
Texts in Computational Complexity:Approximation ProblemsOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.January 28, 2006IntroductionThe notion of approximation is a natural one, and has arisen also in other disciplines. Its most com-mon use is in references to quantities (e.g., the length of one meter is approximately forty inches),but it is also used when referring to qualities (e.g., an approximately correct account of a historicalevent). In the context of computation, the notion of approximation modi�es computational taskssuch as search and decision problems. (In fact, we have encountered it already as a modi�er ofcounting problems; see [12, Text 15].)Two major questions regarding approximation are (1) what is a \good" approximation, and (2)can it be found easier than �nding an exact solution. The answer to the �rst question seemsintimately related to the speci�c computational task at stake and to its role in the wider context(i.e., the higher level application): a good approximation is one that su�ces for the intendedapplication. Indeed, the importance of certain approximation problems is much more subjectivethan the importance of the corresponding optimization problems. This fact seems to stand in theway of attempts at providing a comprehensive theory of approximation problems (e.g., classes ofnatural approximation problems that are shown to be computationally equivalent).Turning to the second question, we note that in numerous cases natural approximation problemsseem to be signi�cantly easier than the corresponding original (\exact") problems. On the otherhand, in numerous other cases, natural approximation problems are computationally equivalent tothe original problems. We shall exemplify both cases by reviewing some speci�c results, but regretnot being able to provide any systematic classi�cation.Mimicking the two standard uses of the word approximation, we shall distinguish between ap-proximation problems that are of the \search type" and problems that are have a clear \decisional"
avor. In the �rst case we shall refer to a function that assigns values to possible solutions (ofa search problem); whereas in the second case we shall refer to distances between instances (of adecision problem). Needless to say, at times the same computational problem may be cast in bothways, but for most natural approximation problems one of the two frameworks is more appealingthan the other.Teaching note: Most of the results presented in this section refer to speci�c computa-tional problems and (with one exception) are presented without a proof. In view of thecomplexity of the corresponding proofs and the merely illustrative role of these results,we recommend doing the same in class. 1



1 Search or OptimizationMany search problems involve a set of potential solutions (per each problem instance) such thatdi�erent solutions are assigned di�erent \values" (resp., \costs") by some \value" (resp., \cost")function. In such a case, one is interested in �nding a solution of maximum value (resp., minimumcost). A corresponding approximation problem may refer to �nding a solution of approximatelymaximum value (resp., approximately minimum cost), where the speci�cation of the desired levelof approximation is part of the problem's de�nition. Let us elaborate.For concreteness, we focus on the case of a value that we wish to maximize. For greater 
exibility,we allow the value of the solution to depend also on the instance itself. Thus, for a (polynomiallybounded) binary relation R and a value function f : f0; 1g��f0; 1g� ! R, we consider the problemof �nding solutions (with respect to R) that maximize the value of f . That is, given x (such thatR(x) 6= ;), the task is �nding y 2 R(x) such that f(x; y) = vx, where vx is the maximum value off(x; y0) over all y0 2 R(x). Typically, R is in PC and f is polynomial-time computable.1 Indeed,without loss of generality, we may assume that for every x it holds that R(x) = f0; 1g`(jxj) for somepolynomial `. Thus, the optimization problem is recast as given x, �nd y such that f(x; y) = vx,where vx = maxy02f0;1g`(jxj)ff(x; y0)gg.We shall focus on relative approximation problems, where for some gap function g : f0; 1g !fr2R : r� 1g the task is �nding y such that f(x; y) � vx=g(x). Indeed, often the approximationfactor is stated in terms of some structure of the input (e.g., the number of vertices in a graph)and not merely in terms of its length. Typically, g is polynomial-time computable. Approximationversions of minimization problems are de�ned analogously.De�nition 1 (g-factor approximation): Let f : f0; 