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We now turn to a new type of computational problems, which vastly generalize decision problems
of the NP-type. We refer to counting problems, and more specifically to counting objects that can
be efficiently recognized. The two formulations of NP provide a suitable definition of such objects
and yield corresponding counting problems:

1. Counting the number of solutions for a given instance of a search problem (of a relation)
R C {0,1}* x {0,1}* having efficiently checkable solutions (i.e., R € PC).} That is, on input
x, we are required to output |{y : (z,y) € R}|.

2. Counting the number of NP-witnesses (with respect to a specific verification procedure V')
for a given instance of an NP-set S (i.e., S € NP and V is the corresponding verification
procedure). That is, on input z, we are required to output [{y : V(z,y)=1}|.

We shall consider these counting problems as well as relaxations of them (which refer to approx-
imating the said quantities), and see connections between these relaxed counting problems and
randomized algorithms.

Contents

1 Exact Counting 2
1.1 Onthe power of #P . . . . . .« 3
1.2 Completeness in #P . . . . . . o e e e e e 3

2 Approximate Counting 5
2.1 Relative approximation for #Rdanf - - « - « « « o o o oo e 6
2.2 Relative approximation for #P . . . . . ..o 7

3 Searching for unique solutions 9

'Recall that we denote by PC (standing for “Polynomial-time Check”) the class of search problems that correspond
to polynomially-bounded binary relations that have efficiently checkable solutions. That is, R € PC if the following
two conditions hold:

(a) For some polynomial p, if (z,y) € R then |y| < p(|z|).
(b) There exists a polynomial-time algorithm that given (z,y) determines whether or not (z,y) € R.



4 Uniform generation of solutions 12

4.1 Relation to approximate counting . . . . . . . . . ... ... Lo oo 12
4.2 Direct uniform generation . . . . . . . . .. L Lo oo 15
Appendix: On Hashing 16
A1 Definitions . . . . . . . o o e e 17
A2 Constructions . . . . . . . . o e e e e e e e e e e e e e e e e 18
A.3 The Leftover Hash Lemma . . . . . . . . . . . . . e e 18
Notes 21
Exercises 22
References 24

1 Exact Counting

In continuation to the foregoing discussion, we define the class of problems concerned with count-
ing efficiently recognized objects. (Recall that PC denotes the class of search problems having
polynomially long solutions that are efficiently checkable.)

Definition 1 (counting efficiently recognized objects — #P): The class #P consists of all functions
that count solutions to a search problem in PC. That is, f : {0,1}* — N is in #P if there exists
R € PC such that, for every x, it holds that f(x) = |R(z)|, where R(x) = {y : (z,y) € R}. In this
case we say that f is the counting problem associated with R, and denote the latter by #R (i.e.,

#R=f).

Every decision problem in NP is Cook-reducible to #P, because every such problem can be cast
as deciding membership in Sg = {z : |R(x)| > 0} for some R € PC. It also holds that BPP is
Cook-reducible to #P. The class #P is sometimes defined in terms of decision problems, as is
implicit in the following proposition.

Proposition 2 (a decisional version of #P): For any f € #P, deciding membership in Sy def
{(z,N): f(x)>N} is computationally equivalent to computing f.

Actually, the claim holds for any function f : {0,1}* — N for which there exists a polynomial p
such that for every z € {0,1}* it holds that f(z) < 2P(®D,

Proof: Since the relation R vouching for f € #P (i.e., f(x) = |R(z)|) is polynomially bounded,
there exists a polynomial p such that for every x it holds that f(x) < 27(1)) | Deciding membership
in Sy is easily reduced to computing f (i.e., we accept the input (x, N) if and only if f(x) > N).
Computing f is reducible to deciding Sy by using a binary search. This relies on the fact that, on
input = and oracle access to Sy, we can determine whether or not f(x) > N by making the query
(z,N). Note that we know a priori that f(z) € [0,2¢(=D]. 1

The counting class #P is also related to the problem of enumerating all possible solutions to a
given instance (see Exercise 27).



1.1 On the power of #P

As indicated, NP U BPP is (easily) reducible to #P. Furthermore, as stated in Theorem 3, the
entire Polynomial-Time Hierarchy is Cook-reducible to #P (i.e., PH C P#7). On the other hand,
any problem in #P is solvable in polynomial space, and so P#¥7 C PSPACE.

Theorem 3 [14] Every set in PH is Cook-reducible to #P.

We do not present a proof of Theorem 3 here, because the known proofs are rather technical.
Furthermore, one main idea underlying these proofs appears in a more clear form in the proof of
Theorem 16.

1.2 Completeness in #P

The definition of #P-completeness is analogous to the definition of N"P-completeness. That is, a
counting problem f is #P-complete if f € #P and every problem in #P is Cook-reducible to f.

We claim that the counting problems associated with the NP-complete problems presented
in previous lectures are all #P-complete. We warn that this fact is not due to the mere NP-
completeness of these problems, but rather to an additional property of the reductions establishing
their NP-completeness. Specifically, the Karp-reductions that were used (or variants of them)
have the extra property of preserving the number of NP-witnesses (as captured by the following
definition).

Definition 4 (parsimonious reductions): Let R, R' € PC and let g be a Karp-reduction of Sp =
{z: R(x)#0} to Spr = {z : R'(x)#0}, where R(x) ={y: (z,y)€R} and R'(z) ={y: (z,y)€R'}.
We say that g is parsimonious (with respect to R and R') if for every x it holds that |R(z)| =
|R' (g(x))|. In such a case we say that g is a parsimonious reduction of R to R'.

We stress that the condition of being parsimonious refers to the two underlying relations R and R’
(and not merely to the sets Sg and Sgr). The requirement that g is a Karp-reduction is partially
redundant, because if g is polynomial-time computable and for every z it holds that |R(z)| =
|R'(g(x))|, then g constitutes a Karp-reduction of Sp to Sg. Specifically, |R(z)| = |R'(g(x))]
implies that |R(x)| > 0 (i.e., x € Sg) if and only if |R'(g(x))] > 0 (i.e., g(xz) € Sg'). The reader
may easily verify that the Karp-reduction underlying the proof of CSAT (and SAT) as well as many
of the reductions used in the theory of NP-completeness are parsimonious.

Theorem 5 Let R € PC and suppose that every search problem in PC is parsimoniously reducible
to R. Then the counting problem associated with R is #P-complete.

Proof: Clearly, the counting problem associated with R, denoted #R, is in #P. To show that
every f' € #P is reducible to f, we consider the relation R’ € PC that is counted by f’; that
is, #R' = f'. Then, by the hypothesis, there exists a parsimonious reduction g of R’ to R. This
reduction also reduces #R' to #R; specifically, #R/'(z) = #R(g(x)) for every x. [l

Corollaries. As an immediate corollary of Theorem 5, we get that counting the number of sat-
isfying assignments to a given CNF formula is #P-complete. Similar statement hold for all the
other NP-complete problems mentioned in previous lectures and in fact for all NP-complete prob-
lems listed in [5]. These corollaries follow from the fact that all known reductions among natural
NP-complete problems are either parsimonious or can be easily modified to be so.



We conclude that many counting problems associated with NP-complete search problems are
#P-complete. It turns out that also counting problems associated with efficiently solvable search
problems may be #P-complete.

Theorem 6 There exist #P-complete counting problems that are associated with efficiently solvable
search problems. That is, there exists R € PF (i.e., R is solvable in polynomial-time) such that
#R 1s #P-complete.

Proof: Consider the relation Rgns consisting of pairs (¢, 7) such that ¢ is a DNF formula and
7 is an assignment satisfying it. Note that the search problem of Ranf is easy to solve (e.g., by
picking an arbitrary truth assignment that satisfies the first term in the input formula). To see
that # Rans is #P-complete consider the following reduction from # Rsar (which is #P-complete
by Theorem 5). Given a CNF formula ¢, transform —¢ into a DNF formula ¢’ by applying de-
Morgan’s Law, and return 2" — #Rgns(¢’), where n denotes the number of variables in ¢ (resp.,

¢). N

Reflections. We note that Theorem 6 is not established by a parsimonious reduction. This
fact should not come as a surprise because a parsimonious reduction of #R' to #R implies that
Srr = {x : Jy s.t. (z,y) € R'} is reducible to Sgp = {z : Jy s.t. (z,y) € R}, where in our case Spgs
is NP-Complete while Si € P (since R € PF). Nevertheless, the proof of Theorem 6 is related to
the hardness of some underlying decision problem (i.e., the problem of deciding whether a given
DNF formula is a tautology (i.e., whether #Rans(¢’) = 2™)). But does there exist a #P-complete
problem that is “not based on some underlying NP-complete decision problem”? Amazingly enough,
the answer is positive.

Theorem 7 [15] Counting the number of perfect matchings in a bipartite graph is #P-complete.

Equivalently (see Exercise 28), the problem of computing the permanent of matrices with 0/1-
entries is #P-complete. Recall that the permanent of an n-by-n matrix M = (m;;), denoted
perm(M), equals the sum over all permutations 7 of [n] of the products [];"y m; »(;). Theorem 7 is
proven by composing the following two (many-to-one) reductions (asserted in Propositions 8 and 9,
respectively) and using the fact that #Razsar is #P-complete (see Theorem 5). Needless to say,
the resulting reduction is not parsimonious.

