
Texts in Computational Complexity:Counting ProblemsOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.January 27, 2006We now turn to a new type of computational problems, which vastly generalize decision problemsof the NP-type. We refer to counting problems, and more speci�cally to counting objects that canbe e�ciently recognized. The two formulations of NP provide a suitable de�nition of such objectsand yield corresponding counting problems:1. Counting the number of solutions for a given instance of a search problem (of a relation)R � f0; 1g� � f0; 1g� having e�ciently checkable solutions (i.e., R 2 PC).1 That is, on inputx, we are required to output jfy : (x; y)2Rgj.2. Counting the number of NP-witnesses (with respect to a speci�c veri�cation procedure V)for a given instance of an NP-set S (i.e., S 2 NP and V is the corresponding veri�cationprocedure). That is, on input x, we are required to output jfy : V (x; y)=1gj.We shall consider these counting problems as well as relaxations of them (which refer to approx-imating the said quantities), and see connections between these relaxed counting problems andrandomized algorithms.Contents1 Exact Counting 21.1 On the power of #P : 31.2 Completeness in #P : 32 Approximate Counting 52.1 Relative approximation for #Rdnf : 62.2 Relative approximation for #P : 73 Searching for unique solutions 91Recall that we denote by PC (standing for \Polynomial-time Check") the class of search problems that correspondto polynomially-bounded binary relations that have e�ciently checkable solutions. That is, R 2 PC if the followingtwo conditions hold:(a) For some polynomial p, if (x; y) 2 R then jyj � p(jxj).(b) There exists a polynomial-time algorithm that given (x; y) determines whether or not (x; y) 2 R.1

4 Uniform generation of solutions 124.1 Relation to approximate counting : 124.2 Direct uniform generation : 15Appendix: On Hashing 16A.1 De�nitions : 17A.2 Constructions : 18A.3 The Leftover Hash Lemma : 18Notes 21Exercises 22References 241 Exact CountingIn continuation to the foregoing discussion, we de�ne the class of problems concerned with count-ing e�ciently recognized objects. (Recall that PC denotes the class of search problems havingpolynomially long solutions that are e�ciently checkable.)De�nition 1 (counting e�ciently recognized objects { #P): The class #P consists of all functionsthat count solutions to a search problem in PC. That is, f : f0; 1g� ! N is in #P if there existsR 2 PC such that, for every x, it holds that f(x) = jR(x)j, where R(x) = fy : (x; y)2Rg. In thiscase we say that f is the counting problem associated with R, and denote the latter by #R (i.e.,#R = f).Every decision problem in NP is Cook-reducible to #P , because every such problem can be castas deciding membership in SR = fx : jR(x)j > 0g for some R 2 PC. It also holds that BPP isCook-reducible to #P . The class #P is sometimes de�ned in terms of decision problems, as isimplicit in the following proposition.Proposition 2 (a decisional version of #P): For any f 2 #P, deciding membership in Sf def=f(x;N) : f(x)�Ng is computationally equivalent to computing f .Actually, the claim holds for any function f : f0; 1g� ! N for which there exists a polynomial psuch that for every x 2 f0; 1g� it holds that f(x) � 2p(jxj).Proof: Since the relation R vouching for f 2 #P (i.e., f(x) = jR(x)j) is polynomially bounded,there exists a polynomial p such that for every x it holds that f(x) � 2p(jxj). Deciding membershipin Sf is easily reduced to computing f (i.e., we accept the input (x;N) if and only if f(x) � N).Computing f is reducible to deciding Sf by using a binary search. This relies on the fact that, oninput x and oracle access to Sf , we can determine whether or not f(x) � N by making the query(x;N). Note that we know a priori that f(x) 2 [0; 2p(jxj)].The counting class #P is also related to the problem of enumerating all possible solutions to agiven instance (see Exercise 27). 2

1.1 On the power of #PAs indicated, NP [BPP is (easily) reducible to #P. Furthermore, as stated in Theorem 3, theentire Polynomial-Time Hierarchy is Cook-reducible to #P (i.e., PH � P#P). On the other hand,any problem in #P is solvable in polynomial space, and so P#P � PSPACE .Theorem 3 [14] Every set in PH is Cook-reducible to #P.We do not present a proof of Theorem 3 here, because the known proofs are rather technical.Furthermore, one main idea underlying these proofs appears in a more clear form in the proof ofTheorem 16.1.2 Completeness in #PThe de�nition of #P-completeness is analogous to the de�nition of NP-completeness. That is, acounting problem f is #P-complete if f 2 #P and every problem in #P is Cook-reducible to f .We claim that the counting problems associated with the NP-complete problems presentedin previous lectures are all #P-complete. We warn that this fact is not due to the mere NP-completeness of these problems, but rather to an additional property of the reductions establishingtheir NP-completeness. Speci�cally, the Karp-reductions that were used (or variants of them)have the extra property of preserving the number of NP-witnesses (as captured by the followingde�nition).De�nition 4 (parsimonious reductions): Let R;R0 2 PC and let g be a Karp-reduction of SR =fx : R(x) 6=;g to SR0 = fx : R0(x) 6=;g, where R(x) = fy : (x; y)2Rg and R0(x) = fy : (x; y)2R0g.We say that g is parsimonious (with respect to R and R0) if for every x it holds that jR(x)j =jR0(g(x))j. In such a case we say that g is a parsimonious reduction of R to R0.We stress that the condition of being parsimonious refers to the two underlying relations R and R0(and not merely to the sets SR and SR0). The requirement that g is a Karp-reduction is partiallyredundant, because if g is polynomial-time computable and for every x it holds that jR(x)j =jR0(g(x))j, then g constitutes a Karp-reduction of SR to SR0 . Speci�cally, jR(x)j = jR0(g(x))jimplies that jR(x)j > 0 (i.e., x 2 SR) if and only if jR0(g(x))j > 0 (i.e., g(x) 2 SR0). The readermay easily verify that the Karp-reduction underlying the proof of CSAT (and SAT) as well as manyof the reductions used in the theory of NP-completeness are parsimonious.Theorem 5 Let R 2 PC and suppose that every search problem in PC is parsimoniously reducibleto R. Then the counting problem associated with R is #P-complete.Proof: Clearly, the counting problem associated with R, denoted #R, is in #P . To show thatevery f 0 2 #P is reducible to f , we consider the relation R0 2 PC that is counted by f 0; thatis, #R0 = f 0. Then, by the hypothesis, there exists a parsimonious reduction g of R0 to R. Thisreduction also reduces #R0 to #R; speci�cally, #R0(x) = #R(g(x)) for every x.Corollaries. As an immediate corollary of Theorem 5, we get that counting the number of sat-isfying assignments to a given CNF formula is #P-complete. Similar statement hold for all theother NP-complete problems mentioned in previous lectures and in fact for all NP-complete prob-lems listed in [5]. These corollaries follow from the fact that all known reductions among naturalNP-complete problems are either parsimonious or can be easily modi�ed to be so.3

We conclude that many counting problems associated with NP-complete search problems are#P-complete. It turns out that also counting problems associated with e�ciently solvable searchproblems may be #P-complete.Theorem 6 There exist #P-complete counting problems that are associated with e�ciently solvablesearch problems. That is, there exists R 2 PF (i.e., R is solvable in polynomial-time) such that#R is #P-complete.Proof: Consider the relation Rdnf consisting of pairs (�; �) such that � is a DNF formula and� is an assignment satisfying it. Note that the search problem of Rdnf is easy to solve (e.g., bypicking an arbitrary truth assignment that satis�es the �rst term in the input formula). To seethat #Rdnf is #P-complete consider the following reduction from #RSAT (which is #P-completeby Theorem 5). Given a CNF formula �, transform :� into a DNF formula �0 by applying de-Morgan's Law, and return 2n � #Rdnf(�0), where n denotes the number of variables in � (resp.,�0).Re
ections. We note that Theorem 6 is not established by a parsimonious reduction. Thisfact should not come as a surprise because a parsimonious reduction of #R0 to #R implies thatSR0 = fx : 9y s.t. (x; y)2R0g is reducible to SR = fx : 9y s.t. (x; y)2Rg, where in our case SR0is NP-Complete while SR 2 P (since R 2 PF). Nevertheless, the proof of Theorem 6 is related tothe hardness of some underlying decision problem (i.e., the problem of deciding whether a givenDNF formula is a tautology (i.e., whether #Rdnf(�0) = 2n)). But does there exist a #P-completeproblem that is \not based on some underlying NP-complete decision problem"? Amazingly enough,the answer is positive.Theorem 7 [15] Counting the number of perfect matchings in a bipartite graph is #P-complete.Equivalently (see Exercise 28), the problem of computing the permanent of matrices with 0/1-entries is #P-complete. Recall that the permanent of an n-by-n matrix M = (mi;j), denotedperm(M), equals the sum over all permutations � of [n] of the products Qni=1mi;�(i). Theorem 7 isproven by composing the following two (many-to-one) reductions (asserted in Propositions 8 and 9,respectively) and using the fact that #R3SAT is #P-complete (see Theorem 5). Needless to say,the resulting reduction is not parsimonious.Proposition 8 The counting problem of 3SAT (i.e., #R3SAT) is reducible to computing the perma-nent of integer matrices. Furthermore, there exists an even integer c > 0 and a �nite set of integersI such that, on input a 3CNF formula �, the reduction produces an integer matrix with entries inI and a permanent value that equals cm �#R3SAT(�), where m denotes the number of clauses in �.The original proof of Proposition 8 uses c = 210 and I = f�1; 0; 1; 2; 3g. It follows that, forevery integer n > 1 that is relatively prime to c, computing the permanent modulo n is NP-hard(see Exercise 29, which also uses Theorem 16). Thus, using the case of c = 210, this means thatcomputing the permanent modulo n is NP-hard for any odd n > 1. In contrast, computing thepermanent modulo 2 (which is equivalent to computing the determinant modulo 2) is easy (i.e., canbe done in polynomial-time and even in NC). Thus, assuming NP 6� BPP , Proposition 8 cannothold for an odd c (because by Exercise 29 it would follow that computing the permanent modulo 2is NP-Hard). We also note that, assuming P 6= NP , Proposition 8 cannot possibly hold for a setI containing only non-negative integers (see Exercise 30).4