1g� � f0; 1g� ! R, ` : N!N , and g : f0; 1g !fr2R : r�1g.Maximization version: The g-factor approximation of maximizing f (w.r.t `) is the search problem Rsuch that R(x) = fy2f0; 1g`(jxj) : f(x; y) � vx=g(x)g, where vx = maxy02f0;1g`(jxj)ff(x; y0)g.Minimization version: The g-factor approximation of minimizing f (w.r.t `) is the search problem Rsuch that R(x) = fy2f0; 1g`(jxj) : f(x; y) � g(x) � cxg, where cx = miny02f0;1g`(jxj)ff(x; y0)g.We note that for numerous NP-complete optimization problems polynomial-time algorithms pro-vide meaningful approximations. A few examples will be mentioned in Section 1.1. In contrast, fornumerous other NP-complete optimization problems, natural approximation problems are compu-tationally equivalent to the corresponding optimization problem. A few examples will be mentionedin Section 1.2, where we also introduce the notion of a gap problem, which is a promise problem (ofthe decision type) intended to capture the di�culty of the (approximate) search problem.1.1 A few positive examplesLet us start with a trivial example. Considering a problem such as �nding the maximum clique in agraph, we note that �nding a linear factor approximation is trivial (i.e., given a graph G = (V;E),we may output any vertex in V as a jV j-factor approximation of the maximum clique in G). Afamous non-trivial example is presented next.1In this case, we may assume without loss of generality that the function f depends only on the solution. Thiscan be obtained by rede�ning the relation R such that each solution y 2 R(x) consists of a pair of the form (x; y0).Needless to say, this modi�cation cannot be applied along with getting rid of R.2



Proposition 2 (factor two approximation to minimum Vertex Cover): There exists a polynomial-time approximation algorithm that given a graph G = (V;E) outputs a vertex cover that is at mosttwice as large as the minimum vertex cover of G.We warn that an approximation algorithm for minimum Vertex Cover does not yield such an algo-rithm for the complementary problem (of maximum Independent Set). This phenomenon standsin contrast to the case of optimization, where an optimal solution for one problem (e.g., minimumVertex Cover) yields an optimal solution for the complementary problem (maximum IndependentSet).Proof Sketch: The main observation is a connection between the set of maximal matchings andthe set of vertex covers in a graph. Let M be any maximal matching in the graph G = (V;E).Then, on one hand, the set of all vertices participating in M is a vertex cover of G, and, on theother hand, each vertex cover of G must contain at least one vertex of each edge of M . Thus, wecan �nd the desired vertex cover by �nding a maximal matching, which in turn can be found by agreedy algorithm.Another example. An instance of the traveling salesman problem (TSP) consists of a matrix ofdistances between pairs of points and the task is �nding a shortest tour that passes through allpoints. In general, no reasonable approximation is feasible for this problem (see Exercise 14), buthere we consider two special cases in which the distances satis�es some natural constraints.Theorem 3 (approximations to special cases of TSP): Polynomial-time algorithms exists for thefollowing two cases.1. Providing a 1.5-factor approximation for the special case of TSP in which the distances satisfythe triangle inequality.2. For every " > 1, providing a (1 + ")-factor approximation for the special case of EuclideanTSP (i.e., the distances correspond to a k-dimensional Euclidean space, for some constant k(e.g., k = 2)).A weaker version of Part 1 is given in Exercise 15. A detailed survey of Part 2 is provided in [1].1.2 A few negative examplesLet us start again with a trivial example. Considering a problem such as �nding the maximumclique in a graph, we note that given a graph G = (V;E) �nding a (1+ jV j�1)-factor approximationof the maximum clique in G is as hard as �nding a maximum clique in G. Indeed, this \result" isnot really meaningful. In contrast, building on the PCP Theorem, one may prove that �nding ajV j1�o(1)-factor approximation of the maximum clique in G is as hard as �nding a maximum cliquein G. This follows from the fact that the approximation problem is NP-hard (cf. Theorem 5).The statement of inapproximability results is made stronger by referring to a promise problemthat consists of distinguishing instances of su�ciently far apart values. Such promise problemsare called gap problems, and are typically stated with respect to two bounding functions g1; g2 :f0; 1g ! R (which replace the gap g of De�nition 1). Typically, g1 and g2 are polynomial-timecomputable.De�nition 4 (gap problem for approximation of f): Let f be as in De�nition 1 and g1; g2 :f0; 1g ! R. 3



