
Texts in Computational Complexity:Average-Case ComplexityOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.January 28, 2006Teaching note: We view average-case complexity as referring to the performance onaverage (or typical) instances, and not as the average performance on random instances.This choice is justi�ed in Section 1.1. Thus, the current theory may be termed typical-case complexity.IntroductionOur approach so far is termed worst-case complexity, because it refers to the performance of po-tential algorithms on each legitimate instance (and hence to the performance on the worst possibleinstance). That is, computational problems were de�ned as referring to a set of instances andperformance guarantees were required to hold for each instance in this set. In contrast, average-case complexity allows ignoring a negligible measure of the possible instances, where the identityof the ignored instances is determined by the analysis of potential solvers and not by the problem'sstatement.A few comments are in place. Firstly, as just hinted, the standard statement of the worst-casecomplexity of a computational problem (especially one having a promise) may also ignores someinstances (i.e., those considered inadmissible or violating the promise), but these instances aredetermined by the problem's statement. In contrast, the inputs ignored in average-case complexityare not inadmissible in any inherent sense (and are certainly not identi�ed as such by the problem'sstatement). It is just that they are viewed as exceptional when claiming that a speci�c algorithmsolve the problem; furthermore, these exceptional instances are determined by the analysis of thatalgorithm. Needless to say, these exceptional instances ought to be rare (i.e., occur with negligibleprobability).The last sentence raises a couple of issues. Firstly, a distribution on the set of admissibleinstances has to be speci�ed. In fact, we shall consider a new type of computational problems,each consisting of a standard computational problem coupled with a probability distribution oninstances. Consequently, the question of which distributions should be considered arises. Theseand numerous other de�nitional issues will be addressed in Section 1.1.Before proceeding, let us spell out the rather straightforward motivation to the study of theaverage-case complexity of computational problems. It is that, in real-life applications, one maybe perfectly happy with an algorithm that solves the problem fast on almost all instances thatarise in the application. That is, one may be willing to tolerate error provided that it occurs with1



negligible probability, where the probability is taken over the distribution of instances encounteredin the application. We stress that a key aspect in this approach is a good modeling of the type ofdistributions of instances that are encountered in natural algorithmic applications.At this point a natural question arises: can natural computational problems be solve e�cientlywhen considering typical instances? The bottom-line of this section is that, for a well-motivatedchoice of de�nitions, our conjecture is that the \distributional version" of NP is not contained in theaverage-case (or typical-case) version of P. This means that some NP problems are not merely hardin the worst-case, but rather \typically hard" (i.e., hard on typical instances drawn from somesimple distribution). Speci�cally, hard instances may occur in natural algorithmic applications(and not only in cryptographic (and other \adversarial") applications that are design on purposeto produce hard instances). This conjecture motivates the development of an average-case analogueof NP-completeness, which will be presented in this section.Organization. A major part of our exposition is devoted to the de�nitional issues that arise whendeveloping a general theory of average-case complexity. These issues are discussed in Section 1.1.In Section 1.2 we prove the existence of a distributional problem that is \NP-complete" in theaverage-case complexity sense. In Section 1.3 we extend the treatment to randomized algorithms.Additional rami�cations are presented in Section 2.1 The basic theoryIn this section we provide a basic treatment of the theory of average-case complexity, while postpon-ing important rami�cations to Section 2. The basic treatment contains the preferred de�nitionalchoices for the main notions as well as the identi�cation of a complete problem for a natural classof average-case computational problems.1.1 De�nitional issuesThe theory of average-case complexity is more subtle than may appear in �rst thought. In addi-tion to the generic di�culty involved in de�ning relaxations, di�culties arise from the \interface"between standard probabilistic analysis and the conventions of complexity theory. This is moststriking in the de�nition of the class of feasible average-case computations. Referring to the theoryof worst-case complexity as a guideline, we shall address the following aspects of the analogoustheory of average-case complexity.1. Setting the general framework. We shall consider distributional problems, which are standardcomputational problems coupled with distributions on the relevant instances.2. Identifying the class of feasible (distributional) problems. Seeking an average-case analogueof classes such as P, we shall reject the �rst de�nition (of \average polynomial time") thatcomes to mind, brie
y discuss several related alternatives, and adopt one of them for themain treatment.3. Identifying the class of interesting (distributional) problems. Seeking an average-case analogueof the class NP, we shall avoid both the extreme of allowing arbitrary distributions (whichcollapses average-case complexity to worst-case complexity) and the opposite extreme of con-�ning the treatment to the uniform distribution (which is misguided by the naive assumptionthat this distribution is the only one relevant to applications).2



4. Developing an adequate notion of reduction among (distributional) problems. As in the theoryof worst-case complexity, this notion should preserve feasible solveability (in the currentdistributional context).We now turn to the actual treatment of each of the aforementioned aspects.Distributional problems. Focusing on decision problems, we de�ne distributional problems aspairs consisting of a decision problem and a probability ensemble.1 For simplicity, here a probabilityensemble fXngn2N is a sequence of random variables such that Xn ranges over f0; 1gn. Thus,(S; fXngn2N) is the distributional problem consisting of the problem of deciding membership inthe set S with respect to the probability ensemble fXngn2N. (The treatment of search problem issimilar; see Section 2.1.) We denote the uniform probability ensemble by U = fUngn2N; that is, Unis uniform over f0; 1gn.Identifying the class of feasible problems. The �rst idea that comes to mind is de�ning theproblem (S; fXngn2N) as feasible (on the average) if there exists an algorithm A that solves S suchthat the average running time of A on Xn is bounded by a polynomial in n (i.e., there exists apolynomial p such that E[tA(Xn)] � p(n), where tA(x) denotes the running-time of A on input x).The problem with this de�nition is that it very sensitive to the model of computation and is notclosed under algorithmic composition. Both de�ciencies are a consequence of the fact that tA maybe polynomial on the average with respect to fXngn2N but t2A may fail to be so (e.g., considertA(x0x00) = 2jx0j if x0 = x00 and tA(x0x00) = jx0x00j2 otherwise, coupled with the uniform distributionover f0; 1gn). We conclude that the average running-time of algorithms is not a robust notion.We also doubt the naive appeal of this notion, and view the typical running time of algorithms(as de�ned next) as a more natural notion. Thus, we shall consider an algorithm as feasible if itsrunning-time is typically polynomial.2We say that A is typically polynomial-time on X = fXngn2N if there exists a polynomial p suchthat the probability that A runs more that p(n) steps on Xn is negligible (i.e., for every polynomialq and all su�ciently large n it holds that Pr[tA(Xn) > p(n)] < 1=q(n)). The question is what isrequired in the \untypical" cases, and two possible de�nitions follow.1. The simpler option is saying that (S; fXngn2N) is (typically) feasible if there exists an al-gorithm A that solves S such that A is typically polynomial-time on X = fXngn2N. Thise�ectively requires A to correctly solve S on each instance, which is more than was requiredin the motivational discussion. (Indeed, if the underlying reasoning is ignoring rare cases,then we should ignore them altogether rather than partially (i.e., only ignore their a�ect onthe running-time).)1We mention that even this choice is not evident. Speci�cally, Levin [8] (see discussion in [3]) advocates the useof a single probability distribution de�ned over the set of all strings. His argument is that this makes the theory lessrepresentation-dependent. At the time we were convinced of his argument (see [3]), but currently we feel that therepresentation-dependent e�ects discussed in [3] are legitimate. Furthermore, the alternative formulation of [3] comesacross as unnatural and tends to be confusing.2An alternative choice, taken by Levin [8] (see discussion in [3]), is considering as feasible (w.r.t X = fXngn2N) anyalgorithm that runs in time that is polynomial in a function that is linear on the average (w.r.t X); that is, requiringthat there exists a polynomial p and a function ` : f0; 1g� ! N such that t(x) � p(`(x)) and E[`(Xn)] = O(n). Thisde�nition is robust (i.e., it does not su�er from the aforementioned de�ciencies) and is arguably as justi�ed as thenaive de�nition (i.e., E[tA(Xn)] � poly(n)). 3