Proposition 9 Computing the permanent of integer matrices is reducible to computing the perma-nent of 0/1-matrices. Furthermore, the reduction transforms an integer matrix A into a 0/1-matrixA00 such that the permanent of A can be easily computed from A and the permanent of A00.The proofs of Propositions 8 and 9 are omitted.2 Approximate CountingLet us consider the counting problem associated with an arbitrary R 2 PC. Without loss ofgenerality, we assume that all solutions to n-bit instances have the same length `(n), where indeed` is a polynomial. We �rst note that, while it may be hard to compute #R, given x it is easy toapproximate #R(x) up to 0:01 � 2`(jxj). Indeed, such an approximation is very rough, but it is nottrivial. More generally, we have the following algorithm that produces an estimate of #R(x) thatdeviates from the correct value by an additive term that is related to the absolute bound on thenumber of solutions (i.e., 2`(jxj)).Proposition 10 (approximation with additive deviation): Let R 2 PC and ` be a polynomialsuch that R � [n2Nf0; 1gn � f0; 1g`(n). Then, for every polynomial p, there exists a probabilisticpolynomial-time algorithm A such that for every x 2 f0; 1g� and � 2 (0; 1) it holds thatPr[jA(x; �) �#R(x)j > (1=p(jxj)) � 2`(jxj)] < �: (1)(As usual, � is presented to A in binary, and hence the running time of A(x; �) is upper-boundedby poly(jxj � log(1=�)).Proof Sketch: On input x and �, algorithm A sets t = �(p(jxj)2 � log(1=�)), selects uniformlyy1; :::; yt and outputs jfi : (x; yi) 2 Rgj=t.Discussion. Proposition 10 is meaningful in case #R(x) > (1=p(jxj)) � 2`(jxj) holds for somex's. But otherwise, a trivial approximation (i.e., outputting the constant value zero) meets thebound of Eq. (1). In general, an approximation of #R(x) up-to a constant factor (or some otherreasonable factor) is more meaningful.2 In Section 2.1, we consider a non-trivial case where such arelative approximation can be obtained in probabilistic polynomial-time. For reasons explained inSection 2.1, we do not expect this to happen for every counting problem in #P, but in Section 2.2we show that relative approximation for any problem in #P can be obtained by a randomizedCook-reduction to NP . But before turning to these results, let us state the underlying de�nition(and actually strengthen it by requiring approximation to within a factor of 1� ").De�nition 11 (approximation with relative deviation): Let f : f0; 1g� ! N and "; � : N ! [0; 1].A randomized process � is called an ("; �)-approximator of f if for every x it holds thatPr [j�(x) � f(x)j > "(jxj) � f(x)] < �(jxj): (2)We say that f is e�ciently (1 � ")-approximable (or just (1 � ")-approximable) if there exists aprobabilistic polynomial-time algorithm A that constitute an ("; 1=3)-approximator of f .2We refrain from formally de�ning an F -factor approximation in this section, although we shall refer to thisnotion in several informal discussions. There are several ways of de�ning the aforementioned term (and they areall equivalent when applied to our informal discussions). For example, an F -factor approximation of #R may meanthat, with high probability, the output A(x) satis�es #R(x)=F (jxj) � A(x) � F (jxj) �#R(x). Alternatively, we mayrequire that #R(x) � A(x) � F (jxj) �#R(x) (or, alternatively, that #R(x)=F (jxj) � A(x) � #R(x).5

The error probability of the latter algorithm A (which has error probability 1=3) can be reduced to� by O(log(1=�)) repetitions (see Exercise 31). Typically, the running time of A will be polynomialin 1=", and " is called the deviation parameter.2.1 Relative approximation for #RdnfConsider the relation Rdnf consisting of pairs (�; �) such that � is a DNF formula and � is anassignment satisfying it. Recall that the search problem of Rdnf is easy to solve and that the proofof Theorem 6 establishes that #Rdnf is #P-complete (via a non-parsimonious reduction). Still thereexists a probabilistic polynomial-time algorithm that provides a constant factor approximation of#Rdnf. We warn that the fact that #Rdnf is #P-complete via a non-parsimonious reduction meansthat the constant factor approximation for #Rdnf does not seem to imply a similar approximationfor all problems in #P. In fact, we should not expect each problem in #P to have a (probabilistic)polynomial-time constant-factor approximation algorithm because this would imply NP � BPP(since a constant factor approximation allows for distinguishing the case in which the instance hasno solution from the case in which the instance has a solution).The following algorithm is actually a deterministic reduction of the task of ("; 1=3)-approximating#Rdnf to the (additive deviation) approximation provided in Proposition 10. Consider a DNF for-mula � = Wmi=1 Ci, where each Ci : f0; 1gn ! f0; 1g is a conjunction. Actually, we will deal with themore general problem in which we are (implicitly) given m subsets S1; :::; Sm � f0; 1gn and wishto approximate jSi Sij. In our case, each Si is the set of assignments satisfying the conjunctionCi. In general, we make two computational assumptions regarding these sets (letting e�cient meanimplementable in time polynomial in n �m):1. Given i 2 [m], one can e�ciently determine jSij.2. Given i 2 [m] and J � [m], one can e�ciently approximate Prs2Si hs 2 Sj2J Sji up to anadditive deviation of 1=poly(n+m).These assumptions are satis�ed in our setting (where Si = C�1i (1), see Exercise 32). The keyobservation towards approximating jSmi=1 Sij is that����� m[i=1Si����� = mXi=1 ������Si n [j<iSj������ = mXi=1 jSij � Prs2Si 24s 62 [j<iSj35 (3)and that the probabilities in Eq. (3) can be approximated by the second assumption. This leads tothe following algorithm, where " denotes the desired deviation parameter (i.e., we wish to obtain(1� ") � jSmi=1 Sij).Construction 12 Let "0 = "=m. For i = 1 to m do:1. Using the �rst assumption, compute jSij.2. Using the second assumption, obtain epi = (1 � "0) � pi, where pi def= Prs2Si [s 62 Sj<i Sj]. Setai def= epi � jSij.Output the sum of the ai's. 6

Let Ni = pi � jSij. We are interested in the quality of the approximation toPiNi = jSi Sij providedby Pi ai. Using ai = (pi � "0) � jSij = Ni � "0 � jSij (for all i's), we have Pi ai =PiNi � "0 �Pi jSij.Using Pi jSij � m � jSi Sij = m �PiNi (and " = m"0), we get Pi ai = (1 � ") �PiNi. Thus, weobtain the following result (see Exercise 32).Proposition 13 For every positive polynomial p, the counting problem of Rdnf is e�ciently (1�(1=p))-approximable.Using the reduction presented in the proof of Theorem 6, we conclude that the number of unsatisfyingassignments to a given CNF formula is e�ciently (1 � (1=p))-approximable. We warn, however,that the number of satisfying assignments to such a formula is not e�ciently approximable. Thisconcurs with the general phenomenon by which relative approximation may be possible for onequantity, but not for the complementary quantity. Needless to say, such a phenomenon does notoccur in the context of additive-deviation approximation.2.2 Relative approximation for #PRecall that we cannot expect to e�ciently approximate every #P problem. Speci�cally, e�cientlyapproximating #R yields an e�cient algorithm for deciding membership in SR = fx : R(x) 6= ;g.Thus, at best we can hope that approximating #R is not harder than deciding SR (i.e., thatapproximating #R is reducible in polynomial-time to SR). This is indeed the case for every NP-complete problem (i.e., if SR is NP-complete). More generally, we show that approximating anyproblem in #P is reducible in probabilistic polynomial-time to NP .Theorem 14 For every R 2 PC and positive polynomial p, there exists a probabilistic polynomial-time oracle machine that when given oracle access to NP constitutes a (1=p; �)-approximator of#R, where � is a negligible function (e.g., �(n) = 2�n).Recall that it su�ces to provide a (1=p; �)-approximator of #R, for any constant � < 0:5, becauseerror reduction is applicable in this context (see Exercise 31). Also, it su�ces to provide a (1=2; �)-approximator for every problem in #P (see Exercise 33).Proof: Given x, we show how to approximate jR(x)j to within a constant factor. The desiredapproximation can be obtained as in Exercise 33. We may also assume that R(x) 6= ;, by startingwith the query \is x in SR" and halting (with output 0) if the answer is negative. Without lossof generality, we assume that R(x) � f0; 1g`, where ` = poly(jxj). Our task is to �nd somei 2 f1; :::; `g such that 2i�4 � jR(x)j � 2i+4. We proceed in iterations. For i = 1; :::; ` + 1, we�nd out whether or not jR(x)j < 2i. If the answer is positive then we halt with output 2i, andotherwise we proceed to the next iteration. (Indeed, if we were able to obtain correct answers tothese queries then the output 2i would satisfy 2i�1 � jR(x)j < 2i.)Needless to say, the key issue is how to check whether jR(x)j < 2i. The main idea is to use a\random sieve" on the set R(x) such that each element passes the sieve with probability 2�i. Thus,we expect jR(x)j=2i elements of R(x) to pass the sieve. Assuming that the number of elementsin R(x) that pass the random sieve is indeed bjR(x)j=2ic, it holds that jR(x)j � 2i if and only ifsome element of R(x) passes the sieve. Assuming that the sieve can be implemented e�ciently,the question of whether or not some element in R(x) passed the sieve is of an \NP-type" (andthus can be referred to our NP-oracle). Combining both assumptions, we may implement theforegoing process by proceeding to the next iteration as long as some element of R(x) passes thesieve. Furthermore, this implementation will provide a reasonably good approximation even if the7