Maximization version: For g1 � g2, the gapg1;g2 problem of maximizing f consists of distinguishingbetween fx : vx � g1(x)g and fx : vx < g2(x)g, where vx = maxy2f0;1g`(jxj)ff(x; y)g.Minimization version: For g1 � g2, the gapg1;g2 problem of minimizing f consists of distinguishingbetween fx : cx � g1(x)g and fx : cx > g2(x)g, where cx = miny2f0;1g`(jxj)ff(x; y)g.For example, the gapg1;g2 problem of maximizing the size of a clique in a graph consists of distin-guishing between graphs G that have a clique of size g1(G) and graphs G that have no clique of sizeg2(G). In this case, we typically let gi(G) be a function of the number of vertices in G=(V;E); thatis, gi(G) = g0i(jV j). Indeed, letting !(G) denote the size of the largest clique in the graph G, we letgapCliqueL;s denote the gap problem of distinguishing between fG=(V;E) : !(G) � L(jV j)g andfG= (V;E) : !(G) < s(jV j)g, where L � s. Using this terminology, we restate (and strengthen)the aforementioned jV j1�o(1)-factor inapproximation of the maximum clique problem.Theorem 5 For some L(N) = N1�o(1) and s(N) = No(1), it holds that gapCliqueL;s is NP-hard.As we shall show next, results of the type of Theorem 5 imply the hardness of a correspondingapproximation problem; that is, the hardness of deciding a gap problem implies the hardness of asearch problem that refers to an analogous factor of approximation.Proposition 6 Let f; g1; g2 be as in De�nition 4 and suppose that these functions are polynomial-time computable. Then the gapg1;g2 problem of maximizing f (resp., minimizing f) is reducible tothe g1=g2-factor (resp., g2=g1-factor) approximation of maximizing f (resp., minimizing f).Note that a reduction in the opposite direction does not necessarily exist (even in the case that theunderlying optimization problem is self-reducible in some natural sense). Indeed, this is anotherdi�erence between the current context (of approximation) and the context of optimization problems,where the search problem is reducible to a related decision problem.Proof Sketch: We focus on the maximization version. On input x, we solve the gapg1;g2 problem,by making the query x, obtaining the answer y, and ruling that x has value exceeding g1(x) ifand only if f(x; y) � g2(x). Recall that we need to analyze this reduction only on inputs thatsatisfy the promise. Thus, if vx � g1(x) then the oracle must return a solution y that satis�esf(x; y) � vx=(g1(x)=g2(x)), which implies that f(x; y) � g2(x). On the other hand, if vx < g2(x)then f(x; y) � vx < g2(x) holds for any possible solution y.Additional examples. Let us consider gapVCs;L, the gapgs;gL problem of minimizing the vertexcover of a graph, where s and L are constants and gs(G) = s � jV j (resp., gL(G) = L � jV j) forany graph G=(V;E). Then, Proposition 2 implies (via Proposition 6) that, for every constant s,the problem gapVCs;2s is solvable in polynomial-time. In contrast, su�ciently narrowing the gapbetween the two thresholds yields an inapproximability result. In particular:Theorem 7 For some constants s < L (e.g., s = 0:62 and L = 0:84 will do), the problem gapVCs;Lis NP-hard.As stated in [12, Text 16], the PCP Theorem and versions of it play a key role in establishinginapproximability results such as Theorems 5 and 7. In particular, recall the equivalence of thePCP Theorem itself and the NP-hardness of a gap problem concerning the maximization of thenumber of clauses that are satis�es in a given 3-CNF formula. Speci�cally, gapSAT3" was de�ned (in4



[12, Text 16]) as the gap problem consisting of distinguishing between satis�able 3-CNF formulaeand 3-CNF formulae for which each truth assignment violates at least an " fraction of the clauses.Although the aforementioned equivalence result does not specify the quantitative relation thatunderlies its qualitative assertion, when combined with the best known PCP construction, it doesyield the best possible bound.Theorem 8 For every v < 1=8, the problem gapSAT3v is NP-hard.On the other hand, gapSAT31=8 is solvable in polynomial-time.Sharp threshold. The aforementioned results regarding gapSAT3v exemplify a sharp thresholdon the feasibly obtainable approximation factor. Another appealing example refers to the followingmaximization problem in which the instances are systems of linear equations over GF(2) and thetask is �nding an assignment that satis�es as many equations as possible. Note that by merelyselecting an assignment at random, we expect to