2. The alternative, which �ts the motivational discussion, is saying that (S;X) is (typically)feasible if there exists an algorithm A such that typically A solves S on X in polynomial-time; that is, there exists a polynomial p such that the probability that on input Xn algorithmA either errs or runs more that p(n) steps is negligible. This formulation totally ignores theuntypical instances. Indeed, in this case we may assume, without loss of generality, that Aalways runs in polynomial-time (see Exercise 12), but we shall not do so here (in order tofacilitate viewing the �rst option as a special case of the current option).We note that both alternatives actually de�ne typical feasibility and not average-case feasibility.To illustrate the di�erence between the two options, consider the distributional problem of decid-ing whether a uniformly selected (n-vertex) graph contains a Hamiltonian path. Intuitively, thisproblem is \typically trivial" because the algorithm may always say yes and be wrong with expo-nentially vanishing probability.3 Indeed, this trivial algorithm is admissible by the second approach,but not by the �rst approach. In light of the foregoing, we adopt the second approach.De�nition 1 (the class tpcP): We say that A typically solves (S; fXngn2N) in polynomial-time ifthere exists a polynomial p such that the probability that on input Xn algorithm A either errs orruns more that p(n) steps is negligible.4 We denote by tpcP the class of distributional problemsthat are typically solvable in polynomial-time.Clearly, for every S 2 P and every probability ensemble X, it holds that (S;X) 2 tpcP . However,tpcP contains also distributional problems (S;X) with S 62 P (see Exercises 13 and 14). The bigquestion motivating the study of average-case complexity is whether natural distributional versionsof NP are in tpcP . Thus, we turn to identify such versions.Identifying the class of interesting problems. Seeking to identify reasonable distributionalversions of NP , we note that two extreme choices should be avoided. On one hand, we mustlimit the class of admissible distributions so to prevent the collapse of average-case complexity toworst-case complexity (by a selection of a pathological distribution that resides on the \worst case"instances). On the other hand, we should allow for various types of natural distributions ratherthan con�ning attention merely to the uniform distribution. Recall that our aim is to address allpossible input distributions that may occur in applications, and there is no justi�cation to con�ningattention to the uniform distribution. Still, arguably, the distributions occuring in applications are\relatively simple" and so we seek to identify a class of simple distributions. One such notion (ofsimple distributions) underlies the following de�nition, while a more liberal notion will be presentedin Section 2.2.De�nition 2 (the class distNP): We say that a probability ensemble X = fXngn2N is simple ifthere exists a polynomial time algorithm that, on any input x 2 f0; 1g�, outputs Pr[Xjxj � x], wherethe inequality refers to the standard lexicographic order of strings. We denote by distNP the classof distributional problems consisting of decision problems in NP coupled with simple probabilityensembles.3In contrast, testing whether a given graph contains a Hamiltonian path seems \typically hard" for other distri-butions (see Exercise 23). Needless to say, in the latter distributions both yes-instances and no-instances appear withnoticeable probability.4Recall that a function � : N ! N is negligible if for every positive polynomial q and all su�ciently large n itholds that �(n) < 1=q(n). We say that A errs on x if A(x) di�ers from the indicator value of the predicate x 2 S.4



Note that the uniform probability ensemble is simple, but so are many other \simple" probabilityensembles. Actually, it makes sense to relax the de�nition such that the algorithm is only requiredto output an approximation of Pr[Xjxj � x], say, to within a factor of 1 � 2�jxj. We note thatalthough De�nition 2 does not refer explicitly to any structural property of the probability ensemble,it imposes a computational restriction on the admissible ensembles (which, in turn, limits their\complexity"). In Section 2.2 we shall consider the more intuitive and robust class of all polynomial-time sampleable ensembles (and show that it contains all simple ensembles). We believe thatthe results presented in Section 1.2 and Section 2.2 retrospectively justify the choice underlyingDe�nition 2. We articulate this point next.We note that a wider class of distributions weakens the conjecture that some distributionalversion of NP are not feasible. On the other hand, the conclusion that some distributional problemis not feasible becomes stronger when restricting the admissible class of distributions. The resultspresented in Section 1.2 and Section 2.2 assert that a conjecture that refers to polynomial-timesampleable ensembles implies a conclusion that refers to a (very) simple probability ensemble. Thecurrent setting in which both the conjecture and the conclusion refer to simple probability ensemblesis thus but an intermediate step.Indeed, the big question in the current context is whether distNP is contained in tpcP. Apositive answer (especially if extended to sampleable ensembles) would deem the P-vs-NP Questionof little practical signi�cant. However, our daily experience as well as much research e�ort indicatethat some NP problems are not merely hard in the worst-case, but rather \typically hard". Thissupports the conjecture that distNP is not contained in tpcP .Needless to say, the latter conjecture implies P 6= NP , and thus we should not expect to see aproof of it. What we may hope to see is \distNP-complete" problems; that is, problems in distNPthat are not in tpcP unless the entire class distNP is contained in tpcP. An adequate notion of areduction is used towards formulating this notion.Reductions among (distributional) problems. Intuitively, such reductions must preserveaverage-case feasibility. Thus, in addition to the standard conditions (i.e., that the reduction bee�ciently computable and yield a correct result), we require that the reduction \respects" theprobability distribution of the corresponding distributional problems. Speci�cally, the reductionshould not map very likely instances of the �rst (\starting") problem to rare instances of thesecond (\target") problem. Otherwise, having a typically polynomial-time algorithm for the seconddistributional problem does not necessarily yield such an algorithm for the �rst distributionalproblem. Following is the adequate analogue of a Cook reduction (i.e., general polynomial-timereduction), where the analogue of a Karp-reduction (many-to-one reduction) can be easily derivedas a special case.Teaching note: One may prefer presenting in class only the special case of many-to-onereductions, which su�ces for Theorem 4. See Footnote 6.De�nition 3 (reductions among distributional problems): We say that the oracle machine Mreduces the distributional problem (S;X) to the distributional problem (T; Y ) if the following threeconditions hold.1. E�ciency: The machine M runs in polynomial-time.55In fact, one may relax the requirement and only require that M is typically polynomial-time with respect to X.The validity condition may also be relaxed similarly. 5



2. Validity: For every x 2 f0; 1g�, it holds that MT (x) = 1 if an only if x 2 S, where MT (x)denotes the output of the oracle machine M on input x and access to an oracle for T .3. Domination:6 There exists a polynomial p such that, for every y 2 f0; 1g�, it holds thatmaxn2N fPr[Q(Xn) 3 y]g � p(jyj) � Pr[Yjyj = y]; (1)where Q(x) denotes the set of queries made by M on input x and oracle access to T . Fur-thermore, if y 2 Q(x) then jxj � p(jyj).The l.h.s. of Eq. (1) refers to the probability that, on input distributed as Xn, the reductionmakes the query y. This probability is required not to exceed the probability that y occurs in thedistribution Yjyj by more than a polynomial factor in jyj. In this case we say that the l.h.s. ofEq. (1) is dominated by Pr[Yjyj = y].Indeed, the domination condition is the only aspect of De�nition 3 that extends beyond theworst-case treatment of reductions and refers to the distributional setting. The domination con-dition does not insist that the distribution induced by Q(X) equals Y , but rather allows someslackness that, in turn, is bounded so to guarantee preservation of typical feasibility (see Exer-cise 15).We note that the reducibility arguments extensively used in the context of hardness ampli�cationand Cryptography (see [4]) are actually reductions in the spirit of De�nition 3 (except that theyrefer to a di�erent type of computational tasks).1.2 Complete problemsRecall that our conjecture is that distNP is not contained in tpcP , which in turn strengthens theconjecture P 6= NP (making infeasibility a typical phenomenon rather than a worst-case one).Having no hope of proving that distNP is not contained in tpcP , we turn to the study of completeproblems with respect to that conjecture. Speci�cally, we say that a distributional problem (S;X)is distNP-complete if (S;X) 2 distNP and every (S0;X 0) 2 distNP is reducible to (S;X) (underDe�nition 3).Recall that it is quite easy to prove the mere existence of NP-complete problems and manynatural problems are NP-complete. In contrast, in the current context, establishing completenessresults is quite hard. This should not be surprising in light of the restricted type of reductionsallowed in the current context. The restriction (captured by the domination condition) requiresthat \typical" instances of one problem should not be mapped to \untypical" instances of the otherproblem. On the other hand, it is fair to say that standard Karp-reductions (used in establishingNP-completeness results) map \typical" instances of one problem to quite \bizarre" instances ofthe second problem. Thus, the current section may be viewed as a study of reductions that do notcommit this sin.Theorem 4 (distNP-completeness): distNP contains a distributional problem (S;X) such thateach distributional problem in distNP is reducible (per De�nition 3) to (S;X). Furthermore, thereduction is deterministic and many-to-one.6For simplicity, we use the same polynomial for both bounds. Let us spell out the meaning of Eq. (1) in the specialcase of many-to-one reductions (i.e., MT (x) = 1 if and only if f(x) 2 T , where f is a polynomial-time computablefunction): in this case Pr[Q(Xn) 3 y] is replaced by Pr[f(Xn) = y]. Assuming that f is one-to-one, Eq. (1) simpli�esto Pr[Xjf�1(y)j = f�1(y)] � p(jyj) � Pr[Yjyj = y] for any y in the image of f . Indeed, nothing is required for y not inthe image of f . 6