Proposition 8 The counting problem of 3SAT (i.e., #Rasat) s reducible to computing the perma-
nent of integer matrices. Furthermore, there exists an even integer ¢ > 0 and a finite set of integers
I such that, on input a SCNF formula ¢, the reduction produces an integer matriz with entries in
I and a permanent value that equals c™ - #Rasat(¢), where m denotes the number of clauses in ¢.

The original proof of Proposition 8 uses ¢ = 2'° and I = {-1,0,1,2,3}. It follows that, for
every integer n > 1 that is relatively prime to ¢, computing the permanent modulo n is NP-hard
(see Exercise 29, which also uses Theorem 16). Thus, using the case of ¢ = 2!° this means that
computing the permanent modulo n is NP-hard for any odd n > 1. In contrast, computing the
permanent modulo 2 (which is equivalent to computing the determinant modulo 2) is easy (i.e., can
be done in polynomial-time and even in A'C). Thus, assuming NP € BPP, Proposition 8 cannot
hold for an odd ¢ (because by Exercise 29 it would follow that computing the permanent modulo 2
is NP-Hard). We also note that, assuming P # NP, Proposition 8 cannot possibly hold for a set
I containing only non-negative integers (see Exercise 30).



Proposition 9 Computing the permanent of integer matrices is reducible to computing the perma-
nent of 0/1-matrices. Furthermore, the reduction transforms an integer matriz A into a 0/1-matriz
A" such that the permanent of A can be easily computed from A and the permanent of A”.

The proofs of Propositions 8 and 9 are omitted.

2 Approximate Counting

Let us consider the counting problem associated with an arbitrary R € PC. Without loss of
generality, we assume that all solutions to n-bit instances have the same length ¢(n), where indeed
{ is a polynomial. We first note that, while it may be hard to compute #R, given z it is easy to
approximate #R(z) up to 0.01 - 2/0#1)_ Indeed, such an approximation is very rough, but it is not
trivial. More generally, we have the following algorithm that produces an estimate of #R(x) that
deviates from the correct value by an additive term that is related to the absolute bound on the
number of solutions (i.e., 2¢12D),

Proposition 10 (approximation with additive deviation): Let R € PC and ¢ be a polynomial
such that R C Upen{0,1}" x {0,1}4™). Then, for every polynomial p, there exists a probabilistic
polynomial-time algorithm A such that for every x € {0,1}* and 6 € (0,1) it holds that

Pr|A(z, 8) — #R(2)| > (1/p(J])) - 2°0D] < 6. (1)

(As usual, 6 is presented to A in binary, and hence the running time of A(x,¢) is upper-bounded
by poly(|z| - log(1/6)).

Proof Sketch: On input z and §, algorithm A sets t = O(p(|z|)? - log(1/6)), selects uniformly
Y1, -,y and outputs |{i: (z,y;) € R}|/t. O

Discussion. Proposition 10 is meaningful in case #R(z) > (1/p(|z|)) - 240D holds for some
x’s. But otherwise, a trivial approximation (i.e., outputting the constant value zero) meets the
bound of Eq. (1). In general, an approximation of #R(x) up-to a constant factor (or some other
reasonable factor) is more meaningful.? In Section 2.1, we consider a non-trivial case where such a
relative approximation can be obtained in probabilistic polynomial-time. For reasons explained in
Section 2.1, we do not expect this to happen for every counting problem in #7P, but in Section 2.2
we show that relative approximation for any problem in #7P can be obtained by a randomized
Cook-reduction to N'P. But before turning to these results, let us state the underlying definition
(and actually strengthen it by requiring approximation to within a factor of 1 +¢).

Definition 11 (approximation with relative deviation): Let f : {0,1}* — N and ,6 : N — [0, 1].
A randomized process 11 is called an (g, 6)-approximator of f if for every x it holds that

Pr|li(z) — f(2)] > e(fz]) - f(2)] < &(|z])- (2)

We say that f is efficiently (1 — £)-approximable (or just (1 — e)-approximable) if there exists a
probabilistic polynomial-time algorithm A that constitute an (¢,1/3)-approzimator of f.

2We refrain from formally defining an F-factor approximation in this section, although we shall refer to this
notion in several informal discussions. There are several ways of defining the aforementioned term (and they are
all equivalent when applied to our informal discussions). For example, an F-factor approximation of #R may mean
that, with high probability, the output A(x) satisfies #R(z)/F(|z|) < A(z) < F(|z|) - #R(z). Alternatively, we may
require that #R(z) < A(z) < F(|z|) - #R(z) (or, alternatively, that #R(z)/F(|z|) < A(z) < #R(z).



The error probability of the latter algorithm A (which has error probability 1/3) can be reduced to
6 by O(log(1/6)) repetitions (see Exercise 31). Typically, the running time of A will be polynomial
in 1/e, and ¢ is called the deviation parameter.

2.1 Relative approximation for #Rgans

Consider the relation Rgns consisting of pairs (¢, 7) such that ¢ is a DNF formula and 7 is an
assignment satisfying it. Recall that the search problem of Rgns is easy to solve and that the proof
of Theorem 6 establishes that # Rans is #P-complete (via a non-parsimonious reduction). Still there
exists a probabilistic polynomial-time algorithm that provides a constant factor approximation of
# Rans. We warn that the fact that # Rgns is #P-complete via a non-parsimonious reduction means
that the constant factor approximation for # R4ns does not seem to imply a similar approximation
for all problems in #P. In fact, we should not expect each problem in #P to have a (probabilistic)
polynomial-time constant-factor approximation algorithm because this would imply NP C BPP
(since a constant factor approximation allows for distinguishing the case in which the instance has
no solution from the case in which the instance has a solution).

The following algorithm is actually a deterministic reduction of the task of (g, 1/3)-approximating
# Rans to the (additive deviation) approximation provided in Proposition 10. Consider a DNF for-
mula ¢ = i, C;, where each C; : {0,1}" — {0, 1} is a conjunction. Actually, we will deal with the
more general problem in which we are (implicitly) given m subsets Si, ..., Sy, € {0,1}" and wish
to approximate |[J; S;|. In our case, each S; is the set of assignments satisfying the conjunction
C;. In general, we make two computational assumptions regarding these sets (letting efficient mean
implementable in time polynomial in n - m):

1. Given i € [m], one can efficiently determine |.S;].

2. Given 7 € [m] and J C [m], one can efficiently approximate Prycg, [s € Ujes Sj] up to an
additive deviation of 1/poly(n + m).

These assumptions are satisfied in our setting (where S; = C; (1), see Exercise 32). The key
observation towards approximating | J~, S;| is that

m

=> [s\Usj| = il&'l -Prses, {s ¢ Sj} (3)

i=1 j<i j<i

=1

and that the probabilities in Eq. (3) can be approximated by the second assumption. This leads to
the following algorithm, where ¢ denotes the desired deviation parameter (i.e., we wish to obtain

(L£e)- ULy Si)-
Construction 12 Let ¢’ =¢/m. Fori=1 to m do:
1. Using the first assumption, compute |S;|.

2. Using the second assumption, obtain p; = (1 £ &) - p;, where p; def Pries:[s € Uj<; Sj]- Set

def -
a; = p; - |Sil.

Output the sum of the a;’s.



Let N; = p;-|Si|. We are interested in the quality of the approximation to >, N; = | U; Si| provided
by >, a;. Using a; = (p; £&’) - |S;| = N; £ &'+ |S;| (for all i’s), we have Y, a; = >, N; £ -3, |Si|
Using >, |Si| <m - |U; Si] = m->; N; (and € = me’), we get >;a; = (1 £¢)->; N;. Thus, we
obtain the following result (see Exercise 32).

Proposition 13 For every positive polynomial p, the counting problem of Rans is efficiently (1 —
(1/p))-approxzimable.

Using the reduction presented in the proof of Theorem 6, we conclude that the number of unsatisfying
assignments to a given CNF formula is efficiently (1 — (1/p))-approximable. We warn, however,
that the number of satisfying assignments to such a formula is not efficiently approximable. This
concurs with the general phenomenon by which relative approzimation may be possible for one
quantity, but not for the complementary quantity. Needless to say, such a phenomenon does not
occur in the context of additive-deviation approximation.

2.2 Relative approximation for #P

Recall that we cannot expect to efficiently approximate every #P problem. Specifically, efficiently
approximating #R yields an efficient algorithm for deciding membership in Sg = {z : R(x) #0}.
Thus, at best we can hope that approximating #R is not harder than deciding Sk (i.e., that
approximating #R is reducible in polynomial-time to Sg). This is indeed the case for every NP-
complete problem (i.e., if Sg is NP-complete). More generally, we show that approximating any
problem in #P is reducible in probabilistic polynomial-time to NP.

Theorem 14 For every R € PC and positive polynomual p, there exists a probabilistic polynomial-
time oracle machine that when given oracle access to NP constitutes a (1/p, u)-approzimator of
#R, where u is a negligible function (e.g., p(n) =2-").

Recall that it suffices to provide a (1/p, 6)-approximator of #R, for any constant § < 0.5, because
error reduction is applicable in this context (see Exercise 31). Also, it suffices to provide a (1/2,6)-
approximator for every problem in #P (see Exercise 33).