satisfy half of the equations. Also note that it iseasy to determine whether there exists an assignment that satis�es all equations. Let gapLinL;sdenote the problem of distinguishing between systems in which one can satisfy at least an L fractionof the equations and systems in which one cannot satisfy an s fraction (or more) of the equations.Then, as just noted, gapLinL;0:5 is trivial and gapLin1;s is feasible (for every s < 1). In contrast,moving both thresholds towards one another yields an NP-hard gap problem:Theorem 9 For every constant " > 0, the problem gapLin1�";0:5+" is NP-hard.Gap location. Theorems 8 and 9 illustrate two opposite situations. In both cases there is anobvious upper-bound on the number of local conditions that can be satis�es (i.e., the number ofclauses in the case of gapSAT and the number of equations in the case of gapLin). In one case (i.e.,gapSAT) deciding whether an instance has a value that attains the upper-bound is NP-hard, whereasin the other case (i.e., gapLin) this decision problem is solvable in polynomial-time. Consequently,in the second case, the gap problem in which the higher threshold equals this upper-bound is easy(i.e., gapLin1;s is in P), whereas in the �rst case the corresponding gap problem may be hard.Indeed, gapSAT" refers to distinguishing instances attaining the upper-bound from instances thathave a value that is upper-bounded by a lower threshold (i.e., the 1 � " fraction), and in factgapSAT" is NP-hard.A �nal comment. All the aforementioned inapproximability results refer to approximation(resp., gap) problems that are relaxations of optimization problems in NP (i.e., the optimizationproblem is computational equivalent to a decision problem in NP). In these cases, the NP-hardnessof the approximation (resp., gap) problem implies that the corresponding optimization problem isreducible to the approximation (resp., gap) problem. In other words, in these cases nothing isgained by relaxing the original optimization problem, since the relaxed version remains just ashard.2 Decision or Property TestingA natural notion of relaxation for decision problems arises when considering the distance betweeninstances, where a natural notion of distance is the Hamming distance (i.e., fraction of bits onwhich two strings disagree). Loosely speaking, this relaxation (called property testing) refers to5



distinguishing inputs that reside in a predetermined set S from inputs that are \relatively far"from any input that resides in the set. Two natural types of promise problems emerge (withrespect to the predetermined set S and the Hamming distance between strings):1. Relaxed decision w.r.t a �xed distance: Fixing a distance parameter �, we consider the problemof distinguishing inputs in S from inputs in ��(S), where��(S) def= fx : 8z 2 S \ f0; 1gjxj �(x; z) > � � jxjg (1)and �(x1 � � � xm; z1 � � � zm) = jfi : xi 6= zigj denotes the number of bits on which x = x1 � � � xmand z = z1 � � � zm disagree. Thus, here we consider a promise problem that is a restriction (ora special case) of the problem of deciding membership in S.2. Relaxed decision w.r.t a variable distance: Here instances are pairs (x; �), where x is as inType 1 and � is a distance parameter. The yes-instances are pairs (x; �) such that x 2 S,whereas (x; �) is a no-instance if x 2 ��(S).We shall focus on Type 1 formulation, which seems to capture the essential question of whether ornot these relaxations lower the complexity of the original decision problem. The study of Type 2formulation refers to a relatively secondary question, which assumes a positive answer to the �rstquestion; that is, assuming that the relaxed form is easier than the original form, we ask how isthe complexity of the problem a�ected by making the distance parameter smaller (which meansmaking the relaxed problem \tighter" and ultimately equivalent to the original problem).We note that for numerous NP-complete problems there exist natural (Type 1) relaxations thatare solvable in polynomial-time. Actually, these algorithms run in sub-linear time (speci�callypolylogarithmic time), when given direct access to the input. A few examples will be presented inSection 2.2. As indicated in Section 2.2, this is not a generic phenomenon. We start by discussingseveral key de�nitional issues (see Section 2.1).2.1 De�nitional issuesProperty testing is concerned not only with solving relaxed versions of NP-hard problems, butrather solving these problems (as well as problems in P) in sub-linear time. Needless to say,such results assume a model of computation in which algorithms have direct