Texts in Computational Complexity:
Average-Case Complexity
Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

January 28, 2006

Teaching note: We view average-case complexity as referring to the performance on
average (or typical) instances, and not as the average performance on random instances.
This choice is justified in Section 1.1. Thus, the current theory may be termed typical-

case complexity.

Introduction

Our approach so far is termed worst-case complexity, because it refers to the performance of po-
tential algorithms on each legitimate instance (and hence to the performance on the worst possible
instance). That is, computational problems were defined as referring to a set of instances and
performance guarantees were required to hold for each instance in this set. In contrast, average-
case complexity allows ignoring a negligible measure of the possible instances, where the identity
of the ignored instances is determined by the analysis of potential solvers and not by the problem’s
statement.

A few comments are in place. Firstly, as just hinted, the standard statement of the worst-case
complexity of a computational problem (especially one having a promise) may also ignores some
instances (i.e., those considered inadmissible or violating the promise), but these instances are
determined by the problem’s statement. In contrast, the inputs ignored in average-case complexity
are not inadmissible in any inherent sense (and are certainly not identified as such by the problem’s
statement). It is just that they are viewed as exceptional when claiming that a specific algorithm
solve the problem; furthermore, these exceptional instances are determined by the analysis of that
algorithm. Needless to say, these exceptional instances ought to be rare (i.e., occur with negligible
probability).

The last sentence raises a couple of issues. Firstly, a distribution on the set of admissible
instances has to be specified. In fact, we shall consider a new type of computational problems,
each consisting of a standard computational problem coupled with a probability distribution on
instances. Consequently, the question of which distributions should be considered arises. These
and numerous other definitional issues will be addressed in Section 1.1.

Before proceeding, let us spell out the rather straightforward motivation to the study of the
average-case complexity of computational problems. It is that, in real-life applications, one may
be perfectly happy with an algorithm that solves the problem fast on almost all instances that
arise in the application. That is, one may be willing to tolerate error provided that it occurs with

negligible probability, where the probability is taken over the distribution of instances encountered
in the application. We stress that a key aspect in this approach is a good modeling of the type of
distributions of instances that are encountered in natural algorithmic applications.

At this point a natural question arises: can natural computational problems be solve efficiently
when considering typical instances? The bottom-line of this section is that, for a well-motivated
choice of definitions, our conjecture is that the “distributional version” of NP is not contained in the
average-case (or typical-case) version of P. This means that some NP problems are not merely hard
in the worst-case, but rather “typically hard” (i.e., hard on typical instances drawn from some
simple distribution). Specifically, hard instances may occur in natural algorithmic applications
(and not only in cryptographic (and other “adversarial”) applications that are design on purpose
to produce hard instances). This conjecture motivates the development of an average-case analogue
of NP-completeness, which will be presented in this section.

Organization. A major part of our exposition is devoted to the definitional issues that arise when
developing a general theory of average-case complexity. These issues are discussed in Section 1.1.
In Section 1.2 we prove the existence of a distributional problem that is “NP-complete” in the
average-case complexity sense. In Section 1.3 we extend the treatment to randomized algorithms.
Additional ramifications are presented in Section 2.

1 The basic theory

In this section we provide a basic treatment of the theory of average-case complexity, while postpon-
ing important ramifications to Section 2. The basic treatment contains the preferred definitional
choices for the main notions as well as the identification of a complete problem for a natural class
of average-case computational problems.

1.1 Definitional issues

The theory of average-case complexity is more subtle than may appear in first thought. In addi-
tion to the generic difficulty involved in defining relaxations, difficulties arise from the “interface”
between standard probabilistic analysis and the conventions of complexity theory. This is most
striking in the definition of the class of feasible average-case computations. Referring to the theory
of worst-case complexity as a guideline, we shall address the following aspects of the analogous
theory of average-case complexity.

1. Setting the general framework. We shall consider distributional problems, which are standard
computational problems coupled with distributions on the relevant instances.

2. Identifying the class of feasible (distributional) problems. Seeking an average-case analogue
of classes such as P, we shall reject the first definition (of “average polynomial time”) that
comes to mind, briefly discuss several related alternatives, and adopt one of them for the
main treatment.

3. Identifying the class of interesting (distributional) problems. Seeking an average-case analogue
of the class NP, we shall avoid both the extreme of allowing arbitrary distributions (which
collapses average-case complexity to worst-case complexity) and the opposite extreme of con-
fining the treatment to the uniform distribution (which is misguided by the naive assumption
that this distribution is the only one relevant to applications).

4. Developing an adequate notion of reduction among (distributional) problems. As in the theory
of worst-case complexity, this notion should preserve feasible solveability (in the current
distributional context).

We now turn to the actual treatment of each of the aforementioned aspects.

Distributional problems. Focusing on decision problems, we define distributional problems as
pairs consisting of a decision problem and a probability ensemble.! For simplicity, here a probability
ensemble {X,,},en is a sequence of random variables such that X, ranges over {0,1}". Thus,
(S, { X, }nen) is the distributional problem consisting of the problem of deciding membership in
the set S with respect to the probability ensemble { X, },en. (The treatment of search problem is
similar; see Section 2.1.) We denote the uniform probability ensemble by U = {U,, },cn; that is, U,
is uniform over {0,1}".

Identifying the class of feasible problems. The first idea that comes to mind is defining the
problem (S, { X, },cn) as feasible (on the average) if there exists an algorithm A that solves S such
that the average running time of A on X,, is bounded by a polynomial in n (i.e., there exists a
polynomial p such that E[t4(X,,)] < p(n), where t4(z) denotes the running-time of A on input z).
The problem with this definition is that it very sensitive to the model of computation and is not
closed under algorithmic composition. Both deficiencies are a consequence of the fact that {4 may
be polynomial on the average with respect to {X,},en but ¢4 may fail to be so (e.g., consider
ta(a'z") = 211 if 2/ = o' and t4(a'z") = |2'z"|? otherwise, coupled with the uniform distribution
over {0,1}"). We conclude that the average running-time of algorithms is not a robust notion.
We also doubt the naive appeal of this notion, and view the typical running time of algorithms
(as defined next) as a more natural notion. Thus, we shall consider an algorithm as feasible if its
running-time is typically polynomial.?

We say that A is typically polynomial-time on X = {X,,}, ¢ if there exists a polynomial p such
that the probability that A runs more that p(n) steps on X, is negligible (i.e., for every polynomial
¢ and all sufficiently large n it holds that Pr[ta(X,) > p(n)] < 1/g(n)). The question is what is
required in the “untypical” cases, and two possible definitions follow.

1. The simpler option is saying that (S, {X, },ecn) is (typically) feasible if there exists an al-
gorithm A that solves S such that A is typically polynomial-time on X = {X,,},cn. This
effectively requires A to correctly solve S on each instance, which is more than was required
in the motivational discussion. (Indeed, if the underlying reasoning is ignoring rare cases,
then we should ignore them altogether rather than partially (i.e., only ignore their affect on
the running-time).)

!We mention that even this choice is not evident. Specifically, Levin [8] (see discussion in [3]) advocates the use
of a single probability distribution defined over the set of all strings. His argument is that this makes the theory less
representation-dependent. At the time we were convinced of his argument (see [3]), but currently we feel that the
representation-dependent effects discussed in [3] are legitimate. Furthermore, the alternative formulation of [3] comes
across as unnatural and tends to be confusing.

% An alternative choice, taken by Levin [8] (see discussion in [3]), is considering as feasible (w.r.t X = {Xo}eN) any
algorithm that runs in time that is polynomial in a function that is linear on the average (w.r.t X); that is, requiring
that there exists a polynomial p and a function £ : {0,1}* — N such that ¢(z) < p(¢(x)) and E[¢(X.,.)] = O(n). This
definition is robust (i.e., it does not suffer from the aforementioned deficiencies) and is arguably as justified as the
naive definition (i.e., E[ta(X,)] < poly(n)).

2. The alternative, which fits the motivational discussion, is saying that (S, X) is (typically)
feasible if there exists an algorithm A such that typically A solves S on X in polynomial-
time; that is, there exists a polynomial p such that the probability that on input X, algorithm
A either errs or runs more that p(n) steps is negligible. This formulation totally ignores the
untypical instances. Indeed, in this case we may assume, without loss of generality, that A
always runs in polynomial-time (see Exercise 12), but we shall not do so here (in order to
facilitate viewing the first option as a special case of the current option).

