)2Rg is not Cook-reducible to SR = fx : 9y s.t. (x; y)2Rg. Furthermore, provethat deciding S0R is not reducible to the search problem of R.(Hint: Consider the relation R = f(x; 0x) : x 2 f0; 1g�g [ f(x; 1y) : (x; y) 2 R0g, where R0 is an arbitrary relation inPC, and note that SR = f0; 1g�.)Exercise 53 In continuation to Exercise 52, present a natural search problem R in PC such thatif factoring integers is intractable then S0R is not reducible to SR.Guideline: Consider the relation R such that (N;Q) 2 R if the integer Q is a non-trivial divisor of theinteger N . Use the fact that SR is in P , and show that deciding membership in S0R is computationallyequivalent to factoring integers.Exercise 54 In continuation to Exercises 52 and 53, show that under suitable assumptions thereexists relations R1; R2 2 PC having the same implicit-decision problem (i.e., fx : R1(x) 6= ;g =fx : R2(x) 6= ;g) such that R1 is self-reducible but R2 is not.Exercise 55 Provide an alternative proof of Theorem 28 without referring to the set S0R = f(x; y0) :9y00 s.t. (x; y0y00)2Rg. Hint: use Proposition 27.Guideline: Reduce the search problem of R to the search problem of RSAT, next reduce RSAT to SAT, and�nally reduce SAT to SR. Justify the existence of each of these three reductions.Exercise 56 (additional properties of standard reductions) In continuation to the discus-sion in the main text, consider the following augmented form of Karp-reductions. Such a reductionof R to R0 consists of three polynomial-time mappings (f; h; g) such that the following two condi-tions hold:1. For every (x; y) 2 R it holds that (f(x); h(x; y)) 2 R0.2. For every (f(x); y0) 2 R0 it holds that (x; g(x; y0)) 2 R.(We note that this de�nition is actually the one used by Levin in [11], except that he restricted hand g to only depend on their second argument.)Prove that such a reduction implies both a Karp-reduction and a Levin-Reduction, and show thatall reductions presented in these notes satisfy this augmented requirement. Furthermore, provethat in all these cases the main mapping (i.e., f) is 1-1 and polynomial-time invertible.33This can be done by attaching adequate di�erent gadgets to pairs of vertices that we wish to be mapped to oneanother (by the isomorphism). For example, we may connect the vertices in the ith pair to an auxiliary star consistingof (N + i) vertices. 60



Exercise 57 (parsimonious reductions) Let R;R0 2 PC and let f be a Karp-reduction of SR =fx : R(x) 6= ;g to SR0 = fx : R0(x) 6= ;g. We say that g is parsimonious (with respect to R andR0) if for every x it holds that jR(x)j = jR0(g(x))j. For each of the reductions, presented in thesenotes, checked whether or not it is parsimonious. For the others, alternative reductions that areparsimonious can be found (cf. [6, Sec. 7.3]).Exercise 58 Prove that Bounded Halting and Bounded Non-Halting are NP-complete, wherethe problems are de�ned as follows. The instance consists of a pair (M; 1t), whereM is a Turing ma-chine and t is an integer. The decision version of Bounded Halting (resp., Bounded Non-Halting)consists of determining whether or not there exists an input (of length at most t) on which M halts(resp., does not halt) in t steps, whereas the search problem consists of �nding such an input.(Hint: Either modify the proof of Theorem 31 or present a reduction of (say) the search problem of Ru to the searchproblem of Bounded (Non-)Halting. Indeed, the exercise is more straightforward in the case of Bounded Halting.)Exercise 59 In the proof of Theorem 33, we claimed that the value of each entry in the \array ofcon�gurations" of a machine M is determined by the values of the three entries that reside in therow above it (as in Figure 4). Present a function fM : �3 ! �, where � = � � (Q [ f?g), thatsubstantiates this claim.Guideline: For example, for every �1; �2; �3 2 Q, it holds that fM ((�1;?); (�2;?); (�3;?)) = (�2;?). Moreinterestingly, if the transition function of M maps (�; q) to (�; p;+1) then, for every �1; �2; �3 2 Q, it holdsthat fM ((�; q); (�2 ;?); (�3;?)) = (�2; p) and fM ((�1;?); (�; q); (�3;?)) = (�;?).Exercise 60 Present and analyze a reduction of SAT to 3SAT.Guideline: For a clause C, consider auxiliary variables such that the ith variable indicates whether oneof the �rst i literals is satis�ed, and replace C by a 3CNF that uses the original variables of C as well asthe auxiliary variables. For example, the clause _ti=1xi is replaced by the conjunction of 3CNFs that arelogically equivalent to the formulae (y2 � (x1 _ x2)), (yi � (yi�1 _ xi)) for i = 3; :::; t, and yt. We commentthat this is not the standard reduction, but we �nd it more appealing conceptually.34Exercise 61 (e�cient solvability of 