access to bits in the(representation of the) input (see De�nition 10).De�nition 10 (a direct access model { conventions): An algorithm with direct access to its input isgiven its main input on a special input device that is accessed as an oracle. In addition, the algorithmis given the length of the input and possibly other parameters on an secondary input device. Thecomplexity of such an algorithm is stated in terms of the length of its main input.De�nition 11 (property testing for S): The promise problem of distinguishing S from ��(S) iscalled property testing for S (with respect to �).Recall that we say that a randomized algorithm solves a promise problem if it accepts every yes-instance (resp., rejects every no-instance) with probability at least 2=3. Thus, a (randomized)property testing for S accepts every input in S (resp., rejects every input in ��(S)) with probabilityat least 2=3. 6



The question of representation. The speci�c representation of the input is of major concernin the current context. Firstly, the representation a�ects the distance measure (e.g., under anarti�cially padded input format, all strings will be deemed close to one another and propertytesting for S will become trivial). Secondly, since our focus is on sub-linear time algorithms, wecannot a�ord to transform the input from one natural format to another. Both issues will beclari�ed by the examples provided in Section 2.2.The essential role of the promise. Recall that, for a �xed constant � > 0, we consider thepromise problem of distinguishing S from ��(S). The promise means that all instances that areneither in S nor far from S (i.e., not in ��(S)) are ignored, which is essential for sub-linear algorithmsfor natural problems. To demonstrate the point, we say that a set S is reasonably sensitive if forin�nitely many x 2 f0; 1g� \ S and every I � [jxj] of cardinality jxj=3 there exists z 2 f0; 1gjxj n Ssuch that for every i 2 I it holds that xi = zi. We note that if S is reasonably sensitive thendeciding membership in S requires linear time (even in the model of De�nition 10). On the otherhand, even for a reasonably sensitive set S, property testing for S (i.e., distinguishing S from ��(S))may be done in sub-linear (randomized) time. Consider, for example, the set S consisting of stringsthat have a majority of 1's. Then, S is reasonably sensitive, but the fraction of 1's in the input canbe approximated in polylogarithmic time (which yields a property tester for S).The essential role of randomization. Referring to the foregoing example, we note that ran-domization is essential for any sub-linear time algorithm that distinguishes this set S from, say,�0:4(S). In contrast, a sub-linear time deterministic algorithm cannot distinguish 1n from any inputthat has 1's in each position probed by the algorithm on input 1n. In general, on input x, a (sub-linear time) deterministic algorithm always reads the same bits of x and thus cannot distinguish xfrom any z that agrees with x on these bit locations.Note that, in both cases, we are able to prove lower-bounds on the time complexity of algorithms.But these lower-bounds are actually information theoretic in nature and refer to the number ofqueries performed by these algorithms.2.2 Two models for testing graph propertiesIn this section we consider the complexity of property testing for sets of graphs that are closedunder graph isomorphism; such sets are called graph properties. In view of the foregoing comment,referring to the importance of representation, we consider two standard representations of graphs.1. The adjacency matrix representation. Here a graph G = ([N ]; E) is represented (in a slightlyredundant form) by an N -by-N Boolean matrix MG = (mi;j)i;j2[N ] such that mi;j = 1 if andonly if fi; jg 2 E.2. Bounded incidence-lists representation. For a �xed parameter d, a graph G = ([N ]; E) ofdegree at most d is represented (in a slightly redundant form) by a mapping �G : [N ]� [d]![N ] [ f?g such that �G(u; i) = v if v is the ith neighbor of u and �G(u; i) = ? if v has lessthan i neighbors.We stress that the aforementioned representations determine both the notion of distance betweengraphs and the type of queries performed by the algorithm. As we shall see, the di�erence betweenthese two representations yields a big di�erence on the complexity of corresponding property testingproblems. 7