We note that both alternatives actually define typical feasibility and not average-case feasibility.
To illustrate the difference between the two options, consider the distributional problem of decid-
ing whether a uniformly selected (n-vertex) graph contains a Hamiltonian path. Intuitively, this
problem is “typically trivial” because the algorithm may always say yes and be wrong with expo-
nentially vanishing probability.> Indeed, this trivial algorithm is admissible by the second approach,
but not by the first approach. In light of the foregoing, we adopt the second approach.

Definition 1 (the class tpcP): We say that A typically solves (S, {X,,},ecn) in polynomial-time if
there exists a polynomial p such that the probability that on input X,, algorithm A either errs or
runs more that p(n) steps is negligible. We denote by tpcP the class of distributional problems
that are typically solvable in polynomial-time.

Clearly, for every S € P and every probability ensemble X, it holds that (S, X) € tpcP. However,
tpcP contains also distributional problems (S, X) with S ¢ P (see Exercises 13 and 14). The big
question motivating the study of average-case complexity is whether natural distributional versions
of NP are in tpcP. Thus, we turn to identify such versions.

Identifying the class of interesting problems. Seeking to identify reasonable distributional
versions of NP, we note that two extreme choices should be avoided. On one hand, we must
limit the class of admissible distributions so to prevent the collapse of average-case complexity to
worst-case complexity (by a selection of a pathological distribution that resides on the “worst case”
instances). On the other hand, we should allow for various types of natural distributions rather
than confining attention merely to the uniform distribution. Recall that our aim is to address all
possible input distributions that may occur in applications, and there is no justification to confining
attention to the uniform distribution. Still, arguably, the distributions occuring in applications are
“relatively simple” and so we seek to identify a class of simple distributions. One such notion (of
simple distributions) underlies the following definition, while a more liberal notion will be presented
in Section 2.2.

Definition 2 (the class distAP): We say that a probability ensemble X = {X,},en is simple if
there exists a polynomial time algorithm that, on any input x € {0,1}*, outputs Pr[X |, < z], where
the inequality refers to the standard lexicographic order of strings. We denote by dist NP the class
of distributional problems consisting of decision problems in NP coupled with simple probability
ensembles.

3In contrast, testing whether a given graph contains a Hamiltonian path seems “typically hard” for other distri-
butions (see Exercise 23). Needless to say, in the latter distributions both yes-instances and no-instances appear with
noticeable probability.

*Recall that a function pu : N - Nis negligible if for every positive polynomial ¢ and all sufficiently large n it
holds that p(n) < 1/q(n). We say that A errs on z if A(z) differs from the indicator value of the predicate z € S.

Note that the uniform probability ensemble is simple, but so are many other “simple” probability
ensembles. Actually, it makes sense to relax the definition such that the algorithm is only required
to output an approximation of Pr[X,| < z|, say, to within a factor of 1 & 2=l We note that
although Definition 2 does not refer explicitly to any structural property of the probability ensemble,
it imposes a computational restriction on the admissible ensembles (which, in turn, limits their
“complexity”). In Section 2.2 we shall consider the more intuitive and robust class of all polynomial-
time sampleable ensembles (and show that it contains all simple ensembles). We believe that
the results presented in Section 1.2 and Section 2.2 retrospectively justify the choice underlying
Definition 2. We articulate this point next.

We note that a wider class of distributions weakens the conjecture that some distributional
version of NP are not feasible. On the other hand, the conclusion that some distributional problem
is not feasible becomes stronger when restricting the admissible class of distributions. The results
presented in Section 1.2 and Section 2.2 assert that a conjecture that refers to polynomial-time
sampleable ensembles implies a conclusion that refers to a (very) simple probability ensemble. The
current setting in which both the conjecture and the conclusion refer to simple probability ensembles
is thus but an intermediate step.

Indeed, the big question in the current context is whether distA/P is contained in tpcP. A
positive answer (especially if extended to sampleable ensembles) would deem the P-vs-NP Question
of little practical significant. However, our daily experience as well as much research effort indicate
that some NP problems are not merely hard in the worst-case, but rather “typically hard”. This
supports the conjecture that dist AP is not contained in tpcP.

Needless to say, the latter conjecture implies P # NP, and thus we should not expect to see a
proof of it. What we may hope to see is “dist/"P-complete” problems; that is, problems in distA/P
that are not in tpcP unless the entire class dist/A/P is contained in tpcP. An adequate notion of a
reduction is used towards formulating this notion.

Reductions among (distributional) problems. Intuitively, such reductions must preserve
average-case feasibility. Thus, in addition to the standard conditions (i.e., that the reduction be
efficiently computable and yield a correct result), we require that the reduction “respects” the
probability distribution of the corresponding distributional problems. Specifically, the reduction
should not map very likely instances of the first (“starting”) problem to rare instances of the
second (“target”) problem. Otherwise, having a typically polynomial-time algorithm for the second
distributional problem does not necessarily yield such an algorithm for the first distributional
problem. Following is the adequate analogue of a Cook reduction (i.e., general polynomial-time
reduction), where the analogue of a Karp-reduction (many-to-one reduction) can be easily derived
as a special case.

Teaching note: One may prefer presenting in class only the special case of many-to-one
reductions, which suffices for Theorem 4. See Footnote 6.

Definition 3 (reductions among distributional problems): We say that the oracle machine M
reduces the distributional problem (S, X) to the distributional problem (T,Y) if the following three
conditions hold.

1. Efficiency: The machine M runs in polynomial-time.>

®In fact, one may relax the requirement and only require that M is typically polynomial-time with respect to X.
The validity condition may also be relaxed similarly.

2. Validity: For every x € {0,1}*, it holds that M™ (x) = 1 if an only if x € S, where M" (z)
denotes the output of the oracle machine M on input x and access to an oracle for T.

3. Domination:® There exists a polynomial p such that, for every y € {0,1}*, it holds that
max{Pr[Q(Xn) 3 91} < p(lyl) - PriYy =], (1)

where Q(x) denotes the set of queries made by M on input x and oracle access to T'. Fur-
thermore, if y € Q(z) then |x| < p(|y]).

The Lh.s. of Eq. (1) refers to the probability that, on input distributed as X,, the reduction
makes the query y. This probability is required not to exceed the probability that y occurs in the
distribution Y}, by more than a polynomial factor in |y|. In this case we say that the Lh.s. of
Eq. (1) is dominated by Pr[Y],| = y].

Indeed, the domination condition is the only aspect of Definition 3 that extends beyond the
worst-case treatment of reductions and refers to the distributional setting. The domination con-
dition does not insist that the distribution induced by Q(X) equals Y, but rather allows some
slackness that, in turn, is bounded so to guarantee preservation of typical feasibility (see Exer-
cise 15).

We note that the reducibility arguments extensively used in the context of hardness amplification
and Cryptography (see [4]) are actually reductions in the spirit of Definition 3 (except that they
refer to a different type of computational tasks).

1.2 Complete problems

Recall that our conjecture is that distA/P is not contained in tpcP, which in turn strengthens the
conjecture P # NP (making infeasibility a typical phenomenon rather than a worst-case one).
Having no hope of proving that dist/ VP is not contained in tpcP, we turn to the study of complete
problems with respect to that conjecture. Specifically, we say that a distributional problem (S, X)
is distA/P-complete if (S, X) € dist AP and every (S’, X') € distA/P is reducible to (S, X) (under
Definition 3).

Recall that it is quite easy to prove the mere existence of NP-complete problems and many
natural problems are NP-complete. In contrast, in the current context, establishing completeness
results is quite hard. This should not be surprising in light of the restricted type of reductions
allowed in the current context. The restriction (captured by the domination condition) requires
that “typical” instances of one problem should not be mapped to “untypical” instances of the other
problem. On the other hand, it is fair to say that standard Karp-reductions (used in establishing
NP-completeness results) map “typical” instances of one problem to quite “bizarre” instances of
the second problem. Thus, the current section may be viewed as a study of reductions that do not
commit this sin.

Theorem 4 (distNVP-completeness): distAP contains a distributional problem (S, X) such that
each distributional problem in dist NP is reducible (per Definition 3) to (S, X). Furthermore, the
reduction is deterministic and many-to-one.