2SAT) In contrast to Exercise 60, prove that 2SAT (i.e.,the satis�ability of 2CNF formulae) is in P.Guideline: Consider the following \forcing process" for CNF formulae. If the formula contains a singletonclause (i.e., a clause having a single literal), then the corresponding variable is assigned the only value thatsatis�es the clause, and the formula is simpli�ed accordingly (possibly yielding a constant, which is eithertrue or false). The process is repeated until the formula is either a constant or contains only clauses ofsize at least 2. Clearly a formula � is satis�able if and only if the formula obtained from � by the forcingprocess is satis�able. The key fact (to be proved) is that a 2CNF formula is unsatis�able if and only if thereexists a variable such that any truth assignment to this variable yields a formula that the forcing processmaps to the constant false.(Extra hint: Applying the forcing process to a 2CNF formula we obtain a sub-formula of it; that is, each clause ofthe resulting formula is a clause (rather than a sub-clause) of the original formula.)Exercise 62 The instance of the Independent Set problem consists of a pair (G;K), where G is agraph and K is an integer, and the question is whether or not the graph G contains an independentset (i.e., a set with no edges between its members) of size (at least) K. The Clique problem isanalogous. Prove that both problems are computationally equivalent to the Vertex Cover problem.34The standard reduction replaces the clause _ti=1xi by the conjunction of the 3CNFs (x1_x2_z2), ((:zi�1)_xi_zi)for i = 3; :::; t, and :zt. 61



Exercise 63 (Integer Linear Programming) Prove that the following problem is NP-complete.An instance of the problem is a systems of linear inequalities (say with integer constants), and theproblem is to determine whether the system has an integer solution. For example, is there aninteger solution to the system x+ 2y � z � 3�3x� z � �5x � 0�x � �1Guideline: Reduce from SAT. Speci�cally, consider an arithmetization of the input CNF by replacing _with addition and :x by 1�x. Thus, each clause gives rize to an inequality (e.g., the clause x_:y is replacedby the inequality x + (1 � y) � 1, which simpli�es to x � y � 2). Enforce a 0-1 solution by introducinginequalities of the form x � 0 and �x � �1, for every variable x.Exercise 64 (Maximum Satis�ability over GF(2)) Prove that the following problem is NP-complete. An instance of the problem consists of a systems of linear equations over GF(2) andan integer k, and the problem is to determine whether there exists an assignment that satis�es atleast k equations. (Note that the problem of determining whether there exists an assignment thatsatis�es all equations is in P.)Guideline: Reduce from 3SAT, using an arithetization similar to the one in Exercise 63. Speci�cally, replaceeach clause that contains t � 3 literals by 2t linear GF(2) equations that correspond to the di�erent subsetsof these literals and assert that their sum (modulo 2) equals one; for example, the clause x _ :y is replacedby the equations x + (1� y) = 1, x = 1, 1� y = 1, and 0 = 1. Note that if the original clause was satis�edby a value assignment v then exactly 2t�1 of the corresponding equations are satis�ed by v, whereas if theoriginal clause was unsatis�ed by v then none of the corresponding equations is satis�ed by v.Exercise 65 Prove that a set S is Karp-reducible to some set in NP if and only if S is in NP.Exercise 66 Recall that the empty set is not Karp-reducible to f0; 1g�, whereas any set is Cook-reducible to its complement. Thus our focus is on the Karp-reducibility of non-trivial sets to theircomplements, where a set is non-trivial if it is neither empty nor contains all strings.1. Show that P 6= NP = coNP implies that some sets in NP n P are Karp-reducible to theircomplements.(Recall that any non-trivial set in P is Karp-reducible to its complement; see Exercise 47.)2. Show that NP 6= coNP implies that some (non-trivial) sets in NP cannot be Karp-reducibleto their complements.(Hint: Use NP-completeness in both parts, and Exercise 65 in the second part.)Exercise 67 Referring to the proof of Theorem 40, prove that the function f is unbounded (i.e.,for every i there exists an n such that n3 steps of the process de�ned in the proof allow for failingthe i+ 1st machine).Guideline: Consider n0 such that f(n0) = i. Assuming, towards the contradiction that f(n) = i for everyn > n0, it follows that F = F 00 [ F 00, where F 0 = fx : jxj � n0 ^ f(jxj) � 0 (mod 2)g is a �nite set andF 00 = fx : jxj>n0g if i is odd and F 00 = ; otherwise. In case i is odd, the i + 1st machine tries to decide62
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