Theorem 12 (property testing in the adjacency matrix representation): For any �xed � > 0 andeach of the following sets, there exists a polylogarithmic time randomized algorithm that solves thecorresponding property testing problem.� The set of k-colorable graphs, for every �xed k � 2.� The set of graphs having a clique (resp. independent set) of density �, for every �xed � > 0.� The set of N -vertex graphs having a cut2 with at least � �N2 edges, for every �xed � > 0.� The set of N -vertex graphs having a bisection2with at most � �N2 edges, for every �xed � > 0.In contrast, for some � > 0, there exists a graph property in NP for which property testing requireslinear time.The algorithms use a constant number of queries, which in turn is polynomial in the constant 1=�,and their running time hides a constant that is exponential in their query complexity, except for thecase of 2-colorability where the hidden constant is polynomial in 1=�. Note that such dependenciesseem essential, since setting � = 1=N2 regains the original (non-relaxed) decision problems (which,with the exception of 2-colorability, are all NP-complete). Again, the lower-bound on the timecomplexity follows from a lower-bound on the query complexity. We note that the graph propertyfor which this lower-bound is proved is not a natural one.Theorem 12 exhibits a dichotomy graph properties for which property testing is possible by aconstant number of queries and graph properties for which property testing requires a linear numberof queries. A combinatorial characterization of the graph properties for which property testing ispossible (in the adjacency matrix representation) using a constant number of queries is known.3We note that the constant in this characterization may depend arbitrarily on � (and indeed, insome cases, it a function growing faster than a tower of 1=� exponents).Turning back to Theorem 12, we note that the results regarding property testing for the setscorresponding to max-cut and min-bisection yield approximation algorithms with an additive errorterm (of �N2). For dense graphs (i.e., N -vertex graphs having 
(N2) edges), this yields a constantfactor approximation for the standard approximation problem (as in De�nition 1). That is, forevery constant c > 1, we obtain a c-factor approximation of maximizing the size of a cut (resp.,minimizing the size of the bisection) in dense graphs. On the other hand, the result regarding cliqueyields a so called dual-approximation for maximum clique; that is, we approximate the minimumnumber of missing edges in the densest induced graph of a given size.Indeed, Theorem 12 is meaningful only for dense graphs. The same holds, in general, forthe adjacency matrix representation.4 Also note that for sets S satisfying ��(S) = ; under theadjacency matrix representation (e.g., the set of connected graphs) property testing is trivial.We now turn to the bounded incidence-lists representation, which is relevant only for boundeddegree graphs. The problems of max-cut, min-bisection and clique (as in Theorem 12) are triv-ial under this representation, but graph connectivity becomes non-trivial and the complexity ofproperty testing for the set of bipartite graphs changes dramatically.2A cut in a graph G = ([N ]; E) is a partition (S; [N ] n S) of the set of vertices and the edges of the cut are theedges with exactly one endpoint in S. A bisection is a cut of the graph to two parts of equal cardinality.3Describing this fascinating result of Alon et. al. [4], which refers to the notion of regular partitions (introducedby Szemer�edi), is beyond the scope of the current text.4In this model, all N -vertex graphs having less than �N2 edges may be accepted if and only if there exists such a(non-dense) graph in the predetermined set. This trivial algorithm is correct because if set S contains an N -vertexgraph with less than �N2 then ��(S) = ;. 8



Theorem 13 (property testing in the bounded incidence-lists representation): The following as-sertions refer to representations of graphs of degree at most d.� For any �xed d and � > 0, there exists a polylogarithmic time randomized algorithm thatsolves the property testing problem for the set of connected graphs of degree at most d.� For any �xed d and � > 0, there exists a sub-linear randomized algorithm that solves theproperty testing problem for the set of bipartite graphs of degree at most d. Speci�cally, oninput an N -vertex graph, the algorithm runs for eO(pN) time.� For any �xed d � 3 and some � > 0, property testing for the set of N -vertex (3-regular)bipartite graphs requires 
(pN) queries.� For some �xed d and � > 0, property testing for the set of N -vertex 3-colorable graphs requires