number of elements in R(x) that pass the random sieve is only approximately equal to jR(x)j=2i.In fact, the level of approximation that this implementation provides is closely related to the levelof approximation that is provided by the random sieve. Details follow.Implementing a random sieve. The random sieve is implemented by using a family of hashingfunctions (see Appendix). Speci�cally, in the ith iteration we use a family H ì such that each h 2 H ìhas a poly(`)-bit long description and maps `-bit long strings to i-bit long strings. Furthermore, thefamily is accompanied with an e�cient evaluation algorithm (i.e., mapping adequate pairs (h; x)to h(x)) and satis�es (for every S � f0; 1g`)Prh2H ì [jfy 2 S : h(y) = 0igj 62 (1� ") � 2�ijSj] < 2i"2jSj (4)(see Lemma 24). The random sieve will let y pass if and only if h(y) = 0i. Indeed, this randomsieve is not as perfect as we assumed in the foregoing discussion, but Eq. (4) says that in somesense this sieve is good enough.Implementing the queries. Recall that for some x, i and h 2 H ì, we need to determine whetherfy2R(x) : h(y)=0ig = ;. This type of question can be cast as membership in the setSR;H def= f(x; i; h) : 9y s.t. (x; y)2R ^ h(y)=0ig: (5)Using the hypotheses that R 2 PC and that the family of hashing functions has an e�cientevaluation algorithm, it follows that SR;H is in NP.The actual procedure. On input x 2 SR and oracle access to SR;H , we proceed in iterations, startingwith i = 1 and halting at i = ` (if not before), where ` denotes the length of the potential solutionsfor x. In the ith iteration (where i < `), we uniformly select h 2 H ì and query the oracle on whetheror not (x; i; h) 2 SR;H . If the answer is negative then we halt with output 2i, and otherwise weproceed to the next iteration (using i i+ 1). Needless to say, if we reach the last iteration (i.e.,i = `) then we just halt with output 2`.Indeed, we have ignored the case that x 62 SR, which can be easily handled by a minor modi-�cation of the foregoing procedure. Speci�cally, on input x, we �rst query SR on x and halt withoutput 0 if the answer is negative. Otherwise we proceed as in the foregoing procedure.The analysis. We upper-bound separately the probability that the procedure outputs a value thatis too small and the probability that it outputs a value that is too big. In light of the foregoingdiscussion, we may assume that jR(x)j > 0, and let ix = blog2 jR(x)jc � 0.1. The probability that the procedure halts in a speci�c iteration i < ix equals Prh2H ì [jfy 2R(x) : h(y) = 0igj = 0], which in turn is upper-bounded by 2i=jR(x)j (using Eq. (4) with" = 1). Thus, the probability that the procedure halts before iteration ix�3 is upper-boundedby Pix�4i=0 2i=jR(x)j, which in turn is less than 1=8 (because ix � log2 jR(x)j). Thus, withprobability at least 7=8, the output is at least 2ix�3 > jR(x)j=16 (because ix > (log2 jR(x)j)�1).2. The probability that the procedure does not halt in iteration i > ix equals Prh2H ì [jfy 2 R(x) :h(y) = 0igj � 1], which in turn is upper-bounded by �=(� � 1)2, where � = 2i=jR(x)j > 1(using Eq. (4) with " = � � 1).3 Thus, the probability that the procedure does not halt by3A better bound can be obtained by using the hypothesis that, for every y, when h is uniformly selected in H ì, thevalue of h(y) is uniformly distributed in f0; 1gi. In this case, Prh2H ì [jfy 2 R(x) : h(y) = 0igj � 1] is upper-boundedby Eh2H ì [jfy 2 R(x) : h(y) = 0igj] = jR(x)j=2i. 8

iteration ix +4 is upper-bounded by 8=49 < 1=6 (because ix > (log2 jR(x)j)� 1). Thus, withprobability at least 5=6, the output is at most 2ix+4 � 16 � jR(x)j (because ix � log2 jR(x)j).Thus, with probability at least (7=8)� (1=6) > 2=3, the foregoing procedure outputs a value v suchthat v=16 � jR(x)j < 16v. Reducing the deviation by using the ideas presented in Exercise 33 (andreducing the error probability as in Exercise 31), the theorem follows.Perspective. The key observation underlying the proof Theorem 14 is that while we cannottest (even with the help of an NP-oracle) whether the number of solutions is greater than a givennumber, we can test (with the help of an NP-oracle) whether the number of solutions that \survivea random sieve" is greater than zero. If fact, we can also test whether the number of solutions that\survive a random sieve" is greater than a small number, where small means polynomial in thelength of the input (see Exercise 35). In general, our complexity is linear in the size of the threshold,and not in the length of its binary description. Indeed, in many settings it is more advantageousto use a threshold that is polynomial in some e�ciency parameter (rather than using the thresholdzero); examples appear in Section 4.2 and in [7].3 Searching for unique solutionsA natural computational problem (regarding search problems), which arises when discussing thenumber of solutions, is the problem of distinguishing instances having a single solution from in-stances having no solution (or �nding the unique solution whenever such exists). We mention thatinstances having a single solution facilitate numerous arguments (see, for example, Exercise 29 and[2]). Formally, searching for and deciding the existence of unique solutions are de�ned within theframework of promise problems.De�nition 15 (search and decision problems for unique solution instances): The set of instanceshaving unique solutions with respect to the binary relation R is de�ned as USR def= fx : jR(x)j = 1g,where R(x) def= fy : (x; y)2Rg. As usual, we denote SR = fx : jR(x)j � 1g, and SR def= f0; 1g�nSR =fx : jR(x)j = 0g.� The problem of �nding unique solutions for R is de�ned as the search problem R with promiseUSR [SR.44A search problem with a promise consists of a binary relation R � f0; 1g� � f0; 1g� and a promise set P . Such aproblem is also referred to as the search problem R with promise P .{ The search problem R with promise P is solved by algorithm A if for every x 2 P it holds that (x;A(x)) 2 R ifx 2 SR = fx : R(x) 6= ;g and A(x) = ? otherwise, where R(x) = fy : (x; y) 2 Rg.The time complexity of A on inputs in P is de�ned as TAjP (n) def= maxx2P\f0;1gnftA(x)g, where tA(x) is therunning time of A(x) and TAjP (n) = 0 if P \ f0; 1gn = ;.{ The search problem R with promise P is in the promise problem extension of PF if there exists a polynomial-time algorithm that solves this problem.{ The search problem R with promise P is in the promise problem extension of PC if there exists a polynomialT and an algorithm A such that, for every x 2 P and y 2 f0; 1g�, algorithm A makes at most T (jxj) steps andit holds that A(x; y) = 1 if and only if (x; y) 2 R.An algorithm A solves the candid search problem of the binary relationR if for every x 2 SR def= fx : 9y s.t. (x; y) 2 Rg itholds that (x;A(x)) 2 R. The time complexity of such an algorithm is de�ned as TAjSR(n) def= maxx2P\f0;1gnftA(x)g,where tA(x) is the running time of A(x) and TAjSR(n) = 0 if P \ f0; 1gn = ;.9

In continuation to the notion of candid search problems, the candid searching for unique solu-tions for R is de�ned as the search problem R with promise USR.� The problem of deciding unique solution for R is de�ned as the promise problem (USR; SR).Interestingly, in many natural cases, the promise does not make any of these problems any easierthan the original problem. That is, for all known NP-complete problems, the original problem isreducible in probabilistic polynomial-time to the corresponding unique instances problem.Theorem 16 Let R 2 PC and suppose that every search problem in PC is parsimoniously re-ducible to R. Then solving the search problem of R (resp., deciding membership in SR) is re-ducible in probabilistic polynomial-time to �nding unique solutions for R (resp., to the promiseproblem (USR; SR)). Furthermore, there exists a probabilistic polynomial-time computable mappingM such that for every x 2 SR it holds that M(x) 2 SR, whereas for every x 2 SR it holds thatPr[M(x) 2 USR] � 1=poly(jxj).We note that the condition regarding parsimonious reductions is crucial (see Exercise 36).Proof: As in the proof of Theorem 14, the idea is to apply a \random sieve" on R(x), thistime with the hope that a single element survives. Speci�cally, if we let each element passesthe sieve with probability approximately 1=jR(x)j then with constant probability a single elementsurvives. Sieving will be performed by a random function selected in an adequate hashing family(see Appendix). A couple of questions arise:1. How do we get an approximation to jR(x)j? Note that we need such an approximation inorder to determine the adequate hashing family. Indeed, we may just invoke Theorem 14,but this will not yield a many-to-one reduction. Instead, we just select m 2 f0; :::;poly(jxj)guniformly and note that (if jR(x)j > 0 then) Pr[m = dlog2 jR(x)je] = 1=poly(jxj).Thus, we randomly map x to (x;m; h), where h is uniformly selected in an adequate hashingfamily.2. How does the question of whether a single element of R(x) pass the random sieve translate toan instance of the unique-instance problem for R? Recall that in the proof of Theorem 14 thenon-emptiness of the set of element of R(x) that pass the sieve de�ned by h was determinedby checking membership (of (x;m; h)) in SR;H 2 NP (de�ned in Eq. (5)). Furthermore, thenumber of NP-witnesses for (x;m; h) 2 SR;H equals the number of elements of R(x) thatpass the sieve. Using the parsimonious reduction of SR;H to SR (which is guaranteed by thetheorem's hypothesis), we obtained the desired instance.Note that in case R(x) = ; the aforementioned mapping always generates a no-instance (of SR;Hand thus of SR). Details follow.Implementation (i.e., the mapping M). As in the proof of Theorem 14, we assume, without lossof generality, that R(x) � f0; 1g`, where ` = poly(jxj). We start by uniformly selecting m 2f0; 1; :::; `g and h 2 Hm̀, where Hm̀ is a family of e�ciently computable and pairwise-independenthashing functions (see De�nition 21) mapping `-bit long strings to m-bit long strings.5 Thus, weobtain an instance (x;m; h) of SR;H 2 NP such that the set of valid solutions for (x;m; h) equalsfy 2R(x) : h(y) = 0mg. Using the parsimonious reduction g of SR;H to SR, we map (x;m; h) to5For sake of uniformity, we allow also the case of m = 0, which is rather arti�cial. In this case all hashing functionsin H 0̀ map f0; 1g` to the empty string, which is viewed as 00.10