SFor simplicity, we use the same polynomial for both bounds. Let us spell out the meaning of Eq. (1) in the special
case of many-to-one reductions (i.e., MT (z) = 1 if and only if f(z) € T, where f is a polynomial-time computable
function): in this case Pr[Q(X.) 3 y] is replaced by Pr[f(X,) = y]. Assuming that f is one-to-one, Eq. (1) simplifies
to PriXis1¢,) = 1 w)] < p(y)) - Pr[Y|y| = y] for any y in the image of f. Indeed, nothing is required for y not in
the image of f.

Proof: We start by introducing such a problem, which is a natural distributional version of the
decision problem Sy (used in the proof of the existence of NP-complete problems; see [5, Text 14]).
Recall that Sy contains the instance (M, z,1%) if there exists y € U;<¢{0,1}" such that M accepts
the input pair (z,y) within ¢ steps. We couple Sy with the “quasi-uniform” probability ensemble U’
that assigns to the instance (M, x,1") a probability mass proportional to 2~ (IM[+[z) - Specifically,
for |(M,z,1%)| = n it holds that Pr[U}, = (M, z,1%)] = 2= (M=) /(7). Note that, under a suitable
encoding, the ensemble U’ is indeed simple.”

The reader can easily verify that the generic reduction used when reducing any set in NP to
Sy (see the proof of the existence of NP-complete problems), fails to reduce dist AP to (Sy,U’).
Specifically, in some cases (see next paragraph), these reductions do not satisfy the domination
condition. Indeed, the difficulty is that we have to reduce all dist/ NP problems (i.e., pairs consisting
of decision problems and simple distributions) to one single distributional problem (i.e., (Sy,U’)).
Applying the aforementioned reductions, we end up with many distributional versions of Sy, and
furthermore the corresponding distributions are very different (and are not necessarily dominated
by a single distribution).

Let us take a closer look at the aforementioned generic reduction, when applied to an arbitrary
(S,X) € distA’P. This reduction maps an instance x to a triple (Mg, z,1P5(D)), where Mg is a
machine verifying membership in S (while using adequate NP-witnesses) and pg is an adequate
polynomial. The problem is that z may have relatively large probability mass (i.e., it may be that
PriX, =] > 2711y while (Mg, z,17s(#D)) has “uniform” probability mass (i.e., (Mg, x, 17s(=D)
has probability mass smaller than 2~1%). This violates the domination condition (see Exercise 18),
and thus an alternative reduction is required.

The key to the alternative reduction is an (efficiently computable) encoding of strings taken
from an arbitrary simple distribution by strings that have a similar probability mass under the
uniform distribution. This means that the encoding should shrink strings that have relatively large
probability mass under the original distribution. Specifically, this encoding will map = (taken from
the ensemble {X,},en) to a codeword 2’ of length that is upper-bounded by the logarithm of
1/Pr[X |, =], ensuring that 2= 12"l > Pr[X|, =z]. Accordingly, the reduction will map z to a triple
(Mg x,2',17'(=D) where |2/| < O(1) + logy(1/Pr[X |, = z]) and Mg x is an algorithm that first
verifies that 2’ is a proper encoding of x and next applies the standard verification (i.e., Mg) of the
problem S. Such a reduction will be shown to satisfy all three conditions (i.e., efficiency, validity,
and domination). Thus, instead of forcing the structure of the original distribution X on the target
distribution U’, the reduction will incorporate the structure of X in the reduced instance. A key
ingredient in making this possible is the fact that X is simple (as per Definition 2).

With the foregoing motivation in mind, we now turn to the actual proof; that is, proving that
any (S, X) is reducible to (Sy,U’). The following technical lemma is the basis of the reduction. In
this lemma as well as in the sequel, it will be convenient to consider the (accumulative) distribution

function of the probability ensemble X. That is, we consider pu(x) def Pr[X|,) <], and note that
p:{0,1}* — [0, 1] is polynomial-time computable (because X satisfies Definition 2).

Coding Lemma:® Let y be a polynomial-time computable distribution function. Then there exist
an encoding function C), satisfying the following three conditions.

"For example, we may encode (M, z,1%), where M = o1 -0}, € {0,1} and @ = 71 -- -7 € {0,1}*, by the string
o101+ 000171 - -+ T[T[Olt.

8The lemma actually refers to {0,1}", for a fixed value of n, but the efficiency condition is stated more easily
when allowing n to vary (and using the standard asymptotic analysis of algorithms). Furthermore, the lemma holds
for any monotonically non-decreasing function that is efficiently computable, and its proof is less cumbersome when
stated for functions defined over {0,1}". See further discussion in Exercise 19.

1. Compression: For every x it holds that |Cy ()| < 1+ min{|z|,logy(1/p/(z))}, where p'(x) ot
PF[X|$| Zl’].

2. Efficient Encoding: The function C), is computable in polynomial-time.

3. Unique Decoding: For every n € N, when restricted to {0,1}", the function C}, is one-to-one
(ie., if Cy(x) = Cu(a’) and |z| = |2'| then z = a').

Proof: The function C,, is defined as follows. If u/(2) < 271%| then C,(z) = 0z (i.e., in this case
x serves as its own encoding). Otherwise (i.e., p/(z) > 271%1) then C,(z) = 1z, where z is chosen
such that |z] < logy(1/p'(x)) and the mapping of n-bit strings to their encoding is one-to-one.
Loosely speaking, z is selected to equal the shortest binary expansion of a number in the interval
(u(x) — p'(z), u(x)]. Bearing in mind that this interval has length p'(x) and that the different
intervals are disjoint, we obtain the desired encoding. Details follows.

We focus on the case that u'(z) > 271*|, and detail the way that z is selected (for the encoding
Cy(x) = 12). If 2 > 01l and p(z) < 1, then we let 2 be the longest common prefix of the binary
expansions of u(x — 1) and p(x), where z — 1 is the string preceding x in lexicographic order (e.g.,
if 1(1010) = 0.10010 and p(1011) = 0.10101111 then C,,(1011) = 1z with z = 10). Thus, in this
case 0.z1 is in the interval (u(z — 1), p(x)] (i.e., p(z — 1) < 0.21 < p(z)). For z = 012l we let 2 be
the longest common prefix of the binary expansions of 0 and p(z) and again 0.z1 is in the relevant
interval (i.e., (0, u(z)]). Finally, for z such that p(z) =1 and p(z — 1) < 1, we let z be the longest
common prefix of the binary expansions of u(z — 1) and 1 — 27 1#1=1 < 4(z) (and again 0.z1 is in
(u(z — 1), u(x)]). Note that if p(z) = p(z — 1) = 1 then p/(z) =0 < 271#,

We now verify that the foregoing C), satisfies the conditions of the lemma. We start with the
compression condition. Clearly, if u/(z) < 271#l then |Cy(2)| = 1+ |2| < 1 +logy(1/p'(2)). On the
other hand, suppose that z/(z) > 271l and let us focus on the sub-case that = > 01*l and u(z) < 1.
Let z = 2 - - - zg be the longest common prefix of the binary expansions of p(x —1) and p(x). Then,
p(z —1) = 0.20u and pu(x) = 0.z21v, where u,v € {0,1}*, and it follows that

poly(|z|) ¢ '
pi(x) = plz) —plz—1) < 22 Yzi + Z 27 —22_2,32- < 277,
1=0+1 =1

Thus, |z| < logy(1/p/(z)) < |z| and it follows that |C,(z)| < 1 + min(|z|,log,(1/4(x))) holds in
both cases. Clearly, C,, can be computed in polynomial-time by computing p(z — 1) and p(z).
Finally, note that C, satisfies the unique decoding condition, by separately considering the two
aforementioned cases (i.e., Cy(x) = 0z and C,(x) = 1z). Specifically, in the second case (i.e.,
Cu(x) = 1z), use the fact that p(z —1) < 0.21 < p(z). 0O

To obtain an encoding that is one-to-one when applied to strings of different lengths we augment
Cy, in the obvious manner; that is, we consider C(z) = o (Jz|, Cu(x)), which may be implemented
as C),(z) = 101 -+ 090¢01C, () where o1 - - - 0y is the binary expansion of [z|. Note that |C] (z)| =
O(log |z]) + [Cp(z)| and that CY, is one-to-one.