Proof: Given x, we show how to approximate |R(z)| to within a constant factor. The desired
approximation can be obtained as in Exercise 33. We may also assume that R(x) # ), by starting
with the query “is « in Sg” and halting (with output 0) if the answer is negative. Without loss
of generality, we assume that R(x) C {0,1}¢, where £ = poly(Jz|). Our task is to find some
i € {1,...,4} such that 2°=% < |R(x)| < 2%, We proceed in iterations. For i = 1,....,¢ + 1, we
find out whether or not |R(z)| < 2°. If the answer is positive then we halt with output 2¢, and
otherwise we proceed to the next iteration. (Indeed, if we were able to obtain correct answers to
these queries then the output 2! would satisfy 201 < |R(z)| < 2°.)

Needless to say, the key issue is how to check whether |R(x)| < 2°. The main idea is to use a
“random sieve” on the set R(z) such that each element passes the sieve with probability 27¢. Thus,
we expect |R(z)|/2" elements of R(x) to pass the sieve. Assuming that the number of elements
in R(x) that pass the random sieve is indeed ||R(z)|/2!], it holds that |R(x)| > 2° if and only if
some element of R(x) passes the sieve. Assuming that the sieve can be implemented efficiently,
the question of whether or not some element in R(x) passed the sieve is of an “NP-type” (and
thus can be referred to our NP-oracle). Combining both assumptions, we may implement the
foregoing process by proceeding to the next iteration as long as some element of R(z) passes the
sieve. Furthermore, this implementation will provide a reasonably good approximation even if the



number of elements in R(x) that pass the random sieve is only approximately equal to |R(z)|/2.
In fact, the level of approximation that this implementation provides is closely related to the level
of approximation that is provided by the random sieve. Details follow.

Implementing a random sieve. The random sieve is implemented by using a family of hashing
functions (see Appendix). Specifically, in the i*! iteration we use a family Hj such that each h € H;
has a poly(£)-bit long description and maps ¢-bit long strings to i-bit long strings. Furthermore, the
family is accompanied with an efficient evaluation algorithm (i.e., mapping adequate pairs (h,x)
to h(x)) and satisfies (for every S C {0,1}%)

Pricmill{y € S:h(y) =0} ¢ (1 +¢)-27°[5]] < 2[5 (4)
(see Lemma 24). The random sieve will let y pass if and only if A(y) = 0°. Indeed, this random
sieve is not as perfect as we assumed in the foregoing discussion, but Eq. (4) says that in some
sense this sieve is good enough.

Implementing the queries. Recall that for some x, ¢ and h € Hé, we need to determine whether
{y€R(z) : h(y)=0"} = (. This type of question can be cast as membership in the set

Spr = {(z,i,h) : y st. (x,y) R Ah(y)=0"}. (5)

Using the hypotheses that R € PC and that the family of hashing functions has an efficient
evaluation algorithm, it follows that Sk m is in N'P.

The actual procedure. On input € Sk and oracle access to Sg g, we proceed in iterations, starting
with ¢ = 1 and halting at ¢ = £ (if not before), where £ denotes the length of the potential solutions
for z. In the i*! iteration (where i < £), we uniformly select h € HZ and query the oracle on whether
or not (z,i,h) € Sg . If the answer is negative then we halt with output 2!, and otherwise we
proceed to the next iteration (using i < i + 1). Needless to say, if we reach the last iteration (i.e.,
i = () then we just halt with output 2°.

Indeed, we have ignored the case that z € Sk, which can be easily handled by a minor modi-
fication of the foregoing procedure. Specifically, on input z, we first query S on x and halt with
output 0 if the answer is negative. Otherwise we proceed as in the foregoing procedure.

The analysis. We upper-bound separately the probability that the procedure outputs a value that
is too small and the probability that it outputs a value that is too big. In light of the foregoing
discussion, we may assume that |R(x)| > 0, and let i, = |logy |R(z)|] > 0.

1. The probability that the procedure halts in a specific iteration i < i, equals PrheHzH{y €
R(z) : h(y) = 0°}| = 0], which in turn is upper-bounded by 2'/|R(z)| (using Eq. (4) with
€= 1),‘ Thus, the probability that the procedure halts before iteration ¢, — 3 is upper-bounded
by Y34 2" /|R(x)|, which in turn is less than 1/8 (because i, < log, |R(z)|). Thus, with

probability at least 7/8, the output is at least 2'=—2 > |R(x)|/16 (because i, > (log, |R(x)|) —
1).

2. The probability that the procedure does not halt in iteration i > i, equals PrheHzH{y € R(x) :
h(y) = 0°}| > 1], which in turn is upper-bounded by a/(a — 1)%, where a = 2¢/|R(x)| > 1
(using Eq. (4) with € = a — 1).3 Thus, the probability that the procedure does not halt by

3 A better bound can be obtained by using the hypothesis that, for every y, when h is uniformly selected in H}, the
value of h(y) is uniformly distributed in {0,1}". In this case, PrheHéz [{y € R(z) : h(y) = 0°}| > 1] is upper-bounded

by Epcpill{y € R(x) : h(y) = 0"} = [R(x)|/2".



iteration i + 4 is upper-bounded by 8/49 < 1/6 (because iz > (log, |[R(z)|) — 1). Thus, with
probability at least 5/6, the output is at most 2%+ < 16 - |R(z)| (because i, < log, |R(x)]).

Thus, with probability at least (7/8) — (1/6) > 2/3, the foregoing procedure outputs a value v such
that v/16 < |R(z)| < 16v. Reducing the deviation by using the ideas presented in Exercise 33 (and
reducing the error probability as in Exercise 31), the theorem follows. [l

Perspective. The key observation underlying the proof Theorem 14 is that while we cannot
test (even with the help of an NP-oracle) whether the number of solutions is greater than a given
number, we can test (with the help of an NP-oracle) whether the number of solutions that “survive
a random sieve” is greater than zero. If fact, we can also test whether the number of solutions that
“survive a random sieve” is greater than a small number, where small means polynomial in the
length of the input (see Exercise 35). In general, our complexity is linear in the size of the threshold,
and not in the length of its binary description. Indeed, in many settings it is more advantageous
to use a threshold that is polynomial in some efficiency parameter (rather than using the threshold
zero); examples appear in Section 4.2 and in [7].

3 Searching for unique solutions

A natural computational problem (regarding search problems), which arises when discussing the
number of solutions, is the problem of distinguishing instances having a single solution from in-
stances having no solution (or finding the unique solution whenever such exists). We mention that
instances having a single solution facilitate numerous arguments (see, for example, Exercise 29 and
[2]). Formally, searching for and deciding the existence of unique solutions are defined within the
framework of promise problems.

Definition 15 (search and decision problems for unique solution instances): The set of instances
having unique solutions with respect to the binary relation R is defined as USg o {z : |R(x)| = 1},

where R(x) def {y: (z,y) € R}. Asusual, we denote Sgp = {x : |R(z)| > 1}, and Sg def {0,1}*\Sgr =
{z : |R(z)| = 0}.

e The problem of finding unique solutions for R is defined as the search problem R with promise
USp U gR-4

*A search problem with a promise consists of a binary relation R C {0,1}* x {0,1}* and a promise set P. Such a
problem is also referred to as the search problem R with promise P.

— The search problem R with promise P is solved by algorithm A if for every € P it holds that (z, A(z)) € R if
z € Sp ={z: R(z) # 0} and A(xz) = L otherwise, where R(z) = {y : (z,y) € R}.
The time complexity of A on inputs in P is defined as T'4p(n) Lof max,cpnyo,13» {ta(z)}, where t4(x) is the
running time of A(z) and T'4)p(n) =0if PN{0,1}" = .

— The search problem R with promise P is in the promise problem extension of PF if there exists a polynomial-
time algorithm that solves this problem.

— The search problem R with promise P is in the promise problem extension of PC if there exists a polynomial

T and an algorithm A such that, for every « € P and y € {0, 1}", algorithm A makes at most T'(|z|) steps and
it holds that A(x,y) = 1 if and only if (z,y) € R.

An algorithm A solves the candid search problem of the binary relation R if for every = € Sg <f {z: 3y s.t. (z,y) € R} it

holds that (x, A(z)) € R. The time complexity of such an algorithm is defined as 755, (1) <f max,ecpngo,1}»{ta(z)},
where t4(z) is the running time of A(z) and T'4|s,(n) =0if PN{0,1}" = 0.



In continuation to the notion of candid search problems, the candid searching for unique solu-
tions for R is defined as the search problem R with promise USp.

e The problem of deciding unique solution for R is defined as the promise problem (USg, Sg).

Interestingly, in many natural cases, the promise does not make any of these problems any easier
than the original problem. That is, for all known NP-complete problems, the original problem is
reducible in probabilistic polynomial-time to the corresponding unique instances problem.

Theorem 16 Let R € PC and suppose that every search problem in PC 1is parsimoniously re-
ducible to R. Then solving the search problem of R (resp., deciding membership in Sg) is re-
ducible in probabilistic polynomial-time to finding unique solutions for R (resp., to the promise
problem (USg, Sgr)). Furthermore, there exists a probabilistic polynomial-time computable mapping
M such that for every x € Sg it holds that M(z) € Sg, whereas for every x € Sk it holds that
Pr[M(xz) € USg| > 1/poly(|z|).