g(x;m; h), and it holds that jfy2R(x) : h(y)=0mgj equals jR(g(x;m; h))j. To summarize, on inputx the randomized mappingM outputs the instance M(x) def= g(x;m; h), where m 2 f0; 1; :::; `g andh 2 Hm̀ are uniformly selected.The analysis. Note that for any x 2 SR it holds that Pr[M(x) 2 SR] = 1. Assuming that x 2 SR,with probability exactly 1=(` + 1) it holds that m = mx, where mx def= dlog2 jR(x)je. In this case,for a uniformly selected h 2 Hm̀, we lower-bound the probability that fy2R(x) : h(y)=0mg is asingleton. Using the Inclusion-Exclusion Principle, we havePrh2Hmx` [jfy2R(x) : h(y)=0mxgj = 1] (6)� Xy2R(x)Prh2Hmx` [h(y)=0mx]� Xy1<y22R(x)Prh2Hmx` [h(y1)=h(y2)=0mx]= jR(x)j � 2�mx � jR(x)j2 ! � 2�2mxwhere the equality is due to the pairwise independence property. Using 2mx�1 < jR(x)j � 2mx , itfollows that Eq. (6) is lower-bounded by 1=4. Thus, Pr[M(x) 2 USR] � 1=4(`+1), and the theoremfollows.Comment. Theorem 16 is sometimes stated as referring to the unique solution problem of SAT.In this case and when using a speci�c family of pairwise independent hashing functions, the use ofthe parsimonious reduction can be avoided. For details see Exercise 37.4 Uniform generation of solutionsWe now turn to a new type of computational problems, which may be viewed as a straining of searchproblems. We refer to the task of generating a uniformly distributed solution for a given instance,rather than merely �nding an adequate solution. Needless to say, by de�nition, algorithms solvingthis (\uniform generation") task must be randomized. Focusing on relations in PC we considertwo versions of the problem, which di�er by the level of approximation provided for the desired(uniform) distribution.6De�nition 17 (uniform generation): Let R 2 PC and SR = fx : jR(x)j � 1g, and let � be aprobabilistic process.1. We say that � solves the uniform generation problem of R if, on input x 2 SR, the process �outputs either an element of R(x) or a special symbol, denoted ?, such that Pr[�(x)2R(x)] �1=2 and for every y 2 R(x) it holds that Pr[�(x)=y j�(x)2R(x)] = 1=jR(x)j.2. For " : N ! [0; 1], we say that � solves the (1 � ")-approximate uniform generation problemof R if, on input x 2 SR, the distribution �(x) is "(jxj)-close to the uniform distribution onR(x).6Note that a probabilistic algorithm running in strict polynomial-time is not able to output a perfectly uniformdistribution on sets of certain sizes. Speci�cally, referring to the standard model that allows only for uniformlyselected binary values, such algorithms cannot output a perfectly uniform distribution on sets having cardinality thatis not a power of two. 11

In both cases, without loss of generality, we may require that if x 62 SR then Pr[�(x) = ?] = 1.More generally, we may require that � never outputs a string not in R(x).Note that the error probability of uniform generation (as in Item 1) can be made exponentiallyvanishing (in jxj) by employing error-reduction. In contrast, we are not aware of any general wayof reducing the deviation of an approximate uniform generation procedure (as in Item 2).7In Section 4.1 we show that, for many search problems, approximate uniform generation iscomputationally equivalent to approximate counting. In Section 4.2 we present a direct approachfor solving the uniform generation problem of any search problem in PC by using an oracle to NP .4.1 Relation to approximate countingWe show that for every R 2 PC that is NP-complete under parsimonious reductions, the approx-imate counting problem associated with R is computationally equivalent to approximate uniformgeneration with respect to R. Recalling that both approximate problems are parameterized by thelevel of precision, we obtain the following quantitative form of the aforementioned equivalence.Theorem 18 Let R 2 PC and let ` be a polynomial such that for every (x; y) 2 R it holds thatjyj � `(jxj). Suppose that every search problem in PC is parsimoniously reducible to R.1. From approximate counting to approximate uniform generation: Let "(n) = 1=5`(n) andlet � :N! (0; 1) be a function satisfying �(n) � exp(�poly(n)). Then, (1 � �)-approximateuniform generation for R is reducible in probabilistic polynomial-time to (1�")-approximating#R.2. From approximate uniform generation to approximate counting: For every noticeable " :N! (0; 1) (i.e., "(n) � 1=poly(n) for every n), the problem of (1 � ")-approximating #R isreducible in probabilistic polynomial-time to (1� "0)-approximate uniform generation problemof R, where "0(n) = "(n)=5`(n).Note that the quality of the approximate uniform generation asserted in Part 1 (i.e., �) is indepen-dent of the quality of the approximate counting procedure (i.e., ") to which the former is reduced,provided that the approximate counter performs better than some threshold. On the other hand,the quality of the approximate counting asserted in Part 2 (i.e., ") does depend on the quality ofthe approximate uniform generation (i.e., "0). Recall, however, that the quality of approximatecounting procedures for problems that are NP-complete under parsimonious reductions can be im-proved (see Exercise 34). Thus, for such problems, the quality of approximate uniform generationprocedures can be improved by applying both parts of Theorem 18.Proof: Throughout the proof, we assume for simplicity (and in fact without loss of generality)that R(x) 6= ; and R(x) � f0; 1g`(jxj).Towards Part 1, let use �rst reduce the uniform generation problem of R to #R (rather than toapproximating #R). On input x 2 SR, we generate a uniformly distributed y 2 R(x) by randomlygenerating its bits one after the other. We proceed in iterations, entering the ith iteration with an(i� 1)-bit long string y0 such that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is not empty. With probabilityjR0(x; y01)j=jR0(x; y0)j we set the ith bit to equal 1, and otherwise we set it to equal 0. We obtain bothjR0(x; y01)j and jR0(x; y0)j by using a parsimonious reduction g of R0 = f((x; y0); y00) : (x; y0y00) 27We note that in some cases, the deviation of an approximate uniform generation procedure can be reduced. Seediscussion following Theorem 18. 12