Proof: We start by introducing such a problem, which is a natural distributional version of thedecision problem Su (used in the proof of the existence of NP-complete problems; see [5, Text 14]).Recall that Su contains the instance hM;x; 1ti if there exists y 2 [i�tf0; 1gi such that M acceptsthe input pair (x; y) within t steps. We couple Su with the \quasi-uniform" probability ensemble U 0that assigns to the instance hM;x; 1ti a probability mass proportional to 2�(jM j+jxj). Speci�cally,for jhM;x; 1tij = n it holds that Pr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)=�n2�. Note that, under a suitableencoding, the ensemble U 0 is indeed simple.7The reader can easily verify that the generic reduction used when reducing any set in NP toSu (see the proof of the existence of NP-complete problems), fails to reduce distNP to (Su; U 0).Speci�cally, in some cases (see next paragraph), these reductions do not satisfy the dominationcondition. Indeed, the di�culty is that we have to reduce all distNP problems (i.e., pairs consistingof decision problems and simple distributions) to one single distributional problem (i.e., (Su; U 0)).Applying the aforementioned reductions, we end up with many distributional versions of Su, andfurthermore the corresponding distributions are very di�erent (and are not necessarily dominatedby a single distribution).Let us take a closer look at the aforementioned generic reduction, when applied to an arbitrary(S;X) 2 distNP . This reduction maps an instance x to a triple (MS ; x; 1pS(jxj)), where MS is amachine verifying membership in S (while using adequate NP-witnesses) and pS is an adequatepolynomial. The problem is that x may have relatively large probability mass (i.e., it may be thatPr[Xjxj = x] � 2�jxj) while (MS ; x; 1pS(jxj)) has \uniform" probability mass (i.e., hMS ; x; 1pS(jxj)ihas probability mass smaller than 2�jxj). This violates the domination condition (see Exercise 18),and thus an alternative reduction is required.The key to the alternative reduction is an (e�ciently computable) encoding of strings takenfrom an arbitrary simple distribution by strings that have a similar probability mass under theuniform distribution. This means that the encoding should shrink strings that have relatively largeprobability mass under the original distribution. Speci�cally, this encoding will map x (taken fromthe ensemble fXngn2N) to a codeword x0 of length that is upper-bounded by the logarithm of1=Pr[Xjxj=x], ensuring that 2�jx0j � Pr[Xjxj=x]. Accordingly, the reduction will map x to a triple(MS;X ; x0; 1p0(jxj)), where jx0j < O(1) + log2(1=Pr[Xjxj = x]) and MS;X is an algorithm that �rstveri�es that x0 is a proper encoding of x and next applies the standard veri�cation (i.e., MS) of theproblem S. Such a reduction will be shown to satisfy all three conditions (i.e., e�ciency, validity,and domination). Thus, instead of forcing the structure of the original distribution X on the targetdistribution U 0, the reduction will incorporate the structure of X in the reduced instance. A keyingredient in making this possible is the fact that X is simple (as per De�nition 2).With the foregoing motivation in mind, we now turn to the actual proof; that is, proving thatany (S;X) is reducible to (Su; U 0). The following technical lemma is the basis of the reduction. Inthis lemma as well as in the sequel, it will be convenient to consider the (accumulative) distributionfunction of the probability ensemble X. That is, we consider �(x) def= Pr[Xjxj� x], and note that� : f0; 1g� ! [0; 1] is polynomial-time computable (because X satis�es De�nition 2).Coding Lemma:8 Let � be a polynomial-time computable distribution function. Then there existan encoding function C� satisfying the following three conditions.7For example, we may encode hM;x; 1ti, where M = �1 � � � �k 2 f0; 1gk and x = �1 � � � �` 2 f0; 1g`, by the string�1�1 � � ��k�k01�1�1 � � � �`�`01t.8The lemma actually refers to f0; 1gn, for a �xed value of n, but the e�ciency condition is stated more easilywhen allowing n to vary (and using the standard asymptotic analysis of algorithms). Furthermore, the lemma holdsfor any monotonically non-decreasing function that is e�ciently computable, and its proof is less cumbersome whenstated for functions de�ned over f0; 1g�. See further discussion in Exercise 19.7



1. Compression: For every x it holds that jC�(x)j � 1 +minfjxj; log2(1=�0(x))g, where �0(x) def=Pr[Xjxj=x].2. E�cient Encoding: The function C� is computable in polynomial-time.3. Unique Decoding: For every n 2 N , when restricted to f0; 1gn, the function C� is one-to-one(i.e., if C�(x) = C�(x0) and jxj = jx0j then x = x0).Proof: The function C� is de�ned as follows. If �0(x) � 2�jxj then C�(x) = 0x (i.e., in this casex serves as its own encoding). Otherwise (i.e., �0(x) > 2�jxj) then C�(x) = 1z, where z is chosensuch that jzj � log2(1=�0(x)) and the mapping of n-bit strings to their encoding is one-to-one.Loosely speaking, z is selected to equal the shortest binary expansion of a number in the interval(�(x) � �0(x); �(x)]. Bearing in mind that this interval has length �0(x) and that the di�erentintervals are disjoint, we obtain the desired encoding. Details follows.We focus on the case that �0(x) > 2�jxj, and detail the way that z is selected (for the encodingC�(x) = 1z). If x > 0jxj and �(x) < 1, then we let z be the longest common pre�x of the binaryexpansions of �(x� 1) and �(x), where x� 1 is the string preceding x in lexicographic order (e.g.,if �(1010) = 0:10010 and �(1011) = 0:10101111 then C�(1011) = 1z with z = 10). Thus, in thiscase 0:z1 is in the interval (�(x� 1); �(x)] (i.e., �(x� 1) < 0:z1 � �(x)). For x = 0jxj, we let z bethe longest common pre�x of the binary expansions of 0 and �(x) and again 0:z1 is in the relevantinterval (i.e., (0; �(x)]). Finally, for x such that �(x) = 1 and �(x� 1) < 1, we let z be the longestcommon pre�x of the binary expansions of �(x � 1) and 1 � 2�jxj�1 < �(x) (and again 0:z1 is in(�(x� 1); �(x)]). Note that if �(x) = �(x� 1) = 1 then �0(x) = 0 < 2�jxj.We now verify that the foregoing C� satis�es the conditions of the lemma. We start with thecompression condition. Clearly, if �0(x) � 2�jxj then jC�(x)j = 1+ jxj � 1 + log2(1=�0(x)). On theother hand, suppose that �0(x) > 2�jxj and let us focus on the sub-case that x > 0jxj and �(x) < 1.Let z = z1 � � � z` be the longest common pre�x of the binary expansions of �(x�1) and �(x). Then,�(x� 1) = 0:z0u and �(x) = 0:z1v, where u; v 2 f0; 1g�, and it follows that�0(x) = �(x)� �(x� 1) � 0@X̀i=1 2�izi + poly(jxj)Xi=`+1 2�i1A� X̀i=1 2�izi < 2�jzj:Thus, jzj < log2(1=�0(x)) � jxj and it follows that jC�(x)j � 1 + min(jxj; log2(1=�0(x))) holds inboth cases. Clearly, C� can be computed in polynomial-time by computing �(x � 1) and �(x).Finally, note that C� satis�es the unique decoding condition, by separately considering the twoaforementioned cases (i.e., C�(x) = 0x and C�(x) = 1z). Speci�cally, in the second case (i.e.,C�(x) = 1z), use the fact that �(x� 1) < 0:z1 � �(x).To obtain an encoding that is one-to-one when applied to strings of di�erent lengths we augmentC� in the obvious manner; that is, we consider C 0�(x) def= (jxj; C�(x)), which may be implementedas C 0�(x) = �1�1 � � � �`�`01C�(x) where �1 � � � �` is the binary expansion of jxj. Note that jC 0�(x)j =O(log jxj) + jC�(x)j and that C 0� is one-to-one.The machine associated with (S;X). Let � be the accumulative probability function associated withthe probability ensemble X and MS be the polynomial-time machine that veri�es membership inS while using adequate NP-witnesses (i.e., x 2 S if and only if there exists y 2 f0; 1gpoly(jxj) suchthat M(x; y) = 1). Using the encoding function C 0�, we introduce an algorithm MS;� with theintension of reducing the distributional problem (S;X) to (Su; U 0) such that all instances (of S)are mapped to triples in which the �rst element equals MS;�. Machine MS;� is given an alleged8