The machine associated with (S, X). Let p be the accumulative probability function associated with
the probability ensemble X and Mg be the polynomial-time machine that verifies membership in
S while using adequate NP-witnesses (i.e., € S if and only if there exists y € {0, 1}P°¥(#) such
that M(z,y) = 1). Using the encoding function C),, we introduce an algorithm Mg, with the
intension of reducing the distributional problem (S, X) to (Sy,U’) such that all instances (of S)
are mapped to triples in which the first element equals Mg ,. Machine Mg, is given an alleged

encoding (under CL) of an instance to S along with an alleged proof that the corresponding instance
is in S, and verifies these claims in the obvious manner. That is, on input 2’ and (x,y), machine
Mg, first verifies that 2’ = C),(z), and next verifiers that « € S by running Mg(x,y). Thus, Mg,
verifies membership in the set S’ = {C},(z) : z € S}, while using proofs of the form (x,y) such that
Mg(z,y) =1 (for the instance Cj,(x)).”

The reduction. We maps an instance z (of S) to the triple (MS#,CL(%‘),lp(‘wD), where p(n) At
ps(n) + pc(n) such that pg is a polynomial representing the running-time of Mg and pc is a
polynomial representing the running-time of the encoding algorithm. That is, on input (z,y),
algorithm Mg makes at most pg(|z|) steps (and rejects (x,y) if |y| > p(|z|) — |=]).

Analyzing the reduction. Our goal is proving that the foregoing mapping constitutes a reduction of
(S,X) to (Sy,U’). We verity the corresponding three requirements (of Definition 3).

1. Using the fact that C}, is polynomial-time computable (and noting that p is a polynomial),
it follows that the foregoing mapping can be computed in polynomial-time.

2. Recall that, on input (2',(z,y)), machine Mp , accepts if and only if 2/ = C(x) and Mp
accepts (z,y) within pg(|x|) steps. It follows that = € S if and only if there exists a string y
of length at most p(|x|) such that Mg, accepts (C,, (), (z,y)) in at most p(|z|) steps. Thus,
x € S if and only if (Mg, Cl,(x), 17(#)) € Sy, and the validity condition follows.

3. In order to verify the domination condition, we first note that the foregoing mapping is
one-to-one (because the transformation » — C, () is one-to-one). Next, we note that it
suffices to consider instances of Sy that have a preimage under the foregoing mapping (since
instances with no preimage trivially satisfy the domination condition). Each of these instances
(i.e., each image of this mapping) is a triple with the first element equal to Mg, and the
second element being an encoding under C;Ir By the definition of U’, for every such image
(Mg, C/,(x),17(#D) € {0,1}", it holds that

-1
Pr{Uy, = (M, (), 1707D)] - = Z) 9~ (Ms,u [+, @))

> c-n 2. 27 (ICu(@)+0(og|z]))

where ¢ = 27Msul=1 is a constant depending only on S and p (i.e., on the distributional
problem (S, X)). Thus, for some positive polynomial p’, we have

Pr(U}, = (M, G (), 1P0ED)] > pf ()~ - 271601, (2)

By virtue of the compression condition (of the Coding Lemma), we have 271C:(#)l > g=1—min(jz|,log,(1/u'(x)))
It follows that
271C@ > prx |, = 2]/2. (3)

Recalling that = is the only preimage that is mapped to (Ms ., C}, (), 17(=DYy and combining
Eq. (2) & (3), we establish the domination condition.

The theorem follows. I

Note that |y| = poly(|z|), but |z| = poly(|C}.(x)|) does not necessarily hold (and so S" is not necessarily in N'P).
As we shall see, the latter point is immaterial.

Reflections. The proof of Theorem 4 demonstrates the fact that, unlike more advanced worst-
case reductions, the generic reduction used in proving the existence of NP-complete problems does
not introduce much structure in the reduced instances (i.e., does not reduce the original problem to
a “highly structured special case” of the target problem). Put in other words, the latter reduction
does not map “random” (i.e., uniformly distributed) instances to highly structured instances (which
occur with negligible probability under the uniform distribution). Thus, this reduction suffices for
reducing any distributional problem in dist A"P to a distributional problem consisting of Sy coupled
with some simple probability ensemble.!’

However, Theorem 4 states more than the latter assertion. That is, it states that any distribu-
tional problem in dist/N/P is reducible to the same distributional version of Sy. Indeed, the effort
involved in proving Theorem 4 was due to the need for mapping instances taken from any simple
probability ensemble (which may not be the uniform ensemble) to instances distributed in a manner
that is dominated by a single probability ensemble (i.e., the quasi-uniform ensemble U’).

Once we have established the existence of one distA/P-complete problem, we may establish
the distA/P-completeness of other problems in dist/ NP by reducing any distA/P-complete problem
to them (and relying on the transitivity of reductions (see Exercise 17)). Thus, the difficulties
encountered in the proof of Theorem 4 are no longer relevant. Unfortunately, a seemingly more
severe difficulty arises: almost all know reductions in the theory of NP-completeness work by
introducing much structure in the reduced instances (i.e., they actually reduce to highly structured
special cases). Furthermore, this structure is too complex in the sense that the distribution of
reduced instances does not seem simple (in the sense of Definition 2). Designing reductions that
avoid the introduction of such structure has turned out to be quite difficult; still several such
reductions are cited in [3].

1.3 Probabilistic versions

The definitions in Section 1.1 can be easily extended to refer to randomized algorithms. For
example, extending Definition 1, we have:

Definition 5 (the class tpcBPP): For a probabilistic algorithm A, a Boolean function B, and
t: N — N, we say that the string x is t-bad for A with respect to B if with probability exceeding 1/3,
on input x, either A(x) # B(x) or A runs more that t(|z|) steps. We say that A typically solves
(S, { Xy }nen) in probabilistic polynomial-time if there exists a polynomial p such that the probability
that X, 1s p-bad for A with respect to the characteristic function of S is negligible. We denote by
tpcBPP the class of distributional problems that are typically solvable in probabilistic polynomial-
time.

The definition of reductions can be similarly extended. This means that in Definition 3, both
M7"(x) and Q(x) (mentioned in Items 2 and 3, respectively) are random variables rather than
fixed objects. Furthermore, validity is required to hold (for every input) only with probability 2/3,
where the probability space refers only to the internal coin tosses of the reduction. Randomized
reductions are closed under composition and preserve typical feasibility (see Exercise 20).
Randomized reductions allow the presentation of a distAP-complete problem that refers to
the (perfectly) uniform ensemble. Recall that Theorem 4 establishes the distA/P-completeness of
(Su,U"), where U’ is a quasi-uniform ensemble (i.e., PriU, = (M, x,1t)] = 2=(MHD/(2) " where
n = |(M,z,1")]). We first note that (Sy,U’) can be randomly reduced to (S.,U"), where Sl =

1ONote that this cannot be said of most known Karp-reductions.

10

{(M,z,2) + (M,2,1ly € Sy} and Pr[U) = (M, z,z)] = 2= (MIFeH:D /(D) for every (M,z,2) €
{0,1}™. The randomized reduction consists of mapping (M, z, 1*) to (M, z, z), where z is uniformly
selected in {0,1}. Recalling that U = {U, },cn denotes the uniform probability ensemble (i.e., U,
is uniformly distributed on strings of length n) and using a suitable encoding we get.

Proposition 6 There exists S € NP such that every (S', X') € distN'P is randomly reducible to
(5,U).

Proof Sketch: By the forgoing discussion, every (S, X’) € dist AP is randomly reducible to
(Si,U"). Thus, we focus on reducing (S,,U") to (Si,U), where S € NP is defined as follows.
The string afuvw is in S if (u,v,w) € S} and « (resp.,) represents the binary encoding of the
integer |u| (resp., |v|), where the encoding is padded with zeros to a total length of log, |uvw|. The
reduction maps (M, x,z) to the string - - M - x - z, where « (resp., 3) represents the binary
encoding of | M| (resp., |z|) padded with zeros to a total length of logy (| M|+ |z|+|z]). Noting that
this reduction satisfies all conditions of Definition 3, the proposition follows. O

2 Ramifications

In our opinion, the most problematic aspect of the theory described in Section 1 is the definition of
simple probability ensembles, which in turn restricts the definition of dist VP (Definition 2). This
restriction strengthens the conjecture that dist AP is not contained in tpcBPP, which means that
it weakens conditional results that are based on this conjecture. An appealing extension of the class
dist NP is presented in Section 2.2, where it is shown that if the extended class is not contained in
tpcBPP then dist VP itself is not contained in tpcBPP. Thus, distAP-complete problems enjoy
the benefit of both being in the more restricted class (i.e., dist A/P) and being hard as long as some
problems in the extended class is hard.