Rg 2 PC to R. That is, we obtain jR0(x; y0)j by querying for the value of jR(g(x; y0))j. Ignoringintegrality issues, all this works perfectly (i.e., we generate an `(n)-bit string uniformly distributedin R(x)) as long as we have oracle access to #R. But we only have oracle access to an approximationof #R, and thus a careful modi�cation is in place.Let us denote the approximation oracle by A. Firstly, by adequate error reduction, we mayassume that, for every x, it holds that Pr[A(x) 2 (1 � "(n)) �#R(x)] > 1 � �0(jxj), where �0(n) =�(n)=`(n). In the rest of the analysis we ignore the probability that the estimate deviates from theaforementioned interval, and note that this rare event is the only source of the possible deviationof the output distribution from the uniform distribution on R(x).8 Let us assume for a momentthat A is deterministic and that for every x and y0 it holds thatA(g(x; y00)) +A(g(x; y01)) � A(g(x; y0)): (7)We also assume that the approximation is correct at the \trivial level" (where one may just checkwhether or not (x; y) is in R); that is, for every y 2 f0; 1g`(jxj), it holds thatA(g(x; y)) = 1 if (x; y) 2 R and A(g(x; y)) = 0 otherwise. (8)We modify the ith iteration of the foregoing procedure such that, when entering with the (i�1)-bitlong pre�x y0, we set the ith bit to 1 (resp., to 0) with probability A(g(x; y01))=A(g(x; y0)) (resp.,with probability A(g(x; y00))=A(g(x; y0))) and halt (with output ?) with the residual probability.If we completed the last (i.e., `(jxj)th) iteration, then we output the `(jxj)-bit long string that wasgenerated. Thus, as long as Eq. (7) holds (but regardless of other aspects of the quality of theapproximation), every y = �1 � � � �`(jxj) 2 R(x), is output with probabilityA(g(x;�1))A(g(x;�)) � A(g(x;�1�2))A(g(x;�1)) � � � A(g(x;�1�2 � � � �`(jxj)))A(g(x;�1�2 � � � �`(jxj)�1)) (9)which, by Eq. (8), equals 1=A(g(x;�)). Thus, the procedure outputs each element of R(x) withequal probability, and never outputs a non-? value that is outside R(x). It follows that the qualityof approximation only e�ects the probability that the procedure outputs a non-? value (whichequals jR(x)j=A(g(x;�))).We now turn to enforcing Eq. (7) and Eq. (8). We may enforce Eq. (8) by performing thestraightforward check (of whether or not (x; y) 2 R) rather than invoking A(g(x; y)).9 As forEq. (7), we enforce it arti�cially by using A0(x; y0) def= (1 + "(jxj))3(`(jxj)�jy0 j) � A(g(x; y0)) instead ofA(g(x; y0)). Recalling that A(g(x; y0)) = (1� "(jxy0j)) � jR0(x; y0)j, we haveA0(x; y0) > (1 + "(jxj))3(`(jxj)�jy0 j) � (1� "(jxj)) � jR0(x; y0)jA0(x; y0�) < (1 + "(jxj))3(`(jxj)�jy0 j�1) � (1 + "(jxj)) � jR0(x; y0�)jand the claim follows using (1�"(jxj))�(1+"(jxj))3 > (1�"(jxj)). Note that the foregoing modi�ca-tion only decreases the probability of outputting a non-? value by a factor of (1+ "(jxj))3`(jxj) < 2,where the inequality is due to the setting of " (i.e., "(n) = 1=5`(n)). Finally, we refer to ourassumption that A is deterministic. This assumption was only used in order to identify the valueof A(g(x; y0)) obtained and used in the (jy0j � 1)st iteration with the value of A(g(x; y0)) obtained8The possible deviation is due to the fact that this rare event may occur with di�erent probability in the di�erentinvocations of algorithm A.9Alternatively, we note that since A is a (1 � ")-approximator for " < 1 it must hold that #R0(z) = 0 impliesA(z) = 0. Also, since " < 1=3, if #R0(z) = 1 then A(z) 2 (2=3; 4=3), which may be rounded to 1.13

and used in the jy0jth iteration, but the same e�ect can be obtained by just using the former value(in the jy0jth iteration) rather than re-invoking A in order to obtain it. Part 1 follows.Towards Part 2, let use �rst reduce the task of approximating #R to the task of (exact)uniform generation for R. On input x 2 SR, the reduction uses the tree of possible pre�xes ofelements of R(x) in a somewhat di�erent manner. Again, we proceed in iterations, entering theith iteration with an (i � 1)-bit long string y0 such that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is notempty. At the ith iteration we estimate the bigger among the two fractions jR0(x; y00)j=jR0(x; y0)jand jR0(x; y01)j=jR0(x; y0)j, by uniformly sampling the uniform distribution over R0(x; y0). That is,taking poly(jxj="0(jxj)) uniformly distributed samples in R0(x; y0), we obtain with overwhelminglyhigh probability an approximation of these fractions up to an additive deviation of at most "0(jxj)=3.This means that we obtain a relative approximation up-to a factor of 1 � "0(jxj) for the fraction(or fractions) that is (resp., are) bigger than 1=3. Indeed, we may not be able to obtain sucha good relative approximation of the other fraction (in case it is very small), but this does notmatter. It also does not matter that we cannot tell which is the bigger fraction among the two;it only matter that we use an approximation that indicates a quantity that is, say, bigger than1=3. We proceed to the next iteration by augmenting y0 using the bit that corresponds to such aquantity. Speci�cally, suppose that we obtained the approximations a0(y0) � jR0(x; y00)j=jR0(x; y0)jand a1(y0) � jR0(x; y01)j=jR0(x; y0)j. Then we extend y0 by the bit 1 if a1(y0) > a0(y0) and extendy0 by the bit 0 otherwise. Finally, when we reach y = �1 � � � �`(jxj) such that (x; y) 2 R, we outputa�1(�)�1 � a�2(�1)�1 � � � a�`(jxj)(�1�2 � � � �`(jxj)�1)�1: (10)As in Part 1, actions regarding R0 (in this case uniform generation in R0) are conducted via theparsimonious reduction g to R. That is, whenever we need to sample uniformly in the set R0(x; y0),we sample the set R(g(x; y0)) instead. Finally, note that the deviation from uniform distribution(i.e., the fact that we can only approximately sample R) merely introduces such a deviation in eachof our approximations to the relevant fractions (i.e., to a fraction bigger than 1=3). Speci�cally,on input x, using an oracle that provides a (1 � "0)-approximate uniform generation for R, withoverwhelmingly high probability, the output (as de�ned in Eq. (10)) is in`(jxj)Yi=1 �(1� 2"0(jxj)) � jR0(x;�1 � � � �i�1)jjR0(x;�1 � � � �i)j � (11)where the error probability is due to the unlikely case that in one of the iterations our approxima-tions deviates from the correct value by more than an additive deviation term of "0(n)=3. Notingthat Eq. (11) equals (1 � 2"0(jxj))`(jxj) � jR(x)j and using (1 � 2"0(jxj))`(jxj) � (1 � "(jxj)), Part 2follows, and so does the theorem.4.2 Direct uniform generationWe conclude the current section by presenting a direct procedure for solving the uniform generationproblem of any R 2 PC. This procedure uses an oracle to NP, which is unavoidable because solvingthe uniform generation problem implies solving the corresponding search problem. One advantageof this process, over the reduction presented in Section 4.1, is that it solves the uniform generationproblem rather than the approximate uniform generation problem.We are going to use hashing again, but this time we use a family of hashing functions havinga stronger \uniformity property" (see Section A.3). Speci�cally, we will use a family of `-wiseindependent hashing functions mapping `-bit strings to m-bit strings, where ` bounds the length14

of solutions in R, and rely on the fact that such a family satis�es Lemma 26. Intuitively, suchfunctions partition f0; 1g` into 2m cells and Lemma 26 asserts that these partitions \uniformlyshatter" all su�ciently large sets. That is, for every set S � f0; 1g` of size
(` � 2m) the partitioninduced by almost every function is such that each cell contains approximately jSj=2m elements ofS. In particular, if jSj = �(` � 2m) then each cell contains �(`) elements of S.In the following construction, we assume that on input x we also obtain a good approximationto the size of R(x). This assumption can be enforced by using an approximate counting procedureas a preprocessing stage. Alternatively, the ideas presented in the following construction yield suchan approximate counting procedure.Construction 19 (uniform generation): On input x and m0x 2 fmx;mx + 1g, where mx def=blog2 jR(x)jc and R(x) � f0; 1g`, the oracle machine proceeds as follows.1. Selecting a partition that \uniformly shatters" R(x). The machine sets m = max(0;m0x �6 � log2 `) and selects uniformly h 2 Hm̀. Such a function de�nes a partition of f0; 1g` into2m cells10, and the hope is that each cell contains approximately the same elements of R(x).Next, the machine checks that this is indeed the case or rather than no cell contains more that1000` elements of R(x). This is done by checking whether or not (x; h; 11000`) is in the setS(1)R;H de�ned as followsS(1)R;H def= f(x0; h0; 1t) : 9v s.t. jfy : (x0; y)2R ^ h0(y)=vgj � tg (12)= f(x0; h0; 1t) : 9v; y1; :::; yt s.t. (1)(x0; h0; v; y1; :::; yt)g;where (1)(x0; h0; v; y1; :::; yt) holds if and only if y1<y2 � � �<yt and for every j 2 [t] it holdsthat (x0; yj)2R ^ h0(yj)=v. Note that S(1)R;H 2 NP.If the answer is positive (i.e., there exists a cell that contains more that 1000` elements ofR(x)) then the machine halts with output ?. Otherwise, the machine continues with thischoice of h. In this case, for every v 2 f0; 1gm, it holds that no cell contains more that 1000`elements of R(x) (i.e., jfy : (x; y)2R^h(y)=vgj < 1000`). We stress that this is an absoluteguarantee that follows from (x; h; 11000`) 62 S(1)R;H .2. Selecting a cell and determining the number of elements of R(x) that are contained in it. Themachine selects uniformly v 2 f0; 1gm and determines sv def= jfy : (x; y)2R ^ h(y) = vgj bymaking queries to the following NP-setS(2)R;H def= f(x0; h0; v0; 1t) : 9y1; :::; yt s.t. (1)(x0; h0; v0; y1; :::; yt)g: (13)Speci�cally, for i = 1; :::; 1000`, it checks whether (x; h; v; 1i) is in S(2)R;H , and sets sv to be thelargest value of i for which the answer is positive.3. Obtaining all the elements of R(x) that are contained in the selected cell, and outputting one ofthem at random. Using sv, the procedure reconstructs the set Sv def= fy : (x; y)2R^h(y)=vg,by making queries to the following NP-setS(3)R;H def= f(x0; h0; v0; 1t; j) : 9y1; :::; yt s.t. (3)(x0; h0; v0; y1; :::; yt; j)g; (14)10For sake of uniformity, we allow also the case of m = 0, which is rather arti�cial. In this case all hashing functionsin H 0̀ map f0; 1g` to the empty string, which is viewed as 00, and thus de�ne a trivial partition of f0; 1g` (i.e., intoa single cell). 15