encoding (under C 0�) of an instance to S along with an alleged proof that the corresponding instanceis in S, and veri�es these claims in the obvious manner. That is, on input x0 and hx; yi, machineMS;� �rst veri�es that x0 = C 0�(x), and next veri�ers that x 2 S by running MS(x; y). Thus, MS;�veri�es membership in the set S0 = fC 0�(x) : x 2 Sg, while using proofs of the form hx; yi such thatMS(x; y) = 1 (for the instance C 0�(x)).9The reduction. We maps an instance x (of S) to the triple (MS;�; C 0�(x); 1p(jxj)), where p(n) def=pS(n) + pC(n) such that pS is a polynomial representing the running-time of MS and pC is apolynomial representing the running-time of the encoding algorithm. That is, on input (x; y),algorithm MS makes at most pS(jxj) steps (and rejects (x; y) if jyj > p(jxj)� jxj).Analyzing the reduction. Our goal is proving that the foregoing mapping constitutes a reduction of(S;X) to (Su; U 0). We verify the corresponding three requirements (of De�nition 3).1. Using the fact that C� is polynomial-time computable (and noting that p is a polynomial),it follows that the foregoing mapping can be computed in polynomial-time.2. Recall that, on input (x0; hx; yi), machine MD;� accepts if and only if x0 = C 0�(x) and MDaccepts (x; y) within pS(jxj) steps. It follows that x 2 S if and only if there exists a string yof length at most p(jxj) such that MS;� accepts (C 0�(x); hx; yi) in at most p(jxj) steps. Thus,x 2 S if and only if (MS;�; C 0�(x); 1p(jxj)) 2 Su, and the validity condition follows.3. In order to verify the domination condition, we �rst note that the foregoing mapping isone-to-one (because the transformation x ! C 0�(x) is one-to-one). Next, we note that itsu�ces to consider instances of Su that have a preimage under the foregoing mapping (sinceinstances with no preimage trivially satisfy the domination condition). Each of these instances(i.e., each image of this mapping) is a triple with the �rst element equal to MS;� and thesecond element being an encoding under C 0�. By the de�nition of U 0, for every such imagehMS;�; C 0�(x); 1p(jxj)i 2 f0; 1gn, it holds thatPr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] =  n2!�1 � 2�(jMS;�j+jC0�(x)j)> c � n�2 � 2�(jC�(x)j+O(log jxj));where c = 2�jMS;�j�1 is a constant depending only on S and � (i.e., on the distributionalproblem (S;X)). Thus, for some positive polynomial p0, we havePr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] > p0(n)�1 � 2�jC�(x)j: (2)By virtue of the compression condition (of the Coding Lemma), we have 2�jC�(x)j � 2�1�min(jxj;log2(1=�0(x))).It follows that 2�jC�(x)j � Pr[Xjxj = x]=2: (3)Recalling that x is the only preimage that is mapped to hMS;�; C 0�(x); 1p(jxj)i and combiningEq. (2)& (3), we establish the domination condition.The theorem follows.9Note that jyj = poly(jxj), but jxj = poly(jC0�(x)j) does not necessarily hold (and so S0 is not necessarily in NP).As we shall see, the latter point is immaterial. 9



Re
ections. The proof of Theorem 4 demonstrates the fact that, unlike more advanced worst-case reductions, the generic reduction used in proving the existence of NP-complete problems doesnot introduce much structure in the reduced instances (i.e., does not reduce the original problem toa \highly structured special case" of the target problem). Put in other words, the latter reductiondoes not map \random" (i.e., uniformly distributed) instances to highly structured instances (whichoccur with negligible probability under the uniform distribution). Thus, this reduction su�ces forreducing any distributional problem in distNP to a distributional problem consisting of Su coupledwith some simple probability ensemble.10However, Theorem 4 states more than the latter assertion. That is, it states that any distribu-tional problem in distNP is reducible to the same distributional version of Su. Indeed, the e�ortinvolved in proving Theorem 4 was due to the need for mapping instances taken from any simpleprobability ensemble (which may not be the uniform ensemble) to instances distributed in a mannerthat is dominated by a single probability ensemble (i.e., the quasi-uniform ensemble U 0).Once we have established the existence of one distNP-complete problem, we may establishthe distNP-completeness of other problems in distNP by reducing any distNP-complete problemto them (and relying on the transitivity of reductions (see Exercise 17)). Thus, the di�cultiesencountered in the proof of Theorem 4 are no longer relevant. Unfortunately, a seemingly moresevere di�culty arises: almost all know reductions in the theory of NP-completeness work byintroducing much structure in the reduced instances (i.e., they actually reduce to highly structuredspecial cases). Furthermore, this structure is too complex in the sense that the distribution ofreduced instances does not seem simple (in the sense of De�nition 2). Designing reductions thatavoid the introduction of such structure has turned out to be quite di�cult; still several suchreductions are cited in [3].1.3 Probabilistic versionsThe de�nitions in Section 1.1 can be easily extended to refer to randomized algorithms. Forexample, extending De�nition 1, we have:De�nition 5 (the class tpcBPP): For a probabilistic algorithm A, a Boolean function B, andt : N ! N , we say that the string x is t-bad for A with respect to B if with probability exceeding 1=3,on input x, either A(x) 6= B(x) or A runs more that t(jxj) steps. We say that A typically solves(S; fXngn2N) in probabilistic polynomial-time if there exists a polynomial p such that the probabilitythat Xn is p-bad for A with respect to the characteristic function of S is negligible. We denote bytpcBPP the class of distributional problems that are typically solvable in probabilistic polynomial-time.The de�nition of reductions can be similarly extended. This means that in De�nition 3, bothMT (x) and Q(x) (mentioned in Items 2 and 3, respectively) are random variables rather than�xed objects. Furthermore, validity is required to hold (for every input) only with probability 2=3,where the probability space refers only to the internal coin tosses of the reduction. Randomizedreductions are closed under composition and preserve typical feasibility (see Exercise 20).Randomized reductions allow the presentation of a distNP-complete problem that refers tothe (perfectly) uniform ensemble. Recall that Theorem 4 establishes the distNP-completeness of(Su; U 0), where U 0 is a quasi-uniform ensemble (i.e., Pr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)=�n2�, wheren = jhM;x; 1tij). We �rst note that (Su; U 0) can be randomly reduced to (S0u; U 00), where S0u =10Note that this cannot be said of most known Karp-reductions.10



fhM;x; zi : hM;x; 1jzji 2 Sug and Pr[U 00n = hM;x; zi] = 2�(jM j+jxj+jzj)=�n2� for every hM;x; zi 2f0; 1gn. The randomized reduction consists of mapping hM;x; 1ti to hM;x; zi, where z is uniformlyselected in f0; 1gt. Recalling that U = fUngn2N denotes the uniform probability ensemble (i.e., Unis uniformly distributed on strings of length n) and using a suitable encoding we get.Proposition 6 There exists S 2 NP such that every (S0;X 0) 2 distNP is randomly reducible to(S;U).Proof Sketch: By the forgoing discussion, every (S0;X 0) 2 distNP is randomly reducible to(S0u; U 00). Thus, we focus on reducing (S0u; U 00) to (S00u ; U), where S00u 2 NP is de�ned as follows.The string ��uvw is in S00u if hu; v; wi 2 S0u and � (resp., �) represents the binary encoding of theinteger juj (resp., jvj), where the encoding is padded with zeros to a total length of log2 juvwj. Thereduction maps hM;x; zi to the string � � � �M � x � z, where � (resp., �) represents the binaryencoding of jM j (resp., jxj) padded with zeros to a total length of log2(jM j+ jxj+ jzj). Noting thatthis reduction satis�es all conditions of De�nition 3, the proposition follows.2 Rami�cationsIn our opinion, the most problematic aspect of the theory described in Section 1 is the de�nition ofsimple probability ensembles, which in turn restricts the de�nition of distNP (De�nition 2). Thisrestriction strengthens the conjecture that distNP is not contained in tpcBPP , which means thatit weakens conditional results that are based on this conjecture. An appealing extension of the classdistNP is presented in Section 2.2, where it is shown that if the extended class is not contained intpcBPP then distNP itself is not contained in tpcBPP . Thus, distNP-complete problems enjoythe bene�t of both being in the more restricted class (i.e., distNP) and being hard as long as someproblems in the extended class is hard.In Section 2.1, we extend the treatment from decision problems to search problems. Thisextension is motivated by the realization that search problem are actually of greater importance toreal-life applications (cf. [5, Text 14]), and hence a theory motivated by real-life applications mustaddress such problems, as we do next.2.1 Search versus DecisionIndeed, as in the case of worst-case complexity, search problems are at least as important as decisionproblems. Thus, an average-case treatment of search problems is indeed called for. We �rst presentdistributional versions of PF and PC (cf. [5, Text 14]), following the underlying principles of thede�nitions of tpcP and distNP .De�nition 7 (the classes tpcPF and distPC): As in [5, Text 14], we consider only polynomiallybounded search problems; that is, binary relations R � f0; 1g��f0; 1g� such that for some polynomialq it holds that (x; y) 2 R implies jyj � q(jxj). Recall that R(x) def= fy : (x; y)2Rg.� A distributional search problem consists of a polynomially bounded search problem coupled witha probability ensemble.� The class tpcPF consists of all distributional search problems that are typically solvable inpolynomial-time. That is, (R; fXngn2N) 2 tpcPF if there exists an algorithm A and a poly-nomial p such that the probability that on input Xn algorithm A either errs or runs more that11