In Section 2.1, we extend the treatment from decision problems to search problems. This
extension is motivated by the realization that search problem are actually of greater importance to
real-life applications (cf. [5, Text 14]), and hence a theory motivated by real-life applications must
address such problems, as we do next.

2.1 Search versus Decision

Indeed, as in the case of worst-case complexity, search problems are at least as important as decision
problems. Thus, an average-case treatment of search problems is indeed called for. We first present
distributional versions of PF and PC (cf. [5, Text 14]), following the underlying principles of the
definitions of tpcP and dist A/ P.

Definition 7 (the classes tpcPF and distPC): As in [5, Text 14], we consider only polynomially
bounded search problems; that is, binary relations R C {0,1}*x{0,1}* such that for some polynomial

q it holds that (z,y) € R implies |y| < q(|z|). Recall that R(x) et {y : (z,y) € R}.

e A distributional search problem consists of a polynomially bounded search problem coupled with
a probability ensemble.

o The class tpcPF consists of all distributional search problems that are typically solvable in
polynomial-time. That is, (R,{ Xy }nen) € tpcPF if there exists an algorithm A and a poly-
nomial p such that the probability that on input X, algorithm A either errs or runs more that

11

p(n) steps is negligible, where A errs on x if A(z) € R(x) in case R(x) # 0 and A(x) # L
otherwise.

o A distributional search problem (R, X) is in distPC if R € PC and X is simple (as in Defini-
tion 2).

Likewise, the class tpcBPPF cousists of all distributional search problems that are typically solvable
in probabilistic polynomial-time (cf., Definition 5). The definitions of reductions among distribu-
tional problems, presented in the context of decision problem, extend to search problems.

Fortunately, as in the context of worst-case complexity, the study of distributional search prob-
lems “reduces” to the study of distributional decision problems.

Theorem 8 (reducing search to decision): distPC C tpcBPPF if and only if dist AP C tpcBPP.
Furthermore, every problem in dist AP is reducible to some problem in distPC, and every problem
in distPC is randomly reducible to some problem in distN'P.

Proof Sketch: The furthermore part is analogous to the actual contents of the proof of equivalence
of the search and decision versions of the P-vs-NP Question. Indeed the reduction of NP to PC
presented in that proof (cf. [5, Text 14]) extends to the current context. Specifically, for any
S € NP, we consider a relation R € PC such that S = {z : R(z) # 0}, and note that, for any
probability ensemble X, the identity transformation reduces (S, X) to (R, X).

A difficulty arises in the opposite direction. Recall that in the context of worst-case com-

plexity we reduced the search problem of R € PC to deciding membership in S} def {{z,y') :
Jy" s.t. (z,9y'y") € R} € N'P. The difficulty encountered here is that, on input , this reduction
makes queries of the form (x,y’), where y’ is a prefix of some string in R(x). These queries may
induce a distribution that is not dominated by any simple distribution. Thus, we seek an alternative
reduction.

As a warm-up, let us assume for a moment that R has unique solutions; that is, for every x it
holds that |R(x)| < 1. In this case we may easily reduce the search problem of R € PC to deciding
membership in S% € NP, where (z,i,0) € S if and only if R(z) contains a string in which the i
bit equals o. Specifically, on input z, the reduction issues the queries (z,i,0), where i € [{] (with
¢ = poly(|z|)) and o € {0,1}, which allows for determining the single string in R(z) (whenever
such a string exists). The point is that this reduction can be used to reduce any (R, X) € distPC
(having unique solutions) to (S%, X") € dist VP, where X" equally distributes the probability mass
of (under X) to all the tuples (z,i,0); that is, for every ¢ € [¢] and o € {0,1}, it holds that
Pr[X(Zw’i’UH = (z,1,0)] equals Pr[X|, = x]/2¢.

Unfortunately, in the general case, R may not have unique solutions. Nevertheless, applying the
main idea that underlies the proof of the NP-hardness of solving unique solution problems (see [5,
Text 15]), this difficulty can be overcome. We first note that the foregoing mapping of instances
of the distributional problem (R,X) € distPC to instances of (S%,X") € distA/P satisfies the
efficiency and domination condition even in the case that R does not have unique solutions. What
may possibly fail (in the general case) is the validity condition (i.e., if |R(x)| > 1 then we may fail
to recover any element of R(x)).

Recall that the main part of the proof of the NP-hardness of solving unique solution problems
is a randomized reduction that maps instances of R to triples of the form (x,m,h), where m is
an integer and h is a hashing function that are uniformly distributed in some adequate sets [/]
and H}", where ¢ = poly(|z|) and H}" is as in [5, Text 15]. Furthermore, if R(x) # () then, with
probability €©(1/¢) over yje choices of m € [¢] and h € H}", there exists a unique y € R(z) such

12

that h(y) = 0™. Defining R'(x,m,h) o {y€ R : h(y) = 0™}, this yields a randomized reduction
of the search problem of R to the search problem of R’ such that with noticeable probability!! the
reduction maps instances that have solutions to instances having a unique solution. Furthermore,
this reduction can be used to reduce any (R, X) € distPC to (R', X') € distPC, where X' distributes
the probability mass of z (under X) to all the triples (z,m,h) such that for every m € [{] and
h € H;" it holds that Pr[X{ELm,h)‘ = (z,m, h)] equals Pr[X), = z]/(£-[H}"[). (Note that with a
suitable encoding, X' is indeed simple.)

The theorem follows by combining the two aforementioned reductions. That is, we first apply
the randomized reduction of (R, X) to (R', X'), and next reduce the resulting instance to an instance
of the corresponding decision problem (S%,, X”). The combined randomized mapping satisfies the
efficiency and domination conditions, and is valid with noticeable probability. The error probability
can be made negligible by straightforward amplification (see Exercise 20). O

2.2 Simple versus sampleable distributions

Recall that the definition of simple probability ensembles (underlying Definition 2) requires that
the accumulating distribution function (as defined in the proof of Theorem 4) is polynomial-time
computable. Recall that g : {0,1}* — [0,1] is called the accumulating distribution function of

X = {Xp}tnen if for every n € N and = € {0,1}" it holds that u(x) & Pr[X, < z], where the
inequality refers to the standard lexicographic order of n-bit strings.

As argued in Section 1.1, the requirement that the accumulating distribution function is polynomial-
time computable imposes severe restrictions on the set of admissible ensembles. Furthermore, it
seems that these simple ensembles are indeed “simple” in some intuitive sense and hence represent
distributions that may occur in practice. However, a more robust definition of the latter is offered
by the notion of polynomial-time sampleable ensembles (underlying Definition 9). We believe that
the class of such ensembles contains all distributions that may occur in practice, because we believe
that the real world should be modeled as a feasible (rather than an arbitrary) randomized process

Definition 9 (sampleable ensembles and the class sampNP): We say that a probability ensemble
X = {X, }nen is (polynomial-time) sampleable if there exists a probabilistic polynomial-time algo-
rithm A such that for every x € {0,1}* it holds that Pr[A(11*))=2] = Pr[X|, =z]. We denote by
sampN P the class of distributional problems consisting of decision problems in NP coupled with
sampleable probability ensembles.

We first note that all simple probability ensembles are indeed sampleable (see Exercise 21), and thus
dist AP C sampNP. On the other hand, it seems that there are sampleable probability ensembles
that are not simple (see Exercise 22). In fact, extending the scope of distributional problems (from
dist AP to sampN'P) allows proving that every NP-complete problem has a distributional version
in sampAP that is distAP-hard (see Exercise 23). Furthermore, it is possible to prove that all
natural NP-complete problem have distributional versions that are samp/N P-complete.

Theorem 10 (sampN P-completeness): Suppose that S € NP and that every set in NP is re-
ducible to S by a Karp-reduction that does not shrink the input. Then there exists a polynomial-time
sampleable ensemble X such that any problem in sampNP is reducible to (S, X)

HRecall that the probability of an event is said to be noticeable (in a relevant parameter) if it is greater than the
reciprocal of some positive polynomial. In the context of randomized reductions, the relevant parameter is the length
of the input to the reduction.

13

The proof of Theorem 10 is based on the observation that there exists a polynomial-time sampleable
ensemble that dominates all polynomial-time sampleable ensembles. The existence of this ensemble
is based on the notion of a universal (sampling) machine. For further details see Exercise 24. (Recall
that when proving Theorem 4, we did not establish an analogous result for simple ensembles (but
rather capitalized on the universal nature of Sy).)