(N) queries.The running time of the algorithms hides a constant that is polynomial in 1=�. Providing acharacterization of graph properties according to the complexity of the corresponding tester (in thebounded incidence-lists representation) is an interesting open problem.Decoupling the distance from the representation. So far we have con�ned our attention tothe Hamming distance between the representations of graphs. This made the choice of representa-tion even more important than usual (i.e., more crucial than is common in complexity theory). Incontrast, it is natural to consider a notion of distance between graphs that is independent of theirrepresentation. For example, the distance between G1=(V1; E1) and G2=(V2; E2) can be de�nedas the size of symmetric di�erence between E1 and the set of edges in a graph that is isomorphicto G2. The corresponding relative distance may be de�ned as the distance divided by jE1j + jE2j(or by max(jE1j; jE2j)).2.3 Beyond graph propertiesProperty testing has been applied to a variety of computational problems beyond the domain ofgraph theory. In fact, this area �rst emerged in the algebraic domain, where the instances (tobe viewed as inputs to the testing algorithm) are functions and the relevant properties are setsof algebraic functions. The archetypical example is the set of low-degree polynomials; that is, m-variate polynomials of total (or individual) degree d over some �nite �eld GF(q), where m; d andq are functions of the length of the input (which being the full description of a m-variate functionover GF(q), has length qm � log2 q).Viewing the problem instance as a function suggests a natural measure of distance (i.e., thefraction of arguments on which the functions disagree) as well as a natural way of accessing theinstance (i.e., querying the function for the value of selected arguments). However, as in Section 2.2,we may decouple the distance measure from the representation (i.e., a way of accessing the probleminstance). This is done by introducing a representation-independent notion of distance betweeninstances, which should be natural in the context of the problem at hand.NotesThe following bibliographic comments are quite laconic and neglect mentioning various importantworks (including credits for some of the results mentioned in our text). As usual, the interestedreader is referred to corresponding surveys. 9



Search or Optimization. The interest in approximation algorithms increased considerably fol-lowing the demonstration of the NP-completeness of many natural optimization problems. But,with some exceptions (most notably [20]), the systematic study of the complexity of such prob-lems stalled till the discovery of the \PCP connection" by Feige, Goldwasser, Lov�asz, and Safra [9].Indeed the relatively \tight" inapproximation results for max-Clique, max-SAT, and the maximiza-tion of linear equations, due to H�astad [16, 17], build on previous work regarding PCP and theirconnection to approximation (cf., e.g., [10, 3, 2, 5, 21]). Speci�cally, Theorem 5 is due to [16],while Theorems 8 and 9 are due to [17]. The best known inapproximation result for minimumVertex Cover (see Theorem 7) is due to [8], but we doubt it is tight (see, e.g., [19]). Reductionsamong approximation problems were de�ned and presented in [20]; see Exercise 16, which presentsa major technique introduced in [20]. For general texts on approximation algorithms and problems(as discussed in Section 1), the interested reader is referred to the surveys collected in [18]. Acompendium of NP optimization problems is available at [7].Property testing. The study of property testing was initiated by Rubinfeld and Sudan [23] andre-initiated by Goldreich, Goldwasser, and Ron [13]. While the focus of [23] was on algebraic prop-erties such as low-degree polynomials, the focus of [13] was on graph properties (and Theorem 12is taken from [13]). The model of bounded-degree graphs was introduced in [14] and Theorem 13combines results from [14, 15, 6]. For surveys of the area, the interested reader is referred to [11, 22].ExercisesExercise 14 (general TSP) For any function g, prove that the following approximation problemis NP-Hard. Given a general TSP instance I, the task is �nding a tour of length that is at most afactor g(I) of the minimum. In the case that all distances are required to be positive, show thatthe result holds with g(I) = exp(poly(jIj)).Guideline: By reduction from Hamiltonian path. Speci�cally, reduce the instance G = ([n]; E) to an n-by-ndistance matrix D = (di;j)i;j2[n] such that di;j = 1 if fi; jg 2 E and di;j = 0 otherwise. In case that alldistances are required to be positive, we may set di;j = exp(poly(n)) if fi; jg 2 E and