p(n) steps is negligible, where A errs on x if A(x) 62 R(x) in case R(x) 6= ; and A(x) 6= ?otherwise.� A distributional search problem (R;X) is in distPC if R 2 PC and X is simple (as in De�ni-tion 2).Likewise, the class tpcBPPF consists of all distributional search problems that are typically solvablein probabilistic polynomial-time (cf., De�nition 5). The de�nitions of reductions among distribu-tional problems, presented in the context of decision problem, extend to search problems.Fortunately, as in the context of worst-case complexity, the study of distributional search prob-lems \reduces" to the study of distributional decision problems.Theorem 8 (reducing search to decision): distPC � tpcBPPF if and only if distNP � tpcBPP.Furthermore, every problem in distNP is reducible to some problem in distPC, and every problemin distPC is randomly reducible to some problem in distNP.Proof Sketch: The furthermore part is analogous to the actual contents of the proof of equivalenceof the search and decision versions of the P-vs-NP Question. Indeed the reduction of NP to PCpresented in that proof (cf. [5, Text 14]) extends to the current context. Speci�cally, for anyS 2 NP , we consider a relation R 2 PC such that S = fx : R(x) 6= ;g, and note that, for anyprobability ensemble X, the identity transformation reduces (S;X) to (R;X).A di�culty arises in the opposite direction. Recall that in the context of worst-case com-plexity we reduced the search problem of R 2 PC to deciding membership in S0R def= fhx; y0i :9y00 s.t. (x; y0y00)2Rg 2 NP . The di�culty encountered here is that, on input x, this reductionmakes queries of the form hx; y0i, where y0 is a pre�x of some string in R(x). These queries mayinduce a distribution that is not dominated by any simple distribution. Thus, we seek an alternativereduction.As a warm-up, let us assume for a moment that R has unique solutions; that is, for every x itholds that jR(x)j � 1. In this case we may easily reduce the search problem of R 2 PC to decidingmembership in S00R 2 NP , where hx; i; �i 2 S00R if and only if R(x) contains a string in which the ithbit equals �. Speci�cally, on input x, the reduction issues the queries hx; i; �i, where i 2 [`] (with` = poly(jxj)) and � 2 f0; 1g, which allows for determining the single string in R(x) (wheneversuch a string exists). The point is that this reduction can be used to reduce any (R;X) 2 distPC(having unique solutions) to (S00R;X 00) 2 distNP , where X 00 equally distributes the probability massof x (under X) to all the tuples hx; i; �i; that is, for every i 2 [`] and � 2 f0; 1g, it holds thatPr[X 00jhx;i;�ij = hx; i; �i] equals Pr[Xjxj = x]=2`.Unfortunately, in the general case, R may not have unique solutions. Nevertheless, applying themain idea that underlies the proof of the NP-hardness of solving unique solution problems (see [5,Text 15]), this di�culty can be overcome. We �rst note that the foregoing mapping of instancesof the distributional problem (R;X) 2 distPC to instances of (S00R;X 00) 2 distNP satis�es thee�ciency and domination condition even in the case that R does not have unique solutions. Whatmay possibly fail (in the general case) is the validity condition (i.e., if jR(x)j > 1 then we may failto recover any element of R(x)).Recall that the main part of the proof of the NP-hardness of solving unique solution problemsis a randomized reduction that maps instances of R to triples of the form (x;m; h), where m isan integer and h is a hashing function that are uniformly distributed in some adequate sets [`]and Hm̀, where ` = poly(jxj) and Hm̀ is as in [5, Text 15]. Furthermore, if R(x) 6= ; then, withprobability 
(1=`) over yje choices of m 2 [`] and h 2 Hm̀, there exists a unique y 2 R(x) such12



that h(y) = 0m. De�ning R0(x;m; h) def= fy 2R : h(y) = 0mg, this yields a randomized reductionof the search problem of R to the search problem of R0 such that with noticeable probability11 thereduction maps instances that have solutions to instances having a unique solution. Furthermore,this reduction can be used to reduce any (R;X) 2 distPC to (R0;X 0) 2 distPC, whereX 0 distributesthe probability mass of x (under X) to all the triples (x;m; h) such that for every m 2 [`] andh 2 Hm̀ it holds that Pr[X 00j(x;m;h)j = (x;m; h)] equals Pr[Xjxj = x]=(` � jHm̀j). (Note that with asuitable encoding, X 0 is indeed simple.)The theorem follows by combining the two aforementioned reductions. That is, we �rst applythe randomized reduction of (R;X) to (R0;X 0), and next reduce the resulting instance to an instanceof the corresponding decision problem (S00R0 ;X 00). The combined randomized mapping satis�es thee�ciency and domination conditions, and is valid with noticeable probability. The error probabilitycan be made negligible by straightforward ampli�cation (see Exercise 20).2.2 Simple versus sampleable distributionsRecall that the de�nition of simple probability ensembles (underlying De�nition 2) requires thatthe accumulating distribution function (as de�ned in the proof of Theorem 4) is polynomial-timecomputable. Recall that � : f0; 1g� ! [0; 1] is called the accumulating distribution function ofX = fXngn2N if for every n 2 N and x 2 f0; 1gn it holds that �(x) def= Pr[Xn � x], where theinequality refers to the standard lexicographic order of n-bit strings.As argued in Section 1.1, the requirement that the accumulating distribution function is polynomial-time computable imposes severe restrictions on the set of admissible ensembles. Furthermore, itseems that these simple ensembles are indeed \simple" in some intuitive sense and hence representdistributions that may occur in practice. However, a more robust de�nition of the latter is o�eredby the notion of polynomial-time sampleable ensembles (underlying De�nition 9). We believe thatthe class of such ensembles contains all distributions that may occur in practice, because we believethat the real world should be modeled as a feasible (rather than an arbitrary) randomized processDe�nition 9 (sampleable ensembles and the class sampNP): We say that a probability ensembleX = fXngn2N is (polynomial-time) sampleable if there exists a probabilistic polynomial-time algo-rithm A such that for every x 2 f0; 1g� it holds that Pr[A(1jxj)=x] = Pr[Xjxj=x]. We denote bysampNP the class of distributional problems consisting of decision problems in NP coupled withsampleable probability ensembles.We �rst note that all simple probability ensembles are indeed sampleable (see Exercise 21), and thusdistNP � sampNP . On the other hand, it seems that there are sampleable probability ensemblesthat are not simple (see Exercise 22). In fact, extending the scope of distributional problems (fromdistNP to sampNP) allows proving that every NP-complete problem has a distributional versionin sampNP that is distNP-hard (see Exercise 23). Furthermore, it is possible to prove that allnatural NP-complete problem have distributional versions that are sampNP-complete.Theorem 10 (sampNP-completeness): Suppose that S 2 NP and that every set in NP is re-ducible to S by a Karp-reduction that does not shrink the input. Then there exists a polynomial-timesampleable ensemble X such that any problem in sampNP is reducible to (S;X)11Recall that the probability of an event is said to be noticeable (in a relevant parameter) if it is greater than thereciprocal of some positive polynomial. In the context of randomized reductions, the relevant parameter is the lengthof the input to the reduction. 13