where (3)(x0; h0; v0; y1; :::; yt; j) holds if and only if (1)(x0; h0; v0; y1; :::; yt) holds and the jthbit of y1 � � � yt equals 1. Speci�cally, for j1 = 1; :::; sv and j2 = 1; :::; `, we make the query(x; h; v; 1sv ; (j1� 1) � `+ j2) in order to determine the jth2 bit of yj1. Finally, having recoveredSv, the procedure outputs each y 2 Sv with probability 1=1000`, and outputs ? otherwise.By Lemma 26 (and m � mx + 1 � 6 � log2 `), with overwhelmingly high probability, each setfy : (x; y) 2 R ^ h(y) = vg has cardinality (1 � 0:5)jR(x)j=2m . Using m0x > (log2 jR(x)j) � 1(resp., m0x � (log2 jR(x)j) + 1), it follows that jR(x)j=2m < 1000` (resp., jR(x)j=2m > 10`). Thus,Step 1 can be easily adapted to yield an approximate counting procedure for #R (see Exercise 38).However, our aim is to establish the following fact.Proposition 20 Construction 19 solves the uniform generation problem of R.Proof: By Lemma 26 (and the setting of m), with overwhelmingly high probability, a uniformlyselected h 2 Hm̀ partitions R(x) into 2m cells, each containing at most 1000` elements. The keyobservation, stated in Step 1, is that if the procedure does not halt in Step 1 then it is indeed thecase that h induces such a partition. The fact that these cells may contain a di�erent number ofelements is immaterial, because each element is output with the same probability (i.e., 1=1000`).What matters is that the average number of elements in the cells is su�ciently large, becausethis average number determines the probability that the procedure outputs an element of R(x)(rather than ?). Speci�cally, the latter probability equals the aforementioned average number(which equals jR(x)j=2m) divided by 1000`. Using m � max(0; log2(2jR(x)j)� 6� log2 `), we havejR(x)j=2m � max(1; 32`), which means that the procedure outputs some element of R(x) withprobability at least 1=1000`.Technical comments. We can easily improve the performance of Construction 19 by dealingseparately with the case m = 0. In such a case, Step 3 can be simpli�ed and improved by uniformlyselecting and outputting an element of S� (which equals R(x)). Recall that the probability that auniform generation procedure outputs ? can be deceased by repeated invocations.Appendix: On HashingHashing is extensively used in complexity theory in order to map arbitrary (unstructured) sets\almost uniformly" to a smaller structured set of adequate size. Speci�cally, hashing is supposedto map an arbitrary 2m-subset (of f0; 1gn) to f0; 1gm in an \almost uniform" manner.For a �xed set S of cardinality 2m, a 1-1 mapping fS : S ! f0; 1gm does exist, but it is notnecessarily an e�cient one (e.g., it may require \knowing" the entire set S). Clearly, no �xedfunction f : f0; 1gn ! f0; 1gm can map every 2m subset of f0; 1gn to f0; 1gm in a 1-1 manner(or even approximately so). However, a random function f : f0; 1gn ! f0; 1gm has the propertythat, for every 2m-subset S � f0; 1gn, with overwhelmingly high probability f maps S to f0; 1gmsuch that no point in the range has many f -preimages in S. The problem is that a truly randomfunction is unlikely to have a succinct representation (let alone an e�cient evaluation algorithm).We seek families of functions that have a similar property, but do have a succinct representationas well as an e�cient evaluation algorithm.
16

A.1 De�nitionsMotivated by the foregoing discussion, we consider families of functions fHmn gm<n Such that thefollowing properties hold:1. For every S � f0; 1gn, with high probability, a function h selected uniformly in Hmn maps Sto f0; 1gm in an \almost uniform" manner. For example, for any jSj = 2m and each point y,with high probability over the choice of h, it holds that jfx 2 S : h(x) = ygj � poly(n).2. The functions in Hmn have succinct representation. For example, we may require that Hmn �f0; 1g`(n;m), for some polynomial `.3. The functions in Hmn can be e�ciently evaluated. That is, there exists a polynomial-timealgorithm that, on input a representation of a function, h (in Hmn), and a string x2f0; 1gn,returns h(x). In some cases we make even more stringent requirements regarding the thealgorithm (e.g., that it runs in linear space).Condition 1 was left vague on purpose. At the very least, we require that the expected sizeof fx 2 S : h(x) = yg equals jSj=2m. We shall see (in Section A.3) that di�erent (stronger)interpretations of Condition 1 are satis�ed by di�erent types of hashing functions. We focus ont-wise independent hashing functions, de�ned next.De�nition 21 (t-wise independent hashing functions): A family Hmn of functions from n-bitstrings to m-bit strings is called t-wise independent if for every t distinct domain elements x1; :::; xt 2f0; 1gn and every y1; :::; yt 2 f0; 1gm it holds thatPrh2Hmn [^ti=1h(xi) = y1] = 2�t�mThat is, every t domain elements are mapped by a uniformly chosen h 2 Hmn in a totally uniformmanner. Note that for t � 2, it follows that the probability that a random h 2 Hmn maps twodistinct domain elements to the same image is 2�m. Such (families of) functions are called universal(cf. [3]), but we will focus on the stronger condition of t-wise independence.A.2 ConstructionsThe following constructions are merely a re-interpretation of the constructions of pairwise-independentrandom variables. (Alternatively, one may view the latter constructions as a re-interpretation ofthe following two constructions.)Construction 22 (t-wise independent hashing): For t;m; n 2 N such that m � n, consider thefollowing family of hashing functions mapping n-bit strings to m-bit strings. Each t-sequence s =(s0; s1; :::; st�1) 2 f0; 1gt�n describes a function hs : f0; 1gn ! f0; 1gm such that hs(x) equals them-bit pre�x of the binary representation of Pt�1j=0 sjxj, where the arithmetic is that of GF(2n), the�nite �eld of 2n elements.Construction 22 constitutes a family of t-wise independent hash functions. Typically, we willuse either t = 2 or t = �(n). To make the construction totally explicit, we need an explicitrepresentation of GF(2n). An alternative construction for the case of t = 2 may be obtainedanalogously to a pairwise independent generator that is based on Toeplitz matrices. A Toeplitzmatrix is a matrix with all diagonals being homogeneous; that is, T = (ti;j) is a Toeplitz matrix ifti;j = ti+1;j+1, for all i; j. 17

Construction 23 (Alternative pairwise independent hashing): For m � n, consider the family ofhashing functions in which each n-by-m Toeplitz matrix T and an m-dimensional vector b describesa function hT;b : f0; 1gn ! f0; 1gm such that hT;b(x) = Tx+ b.Construction 23 constitutes a family of pairwise independent hash functions. Note that a n-by-mToeplitz matrix can be speci�ed by n +m � 1 bits, yielding description length n + 2m � 1. Analternative construction (using m � n + m bits of representation) uses arbitrary n-by-m matricesrather than Toeplitz matrices.A.3 The Leftover Hash LemmaWe now turn to the \almost uniform" cover condition (i.e., Condition 1) mentioned in Section A.1.One concrete interpretation of this condition is implied by the following lemma.Lemma 24 Let m < n be integers, Hmn be a family of pairwise independent hash functions, andS � f0; 1gn. Then, for every y 2 f0; 1gm and every " > 0, for all but at most an 2m"2jSj fraction ofh 2 Hmn it holds that jfx 2 S : h(x) = ygj = (1� ") � jSj2m : (15)By pairwise independence (or rather even by \1-wise independence"), the expected size of fx 2S : h(x) = yg is jSj=2m, where the expectation is taken uniformly over all h 2 Hmn . The lemmaupper bounds the fraction of h's that deviate from the expected value. Needless to say, the boundis meaningful only in case jSj > 2m (or alternatively for " > 1). Setting " = 3p2m=jSj (and focusingon the case that jSj > 2m), we infer that for all but at most an " fraction of h 2 Hmn it holds thatjfx 2 S : h(x) = ygj = (1 � ") � jSj=2m. Thus, each range element has approximately the rightnumber of h-preimages in the set S under almost all h 2 Hmn .Proof: Fixing an arbitrary set S � f0; 1gn and an arbitrary y 2 f0; 1gm, we estimate the proba-bility that a uniformly selected h 2 Hmn violates Eq. (15). We de�ne random variables �x, over theaforementioned probability space, such that �x = �x(h) equal 1 if h(x) = y and 0 otherwise. Theexpected value of Px2S �x is � def= jSj � 2�m, and we are interested in the probability that this sumdeviates from the expectation. Applying Chebyshev's Inequality, we getPr "�������Xx2S �x����� > " � �# < �"2�2because Var(Px2S �x) < jSj � 2�m by the pairwise independence of the �x's and the fact thatE[�x] = 2�m. The lemma follows.A generalization (called mixing). The proof of Lemma 24 can be easily extended to showthat for every set T � f0; 1gm and every " > 0, for all but at most an 2mjT j�jSj"2 fraction of h 2 Hmn itholds that jfx 2 S : h(x) = ygj = (1� ") � jT j � jSj=2m. (Hint: just de�ne �x = �(h) = 1 if h(x) 2 Tand 0 otherwise.) In the case that m = n, this is called a mixing property, and is meaningfullprovided jT j � jSj > 2m=".
18