We note that the condition regarding parsimonious reductions is crucial (see Exercise 36).

Proof: As in the proof of Theorem 14, the idea is to apply a “random sieve” on R(zx), this
time with the hope that a single element survives. Specifically, if we let each element passes
the sieve with probability approximately 1/|R(z)| then with constant probability a single element
survives. Sieving will be performed by a random function selected in an adequate hashing family
(see Appendix). A couple of questions arise:

1. How do we get an approzimation to |R(x)|? Note that we need such an approximation in
order to determine the adequate hashing family. Indeed, we may just invoke Theorem 14,
but this will not yield a many-to-one reduction. Instead, we just select m € {0, ..., poly(|z|)}
uniformly and note that (if |R(z)| > 0 then) Pr[m = [log, |R(x)|]] = 1/poly(|z|).

Thus, we randomly map z to (x,m, h), where h is uniformly selected in an adequate hashing
family.

2. How does the question of whether a single element of R(x) pass the random sieve translate to
an instance of the unique-instance problem for R? Recall that in the proof of Theorem 14 the
non-emptiness of the set of element of R(x) that pass the sieve defined by h was determined
by checking membership (of (z,m,h)) in Sg g € NP (defined in Eq. (5)). Furthermore, the
number of NP-witnesses for (z,m,h) € Sg g equals the number of elements of R(x) that
pass the sieve. Using the parsimonious reduction of Sg y to Sk (which is guaranteed by the
theorem’s hypothesis), we obtained the desired instance.

Note that in case R(z) = () the aforementioned mapping always generates a no-instance (of Sg g
and thus of Sg). Details follow.

Implementation (i.e., the mapping M). As in the proof of Theorem 14, we assume, without loss
of generality, that R(x) C {0,1}*, where £ = poly(|z|). We start by uniformly selecting m €
{0,1,...,¢} and h € H;", where H;" is a family of efficiently computable and pairwise-independent
hashing functions (see Definition 21) mapping (-bit long strings to m-bit long strings.” Thus, we
obtain an instance (z,m,h) of Sg g € NP such that the set of valid solutions for (z,m,h) equals
{y € R(x) : h(y) =0™}. Using the parsimonious reduction g of Sk to Sk, we map (z,m,h) to

SFor sake of uniformity, we allow also the case of rn = 0, which is rather artificial. In this case all hashing functions
in HY map {0,1}* to the empty string, which is viewed as 0°.
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g(x,m, h), and it holds that |{y € R(z) : h(y) =0"}| equals |R(g(z,m,h))|. To summarize, on input
x the randomized mapping M outputs the instance M (z) def g(x,m,h), where m € {0,1,...,¢} and

h € Hj* are uniformly selected.

The analysis. Note that for any = € Sg it holds that Pr[M(z) € Sg] = 1. Assuming that = € Sg,
with probability exactly 1/(£ + 1) it holds that m = m,, where m, ot [logy |R(z)|]. In this case,
for a uniformly selected h € Hj", we lower-bound the probability that {y € R(x) : h(y) =0} is a

singleton. Using the Inclusion-Exclusion Principle, we have

Pricare[{y € R(x) : h(y)=0""}] = 1] (6)
> S Pracue [hy)=0™]
yER(z)
— Y Preupe () =hly2) =0™)
y1<y2E€R(x)
= |R(@)| -2 ('R?') g

where the equality is due to the pairwise independence property. Using 2™ 1 < |R(z)| < 2™=, it
follows that Eq. (6) is lower-bounded by 1/4. Thus, Pr[M (z) € USR] > 1/4(¢+1), and the theorem
follows. I}

Comment. Theorem 16 is sometimes stated as referring to the unique solution problem of SAT.
In this case and when using a specific family of pairwise independent hashing functions, the use of
the parsimonious reduction can be avoided. For details see Exercise 37.

4 Uniform generation of solutions

We now turn to a new type of computational problems, which may be viewed as a straining of search
problems. We refer to the task of generating a uniformly distributed solution for a given instance,
rather than merely finding an adequate solution. Needless to say, by definition, algorithms solving
this (“uniform generation”) task must be randomized. Focusing on relations in PC we consider
two versions of the problem, which differ by the level of approximation provided for the desired
(uniform) distribution.®

Definition 17 (uniform generation): Let R € PC and Sgp = {z : |R(z)| > 1}, and let II be a
probabilistic process.

1. We say that 11 solves the uniform generation problem of R if, on input x € Sg, the process 11
outputs either an element of R(x) or a special symbol, denoted L, such that Pr[ll(z) € R(x)] >
1/2 and for every y € R(x) it holds that Pr[II(x)=y |II(xz) € R(x)] = 1/|R(z)|.

2. For ¢ : N — [0,1], we say that II solves the (1 — ¢)-approximate uniform generation problem
of R if, on input x € Sg, the distribution 1I(x) is (|x|)-close to the uniform distribution on
R(x).

SNote that a probabilistic algorithm running in strict polynomial-time is not able to output a perfectly uniform
distribution on sets of certain sizes. Specifically, referring to the standard model that allows only for uniformly
selected binary values, such algorithms cannot output a perfectly uniform distribution on sets having cardinality that
is not a power of two.
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In both cases, without loss of generality, we may require that if x ¢ Sg then Pr[II(x) = 1] = 1.
More generally, we may require that II never outputs a string not in R(x).

Note that the error probability of uniform generation (as in Item 1) can be made exponentially
vanishing (in |z|) by employing error-reduction. In contrast, we are not aware of any general way
of reducing the deviation of an approximate uniform generation procedure (as in Item 2).”

In Section 4.1 we show that, for many search problems, approximate uniform generation is
computationally equivalent to approximate counting. In Section 4.2 we present a direct approach
for solving the uniform generation problem of any search problem in PC by using an oracle to N'P.

4.1 Relation to approximate counting

We show that for every R € PC that is NP-complete under parsimonious reductions, the approx-
imate counting problem associated with R is computationally equivalent to approximate uniform
generation with respect to R. Recalling that both approximate problems are parameterized by the
level of precision, we obtain the following quantitative form of the aforementioned equivalence.

Theorem 18 Let R € PC and let £ be a polynomial such that for every (x,y) € R it holds that
ly| < (|x|). Suppose that every search problem in PC is parsimoniously reducible to R.

1. From approximate counting to approximate uniform generation: Let e(n) = 1/5((n) and
let p:N—(0,1) be a function satisfying p(n) > exp(—poly(n)). Then, (1 — p)-approxzimate
uniform generation for R is reducible in probabilistic polynomial-time to (1—¢)-approzimating

#R.

2. From approximate uniform generation to approximate counting: For every noticeable ¢ :
N—(0,1) (i.e., e(n) > 1/poly(n) for every n), the problem of (1 — ¢)-approzimating #R is
reducible in probabilistic polynomial-time to (1 — &')-approxzimate uniform generation problem

of R, where €'(n) = e(n)/54(n).

Note that the quality of the approximate uniform generation asserted in Part 1 (i.e., ) is indepen-
dent of the quality of the approximate counting procedure (i.e., €) to which the former is reduced,
provided that the approximate counter performs better than some threshold. On the other hand,
the quality of the approximate counting asserted in Part 2 (i.e., £) does depend on the quality of
the approximate uniform generation (i.e., ¢'). Recall, however, that the quality of approximate
counting procedures for problems that are NP-complete under parsimonious reductions can be im-
proved (see Exercise 34). Thus, for such problems, the quality of approximate uniform generation
procedures can be improved by applying both parts of Theorem 18.

Proof: Throughout the proof, we assume for simplicity (and in fact without loss of generality)
that R(x) # 0 and R(z) C {0,1}4=D,

Towards Part 1, let use first reduce the uniform generation problem of R to #R (rather than to
approximating #R). On input z € Sk, we generate a uniformly distributed y € R(z) by randomly
generating its bits one after the other. We proceed in iterations, entering the i iteration with an
(i — 1)-bit long string y" such that R'(z;y") def {y" : (z,y'y") € R} is not empty. With probability
|R!(z;y'1)|/| R (;9')| we set the i*! bit to equal 1, and otherwise we set it to equal 0. We obtain both

1,11

|R'(x;y'1)| and |R'(z;y")| by using a parsimonious reduction g of R = {((z;v'),vy") : (z,y'y") €

"We note that in some cases, the deviation of an approximate uniform generation procedure can be reduced. See
discussion following Theorem 18.

12



R} € PC to R. That is, we obtain |R'(x;y')| by querying for the value of |R(g(x;y'))|. Ignoring
integrality issues, all this works perfectly (i.e., we generate an £(n)-bit string uniformly distributed
in R(x)) as long as we have oracle access to #R. But we only have oracle access to an approximation
of #R, and thus a careful modification is in place.