Theorem 10 establishes a rich theory of sampA P-completeness, but does not relate this theory
to the previously presented theory of distA/P-completeness. This is done in the next theorem,
which asserts that the existence of typically hard problems in sampA/P implies their existence in
dist A/ P.

Theorem 11 (sampA P-completeness versus distA"P-completeness): If sampNP is not contained
in tpcBPP then dist AP is not contained in tpcBPP.

Thus, the two “typical-case complexity” versions of the P-vs-NP Question are equivalent. That
is, if some “sampleable distribution” versions of NP are not typically feasible then some “simple
distribution” versions of NP are not typically feasible. In particular, if ssampA P-complete problems
are not in tpcBPP then dist V/P-complete problems are not in tpcBPP.

The foregoing assertions would all follow if sampA P were (randomly) reducible to distA'P
(i.e., if every problem in sampNP were reducible (under a randomized version of Definition 3) to
some problem in distA/P); but, unfortunately, we do not know whether such reductions exist. Yet,
underlying the proof of Theorem 11 is a more liberal notion of a reduction among distributional
problem.

Proof Sketch: We shall prove that if dist /P is contained in tpcBPP then the same holds for
sampN P (i.e., sampN P is contained in tpcBPP). Actually, we shall show that if dist/PC is con-
tained in tpcBPPF then the sampleable version of distPC, denoted sampPC, is contained in
tpcBPPF (and refer to Exercise 25). Specifically, we shall show that under a relaxed notion of a
randomized reduction, every problem in sampPC is reduced to some problem in distPC. Loosely
speaking, this relaxed notion of a randomized reduction requires only a noticeable fraction of the
probability space of the reduction to satisfies the validity and domination conditions (of Definition 3,
when adapted to randomized reductions). We start by formulating this notion, when referring to
distributional search problems.

A relaxed reduction of the distributional problem (R, X) to the distributional problem (7,Y") is
a probabilistic polynomial-time oracle machine M that satisfies the following conditions:

Notation: For every « € {0,1}*, we denote by m(|z|) = poly(|z|) the number of internal coin tosses
of M on input x, and denote by M”(z,r) the execution of M on input z, internal coins
r € {0,1}™, and oracle access to T'.

Validity: For every = € {0,1}*, there exists a set €, C {0,1}™(#]) of size at least p(|z|) - 2m(|z|),
where p(|z|) > 1/poly(|z|) such that for every r € €, the reduction yields a correct answer
(ie., MT(z,7) € R(z) if R(x) # 0 and MT (x,r) = L otherwise).

Domination: There exists a positive polynomial p such that, for every y € {0,1}*, it holds that

max{PrlQ'(X,) 3w} < p(ly]) - PrlYyy = o] (4)

where Q'(x) is a random variable, defined over the set €, (as in the validity condition),
representing the set of queries made by M on input z and oracle access to T. That is, Q'(x)
is defined by uniformly selecting r € €2, and considering the set of queries made by M on
input x, internal coins r, and oracle access to 1.

14

The reader may verify that this relaxed notion of a reduction preserves typical feasibility; that
is, for R € PC, if there exists a relaxed reduction of (R, X) to (7,Y) and (7,Y) is in tpcBPPF
then (R, X) is in tpcBPPF. The key observation is that the analysis may discard the case that,
on input x, the reduction selects coins not in {2,. Indeed, the queries made in that case may be
untypical and the answers received may be wrong, but this is immaterial (because correct solutions
can be recognized using R € PC). That is, if x has a solution then with noticeable probability the
reduction will find one and output it, whereas the reduction will never output a wrong solution.

Our goal is presenting, for every (R, X) € sampPC, a relaxed reduction of (R, X) to a related
problem (R, X') € distPC. (As usual, let X = {X,, },,en and similarly for X'.) For starters, suppose
that X, is uniformly distributed on some set S,, C {0,1}" and that there is a polynomial-time com-
putable and invertible mapping p of Sy, to {0, 1Y), where £(n) = logy |S,|. Then, mapping z to
1lel=42Doy(2), we obtain a reduction of (R, X) to (R', X'), where X/, | is uniform over {1"~“™)0y :
v € {0,1}¥™} and R'(1"“™0v) = R(p(v)) (or, equivalently, R(z) = R'(1121-4zDou(x))). Note
that X' is a simple ensemble and R’ € PC; hence, (R, X') € distPC. Also note that the foregoing
mapping is indeed a valid reduction (i.e., it satisfies the efficiency, validity, and domination condi-
tions). Thus, (R, X) is reduced to a problem in distPC (and indeed the relaxation was not used
here).

Next, we drop the assumption that there is a polynomial-time computable and invertible map-
ping g of S, to {0,1}*(™) but maintain the assumption that X,, is uniform on some set S,, C {0,1}"
and assume that |S,| = 24" is easily computable (from n). In this case, we may map z € {0,1}"
to its image under a suitable randomly chosen hashing function h, which in particular maps n-bit
strings to £(n)-bit strings. That is, we randomly map z to (h, 1" “™0h(z)), where h is uniformly
selected in a set HL"™ of suitable hash functions (see [5, Text 15]). This calls for redefining R’ such
that R'(h, 1”4(”)0@) corresponds to the preimages of v under h that are in S,,. Assuming that h
is a 1-1 mapping of S, to {0,1}")| we may define R'(h,1"~“™0v) = R(z) where = is the unique
string satisfying « € S,, and h(x) = v, where the condition x € S,, may be verified by providing
the internal coins of the sampling procedure that generate x. Denoting the sampling procedure of
X by S, and letting S(1™,r) denote the output of S on input 1™ and internal coins r, we actually
redefine R’ as

R'(h, 1" ™00) = {(r,y) : K(S(1™,7))=v Ay R(S(1",1))}. (5)

We note that (r,y) € R'(h, 1#I=412Don(z)) yields a solution y € R(x) if S(11%/,) = z, but otherwise
“all bets are off” (as y will be a solution for S(11*l,r) # x). Now, although typically h will not be
a 1-1 mapping of S, to {0, 1}5(”), for each x € S, with constant probability over the choice of h,
it holds that h(x) has a unique preimage in S, under h. In this case (r,y) € R'(h, 11#1=4I=Dopn(z))
implies S(11*l,7) = & (which, in turn, implies y € R(x)). We claim that the randomized mapping of
z to (h, 1""“™0h(x)), where h is uniformly selected in meb, yields a relaxzed reduction of (R, X)

||
to (R, X"), where X!, is uniform over HE « {1740y : v € {0,114}, (Needless to say, the
claim refers to the reduction that makes the query (h, 1" “™0h(z)) and returns y if the oracle
answer equals (r,y) and y € R(z).)
4V for which & €8, is the
only preimage of h(z) under h that resides in S,, (i.e., |[{z' €S, : h(2’)=h(x)}| = 1). In this case
(i.e., h € Q) it holds that (r,y) € R'(h,1%=4=D0R(z)) implies that S(1*l,r) = 2 and y € R(z),
and the (relaxed) validity condition follows. The (relaxed) domination condition follows by noting
that Pr[X, =xz] ~ 2~=D that = is mapped to (h, 11#=41=Doa(z)) with probability 1/|H|i(|‘w‘)|, and

that x is the only preimage of (h, 1/*/=¢2D0p(z)) under the mapping (among z’ € S, such that

The claim is proved by considering the set €2, of choices of h € H

15

Qu > h).

Before going any further, let us highlight the importance of hashing X,, to £(n)-bit strings. On
one hand, this mapping is “typically” one-to-one, and thus (with constant probability) the solution
provided for the hashed instance (i.e., h(x)) yield a solution for the original instance (i.e.,). This
guarantees the validity of the reduction. On the other hand, for a typical h, the mapping of X,
to h(X,,) covers the relevant range almost uniformly. This guarantees that the reduction satisfies
the domination condition. Note that these two phenomena impose conflicting requirements that
are both met at the correct value of /; that is, the one-to-one condition requires £(n) > log, |S,|,
whereas an almost uniform cover requires £(n) < logsy |S,|. Also note that £(n) = logy(1/Pr[X,, =x])
for every z in the support of X,;; the latter quantity will be in our focus in the general case.