An extremely useful corollary. The aforementioned generalization of Lemma 24 asserts thatmost functions behave well with respect to any �xed sets of preimages S � f0; 1gn and imagesT � f0; 1gm. A seemingly stronger statement, which is (non-trivially) implied by Lemma 24,is that for all adequate sets S most functions h 2 Hmn map S to f0; 1gm in an almost uniformmanner.11 This is a consequence of the following theorem.Theorem 25 (a.k.a Leftover Hash Lemma): Let Hmn and S � f0; 1gn be as in Lemma 24, andde�ne " = 3p2m=jSj. Consider random variable X and H that are uniformly distributed on S andHmn , respectively. Then, the statistical distance between (H;H(X)) and (H;Um) is at most 2".Using the terminology of randomness extractors, we say that Hmn yields a strong extractor (withrather poor parameters).Proof: Let V denote the set of pairs (h; y) that violate Eq. (15), and V def= (Hmn � f0; 1gm) n V .Then for every (h; y) 2 V it holds thatPr[(H;H(X)) = (h; y)] = Pr[H = h] � Pr[h(X) = y]= (1� ") � Pr[(H;Um) = (h; y)]:On the other hand, by Lemma 24 (which asserts Pr[(H; y) 2 V] � " for every y 2 f0; 1gm), we havePr[(H;Um) 2 V] � ". UsingPr[(H;H(X)) 2 V] = 1� Pr[(H;H(X)) 2 V]� 1� Pr[(H;Un)) 2 V] + " � 2"we upper-bounded the statistical di�erence between (H;H(X)) and (H;Um) by12 � X(h;y)2Hmn �f0;1gm jPr[(H;H(X)) = (h; y)] � Pr[(H;Um) = (h; y)]j� "2 + 12 � X(h;y)2V jPr[(H;H(X)) = (h; y)] � Pr[(H;Um) = (h; y)]j� "2 + 12 � X(h;y)2V (Pr[(H;H(X)) = (h; y)] + Pr[(H;Um) = (h; y)])� "2 + 12 � (2" + ")and the claim follows.An alternative proof of Theorem 25. De�ne the collision probability of a random variableZ, denote cp(Z), as the probability that two independent samples of Z yield the same result.Alternatively, cp(Z) def= Pz Pr[Z = z]2. Theorem 25 follows by combining the following two facts:1. A general fact: If Z 2 [N] and cp(Z) � (1+4�2)=N then Z is �-close to the uniform distributionon [N].We prove the contra-positive: Assuming that the statistical distance between Z and theuniform distribution on [N] equals �, we show that cp(Z) � (1 + 4�2)=N . This is done by11That is, for X as in Theorem 25 and any � > 0, for all but at most an � fraction of the functions h 2 Hmn itholds that h(X) is (2"=�)-close to Um. 19

de�ning L def= fz : Pr[Z = z] < 1=Ng, and lower-bounding cp(Z) by using the fact that thecollision probability minimizes on uniform distributions. Speci�cally,cp(Z) � jLj � �Pr[Z 2 L]jLj �2 + (N � jLj) � �Pr[Z 2 [N] n L]N � jLj �2;which equals 1 + (�2=(1 � �)�) � 1 + 4�2, where � = jLj=N .2. The collision probability of (H;H(X)) is at most (1 + (2m=jSj))=(jHmn j � 2m). (Furthermore,this holds even if Hmn is only universal.)The proof is by a straightforward calculation. Speci�cally, note that cp(H;H(X)) = jHmn j�1 �Eh2Hmn [cp(h(X))], whereas Eh2Hmn [cp(h(X)] = jSj�2Px1;x22S Pr[H(x1) = H(x2)]. The sumequals jSj+ (jSj2 � jSj) � 2�m, and so cp(H;H(X)) < jHmn j�1 � (2�m + jSj�1).Note that it follows that (H;H(X)) is p2m=4jSj-close to (H;Um), which is a stronger bound thanthe one provided in Theorem 25.Stronger uniformity via higher independence. Recall that Lemma 24 asserts that for eachpoint in the range of the hash function, with high probability over the choice of the hash function,this �xed point has approximately the expected number of preimages in S. A stronger conditionasserts that, with high probability over the choice of the hash function, every point in its range hasapproximately the expected number of preimages in S. Such a guarantee can be obtained whenusing n-wise independent hashing functions.Lemma 26 Let m < n be integers, Hmn be a family of n-wise independent hash functions, andS � f0; 1gn. Then, for every " 2 (0; 1), for all but at most an 2m � (n � 2m="2jSj)n=2 fraction ofh 2 Hmn , it holds that jfx 2 S : h(x) = ygj = (1� ") � jSj=2m for every y 2 f0; 1gm.Indeed, the lemma should be used with 2m < "2jSj=4n. In particular, using m = log2 jSj �log2(5n="2) guarantees that with high probability each range elements has (1�")�jSj=2m preimagesin S. Under this setting of parameters jSj=2m = 5n="2, which is poly(n) whenever " = 1=poly(n).Needless to say, this guarantee is stronger than the conclusion of Theorem 25.Proof: The proof follows the footsteps of the proof of Lemma 24, taking advantage of the fact thatthe random variables (i.e., the �x's) are now 2t-wise independent, where t = n=2. This allows forthe use of a so-called 2tth moment analysis, which generalizes the analysis of pairwise independentsamplying. As in the proof of Lemma 24, we �x any S and y, and de�ne �x = �x(h) = 1 if andonly if h(x) = y. Letting � = E[Px2S �x] = jSj=2m and �x = �x � E(�x), we start with Markovinequality: Pr "�������Xx2S �x����� > " � �# < E[(Px2S �x)2t]"2t�2t= Px1;:::;x2t2S E[Q2ti=1 �xi]"2t � (jSj=2m)2t (16)Using 2t-wise independence, we note that only the terms in Eq. (16) that do not vanish are those inwhich each variable appears with multiplicity. This mean that only terms having less than t distinctvariables contribute to Eq. (16). Now, for every j � t, we have less than �jSjj � � (2t!) < (2t!=j!) � jSjj20

terms with j distinct variables, and each contributes less than (2�m)j to the sum. Thus, Eq. (16)is upper-bounded by 2t!("2tjSj=2m)2t � tXj=1 (jSj=2m)jj! < 2t!=t!("2jSj=2m)t < �2t � 2m"2jSj �twhere the �rst inequality assumes jSj > n2m (since the claim hold vacuously otherwise). Thisupper-bounds the probability that a random h 2 Hmn violates the mapping condition regarding a�xed y. Using a union bound on all y 2 f0; 1gm, the lemma follows.NotesThe counting class #P was introduced by Valiant [15], who proved that computing the permanent of0/1-matrices is #P-complete (i.e., Theorem 7). Interestingly, like in the case of Cook's introductionof NP-completeness [4], Valiant's motivation was determining the complexity of a speci�c problem(i.e., the permanent).The proofs of Theorems 7 and 3 were omitted from the current text. Such proofs can be foundin the origianl papers (i.e., [15] and [14], respectively), but we prefer our own presentation (givenin [6]).The approximation procedure for #P is due to Stockmeyer [13], following an idea of Sipser [12].Our exposition, however, follows further developments in the area. The randomized reductionof NP to problems of unique solutions was discovered by Valiant and Vazirani [16]. Again, ourexposition is a bit di�erent.The connection between approximate counting and uniform generation (presented in Section 4.1)was discovered by Jerrum, Valiant, and Vazirani [9], and is applicable also beyond the setting ofTheorem 18 (e.g., in the \Markov Chain approach" (see [11, Sec. 11.3.1])). The direct solution touniform generation (presented in Section 4.2) is taken from [1].In continuation to Section 2.1, which is based on [10], we refer the interested reader to [8],which presents a probabilistic polynomial-time algorithm for approximating the permanent of non-negative matrices. This fascinating algorithm is based on the fact that knowing (approximately)certain parameters of a non-negative matrix M allows to approximate the same parameters for amatrix M 0, provided that M and M 0 are su�ciently similar. Speci�cally, M and M 0 may di�eronly on a single entry, and the ratio of the corresponding values must be su�ciently close to one.Needless to say, the actual observation (is not generic but rather) refers to speci�c parameters of thematrix, which include its permanent. Thus, given a matrix M for which we need to approximatethe permanent, we consider a sequence of matrices M0; :::;Mt � M such that M0 is the all 1'smatrix (for which it is easy to evaluate the said parameters), and each Mi+1 is obtained from Miby reducing some adequate entry by a factor su�ciently close to one. This process of (polynomiallymany) gradual changes, allows to transform the dummy matrix M0 into a matrix Mt that isvery close to M (and hence has a permanent that is very close to the permanent of M). Thus,approximately obtaining the parameters of Mt allows to approximate the permanent of M .ExercisesExercise 27 (enumeration problems) For any binary relation R, de�ne the enumeration prob-lem of R as a function fR : f0; 1g� � N ! f0; 1g� [f?g such that fR(x; i) equals the ith element21