Let us denote the approximation oracle by A. Firstly, by adequate error reduction, we may
assume that, for every z, it holds that Pr[A(z) € (1 £ e(n)) - #R(z)] > 1 — p'(|z]), where p/(n) =
p(n)/€(n). In the rest of the analysis we ignore the probability that the estimate deviates from the
aforementioned interval, and note that this rare event is the only source of the possible deviation
of the output distribution from the uniform distribution on R(z).® Let us assume for a moment
that A is deterministic and that for every x and y' it holds that

A(g(x,y'0)) + A(g(x,9'1)) < A(g(z;9)). (7)

We also assume that the approximation is correct at the “trivial level” (where one may just check
whether or not (z,y) is in R); that is, for every y € {0, 1}40®D it holds that

A(g(z;y)) =1if (z,y) € R and A(g(x;y)) = 0 otherwise. (8)

We modify the i*? iteration of the foregoing procedure such that, when entering with the (i — 1)-bit
long prefix 3, we set the i*® bit to 1 (resp., to 0) with probability A(g(z;y'1))/A(g(z;y")) (resp.,
with probability A(g(x;y'0))/A(g(x;y"))) and halt (with output L) with the residual probability.
If we completed the last (i.e., £(|z|)™) iteration, then we output the £(|z|)-bit long string that was
generated. Thus, as long as Eq. (7) holds (but regardless of other aspects of the quality of the
approximation), every y = o1 - -+ 0y(|¢|) € R(z), is output with probability

Alg(a;01)) Alg(zyo102))  Alg(w; o102 ya)))
A(g(z; A)  Alg(z;01)) A(g(z; 0102 0y|a))-1))

which, by Eq. (8), equals 1/A(g(x;\)). Thus, the procedure outputs each element of R(z) with
equal probability, and never outputs a non-L value that is outside R(z). It follows that the quality
of approximation only effects the probability that the procedure outputs a non-L value (which
equals |R(2)|/A(g(z; V).

We now turn to enforcing Eq. (7) and Eq. (8). We may enforce Eq. (8) by performing the
straightforward check (of whether or not (z,y) € R) rather than invoking A(g(z,v)).” As for
Eq. (7), we enforce it artificially by using A'(x,y") o (1 4 e(]z|))3E=D=1'D . A(g(2;y')) instead of
A(g(z;y")). Recalling that A(g(z;y")) = (1 £ e(|zy'])) - |[R (x;y")|, we have

(9)

Ale,y) > (L4 () CEDWD. (1 - c(j2))) - IR (239/)]
Aley'o) < (Lt e(|a)) DI (1 4 e(ja])) - IR (239/0))

and the claim follows using (1—¢(|z|))-(14+<(|z|))® > (1—¢(|z|)). Note that the foregoing modifica-
tion only decreases the probability of outputting a non-_L value by a factor of (14 ¢(|z|))3%*) < 2,
where the inequality is due to the setting of ¢ (i.e., e(n) = 1/5¢(n)). Finally, we refer to our
assumption that A is deterministic. This assumption was only used in order to identify the value
of A(g(x,y')) obtained and used in the (|y'| — 1)%* iteration with the value of A(g(x,y’)) obtained

8The possible deviation is due to the fact that this rare event may occur with different probability in the different
invocations of algorithm A.

? Alternatively, we note that since A is a (1 — ¢)-approximator for € < 1 it must hold that #R'(z) = 0 implies
A(z) = 0. Also, since £ < 1/3, if #R'(2) = 1 then A(z) € (2/3,4/3), which may be rounded to 1.
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and used in the |¢/|*" iteration, but the same effect can be obtained by just using the former value
(in the |y'|*" iteration) rather than re-invoking A in order to obtain it. Part 1 follows.

Towards Part 2, let use first reduce the task of approximating #R to the task of (exact)
uniform generation for R. On input & € Sg, the reduction uses the tree of possible prefixes of
elements of R(x) in a somewhat different manner. Again, we proceed in iterations, entering the
ith iteration with an (i — 1)-bit long string 3’ such that R'(z;y’) def {y" : (x,y'y") € R} is not
empty. At the i*h iteration we estimate the bigger among the two fractions |R'(x;y'0)|/| R (z;y")]
and |R'(z;y'1)|/|R'(x;y")], by uniformly sampling the uniform distribution over R'(x;y’). That is,
taking poly(|z|/&'(|z|)) uniformly distributed samples in R'(z;y’), we obtain with overwhelmingly
high probability an approximation of these fractions up to an additive deviation of at most &'(]z|)/3.
This means that we obtain a relative approximation up-to a factor of 1 & £'(|z|) for the fraction
(or fractions) that is (resp., are) bigger than 1/3. Indeed, we may not be able to obtain such
a good relative approximation of the other fraction (in case it is very small), but this does not
matter. It also does not matter that we cannot tell which is the bigger fraction among the two;
it only matter that we use an approximation that indicates a quantity that is, say, bigger than
1/3. We proceed to the next iteration by augmenting ¢’ using the bit that corresponds to such a
quantity. Specifically, suppose that we obtained the approximations ao(y') = |R'(z;y'0)|/| R (z;y")|
and a;(y") =~ |R'(z;y'1)|/|R'(z;y")|. Then we extend y’ by the bit 1 if a1(y’) > a¢(y’) and extend
y' by the bit 0 otherwise. Finally, when we reach y = oy --- Og(||) Such that (z,y) € R, we output

Aoy ()\)_1 * Qgy (Ul)_l T a04(|m|)(0—102 t UZ(|$|)—1)_1' (10)

As in Part 1, actions regarding R’ (in this case uniform generation in R') are conducted via the
parsimonious reduction g to R. That is, whenever we need to sample uniformly in the set R'(x;y’),
we sample the set R(g(x;y’)) instead. Finally, note that the deviation from uniform distribution
(i.e., the fact that we can only approximately sample R) merely introduces such a deviation in each
of our approximations to the relevant fractions (i.e., to a fraction bigger than 1/3). Specifically,
on input x, using an oracle that provides a (1 — &’)-approximate uniform generation for R, with
overwhelmingly high probability, the output (as defined in Eq. (10)) is in

£(|z) /(e .
IT (2ol - oL 0]) (1)

i=1 |RI(I70-10'Z)|

where the error probability is due to the unlikely case that in one of the iterations our approxima-
tions deviates from the correct value by more than an additive deviation term of £(n)/3. Noting
that Eq. (11) equals (1 % 2¢/(|]))¥02D - |R(z)| and using (1 £ 2¢'(|z]))“=D c (1 £ &(|z])), Part 2
follows, and so does the theorem. W

4.2 Direct uniform generation

We conclude the current section by presenting a direct procedure for solving the uniform generation
problem of any R € PC. This procedure uses an oracle to A/P, which is unavoidable because solving
the uniform generation problem implies solving the corresponding search problem. One advantage
of this process, over the reduction presented in Section 4.1, is that it solves the uniform generation
problem rather than the approzimate uniform generation problem.

We are going to use hashing again, but this time we use a family of hashing functions having
a stronger “uniformity property” (see Section A.3). Specifically, we will use a family of (-wise
independent hashing functions mapping £-bit strings to m-bit strings, where £ bounds the length
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of solutions in R, and rely on the fact that such a family satisfies Lemma 26. Intuitively, such
functions partition {0,1}* into 2™ cells and Lemma 26 asserts that these partitions “uniformly
shatter” all sufficiently large sets. That is, for every set S C {0,1}¢ of size Q(£-2™) the partition
induced by almost every function is such that each cell contains approximately |S|/2™ elements of
S. In particular, if |S| = ©(¢ - 2™) then each cell contains O(/) elements of S.

In the following construction, we assume that on input x we also obtain a good approximation
to the size of R(x). This assumption can be enforced by using an approximate counting procedure
as a preprocessing stage. Alternatively, the ideas presented in the following construction yield such
an approximate counting procedure.

Construction 19 (uniform generation): On input x and m!, € {my,m, + 1}, where m, o

|log, |R(x)|] and R(x) C {0,1}¢, the oracle machine proceeds as follows.

1. Selecting a partition that “uniformly shatters” R(z). The machine sets m = max(0,m}, —
6 — logy £) and selects uniformly h € Hy*. Such a function defines a partition of {0,1}* into
2™ cells'’, and the hope is that each cell contains approzimately the same elements of R(x).
Nezt, the machine checks that this is indeed the case or rather than no cell contains more that
10004 elements of R(x). This is done by checking whether or not (x, h,1'09%) s in the set

ngl,)H defined as follows

Sy @ 1Y T st [{y s (@ y) ERAR (y)=0}| > 1} (12)

= {(w',h',lt) :3dv,y1, e,y SWL ¢(1)(x',h',v,y1, o Ut)

where YW (&' b v, y1, .., y:) holds if and only if y1 <y2---<y: and for every j € [t] it holds
that (z',y;) € R A h'(yj)=v. Note that SS)H e NP.