Finally, we need to get rid of the assumption that X, is uniformly distributed over some subset
of {0,1}". All that we know is that there exists a probabilistic polynomial-time (“sampling”)
algorithm S such that S(1™) is distributed identically to X,. In this (general) case, we map
instances of (R, X) according to their probability mass such that x is mapped to an instance

(of R') that consists of (h,h(x)) and additional information, where h is a random hash function

mapping n-bit long string to strings of length £, def [logy(1/Pr[X |, ==])]. Since (in the general

case) there may be more than 2% strings in the support of X,,, we need to augment the reduced
instance in order to ensure that it is uniquely associated with x. The basic idea is augmenting the
mapping of x to (h, h(z)) with additional information that restricts X,, to strings that occur with
probability at least 27 %=,

Let g(n) denote the randomness complexity of S and S(1",r) denote the output of S on input
1" and internal coin tosses r € {0,1}4™). Then, we randomly map z to (h,h(z),h',v'), where
ho: {0,1}e — {0,1}% and A’ : {0,1}40=D) — {0,1}9(D)~% are random hash functions and v’ €
{0,1}202D~¢= ig uniformly distributed. The instance (h,v,h',v') of R’ has solutions that consists
of pairs (r,y) such that A(S(1",r)) =v A R'(r) = v' and y € R(S(1",7)). As we shall see, this
augmentation guarantees that, with constant probability (over the choice of h, k', v"), the solutions
to the reduced instance (h, h(z),h',v") correspond to the solutions to the original instance x.

The foregoing description assumes that, on input x, we can determine £, which is an assumption
that we cannot justify. Instead, we may just select ¢ uniformly in {0, 1, ..., ¢(|z|)} and be correct with
noticeable probability (i.e., Pr[¢ = ¢,] = 1/(¢(|z|) + 1) = 1/poly(]z|)). Furthermore, for clarity,
we make n and ¢ explicit in the reduced instance. Specifically, we randomly map = € {0,1}",

to (17,14, h, h(z), B/ ,v') € {0,1}", where £ € {0,1,..,q(n)}, h € H', ' € H;I((Z))_Z, and o' €
{0,1}9"=¢ are uniformly distributed.'® This mapping will be used to reduce (R, X) to (R, X'),
where

R'(1™, 1% h,v, B v") = {(r,y) : L(SA™, 7)) =v AR (r)=v" Aye R(S(1",7))} (6)
and X/, assigns equal probability to each X, , (for £ € {0,1,...,n}), and each X, , is isomorphic
to the uniform distribution over HY x {0,1}¢ x H;J((Z))_Z x {0,1}9"~¢ Note that indeed (R', X') €
distPC.

The aforementioned randomized mapping is analyzed by considering the correct choice for ¢;
that is, on input x, we focus on the choice ¢ = ¢,. Under this conditioning (as we shall show),

with constant probability over the choice of h,h' and v', the instance x is the only value z' (of
X,) that is mapped to (1™,1%, h,h(x),h',v") such that there exists v that satisfies S(1",r) = '

2 As in other places, a suitable encoding will be used such that the reduction maps strings of the same length to
strings of the same length (i.e., n-bit string are mapped to n'-bit strings, for n' = poly(n)). For example, we may
encode (1™, 1%, h, h(x), h',v') as 17014019 =¢0(h) (h(x))(h') (v}, where each (w) denotes an encoding of w by a string
of length (n' — (n + q(n) + 3))/4.

16

and h'(r) = v'. It follows that (for such h,h’ and v') any solution (r,y) € R'(1", 1%, h, h(z), ', v")
satisfies S(1",7) = x and thus y € R(x), which means that the validity condition is satisfied. The
domination condition is satisfied too, because (for such h,h’ and v') the probability that X, is
mapped to (17,1 h, h(z), h',v") approximately equals Pr[X!, ,=(1",1% h, h(zx), B’ ,v")].

We now turn to analyze the probability, over the choice of h,h' and o', that the instance z is
the only value 2’ (of X,,) that is mapped to (17,1%, h, h(z),h',v") such that there exists 7 that
satisfies S(1",7) = 2’ and h'(r) = v'. Firstly, we note that |{r : S(1*,7)=xz}| > 24" ~% and thus,
with constant probability over the choice of A’ € Hg((s))_z” and v’ € {0, 1}‘1(”)41«, there exists r that
satisfies S(1™,r) = x and A'(r) = v'. Next, we note that, with constant probability over the choice
of h € H% it holds that = is the only string having probability mass at least 27% (under X,,)

that is mapped to h(z) under h. Finally, we prove that, with constant probability over the choice
of h € Hf and ' € Hg((g))fém (and even when conditioning on the previous items), the mapping
r— (R(S(1%,7)), h'(r)) maps the set {r : Pr[X,,=S(1",7)] < 2%} almost uniformly to {0,1}9™).
Specifically, with constant probability, no other r is mapped to the aforementioned pair (h(x),v").
Thus, the claim follows and so does the theorem. O

Reflection. Theorem 11 implies that if sampA/ P is not contained in tpcBPP then every dist N/ P-
complete problem is not in tpcBPP. This means that the hardness of some distributional problems
that refer to sampleable distributions implies the hardness of some distributional problems that refer
to simple distributions. Furthermore, by Proposition 6, this implies the hardness of distributional
problems that refer to the uniform distribution. Thus, hardness with respect to some distribution
in an utmost wide class (which arguably captures all distributions that may occur in practice)
implies hardness with respect to a single simple distribution (which arguably is the simplest one).

Relation to one-way functions. We note that the existence of one-way functions (see [4])
implies the existence of problems in sampPC that are not in tpcBPPF (which in turn implies
the existence of such problems in distPC). Specifically, for a length-preserving one-way function f,
consider the distributional search problem (Ry, { f(U,) }nen), where Ry = {(f(r),r) : v € {0,1}*}.13
On the other hand, it is not known whether the existence of a problem in sampPC \ tpcBPPF
implies the existence of one-way functions. In particular, the existence of a problem (R,X) in
sampPC \ tpcBPPF represents the feasibility of generating hard instances for the search problem
R, whereas the existence of one-way function represents the feasibility of generating instance-
solution pairs such that the instances are hard to solve. Indeed, the gap refers to whether or not
hard instances can be efficiently generated together with corresponding solutions. Our world view is
thus depicted in Figure 1, where lower levels indicate seemingly weaker assumptions.

Notes

The theory of average-case complexity was initiated by Levin [8], who in particular proved The-
orem 4. In light of the laconic nature of the original text [8], we refer the interested reader to a
survey [3], which provides a more detailed exposition of the definitions suggested by Levin as well
as a discussion of the considerations underlying these suggestions. (This survey [3] provides also a
brief account of further developments.)

13Note that the distribution f(U,) is uniform in the special case that f is a permutation over {0,1}™.

17

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

P Isdifferent than NP

Figure 1: Worst-case vs average-case assumptions

As noted in Section 1.1, the current text uses a variant of the original definitions. In particular,
our definition of “typical feasibility” differs from the original definition of “average feasibility” in
totally discarding exceptional instances and in even allowing the algorithm to fail on them (and not
merely run for an excessive amount of time). The alternative definition was suggested by several
researchers and appears as a special case of the general treatment provided in [2].

Section 2 is based on [1, 7]. Specifically, Theorem 8 (or rather the reduction of search to decision)
is due to [1] and so is the introduction of the class sampNP. A version of Theorem 11 was proven
in [7], and our proof follows their ideas, which in turn are closely related to the ideas underlying
the construction of pseudoradom generators based on any one-way functions (proved in [6]).

Recall that we know of the existence of problems in dist/A/P that are hard provided sampN P
contains hard problems. However, these problems refer to somewhat generic decision problems
such as Sy. The presetation of dist/VP-complete problems that combine a more natural decision
problem (like SAT or Clique) with a simple probability ensemble is an open problem.

Exercises

Exercise 12 (an equivalent definition of tpcP) Prove that (S, X) € tpcP if and only if there
exists a polynomial-time algorithm A such that the probability that A(X,) errs (in determining
membership in S) is a negligible function in n.

Exercise 13 (tpcP versus P — Part 1) Prove that tpcP contains a problem (S, X)) such that S
is not even recursive. Furthermore, use X = U.

Guideline: Let S = {0/*lz : 2 € S'}, where S’ is an arbitrary (non-recursive) set.

Exercise 14 (tpcP versus P — Part 2) Prove that there exists a distributional problem (S, X)

such that S € P and yet there exists an algorithm solving S (correctly on all inputs) in time that
is typically polynomial with respect to X. Furthermore, use X = U.