The proof of Theorem 10 is based on the observation that there exists a polynomial-time sampleableensemble that dominates all polynomial-time sampleable ensembles. The existence of this ensembleis based on the notion of a universal (sampling) machine. For further details see Exercise 24. (Recallthat when proving Theorem 4, we did not establish an analogous result for simple ensembles (butrather capitalized on the universal nature of Su).)Theorem 10 establishes a rich theory of sampNP-completeness, but does not relate this theoryto the previously presented theory of distNP-completeness. This is done in the next theorem,which asserts that the existence of typically hard problems in sampNP implies their existence indistNP .Theorem 11 (sampNP-completeness versus distNP-completeness): If sampNP is not containedin tpcBPP then distNP is not contained in tpcBPP.Thus, the two \typical-case complexity" versions of the P-vs-NP Question are equivalent. Thatis, if some \sampleable distribution" versions of NP are not typically feasible then some \simpledistribution" versions of NP are not typically feasible. In particular, if sampNP-complete problemsare not in tpcBPP then distNP-complete problems are not in tpcBPP .The foregoing assertions would all follow if sampNP were (randomly) reducible to distNP(i.e., if every problem in sampNP were reducible (under a randomized version of De�nition 3) tosome problem in distNP); but, unfortunately, we do not know whether such reductions exist. Yet,underlying the proof of Theorem 11 is a more liberal notion of a reduction among distributionalproblem.Proof Sketch: We shall prove that if distNP is contained in tpcBPP then the same holds forsampNP (i.e., sampNP is contained in tpcBPP). Actually, we shall show that if distPC is con-tained in tpcBPPF then the sampleable version of distPC, denoted sampPC, is contained intpcBPPF (and refer to Exercise 25). Speci�cally, we shall show that under a relaxed notion of arandomized reduction, every problem in sampPC is reduced to some problem in distPC. Looselyspeaking, this relaxed notion of a randomized reduction requires only a noticeable fraction of theprobability space of the reduction to satis�es the validity and domination conditions (of De�nition 3,when adapted to randomized reductions). We start by formulating this notion, when referring todistributional search problems.A relaxed reduction of the distributional problem (R;X) to the distributional problem (T; Y ) isa probabilistic polynomial-time oracle machine M that satis�es the following conditions:Notation: For every x 2 f0; 1g�, we denote by m(jxj) = poly(jxj) the number of internal coin tossesof M on input x, and denote by MT (x; r) the execution of M on input x, internal coinsr 2 f0; 1gm, and oracle access to T .Validity: For every x 2 f0; 1g�, there exists a set 
x � f0; 1gm(jxj) of size at least �(jxj) � 2m(jxj),where �(jxj) > 1=poly(jxj) such that for every r 2 
x the reduction yields a correct answer(i.e., MT (x; r) 2 R(x) if R(x) 6= ; and MT (x; r) = ? otherwise).Domination: There exists a positive polynomial p such that, for every y 2 f0; 1g�, it holds thatmaxn2N fPr[Q0(Xn) 3 y]g � p(jyj) � Pr[Yjyj = y]; (4)where Q0(x) is a random variable, de�ned over the set 
x (as in the validity condition),representing the set of queries made by M on input x and oracle access to T . That is, Q0(x)is de�ned by uniformly selecting r 2 
x and considering the set of queries made by M oninput x, internal coins r, and oracle access to T .14



The reader may verify that this relaxed notion of a reduction preserves typical feasibility; thatis, for R 2 PC, if there exists a relaxed reduction of (R;X) to (T; Y ) and (T; Y ) is in tpcBPPFthen (R;X) is in tpcBPPF . The key observation is that the analysis may discard the case that,on input x, the reduction selects coins not in 
x. Indeed, the queries made in that case may beuntypical and the answers received may be wrong, but this is immaterial (because correct solutionscan be recognized using R 2 PC). That is, if x has a solution then with noticeable probability thereduction will �nd one and output it, whereas the reduction will never output a wrong solution.Our goal is presenting, for every (R;X) 2 sampPC, a relaxed reduction of (R;X) to a relatedproblem (R0;X 0) 2 distPC. (As usual, let X = fXngn2N and similarly for X 0.) For starters, supposethat Xn is uniformly distributed on some set Sn � f0; 1gn and that there is a polynomial-time com-putable and invertible mapping � of Sn to f0; 1g`(n), where `(n) = log2 jSnj. Then, mapping x to1jxj�`(jxj)0�(x), we obtain a reduction of (R;X) to (R0;X 0), where X 0n+1 is uniform over f1n�`(n)0v :v 2 f0; 1g`(n)g and R0(1n�`(n)0v) = R(��1(v)) (or, equivalently, R(x) = R0(1jxj�`(jxj)0�(x))). Notethat X 0 is a simple ensemble and R0 2 PC; hence, (R0;X 0) 2 distPC. Also note that the foregoingmapping is indeed a valid reduction (i.e., it satis�es the e�ciency, validity, and domination condi-tions). Thus, (R;X) is reduced to a problem in distPC (and indeed the relaxation was not usedhere).Next, we drop the assumption that there is a polynomial-time computable and invertible map-ping � of Sn to f0; 1g`(n), but maintain the assumption that Xn is uniform on some set Sn � f0; 1gnand assume that jSnj = 2`(n) is easily computable (from n). In this case, we may map x 2 f0; 1gnto its image under a suitable randomly chosen hashing function h, which in particular maps n-bitstrings to `(n)-bit strings. That is, we randomly map x to (h; 1n�`(n)0h(x)), where h is uniformlyselected in a set H`(n)n of suitable hash functions (see [5, Text 15]). This calls for rede�ning R0 suchthat R0(h; 1n�`(n)0v) corresponds to the preimages of v under h that are in Sn. Assuming that his a 1-1 mapping of Sn to f0; 1g`(n), we may de�ne R0(h; 1n�`(n)0v) = R(x) where x is the uniquestring satisfying x 2 Sn and h(x) = v, where the condition x 2 Sn may be veri�ed by providingthe internal coins of the sampling procedure that generate x. Denoting the sampling procedure ofX by S, and letting S(1n; r) denote the output of S on input 1n and internal coins r, we actuallyrede�ne R0 as R0(h; 1n�`(n)0v) = fhr; yi : h(S(1n; r))=v ^ y2R(S(1n; r))g: (5)We note that hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) yields a solution y 2 R(x) if S(1jxj; r) = x, but otherwise\all bets are o�" (as y will be a solution for S(1jxj; r) 6= x). Now, although typically h will not bea 1-1 mapping of Sn to f0; 1g`(n), for each x 2 Sn, with constant probability over the choice of h,it holds that h(x) has a unique preimage in Sn under h. In this case hr; yi 2 R0(h; 1jxj�`(jxj)0h(x))implies S(1jxj; r) = x (which, in turn, implies y 2 R(x)). We claim that the randomized mapping ofx to (h; 1n�`(n)0h(x)), where h is uniformly selected in H`(jxj)jxj , yields a relaxed reduction of (R;X)to (R0;X 0), where X 0n0 is uniform over H`(n)n � f1n�`(n)0v : v 2 f0; 1g`(n)g. (Needless to say, theclaim refers to the reduction that makes the query (h; 1n�`(n)0h(x)) and returns y if the oracleanswer equals hr; yi and y 2 R(x).)The claim is proved by considering the set 
x of choices of h 2 H`(jxj)jxj for which x 2Sn is theonly preimage of h(x) under h that resides in Sn (i.e., jfx02Sn : h(x0)=h(x)gj = 1). In this case(i.e., h 2 
x) it holds that hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) implies that S(1jxj; r) = x and y 2 R(x),and the (relaxed) validity condition follows. The (relaxed) domination condition follows by notingthat Pr[Xn=x] � 2�`(jxj), that x is mapped to (h; 1jxj�`(jxj)0h(x)) with probability 1=jH`(jxj)jxj j, andthat x is the only preimage of (h; 1jxj�`(jxj)0h(x)) under the mapping (among x0 2 Sn such that15