If the answer is positive (i.e., there exists a cell that contains more that 1000/ elements of
R(x)) then the machine halts with output L. Otherwise, the machine continues with this

choice of h. In this case, for every v € {0,1}™, it holds that no cell contains more that 1000¢
elements of R(z) (i.e., [{y: (z,y) € RAR(y)=v}| < 1000¢). We stress that this is an absolute

guarantee that follows from (x,h,11900¢) ¢ ngl,)H'

2. Selecting a cell and determining the number of elements of R(z) that are contained in it. The
machine selects uniformly v € {0,1}"™ and determines s, o Hy : (z,y) € RAh(y)=v}| by
making queries to the following NP-set

Sg)H d:ef (Ily h17U,7 1t) : 33/17 < Yt 8.t w(l)(xl7 h’;“’;@/l; 7yt)} (13)

Specifically, fori =1,...,1000¢, it checks whether (x, h,v,1%) is in Sg)H, and sets s, to be the
largest value of © for which the answer is positive.
3. Obtaining all the elements of R(z) that are contained in the selected cell, and outputting one of

them at random. Using s,, the procedure reconstructs the set S, def {y: (z,y) e RAh(y)=v},
by making queries to the following NP-set

SE?:)H déf {(‘T,7 h,7vl7 ]-t;j) : Elyh Yt s.t. 1/}(3)(I17 h,7vl7y17 "'7yt7j)}7 (14)

OFor sake of uniformity, we allow also the case of m = 0, which is rather artificial. In this case all hashing functions
in HY map {0,1}¢ to the empty string, which is viewed as 0°, and thus define a trivial partition of {0,1}¢ (i.e., into
a single cell).
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where ) (&' B ' y1, . ye,§) holds if and only if MW (2/ b v g1, ..., y;) holds and the j*
bit of y1---y: equals 1. Specifically, for j1 = 1,...,s, and jo = 1,...,{, we make the query
(z,h,v,1%, (j1 — 1) - £+ ja) in order to determine the j5* bit of yj,. Finally, having recovered
Sy, the procedure outputs each y € S, with probability 1/1000¢, and outputs L otherwise.

By Lemma 26 (and m < my; + 1 — 6 — logy ¢), with overwhelmingly high probability, each set
{y : (x,y) € R A h(y) = v} has cardinality (1 £ 0.5)|R(x)|/2™. Using m! > (logy |R(z)|) — 1
(resp., m}, < (logy |R(z)|) + 1), it follows that |R(x)|/2™ < 1000¢ (resp., |[R(z)|/2™ > 10¢). Thus,
Step 1 can be easily adapted to yield an approximate counting procedure for #R (see Exercise 38).
However, our aim is to establish the following fact.

Proposition 20 Construction 19 solves the uniform generation problem of R.

Proof: By Lemma 26 (and the setting of m), with overwhelmingly high probability, a uniformly
selected h € Hj* partitions R(x) into 2™ cells, each containing at most 1000¢ elements. The key
observation, stated in Step 1, is that if the procedure does not halt in Step 1 then it is indeed the
case that h induces such a partition. The fact that these cells may contain a different number of
elements is immaterial, because each element is output with the same probability (i.e., 1/1000¢).
What matters is that the average number of elements in the cells is sufficiently large, because
this average number determines the probability that the procedure outputs an element of R(x)
(rather than L). Specifically, the latter probability equals the aforementioned average number
(which equals |R(z)|/2™) divided by 1000¢. Using m < max(0,logy(2|R(x)|) — 6 — logy £), we have
|R(x)|/2™ > max(1,32¢), which means that the procedure outputs some element of R(x) with
probability at least 1/1000¢. [l

Technical comments. We can easily improve the performance of Construction 19 by dealing
separately with the case m = 0. In such a case, Step 3 can be simplified and improved by uniformly
selecting and outputting an element of Sy (which equals R(z)). Recall that the probability that a
uniform generation procedure outputs L can be deceased by repeated invocations.

Appendix: On Hashing

Hashing is extensively used in complexity theory in order to map arbitrary (unstructured) sets
“almost uniformly” to a smaller structured set of adequate size. Specifically, hashing is supposed
to map an arbitrary 2™-subset (of {0,1}") to {0,1}"™ in an “almost uniform” manner.

For a fixed set S of cardinality 2™, a 1-1 mapping fs : S — {0,1}"™ does exist, but it is not
necessarily an efficient one (e.g., it may require “knowing” the entire set S). Clearly, no fixed
function f : {0,1}" — {0,1}"™ can map every 2™ subset of {0,1}" to {0,1}™ in a 1-1 manner
(or even approximately so). However, a random function f : {0,1}" — {0,1}™ has the property
that, for every 2™-subset S C {0,1}", with overwhelmingly high probability f maps S to {0,1}™
such that no point in the range has many f-preimages in S. The problem is that a truly random
function is unlikely to have a succinct representation (let alone an efficient evaluation algorithm).
We seek families of functions that have a similar property, but do have a succinct representation
as well as an efficient evaluation algorithm.

16



A.1 Definitions

Motivated by the foregoing discussion, we consider families of functions {H)"},,<, Such that the
following properties hold:

1. For every S C {0,1}", with high probability, a function h selected uniformly in H;" maps S
to {0,1}™ in an “almost uniform” manner. For example, for any |S| = 2™ and each point y,
with high probability over the choice of h, it holds that |{z € S : h(z) = y}| < poly(n).

2. The functions in H]* have succinct representation. For example, we may require that H," =
{0,1}¢(»™) " for some polynomial £.

3. The functions in H," can be efficiently evaluated. That is, there exists a polynomial-time
algorithm that, on input a representation of a function, h (in H)"), and a string = € {0,1}",
returns A(z). In some cases we make even more stringent requirements regarding the the
algorithm (e.g., that it runs in linear space).

Condition 1 was left vague on purpose. At the very least, we require that the expected size
of {z € S : h(z) = y} equals |S|/2™. We shall see (in Section A.3) that different (stronger)
interpretations of Condition 1 are satisfied by different types of hashing functions. We focus on
t-wise independent hashing functions, defined next.

Definition 21 (¢-wise independent hashing functions): A family H]" of functions from n-bit
strings to m-bit strings is called t-wise independent if for every t distinct domain elements x1, ...,y €
{0,1}™ and every yi, ...,y € {0,1}™ it holds that

Procmm [/\f:1h($z') =y = g—tm

That is, every ¢ domain elements are mapped by a uniformly chosen h € H;" in a totally uniform
manner. Note that for ¢ > 2, it follows that the probability that a random h € H;* maps two
distinct domain elements to the same image is 27"*. Such (families of) functions are called universal
(cf. [3]), but we will focus on the stronger condition of t-wise independence.

A.2 Constructions

The following constructions are merely a re-interpretation of the constructions of pairwise-independent
random variables. (Alternatively, one may view the latter constructions as a re-interpretation of
the following two constructions.)

Construction 22 (¢-wise independent hashing): For ¢t,m,n € N such that m < n, consider the
following family of hashing functions mapping n-bit strings to m-bit strings. Each t-sequence s =
(50,815 -y St—1) € {0,1}¥™ describes a function hz : {0,1}" — {0,1}™ such that hz(z) equals the
m-bit prefiz of the binary representation of Z;;% Sj:cj, where the arithmetic is that of GF(2™), the
finite field of 2™ elements.

Construction 22 constitutes a family of #-wise independent hash functions. Typically, we will
use either ¢ = 2 or ¢ = ©(n). To make the construction totally explicit, we need an explicit
representation of GF(2"). An alternative construction for the case of ¢ = 2 may be obtained
analogously to a pairwise independent generator that is based on Toeplitz matrices. A Toeplitz
matrix is a matrix with all diagonals being homogeneous; that is, T' = (¢; ;) is a Toeplitz matrix if
tiJ' == ti+17j+1, for all Z,]
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Construction 23 (Alternative pairwise independent hashing): For m < n, consider the family of
hashing functions in which each n-by-m Toeplitz matriz T and an m-dimensional vector b describes
a function hpy 2 {0,1}" — {0,1}" such that hyp(x) = Tw + b.

Construction 23 constitutes a family of pairwise independent hash functions. Note that a n-by-m
Toeplitz matrix can be specified by n +m — 1 bits, yielding description length n + 2m — 1. An
alternative construction (using m - n + m bits of representation) uses arbitrary n-by-m matrices
rather than Toeplitz matrices.

A.3 The Leftover Hash Lemma

We now turn to the “almost uniform” cover condition (i.e., Condition 1) mentioned in Section A.1.
One concrete interpretation of this condition is implied by the following lemma.

Lemma 24 Let m < n be integers, H]' be a family of parrwise independent hash functions, and
S C {0,1}". Then, for every y € {0,1}™ and every ¢ > 0, for all but at most an % fraction of
h € H it holds that

|{x€S:h(x):y}|:(1:|:€)-|2im| (15)
By pairwise independence (or rather even by “l-wise independence”), the expected size of {z €
S : h(z) =y} is |S|/2™, where the expectation is taken uniformly over all o € H]". The lemma
upper bounds the fraction of h’s that deviate from the expected value. Needless to say, the bound
is meaningful only in case |S| > 2™ (or alternatively for £ > 1). Setting ¢ = /2™ /|S| (and focusing
on the case that |S| > 2™), we infer that for all but at most an € fraction of h € H]* it holds that
H{x € S: h(zx) =y} = (1 £e)-]|S|/2™. Thus, each range element has approximately the right
number of h-preimages in the set S under almost all h € H].