Guideline: For any time-constructible function ¢ : N— N that is super-polynomial and sub-exponential,

use S = {01*lz : & € §'} for any S’ € DrimE(t) \ P.

Exercise 15 (reductions preserve typical polynomial-time solveability) Prove that if the
distributional problem (S, X) is reducible to the distributional problem (S’, X') and (S’,X') €
tpcP, then (S, X) is in tpcP.

18

Guideline: Let B’ denote the set of exceptional instances for the distributional problem (S', X') (i.e., the

set of instances on which the solver in the hypothesis errs or exceeds the typical running-time). Prove that
Pr[Q(X,) N B' # (] is a negligible function (in n), using both Pr[y € Q(X,)] < p(ly|) - Pr[X| | = y] and

lyl —

|z| < p(|yl) for every y € Q(x). Specifically, use the latter condition for inferring that 3, . 5 Prly € Q(X,,)]
equals Zye{y’eB’:p(ly’\)Zn} Prly € Q(X,)], which guarantees that a negligible function in |y| for any y € Q(X,,)

is negligible in n.

Exercise 16 (reductions preserve error-less solveability) In continuation to Exercise 15, prove
that reductions preserve error-less solveability (i.e., solveability by algorithms that never err and
typically run in polynomial-time).

Exercise 17 (transitivity of reductions) Prove that reductions among distributional problems
(as in Definition 3) are transitive.

Guideline: The point is establishing the domination property of the composed reduction. The hypothesis

that reductions do not make too short queries is instrumental here.

Exercise 18 For any S € NP present a simple probability ensemble X such that the generic
reduction used in the proof of the existence of NP-complete problems violates the domination
condition regarding a possible reduction of (S, X) to (Sy, U’).

Guideline: Consider X = {X,}, cy such that X,, is uniform over {0"/22' : 2’ € {0, 1}"/2}.

Exercise 19 (variants of the Coding Lemma) Prove the following two variants of the Coding
Lemma (which is stated in the proof of Theorem 4).

1.

2.

A variant that refers to any monotonically non-decreasing function p : {0,1}* — [0, 1] that is
efficiently computable, where here we refer to the lexicographic order over {0,1}*.

As in Part 1, except that in this variant the function p is strictly increasing and the compres-
sion condition requires that |C,,(x)| < log,(1/p/(x)) rather than |Cy ()| < 1+min{|z|,logy(1/p'(x))},

where p/(z) def p(x) — p(r —1).

Guideline: In both cases, the proof is less cumbersome than the one presented in the main text.

Exercise 20 (randomized reductions) Following the outline in Section 1.3, provide a definition
of randomized reductions among distributional problems.

1.

2.

Prove that randomized reductions are transitive (cf. Exercise 17).

In analogy to Exercise 15, prove that randomized reductions preserve feasible solveability (i.e.,
typical solveability in probabilistic polynomial-time). That is, if the distributional problem
(S, X) is randomly reducible to the distributional problem (S’, X') and (S’, X’) € tpcBPP,
then (S, X) is in tpcBPP.

. In analogy to Exercise 16, prove that randomized reductions preserve solveability by proba-

bilistic algorithms that err with probability at most 1/3 on each input and typically run in
polynomial-time.

. Show that the error probability of such reductions can be reduced (while preserving the

domination condition).

19

Extend the foregoing to reductions that involve distributional search problems.

Exercise 21 (simple vs sampleable ensembles — Part 1) Prove that any simple probability
ensemble is polynomial-time sampleable.

Guideline: Let p be the accumulating distribution function of X = {X,},cn (ie., p(z) = Pr(X), <)),
and let p be a polynomial such that (without loss of generality) |u(z)| = p(|z|) for every z. Consider the
algorithm that, on input 1™, uniformly selects i € [21’(")] and outputs x if and only if = is the lexicographically
first string such that ¢ < p(x) - 2P("). Note that this # can be found by binary search, using the fact that p
is polynomial-time computable.

Exercise 22 (simple vs sampleable ensembles — Part 2) Assuming that #P contains func-
tions that are not computable in polynomial-time, prove that there exists polynomial-time sam-
pleable ensembles that are not simple.

Guideline: Consider any R € PC and suppose that p is a polynomial such that (z,y) € R implies |y| =
p(Jz]). Then consider the sampling algorithm A that, on input 1", uniformly selects (z,y) € {0,1}"~1 x
{0,1}?(»=1) and outputs =1 if (z,y) € R and 20 otherwise. Note that #R(x) = 2PU=I=1) . PrlA(11*I-1) = 1].

Exercise 23 (distributional versions of NPC problems — Part 1 [1]) Prove that for any NP-
complete problem S there exists a polynomial-time sampleable ensemble X such that any problem
in dist /P is reducible to (S, X). We actually assume that the many-to-one reductions establishing
the NP-completeness of S do not shrink the length of the input.

Guideline: Prove that the guaranteed reduction (of Su to S) also reduces (Su,U’) to (S, X), for some
sampleable probability ensemble X . Specifically, note that U’ is sampleable (by Exercise 21) and prove that
the standard reduction of Sy to S, when applied to a sampleable probability ensemble, induces a sampleable
distribution on the instances of S. Consider first the case that the standard reduction is length preserving,
and next extend the treatment to the general case.

Exercise 24 (distributional versions of NPC problems — Part 2 [1]) Prove Theorem 10 (i.e.,
for any NP-complete problem S there exists a polynomial-time sampleable ensemble X such that
any problem in sampA/P is reducible to (S, X)). As in Exercise 23, we actually assume that the
many-to-one reductions establishing the NP-completeness of S do not shrink the length of the
input.

Guideline: We establish the result for Sy, and the rest follows as in Exercise 23. Thus, we focus on showing
that, for a fixed sampleable X, we can reduce any (S’, X') € sampNP to (Su,X). Loosely speaking, X
will be an adequate convex combination of all sampleable distributions (and thus X will not equal U’ or
U). Specifically, X = {X,},cn is defined such that X, selects i € [n] with probability =~ 1/i%, emulate
the execution of the i*! algorithm (in lexicographic order) on input 1™ for n?® steps,'* and outputs whatever
the latter has output (or 0" in case the said algorithm has not halted within n?® steps). Prove that, for any
(S", X") € sampNP such that X" is sampleable in cubic time, the standard reduction of S” to Sy reduces
(S",X") to (Su, X) (as per Definition 2; i.e., in particular, it satisfies the domination condition).!® Finally,
using adequate padding, reduce any (S’, X') € sampANP to some (S”,X") € sampAN P such that X" is
sampleable in cubic time.

M Needless to say, the choice to consider n algorithms in the definition of X, is quite arbitrary. Any other unbounded
function of n that is at most a polynomial (and is computable in polynomial-time) will do. Likewise, the choice to
emulate each algorithm for a cubic number of steps (rather some other polynomial number of steps) is quite arbitrary.

5Note that applying this reduction, denoted f, to X" yields an ensembles that is also sampleable in cubic time.
This uses the fact that the standard reduction runs in time that is almost linear in its output, which in turn is longer
than the input.

20

Exercise 25 (search vs decision in the context of sampleable ensembles) Prove that ev-
ery problem in sampA/P is reducible to some problem in sampPC, and every problem in sampPC
is randomly reducible to some problem in samp/\ P.

Guideline: See proof of Theorem 8.

References

1]

8]

S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case Com-
plexity. Journal of Computer and System Science, Vol. 44 (2), pages 193-219, 1992.

A. Bogdanov and L. Trevisan. Average-case complexity: a survey. In preparation, 2005.

O. Goldreich. Notes on Levin’s Theory of Average-Case Complexity. ECCC, TR97-058,
Dec. 1997.

O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press, 2001.

O. Goldreich. Expositions in Complexity Theory (various texts). Unpublished notes, De-
cember 2005. Availabe from the webpage http://www.wisdom.weizmann.ac.il/~oded/cc
-texts.html

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any
One-way Function. SIAM Journal on Computing, Volume 28, Number 4, pages 13641396,
1999. Preliminary versions by Impagliazzo et. al. in 21st STOC (1989) and Hastad in 22nd
STOC (1990).

R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP Instances than Picking
Uniformly at Random. In 81st IEEE Symposium on Foundations of Computer Science, pages
812-821, 1990.

L.A. Levin. Average Case Complete Problems. SIAM Journal on Computing, Vol. 15, pages
285-286, 1986.

21