x0 3 h).Before going any further, let us highlight the importance of hashing Xn to `(n)-bit strings. Onone hand, this mapping is \typically" one-to-one, and thus (with constant probability) the solutionprovided for the hashed instance (i.e., h(x)) yield a solution for the original instance (i.e., x). Thisguarantees the validity of the reduction. On the other hand, for a typical h, the mapping of Xnto h(Xn) covers the relevant range almost uniformly. This guarantees that the reduction satis�esthe domination condition. Note that these two phenomena impose con
icting requirements thatare both met at the correct value of `; that is, the one-to-one condition requires `(n) � log2 jSnj,whereas an almost uniform cover requires `(n) � log2 jSnj. Also note that `(n) = log2(1=Pr[Xn=x])for every x in the support of Xn; the latter quantity will be in our focus in the general case.Finally, we need to get rid of the assumption that Xn is uniformly distributed over some subsetof f0; 1gn. All that we know is that there exists a probabilistic polynomial-time (\sampling")algorithm S such that S(1n) is distributed identically to Xn. In this (general) case, we mapinstances of (R;X) according to their probability mass such that x is mapped to an instance(of R0) that consists of (h; h(x)) and additional information, where h is a random hash functionmapping n-bit long string to strings of length `x def= dlog2(1=Pr[Xjxj=x])e. Since (in the generalcase) there may be more than 2`x strings in the support of Xn, we need to augment the reducedinstance in order to ensure that it is uniquely associated with x. The basic idea is augmenting themapping of x to (h; h(x)) with additional information that restricts Xn to strings that occur withprobability at least 2�`x .Let q(n) denote the randomness complexity of S and S(1n; r) denote the output of S on input1n and internal coin tosses r 2 f0; 1gq(n). Then, we randomly map x to (h; h(x); h0; v0), whereh : f0; 1gjxj ! f0; 1g`x and h0 : f0; 1gq(jxj) ! f0; 1gq(jxj)�`x are random hash functions and v0 2f0; 1gq(jxj)�`x is uniformly distributed. The instance (h; v; h0; v0) of R0 has solutions that consistsof pairs hr; yi such that h(S(1n; r)) = v ^ h0(r) = v0 and y 2 R(S(1n; r)). As we shall see, thisaugmentation guarantees that, with constant probability (over the choice of h; h0; v0), the solutionsto the reduced instance (h; h(x); h0 ; v0) correspond to the solutions to the original instance x.The foregoing description assumes that, on input x, we can determine `x, which is an assumptionthat we cannot justify. Instead, we may just select ` uniformly in f0; 1; :::; q(jxj)g and be correct withnoticeable probability (i.e., Pr[` = `x] = 1=(q(jxj) + 1) = 1=poly(jxj)). Furthermore, for clarity,we make n and ` explicit in the reduced instance. Speci�cally, we randomly map x 2 f0; 1gn,to (1n; 1`; h; h(x); h0; v0) 2 f0; 1gn0 , where ` 2 f0; 1; :::; q(n)g, h 2 Hǹ, h0 2 Hq(n)�`q(n) , and v0 2f0; 1gq(n)�` are uniformly distributed.12 This mapping will be used to reduce (R;X) to (R0;X 0),where R0(1n; 1`; h; v; h0; v0) = fhr; yi : h(S(1n; r))=v ^ h0(r)=v0 ^ y2R(S(1n; r))g (6)and X 0n0 assigns equal probability to each Xn0;` (for ` 2 f0; 1; :::; ng), and each Xn0;` is isomorphicto the uniform distribution over Hǹ � f0; 1g` �Hq(n)�`q(n) � f0; 1gq(n)�`. Note that indeed (R0;X 0) 2distPC.The aforementioned randomized mapping is analyzed by considering the correct choice for `;that is, on input x, we focus on the choice ` = `x. Under this conditioning (as we shall show),with constant probability over the choice of h; h0 and v0, the instance x is the only value x0 (ofXn) that is mapped to (1n; 1`; h; h(x); h0; v0) such that there exists r that satis�es S(1n; r) = x012As in other places, a suitable encoding will be used such that the reduction maps strings of the same length tostrings of the same length (i.e., n-bit string are mapped to n0-bit strings, for n0 = poly(n)). For example, we mayencode h1n; 1`; h; h(x); h0; v0i as 1n01`01q(n)�`0hhihh(x)ihh0ihv0i, where each hwi denotes an encoding of w by a stringof length (n0 � (n+ q(n) + 3))=4. 16



and h0(r) = v0. It follows that (for such h; h0 and v0) any solution hr; yi 2 R0(1n; 1`; h; h(x); h0 ; v0)satis�es S(1n; r) = x and thus y 2 R(x), which means that the validity condition is satis�ed. Thedomination condition is satis�ed too, because (for such h; h0 and v0) the probability that Xn ismapped to (1n; 1`; h; h(x); h0; v0) approximately equals Pr[X 0n0;`=(1n; 1`; h; h(x); h0 ; v0)].We now turn to analyze the probability, over the choice of h; h0 and v0, that the instance x isthe only value x0 (of Xn) that is mapped to (1n; 1`x ; h; h(x); h0 ; v0) such that there exists r thatsatis�es S(1n; r) = x0 and h0(r) = v0. Firstly, we note that jfr : S(1n; r)=xgj � 2q(n)�`x , and thus,with constant probability over the choice of h0 2 Hq(n)�`xq(n) and v0 2 f0; 1gq(n)�`x , there exists r thatsatis�es S(1n; r) = x and h0(r) = v0. Next, we note that, with constant probability over the choiceof h 2 H`xn , it holds that x is the only string having probability mass at least 2�`x (under Xn)that is mapped to h(x) under h. Finally, we prove that, with constant probability over the choiceof h 2 H`xn and h0 2 Hq(n)�`xq(n) (and even when conditioning on the previous items), the mappingr 7! (h(S(1n; r)); h0(r)) maps the set fr : Pr[Xn=S(1n; r)] � 2�`xg almost uniformly to f0; 1gq(n).Speci�cally, with constant probability, no other r is mapped to the aforementioned pair (h(x); v0).Thus, the claim follows and so does the theorem.Re
ection. Theorem 11 implies that if sampNP is not contained in tpcBPP then every distNP-complete problem is not in tpcBPP. This means that the hardness of some distributional problemsthat refer to sampleable distributions implies the hardness of some distributional problems that referto simple distributions. Furthermore, by Proposition 6, this implies the hardness of distributionalproblems that refer to the uniform distribution. Thus, hardness with respect to some distributionin an utmost wide class (which arguably captures all distributions that may occur in practice)implies hardness with respect to a single simple distribution (which arguably is the simplest one).Relation to one-way functions. We note that the existence of one-way functions (see [4])implies the existence of problems in sampPC that are not in tpcBPPF (which in turn impliesthe existence of such problems in distPC). Speci�cally, for a length-preserving one-way function f ,consider the distributional search problem (Rf ; ff(Un)gn2N), whereRf = f(f(r); r) : r 2 f0; 1g�g.13On the other hand, it is not known whether the existence of a problem in sampPC n tpcBPPFimplies the existence of one-way functions. In particular, the existence of a problem (R;X) insampPC n tpcBPPF represents the feasibility of generating hard instances for the search problemR, whereas the existence of one-way function represents the feasibility of generating instance-solution pairs such that the instances are hard to solve. Indeed, the gap refers to whether or nothard instances can be e�ciently generated together with corresponding solutions. Our world view isthus depicted in Figure 1, where lower levels indicate seemingly weaker assumptions.NotesThe theory of average-case complexity was initiated by Levin [8], who in particular proved The-orem 4. In light of the laconic nature of the original text [8], we refer the interested reader to asurvey [3], which provides a more detailed exposition of the de�nitions suggested by Levin as wellas a discussion of the considerations underlying these suggestions. (This survey [3] provides also abrief account of further developments.)13Note that the distribution f(Un) is uniform in the special case that f is a permutation over f0; 1gn.17



P  is different than NP

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

Figure 1: Worst-case vs average-case assumptionsAs noted in Section 1.1, the current text uses a variant of the original de�nitions. In particular,our de�nition of \typical feasibility" di�ers from the original de�nition of \average feasibility" intotally discarding exceptional instances and in even allowing the algorithm to fail on them (and notmerely run for an excessive amount of time). The alternative de�nition was suggested by severalresearchers and appears as a special case of the general treatment provided in [2].Section 2 is based on [1, 7]. Speci�cally, Theorem 8 (or rather the reduction of search to decision)is due to [1] and so is the introduction of the class sampNP . A version of Theorem 11 was provenin [7], and our proof follows their ideas, which in turn are closely related to the ideas underlyingthe construction of pseudoradom generators based on any one-way functions (proved in [6]).Recall that we know of the existence of problems in distNP that are hard provided sampNPcontains hard problems. However, these problems refer to somewhat generic decision problemssuch as Su. The presetation of distNP-complete problems that combine a more natural decisionproblem (like SAT or Clique) with a simple probability ensemble is an open problem.ExercisesExercise 12 (an equivalent de�nition of tpcP) Prove that (S;X) 2 tpcP if and only if thereexists a polynomial-time algorithm A such that the probability that A(Xn) errs (in determiningmembership in S) is a negligible function in n.Exercise 13 (tpcP versus P { Part 1) Prove that tpcP contains a problem (S;X) such that Sis not even recursive. Furthermore, use X = U .Guideline: Let S = f0jxjx : x 2 S0g, where S0 is an arbitrary (non-recursive) set.Exercise 14 (tpcP versus P { Part 2) Prove that there exists a distributional problem (S;X)such that S 62 P and yet there exists an algorithm solving S (correctly on all inputs) in time thatis typically polynomial with respect to X. Furthermore, use X = U .Guideline: For any time-constructible function t : N!N that is super-polynomial and sub-exponential,use S = f0jxjx : x 2 S0g for any S0 2 Dtime(t) n P .Exercise 15 (reductions preserve typical polynomial-time solveability) Prove that if thedistributional problem (S;X) is reducible to the distributional problem (S0;X 0) and (S0;X 0) 2tpcP, then (S;X) is in tpcP . 18