in jR(x)j if jR(x)j � i and fR(x; i) = ? otherwise. The above de�nition refers to the standardlexicographic order on strings, but any other e�cient order of strings will do.121. Prove that, for any polynomially bounded R, computing #R is reducible to computing fR.2. Prove that, for any R 2 PC, computing fR is reducible to some problem in #P.Guideline: Consider the binary relation R0 = f(hx; bi; y) : (x; y)2R ^ y � bg, and show that fR isreducible to #R0. (Extra hint: Note that fR(x; i) = y if and only if jR0(hx; yi)j = i and for every y0 < y itholds that jR0(hx; y0i)j < i.)Exercise 28 (computing the permanent of integer matrices) Prove that computing the per-manent of matrices with 0/1-entries is computationally equivalent to computing the number ofperfect matchings in bipartite graphs.(Hint: Given a bipartite graph G = ((X;Y); E), consider the matrix M representing the edges between X and Y(i.e., the (i; j)-entry in M is 1 if the ith vertex of X is connected to the jth entry of Y), and note that only perfectmatchings in G contribute to the permanent of M .)Exercise 29 (computing the permanent modulo 3) Combining Proposition 8 and Theorem 16,prove that for every integer n > 1 that is relatively prime to c, computing the permanent modulo nis NP-hard under randomized reductions.13 Since Proposition 8 holds for c = 210, hardness holdsfor every odd integer n > 1.Guideline: Applying the reduction of Proposition 8 to the promise problem of deciding whether a 3CNFformula has a unique satis�able assignment or is unsatis�able. Use the fact that n does not divide any powerof c.Exercise 30 (negative values in Proposition 8) Assuming P 6= NP , prove that Proposition 8cannot hold for a set I containing only non-negative integers. Note that the claim holds even if theset I is not �nite (and even if I is the set of all non-negative integers).Guideline: A reduction as in Proposition 8 provides a Karp-reduction of 3SAT to deciding whether thepermanent of a matrix with entries in I is non-zero. Note that the permanent of a non-negative matrix isnon-zero if and only if the corresponding bipartite graph has a perfect matching.Exercise 31 (error reduction for approximate counting) Show that the error probability �in De�nition 11 can be reduced from 1=3 (or even (1=2) + (1=poly(jxj)) to exp(�poly(jxj)).Guideline: Invoke the weaker procedure for an adequate number of times and take the median value amongthe values obtained in these invocations.Exercise 32 (relative approximation for DNF satisfaction) Referring to the text of Sec-tion 2.1, prove the following claims.1. Both assumptions regarding the general setting hold in case Si = C�1i (1), where C�1i (1)denotes the set of truth assignments that satisfy the conjunction Ci.Guideline: In establishing the second assumption note that it reduces to the conjunction of thefollowing two assumptions:12An order of strings is a 1-1 and onto mapping � from the natural numbers to the set of all strings. Such order iscalled e�cient if both � and its inverse are e�ciently computable. The standard lexicographic order satis�es �(i) = yif the (compact) binary expansion of i equals 1y; that is �(1) = �, �(2) = 0, �(3) = 1, �(4) = 00, etc.13Actually, a su�cient condition is that n does not divide any power of c. Thus (referring to c = 210), hardnessholds for every integer n > 1 that is not a power of 2. On the other hand, for any �xed n = 2e, the permanentmodulo n can be computed in polynomial-time [15, Thm. 3].22

(a) Given i, one can e�ciently generate a uniformly distributed element of Si. Actually, generatinga distribution that is almost uniform over Si su�ces.(b) Given i and x, one can e�ciently determine whether x 2 Si.2. Prove Proposition 13, relating to details such as the error probability in an implementationof Construction 12.3. Note that Construction 12 does not require exact computation of jSij. Analyze the outputdistribution in the case that we can only approximate jSij up-to a factor of 1� "0.Exercise 33 (reducing the relative deviation in approximate counting) Prove that, for anyR 2 PC and every polynomial p and constant � < 0:5, there exists R0 2 PC such that (1=p; �)-approximation for #R is reducible to (1=2; �)-approximation for #R0.Guideline: For t(n) =
(p(n)), let R0 = f(x; (y1; :::; yt(jxj))) : (8i) (x; yi) 2 Rg. Note that jR(x)j =jR0(x)j1=t(jxj), and thus if a = (1� (1=2)) � jR0(x)j then a1=t(jxj) = (1� (1=2))1=t(jxj) � jR(x)j. Furthermore,prove that (1=p; �)-approximation for #R is reducible to approximating #R00 to within a factor ofF (n) = exp(p(n)) with error probability �, for some R00 2 PC.(Hint: Same as the main part. Note that the length of the solution for R00(x) is larger than p(jxj) and so there isnothing wrong in approximating #R00(jxj) to within F (jxj).)Exercise 34 (deviation reduction in approximate counting, cont.) In continuation to Ex-ercise 33, prove that if R is NP-complete via parsimonious reductions then, for every positivepolynomial p and constant � < 0:5, the problem of (1=p; �)-approximation for #R is reducible to(1=2; �)-approximation for #R.(Hint: Compose the reduction (to the problem of (1=2; �)-approximation for #R0) provided in Exercise 33 with theparsimonious reduction of #R0 to #R.)Prove that, for every function F 0 such that F 0(n) = exp(no(1)), we can also reduce the aforemen-tioned problems to the problem of approximating #R to within a factor of F 0 with error probability�.Guideline: Using R00 as in Exercise 33, we encounter a technical di�culty. The issue is that the compositionof the (\amplifying") reduction of #R to #R00 with the parsimonious reduction of #R00 to #R may increasethe length of the instance. Indeed, the length of the new instance is polynomial in the length of the originalinstance, but this polynomial may depend on R00, which in turn depends on F 0. Thus, we cannot useF 0(n) = exp(n1=O(1)) but F 0(n) = exp(no(1)) is �ne.Exercise 35 Referring to the procedure in the proof Theorem 14, show how to use an NP-oraclein order to determine whether the number of solutions that \pass a random sieve" is greater thant. You are allowed queries of length polynomial in the length of x; h and in the size of t.(Hint: Consider the set S0R;H def= f(x; i; h; 1t) : 9y1; :::; yt s.t. 0(x; h; y1; :::; yt)g, where 0(x; h; y1; :::; yt) holds if andonly if the yj are di�erent and for every j it holds that (x; yj)2R ^ h(yj)=0i.)Exercise 36 (parsimonious reductions and Theorem 16) Demonstrate the importance of par-simonious reductions in Theorem 16 by proving the following:1. There exists a search problem R 2 PC such that every problem in PC is reducible to R (bya non-parsimonious reduction) and still the the promise problem (USR; SR) is decidable inpolynomial-time.Guideline: Consider the following arti�cial witness relation R for SAT in which (�; ��) 2 R if� 2 f0; 1g and � satis�es �. Note that the standard witness relation of SAT is reducible to R, but thisreduction is not parsimonious. Also note that USR = ; and thus (USR; SR) is trivial.23

2. There exists a search problem R 2 PC such that #R is #P-complete and still the the promiseproblem (USR; SR) is decidable in polynomial-time.Guideline: One easy proof is to use the relation suggested in the guideline to Part 1. A totallydi�erent proof relies on Theorem 7 and on the fact that it is easy to decide (USR; SR) when R is thecorresponding perfect matching relation (by computing the determinant).Exercise 37 Prove that SAT is randomly reducible to deciding unique solution for SAT, withoutusing the fact that SAT is NP-complete via parsimonious reductions.Guideline: Follow the proof of Theorem 16, while using the family of pairwise independent hashing functionsprovided in Construction 23. Note that, in this case, the condition (� 2RSAT(�))^(h(�)=0i) can be directlyencoded as a CNF formula. That is, consider the formula �h such that �h(z) def= �(z)^ (h(z)=0i), and notethat h(z) = 0i can be written as the conjunction of i clauses, where each clause is a CNF that is logicallyequivalent to the parity of some of the bits of z (where the identity of these bits is determined by h).Exercise 38 (an alternative procedure for approximate counting) Adapt Step 1 of Con-struction 19 so to obtain an approximate counting procedure for #R.Guideline: For m = 0; 1; :::`, the procedure invokes Step 1 of Construction 19 until a negative answer isobtained, and outputs 2m for the current value of m. For jR(x)j > 1000`, this yields a constant factorapproximation of jR(x)j. In fact, we can obtain a better estimate by making additional queries at iterationm (i.e., queries of the form (x; h; 1i) for i = 10`; :::; 1000`). The case jR(x)j � 1000` can be treated by usingStep 2 of Construction 19, in which case we obtain an exact count.References[1] M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-witnesses using anNP-oracle. Information and Computation, Vol. 163, pages 510{526, 2000.[2] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case Com-plexity. Journal of Computer and System Science, Vol. 44 (2), pages 193{219, 1992.[3] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and SystemScience, Vol. 18, 1979, pages 143{154.[4] S.A. Cook. The Complexity of Theorem Proving Procedures. In 3rd ACM Symposium on theTheory of Computing, pages 151{158, 1971.[5] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory ofNP-Completeness. W.H. Freeman and Company, New York, 1979.[6] O. Goldreich. Expositions in Complexity Theory (various texts). Unpublished notes, De-cember 2005. Availabe from the webpage http://www.wisdom.weizmann.ac.il/�oded/cc-texts.html[7] O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with a laconic provers.Computational Complexity, Vol. 11, pages 1{53, 2002.[8] M. Jerrum, A. Sinclair, and E. Vigoda. A Polynomial-Time Approximation Algorithm forthe Permanent of a Matrix with Non-Negative Entries. Journal of the ACM, Vol. 51 (4),pages 671{697, 2004. 24

[9] M. Jerrum, L. Valiant, and V.V. Vazirani. Random Generation of Combinatorial Structuresfrom a Uniform Distribution. Theoretical Computer Science, Vol. 43, pages 169{188, 1986.[10] R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and reliability problems.In 24th IEEE Symposium on Foundations of Computer Science, pages 56-64, 1983.[11] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.[12] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACM Symposium onthe Theory of Computing, pages 330{335, 1983.[13] L. Stockmeyer. The Complexity of Approximate Counting. In 15th ACM Symposium on theTheory of Computing, pages 118{126, 1983.[14] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,Vol. 20 (5), pages 865{877, 1991.[15] L.G. Valiant. The Complexity of Computing the Permanent. Theoretical Computer Science,Vol. 8, pages 189{201, 1979.[16] L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions. TheoreticalComputer Science, Vol. 47 (1), pages 85{93, 1986.

25