Proof: Fixing an arbitrary set S C {0,1}" and an arbitrary y € {0,1}™, we estimate the proba-
bility that a uniformly selected h € H]* violates Eq. (15). We define random variables (,, over the

aforementioned probability space, such that (, = (,(h) equal 1 if h(z) = y and 0 otherwise. The

expected value of 3 ¢ (p is p o |S|-27™, and we are interested in the probability that this sum

deviates from the expectation. Applying Chebyshev’s Inequality, we get

Pr[ﬂ_ZCx

z€S
because Var(} ,.c5Cz) < [S]-27™ by the pairwise independence of the (,’s and the fact that
E[¢z] = 27™. The lemma follows. Wl

w
2

< -
g2y

>e-

A generalization (called mixing). The proof of Lemma 24 can be easily extended to show
that for every set T C {0,1}™ and every e > 0, for all but at most an % fraction of h € H]"* it
holds that |{x € S : h(z) =y} = (1 £¢e)-|T|-|S|/2™. (Hint: just define {, = ((h) =1if h(z) € T
and 0 otherwise.) In the case that m = m, this is called a mixing property, and is meaningfull

provided |T'| - |S| > 2™ /e.
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An extremely useful corollary. The aforementioned generalization of Lemma 24 asserts that
most functions behave well with respect to any fixed sets of preimages S C {0,1}" and images
T C {0,1}™. A seemingly stronger statement, which is (non-trivially) implied by Lemma 24,
is that for all adequate sets S most functions h € H,* map S to {0,1}™ in an almost uniform
manner.'! This is a consequence of the following theorem.

Theorem 25 (a.k.a Leftover Hash Lemma): Let H]" and S C {0,1}" be as in Lemma 24, and
define e = &/2m[|S|. Consider random variable X and H that are uniformly distributed on S and
H]", respectively. Then, the statistical distance between (H, H(X)) and (H,U,,) is at most 2¢.

n >’

Using the terminology of randomness extractors, we say that H)" yields a strong extractor (with
rather poor parameters).

Proof: Let V denote the set of pairs (h,y) that violate Eq. (15), and V/ def (H™ x {0,1}™)\ V.

Then for every (h,y) € V it holds that

Pri(#, H(X)) = (h,y)] = Pr[H =h]-Pr[h(X) =y]
= (l%¢)-Pr[(H,Uy) = (h,y)]-

On the other hand, by Lemma 24 (which asserts Pr[(H,y) € V] < ¢ for every y € {0,1}""), we have
Pr[(H,Up,) € V] <e. Using

Pri(H,H(X)) €V] = 1-Pr[(H,H(X))€eV]
< 1-Pr[(H,U,)) €eV]+e < 2¢

we upper-bounded the statistical difference between (H, H(X)) and (H,U,,) by
1

> X P H(X) = (b)) = Pr(, Un) = (b, )]
(hy)eH i <{0,1}™
< S5 X IPACHH)) = (hy)] — PrA(H, Un) = ()]
(h,y)eV
< Seg X (PAHHX) = (b)) + PrI(E,Un) = (o)
2 2 (h,y)eV
< %—i—%-(?a—i—a)

and the claim follows. [

An alternative proof of Theorem 25. Define the collision probability of a random variable
Z, denote cp(Z), as the probability that two independent samples of Z yield the same result.

Alternatively, cp(Z) def >, Pr[Z = 2]?. Theorem 25 follows by combining the following two facts:

1. Ageneral fact: If Z € [N] and cp(Z) < (14+4€?)/N then Z is e-close to the uniform distribution
on [N].

We prove the contra-positive: Assuming that the statistical distance between Z and the
uniform distribution on [N] equals §, we show that cp(Z) > (1 + 46%)/N. This is done by

"That is, for X as in Theorem 25 and any o > 0, for all but at most an « fraction of the functions h € H™ it
holds that h(X) is (2¢/a)-close to Un,.

19



defining L & {# : Pr[Z = z] < 1/N}, and lower-bounding cp(Z) by using the fact that the
collision probability minimizes on uniform distributions. Specifically,

2 2
cp(2) > |L] - <%) + (N = L)) - <Pr[ZN€_U|\;]|\ L])

which equals 1 + (62/(1 — p)p) > 1 + 462, where p = |L|/N.

2. The collision probability of (H, H(X)) is at most (1 + (2™/|S]))/(|H}"| - 2™). (Furthermore,
this holds even if H]" is only universal.)

The proof is by a straightforward calculation. Specifically, note that cp(H, H(X)) = |[H™|~*-
Encry [cp(h(X))], whereas Epepp [cp(h(X)] = |S| 72X, 4yes PrH (1) = H(xp)]. The sum
equals |S| + (|S|?> — |S|) - 27™, and so cp(H, H(X)) < |H™|~1- (27™ + |S|71).

Note that it follows that (H, H(X)) is /2™ /4|S|-close to (H,U,,), which is a stronger bound than
the one provided in Theorem 25.

Stronger uniformity via higher independence. Recall that Lemma 24 asserts that for each
point in the range of the hash function, with high probability over the choice of the hash function,
this fized point has approximately the expected number of preimages in S. A stronger condition
asserts that, with high probability over the choice of the hash function, every point in its range has
approximately the expected number of preimages in S. Such a guarantee can be obtained when
using n-wise independent hashing functions.

Lemma 26 Let m < n be integers, H* be a family of n-wise independent hash functions, and
S C {0,1}™. Then, for every ¢ € (0,1), for all but at most an 2™ - (n - 2™/|S|)*? fraction of
h € H", it holds that |[{z € S : h(z) = y}| = (L £¢)-|S|/2™ for every y € {0,1}™.

Indeed, the lemma should be used with 2™ < £2|S|/4n. In particular, using m = log, |S| —
log,y(5n/e?) guarantees that with high probability each range elements has (1+¢)-|S|/2™ preimages
in S. Under this setting of parameters |S|/2™ = 5n/<?, which is poly(n) whenever ¢ = 1/poly(n).
Needless to say, this guarantee is stronger than the conclusion of Theorem 25.

Proof: The proof follows the footsteps of the proof of Lemma 24, taking advantage of the fact that
the random variables (i.e., the (,’s) are now 2¢-wise independent, where ¢ = n/2. This allows for
the use of a so-called 2¢'" moment analysis, which generalizes the analysis of pairwise independent
samplying. As in the proof of Lemma 24, we fix any S and y, and define {, = (,(h) = 1 if and
only if h(z) = y. Letting u = E[Y,c5 (] = |5]/2™ and (, = {» — E((,), we start with Markov
inequality:

Pr [

Using 2t-wise independence, we note that only the terms in Eq. (16) that do not vanish are those in
which each variable appears with multiplicity. This mean that only terms having less than ¢ distinct
variables contribute to Eq. (16). Now, for every j < ¢, we have less than (E‘) (2t < (2t1/5Y - |S)

E[(Xees €]

5275'“275

Zwl,...,wgt E[H?i Zz@]
- s 1o

M_ZC@‘

zeSsS

>e-opl <
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terms with j distinct variables, and each contributes less than (27™)7 to the sum. Thus, Eq. (16)
is upper-bounded by

21! Lo(|S|/2my _o <2t-2m>t
(e2]s]/2m)% = 4! (e?]S]/2m)t e2|S|

where the first inequality assumes |S| > n2™ (since the claim hold vacuously otherwise). This
upper-bounds the probability that a random h € H]" violates the mapping condition regarding a
fixed y. Using a union bound on all y € {0,1}", the lemma follows. [l

Notes

The counting class #P was introduced by Valiant [15], who proved that computing the permanent of
0/1-matrices is #P-complete (i.e., Theorem 7). Interestingly, like in the case of Cook’s introduction
of NP-completeness [4], Valiant’s motivation was determining the complexity of a specific problem
(i.e., the permanent).

The proofs of Theorems 7 and 3 were omitted from the current text. Such proofs can be found
in the origianl papers (i.e., [15] and [14], respectively), but we prefer our own presentation (given
in [6]).

The approximation procedure for #P is due to Stockmeyer [13], following an idea of Sipser [12].
Our exposition, however, follows further developments in the area. The randomized reduction
of NP to problems of unique solutions was discovered by Valiant and Vazirani [16]. Again, our
exposition is a bit different.

The connection between approximate counting and uniform generation (presented in Section 4.1)
was discovered by Jerrum, Valiant, and Vazirani [9], and is applicable also beyond the setting of
Theorem 18 (e.g., in the “Markov Chain approach” (see [11, Sec. 11.3.1])). The direct solution to
uniform generation (presented in Section 4.2) is taken from [1].

In continuation to Section 2.1, which is based on [10], we refer the interested reader to [8],
which presents a probabilistic polynomial-time algorithm for approximating the permanent of non-
negative matrices. This fascinating algorithm is based on the fact that knowing (approximately)
certain parameters of a non-negative matrix M allows to approximate the same parameters for a
matrix M’', provided that M and M’ are sufficiently similar. Specifically, M and M’ may differ
only on a single entry, and the ratio of the corresponding values must be sufficiently close to one.
Needless to say, the actual observation (is not generic but rather) refers to specific parameters of the
matrix, which include its permanent. Thus, given a matrix M for which we need to approximate
the permanent, we consider a sequence of matrices My, ..., My = M such that My is the all 1’s
matrix (for which it is easy to evaluate the said parameters), and each M, is obtained from M;
by reducing some adequate entry by a factor sufficiently close to one. This process of (polynomially
many) gradual changes, allows to transform the dummy matrix My into a matrix M; that is
very close to M (and hence has a permanent that is very close to the permanent of M). Thus,
approximately obtaining the parameters of M; allows to approximate the permanent of M.