Guideline: Let B0 denote the set of exceptional instances for the distributional problem (S0; X 0) (i.e., theset of instances on which the solver in the hypothesis errs or exceeds the typical running-time). Prove thatPr[Q(Xn) \ B0 6= ;] is a negligible function (in n), using both Pr[y 2 Q(Xn)] � p(jyj) � Pr[X 0jyj = y] andjxj � p(jyj) for every y 2 Q(x). Speci�cally, use the latter condition for inferring that Py2B0 Pr[y 2 Q(Xn)]equalsPy2fy02B0:p(jy0j)�ng Pr[y 2 Q(Xn)], which guarantees that a negligible function in jyj for any y 2 Q(Xn)is negligible in n.Exercise 16 (reductions preserve error-less solveability) In continuation to Exercise 15, provethat reductions preserve error-less solveability (i.e., solveability by algorithms that never err andtypically run in polynomial-time).Exercise 17 (transitivity of reductions) Prove that reductions among distributional problems(as in De�nition 3) are transitive.Guideline: The point is establishing the domination property of the composed reduction. The hypothesisthat reductions do not make too short queries is instrumental here.Exercise 18 For any S 2 NP present a simple probability ensemble X such that the genericreduction used in the proof of the existence of NP-complete problems violates the dominationcondition regarding a possible reduction of (S;X) to (Su; U 0).Guideline: Consider X = fXngn2N such that Xn is uniform over f0n=2x0 : x02f0; 1gn=2g.Exercise 19 (variants of the Coding Lemma) Prove the following two variants of the CodingLemma (which is stated in the proof of Theorem 4).1. A variant that refers to any monotonically non-decreasing function � : f0; 1g� ! [0; 1] that ise�ciently computable, where here we refer to the lexicographic order over f0; 1g�.2. As in Part 1, except that in this variant the function � is strictly increasing and the compres-sion condition requires that jC�(x)j � log2(1=�0(x)) rather than jC�(x)j � 1+minfjxj; log2(1=�0(x))g,where �0(x) def= �(x)� �(x� 1).Guideline: In both cases, the proof is less cumbersome than the one presented in the main text.Exercise 20 (randomized reductions) Following the outline in Section 1.3, provide a de�nitionof randomized reductions among distributional problems.1. Prove that randomized reductions are transitive (cf. Exercise 17).2. In analogy to Exercise 15, prove that randomized reductions preserve feasible solveability (i.e.,typical solveability in probabilistic polynomial-time). That is, if the distributional problem(S;X) is randomly reducible to the distributional problem (S0;X 0) and (S0;X 0) 2 tpcBPP ,then (S;X) is in tpcBPP .3. In analogy to Exercise 16, prove that randomized reductions preserve solveability by proba-bilistic algorithms that err with probability at most 1=3 on each input and typically run inpolynomial-time.4. Show that the error probability of such reductions can be reduced (while preserving thedomination condition). 19



Extend the foregoing to reductions that involve distributional search problems.Exercise 21 (simple vs sampleable ensembles { Part 1) Prove that any simple probabilityensemble is polynomial-time sampleable.Guideline: Let � be the accumulating distribution function of X = fXngn2N (i.e., �(x) = Pr[Xjxj� x]),and let p be a polynomial such that (without loss of generality) j�(x)j = p(jxj) for every x. Consider thealgorithm that, on input 1n, uniformly selects i 2 [2p(n)] and outputs x if and only if x is the lexicographically�rst string such that i � �(x) � 2p(n). Note that this x can be found by binary search, using the fact that �is polynomial-time computable.Exercise 22 (simple vs sampleable ensembles { Part 2) Assuming that #P contains func-tions that are not computable in polynomial-time, prove that there exists polynomial-time sam-pleable ensembles that are not simple.Guideline: Consider any R 2 PC and suppose that p is a polynomial such that (x; y) 2 R implies jyj =p(jxj). Then consider the sampling algorithm A that, on input 1n, uniformly selects (x; y) 2 f0; 1gn�1 �f0; 1gp(n�1) and outputs x1 if (x; y) 2 R and x0 otherwise. Note that #R(x) = 2p(jxj�1) � Pr[A(1jxj�1)=x1].Exercise 23 (distributional versions of NPC problems { Part 1 [1]) Prove that for any NP-complete problem S there exists a polynomial-time sampleable ensemble X such that any problemin distNP is reducible to (S;X). We actually assume that the many-to-one reductions establishingthe NP-completeness of S do not shrink the length of the input.Guideline: Prove that the guaranteed reduction (of Su to S) also reduces (Su; U 0) to (S;X), for somesampleable probability ensemble X . Speci�cally, note that U 0 is sampleable (by Exercise 21) and prove thatthe standard reduction of Su to S, when applied to a sampleable probability ensemble, induces a sampleabledistribution on the instances of S. Consider �rst the case that the standard reduction is length preserving,and next extend the treatment to the general case.Exercise 24 (distributional versions of NPC problems { Part 2 [1]) Prove Theorem 10 (i.e.,for any NP-complete problem S there exists a polynomial-time sampleable ensemble X such thatany problem in sampNP is reducible to (S;X)). As in Exercise 23, we actually assume that themany-to-one reductions establishing the NP-completeness of S do not shrink the length of theinput.Guideline: We establish the result for Su, and the rest follows as in Exercise 23. Thus, we focus on showingthat, for a �xed sampleable X , we can reduce any (S0; X 0) 2 sampNP to (Su; X). Loosely speaking, Xwill be an adequate convex combination of all sampleable distributions (and thus X will not equal U 0 orU). Speci�cally, X = fXngn2N is de�ned such that Xn selects i 2 [n] with probability � 1=i2, emulatethe execution of the ith algorithm (in lexicographic order) on input 1n for n3 steps,14 and outputs whateverthe latter has output (or 0n in case the said algorithm has not halted within n3 steps). Prove that, for any(S00; X 00) 2 sampNP such that X 00 is sampleable in cubic time, the standard reduction of S00 to Su reduces(S00; X 00) to (Su; X) (as per De�nition 2; i.e., in particular, it satis�es the domination condition).15 Finally,using adequate padding, reduce any (S0; X 0) 2 sampNP to some (S00; X 00) 2 sampNP such that X 00 issampleable in cubic time.14Needless to say, the choice to consider n algorithms in the de�nition of Xn is quite arbitrary. Any other unboundedfunction of n that is at most a polynomial (and is computable in polynomial-time) will do. Likewise, the choice toemulate each algorithm for a cubic number of steps (rather some other polynomial number of steps) is quite arbitrary.15Note that applying this reduction, denoted f , to X 00 yields an ensembles that is also sampleable in cubic time.This uses the fact that the standard reduction runs in time that is almost linear in its output, which in turn is longerthan the input. 20



Exercise 25 (search vs decision in the context of sampleable ensembles) Prove that ev-ery problem in sampNP is reducible to some problem in sampPC, and every problem in sampPCis randomly reducible to some problem in sampNP .Guideline: See proof of Theorem 8.References[1] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case Com-plexity. Journal of Computer and System Science, Vol. 44 (2), pages 193{219, 1992.[2] A. Bogdanov and L. Trevisan. Average-case complexity: a survey. In preparation, 2005.[3] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity. ECCC, TR97-058,Dec. 1997.[4] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press, 2001.[5] O. Goldreich. Expositions in Complexity Theory (various texts). Unpublished notes, De-cember 2005. Availabe from the webpage http://www.wisdom.weizmann.ac.il/�oded/cc-texts.html[6] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from anyOne-way Function. SIAM Journal on Computing, Volume 28, Number 4, pages 1364{1396,1999. Preliminary versions by Impagliazzo et. al. in 21st STOC (1989) and H�astad in 22ndSTOC (1990).[7] R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP Instances than PickingUniformly at Random. In 31st IEEE Symposium on Foundations of Computer Science, pages812{821, 1990.[8] L.A. Levin. Average Case Complete Problems. SIAM Journal on Computing, Vol. 15, pages285{286, 1986.
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