di;j = 1.Exercise 15 (TSP with triangle inequalities) Provide a polynomial-time 2-factor approxima-tion for the special case of TSP in which the distances satisfy the triangle inequality.Guideline: First note that the length of any tour is lower-bounded by the weight of a minimum spanningtree in the corresponding weighted graph. Next note that such a tree yields a tour (of length twice the weightof this tree) that may visit some points several times. The triangle inequality guarantees that the tour doesnot become longer by \shortcuts" that eliminate multiple visits at the same point.Exercise 16 (enforcing multi-way equalities via expanders) The aim of this exercise is pre-senting a major technique of Papadimitriou and Yannakakis [20], which is useful for designingreductions among approximation problems. Recalling that gapSAT30:1 is NP-hard, our goal is prov-ing NP-hard of the following gap problem, denoted gapSAT3;c" , which is a special case of gapSAT3".Speci�cally, the instances are restricted to 3CNF formulae with each variable appearing in at mostc clauses, where c (as ") is a �xed constant. Note that the standard reduction of 3SAT to thecorresponding special case (see [12, Text 14]) does not preserve an approximation gap.5 The idea is5Recall that in this reduction each occurrence of each Boolean variable is replaced by a new copy of this variable,and clauses are added for enforcing the assignment of the same value to all these copies. Speci�cally, them occurrence10



enforcing equality of the values assigned to the auxiliary variables (i.e., the copies of each originalvariable) by introducing equality constraints only for pairs of variables that correspond to edges ofan expander graph. For example, we enforce equality among the values of z(1); :::; z(m) by addingthe clauses z(i) _ :z(j) for every fi; jg 2 E, where E is the set of edges of a m-vertex expandergraph. Prove that, for some constants c and " > 0, the corresponding mapping reduces gapSAT30:1to gapSAT3;c" .Guideline: Using a d-regular expander, we map 3CNF to instances in which each variable appears in atmost 2d+1 clauses. Note that if the original formula is satis�able then so is the reduced one. On the otherhand, consider an arbitrary assignment � 0 to the reduced formula �0 (i.e., the formula obtained by mapping�). For each original variable z, if � 0 assigns the same value to almost all copies of z then we consider thecorresponding assignment in �. Otherwise, � 0 does not satisfy a constant fraction of the clauses containinga copy of z.References[1] S. Arora. Approximation schemes for NP-hard geometric optimization problems: A survey.Math. Programming, Vol. 97, pages 43{69, July 2003.[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cation and In-tractability of Approximation Problems. Journal of the ACM, Vol. 45, pages 501{555, 1998.Preliminary version in 33rd FOCS, 1992.[3] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.Journal of the ACM, Vol. 45, pages 70{122, 1998. Preliminary version in 33rd FOCS, 1992.[4] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Characterization of theTestable Graph Properties: It's All About Regularity. In 38th ACM Symposium on theTheory of Computing, to appear, 2006.[5] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability { TowardsTight Results. SIAM Journal on Computing, Vol. 27, No. 3, pages 804{915, 1998. Extendedabstract in 36th FOCS, 1995.[6] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in bounded-degree graphs. In 43rd IEEE Symposium on Foundations of Computer Science, pages 93{102,2002.[7] P. Crescenzi and V. Kann. A compendium of NP Optimization problems. Available athttp://www.nada.kth.se/�viggo/wwwcompendium/[8] I. Dinur and S. Safra. The importance of being biased. In 34th ACM Symposium on theTheory of Computing, pages 33{42, 2002.of variable z are replaced by the variables z(1); :::; z(m), while adding the clauses z(i) _ :z(i+1) and z(i+1) _ :z(i) (fori = 1; :::; m� 1). The problem is that almost all clauses of the reduced formula may be satis�ed by an assignment inwhich half of the copies of each variable are assigned one value and the rest are assigned an opposite value. That is,an assignment in which z(1) = � � � = z(i) 6= z(i+1) = � � � = z(m) violates only one of the auxiliary clauses introducedfor enforcing equality among the copies of z. Using an alternative reduction that adds the clauses z(i) _ :z(j) forevery i; j 2 [m] will not do either, because the number of added clauses may be quadratic in the number of originalclauses. 11
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