Exercises

Exercise 27 (enumeration problems) For any binary relation R, define the enumeration prob-
lem of R as a function fg: {0,1}* x N — {0,1}* U {L} such that fg(x,i) equals the i'" element
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in |R(z)| if |R(x)| > ¢ and fr(z,7) = L otherwise. The above definition refers to the standard
lexicographic order on strings, but any other efficient order of strings will do.!?

1. Prove that, for any polynomially bounded R, computing # R is reducible to computing fg.

2. Prove that, for any R € PC, computing fr is reducible to some problem in #7P.

Guideline: Consider the binary relation R' = {({z,b),y) : (z,y) € R Ay < b}, and show that fg is
reducible to #R'. (Extra hint: Note that fr(z,i) = y if and only if |R'({z,y))| = i and for every y' < y it
holds that |R'({z,y'))| < i.)

Exercise 28 (computing the permanent of integer matrices) Prove that computing the per-
manent of matrices with 0/1l-entries is computationally equivalent to computing the number of

perfect matchings in bipartite graphs.

(Hint: Given a bipartite graph G = ((X,Y), E), consider the matrix M representing the edges between X and Y

(ie., the (i,§)-entry in M is 1 if the i*" vertex of X is connected to the j*® entry of Y), and note that only perfect

matchings in G contribute to the permanent of M.)

Exercise 29 (computing the permanent modulo 3) Combining Proposition 8 and Theorem 16,
prove that for every integer n > 1 that is relatively prime to ¢, computing the permanent modulo n
is NP-hard under randomized reductions.'® Since Proposition 8 holds for ¢ = 2'0, hardness holds
for every odd integer n > 1.

Guideline: Applying the reduction of Proposition 8 to the promise problem of deciding whether a 3CNF
formula has a unique satisfiable assignment or is unsatisfiable. Use the fact that n does not divide any power
of c.

Exercise 30 (negative values in Proposition 8) Assuming P # NP, prove that Proposition 8
cannot hold for a set I containing only non-negative integers. Note that the claim holds even if the
set I is not finite (and even if I is the set of all non-negative integers).

Guideline: A reduction as in Proposition 8 provides a Karp-reduction of 3SAT to deciding whether the
permanent of a matrix with entries in I is non-zero. Note that the permanent of a non-negative matrix is
non-zero if and only if the corresponding bipartite graph has a perfect matching.

Exercise 31 (error reduction for approximate counting) Show that the error probability ¢
in Definition 11 can be reduced from 1/3 (or even (1/2) + (1/poly(|z|)) to exp(—poly(|z|)).

Guideline: Invoke the weaker procedure for an adequate number of times and take the median value among
the values obtained in these invocations.

Exercise 32 (relative approximation for DNF satisfaction) Referring to the text of Sec-
tion 2.1, prove the following claims.

1. Both assumptions regarding the general setting hold in case S; = C; (1), where C; (1)
denotes the set of truth assignments that satisfy the conjunction C;.

Guideline: In establishing the second assumption note that it reduces to the conjunction of the
following two assumptions:

2 An order of strings is a 1-1 and onto mapping p from the natural numbers to the set of all strings. Such order is
called efficient if both p and its inverse are efficiently computable. The standard lexicographic order satisfies u(7) =y
if the (compact) binary expansion of 7 equals 1y; that is u(1) = A, u(2) =0, u(3) =1, p(4) = 00, etc.

13 Actually, a sufficient condition is that n does not divide any power of c¢. Thus (referring to ¢ = 2'°), hardness
holds for every integer n > 1 that is not a power of 2. On the other hand, for any fixed n = 2°) the permanent
modulo n can be computed in polynomial-time [15, Thm. 3].
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(a) Given i, one can efficiently generate a uniformly distributed element of S;. Actually, generating
a distribution that is almost uniform over S; suffices.

(b) Given ¢ and z, one can efficiently determine whether z € S;.

2. Prove Proposition 13, relating to details such as the error probability in an implementation
of Construction 12.

3. Note that Construction 12 does not require exact computation of |S;|. Analyze the output
distribution in the case that we can only approximate |S;| up-to a factor of 1 £ ¢’.

Exercise 33 (reducing the relative deviation in approximate counting) Prove that, for any
R € PC and every polynomial p and constant ¢ < 0.5, there exists R' € PC such that (1/p,6)-
approximation for #R is reducible to (1/2,6)-approximation for #R'.

Guideline: For t(n) = Q(p(n)), let R = {(z,(y1,..,¥e(|2))) : (Vi) (z,y;) € R}. Note that |R(z)| =
|R'(z)|*/*1=D) | and thus if @ = (1 £ (1/2)) - |R'(z)| then a'/1=D) = (1 £ (1/2))"/"I=D . |R(z)|. Furthermore,
prove that (1/p, 6)-approximation for #R is reducible to approximating #R" to within a factor of
F(n) = exp(p(n)) with error probability ¢, for some R” € PC.

(Hint: Same as the main part. Note that the length of the solution for R"(z) is larger than p(|z|) and so there is
nothing wrong in approximating # R’ (|z|) to within F'(|z|).)

Exercise 34 (deviation reduction in approximate counting, cont.) In continuation to Ex-
ercise 33, prove that if R is NP-complete via parsimonious reductions then, for every positive
polynomial p and constant § < 0.5, the problem of (1/p,6)-approximation for #R is reducible to
(1/2,6)-approximation for #R.

(Hint: Compose the reduction (to the problem of (1/2, §)-approximation for #R') provided in Exercise 33 with the
parsimonious reduction of #R' to #R.)

Prove that, for every function F’ such that F'(n) = exp(n°®), we can also reduce the aforemen-
tioned problems to the problem of approximating # R to within a factor of F’ with error probability
0.

Guideline: Using R as in Exercise 33, we encounter a technical difficulty. The issue is that the composition
of the (“amplifying”) reduction of #R to #R" with the parsimonious reduction of #R" to #R may increase
the length of the instance. Indeed, the length of the new instance is polynomial in the length of the original
instance, but this polynomial may depend on R, which in turn depends on F’. Thus, we cannot use
F'(n) = exp(n'/9W) but F'(n) = exp(n°®) is fine.

Exercise 35 Referring to the procedure in the proof Theorem 14, show how to use an NP-oracle
in order to determine whether the number of solutions that “pass a random sieve” is greater than
t. You are allowed queries of length polynomial in the length of x, h and in the size of t.

(Hint: Consider the set Sk g def {(x,d,h,1%) : y1, ..., ye s.t. P (x, Rk, y1, ..., ye) }, where ¢ (z, h, y1, ..., y¢) holds if and
only if the y; are different and for every j it holds that (x,y;) € R A h(y;)=0".)

Exercise 36 (parsimonious reductions and Theorem 16) Demonstrate the importance of par-
simonious reductions in Theorem 16 by proving the following:

1. There exists a search problem R € PC such that every problem in PC is reducible to R (by
a non-parsimonious reduction) and still the the promise problem (USg,Sg) is decidable in
polynomial-time.

Guideline: Consider the following artificial witness relation R for SAT in which (¢,07) € R if
o € {0,1} and 7 satisfies ¢. Note that the standard witness relation of SAT is reducible to R, but this
reduction is not parsimonious. Also note that USg = §) and thus (USg, Sg) is trivial.
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2. There exists a search problem R € PC such that #R is #P-complete and still the the promise
problem (USg, Sg) is decidable in polynomial-time.

Guideline: One easy proof is to use the relation suggested in the guideline to Part 1. A totally
different proof relies on Theorem 7 and on the fact that it is easy to decide (USg, Sg) when R is the
corresponding perfect matching relation (by computing the determinant).

Exercise 37 Prove that SAT is randomly reducible to deciding unique solution for SAT, without
using the fact that SAT is NP-complete via parsimonious reductions.

Guideline: Follow the proof of Theorem 16, while using the family of pairwise independent hashing functions
provided in Construction 23. Note that, in this case, the condition (7€ Rgp1(¢)) A (h(7)=0") can be directly
encoded as a CNF formula. That is, consider the formula ¢, such that ¢p(2) Lef #(2) A (h(z)=0%), and note
that h(z) = 0" can be written as the conjunction of i clauses, where each clause is a CNF that is logically
equivalent to the parity of some of the bits of z (where the identity of these bits is determined by h).

Exercise 38 (an alternative procedure for approximate counting) Adapt Step 1 of Con-
struction 19 so to obtain an approximate counting procedure for #R.

Guideline: For m = 0,1, ...f, the procedure invokes Step 1 of Construction 19 until a negative answer is
obtained, and outputs 2™ for the current value of m. For |R(z)| > 1000¢, this yields a constant factor
approximation of |R(z)|. In fact, we can obtain a better estimate by making additional queries at iteration
m (i.e., queries of the form (z, h,1") for 7 = 10¢, ..., 1000¢). The case |R(z)| < 1000¢ can be treated by using
Step 2 of Construction 19, in which case we obtain an exact count.
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