
Texts in Computational Complexity:A proof of the #P-completeness of the permanentOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.November 12, 2005Main TextWe present the following result of Valiant [2].Theorem 1 Counting the number of perfect matchings in a bipartite graph is #P-complete.Equivalently (see Exercise 5), the problem of computing the permanent of matrices with 0/1-entriesis #P-complete. Recall that the permanent of an n-by-n matrix M = (mi;j), denoted perm(M),equals the sum over all permutations � of [n] of the products Qni=1mi;�(i). Theorem 1 is proven bycomposing two (many-to-one) reductions, asserted in Propositions 2 and 3, respectively. Needlessto say, the resulting reduction is not parsimonious.Proposition 2 The counting problem of 3SAT (i.e., #R3SAT) is reducible to computing the perma-nent of integer matrices. Furthermore, there exists an even integer c > 0 and a �nite set of integersI such that, on input a 3CNF formula �, the reduction produces an integer matrix with entries inI and a permanent value that equals cm �#R3SAT(�), where m denotes the number of clauses in �.The original proof of Proposition 2 uses c = 210 and I = f�1; 0; 1; 2; 3g. It follows that, for everyinteger n > 1 that is relatively prime to c, computing the permanent modulo n is NP-hard (seeExercise 6, which also uses Theorem 4). Thus, using the case of c = 210, this means that computingthe permanent modulo n is NP-hard for any odd n > 1. In contrast, computing the permanentmodulo 2 (which is equivalent to computing the determinant modulo 2) is easy (i.e., can be donein polynomial-time and even in NC). Thus, assuming NP 6� BPP , Proposition 2 cannot hold foran odd c. We also note that, assuming P 6= NP , Proposition 2 cannot possibly hold for a set Icontaining only non-negative integers (see Exercise 7).Proposition 3 Computing the permanent of integer matrices is reducible to computing the perma-nent of 0/1-matrices. Furthermore, the reduction transforms an integer matrix A into a 0/1-matrixA00 such that the permanent of A can be easily computed from A and the permanent of A00.Proof of Proposition 2: We will use the correspondence between the permanent of a matrixA and the sum of the weights of the cycle covers of the weighted directed graph represented by thematrix A. A cycle cover of a graph is a collection of simple1 vertex-disjoint directed cycles that1Here a simple cycle is a strongly connected directed graph in which each vertex has a single incoming (resp.,outgoing) edge. In particular, self-loops are allowed. 1



covers all the graph's vertices, and its weight is the product of the weights of the correspondingedges. The SWCC of a weighted directed graph is the sum of the weights of all its cycle covers.Given a 3CNF formula �, we construct a directed weighted graph G� such that the SWCC ofG� equals equals cm � #R3SAT(�), where c is a universal constant and m denotes the number ofclauses in �. We may assume, without loss of generality, that each clause of � has exactly threevariables (which are not necessarily distinct).
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Figure 1: Tracks connecting gadgets for the reduction to cycle cover.We start with a high-level description (of the construction) that refers to (clause) gadgets, eachcontaining some internal vertices and (weighted) edges, which are unspeci�ed at this point. Inaddition, each gadget has three pairs of designated vertices, one pair per each literal appearingin the clause, when one vertex in the pair is designated as an entry vertex and the other as anexit vertex. The graph G� consists of m such gadgets, one per each clause (of �), and n auxiliaryvertices, one per each variable (of �), as well as some additional directed edges, each having weight 1.Speci�cally, for each variable, we introduce two tracks, one per each of the possible literals of thisvariable. The track associated with a literal consists of directed edges that form a simple \cycle"passing through the corresponding vertex as well as through the designated vertices that correspondto the occurrences of this literal in the various clauses. Speci�cally, for each such occurrence, thetrack enters the corresponding clause gadget at the entry-vertex corresponding to this literal andexits at the corresponding exit-vertex. (If a literal does not appear in � then the correspondingtrack is a self-loop on the corresponding variable.) See Figure 1 showing the two tracks of a variablex that occurs positively in three clauses and negatively in one clause. The entry-vertices (resp.,exit-vertices) are drawn on the top (resp., bottom) part of each gadget.For the purpose of stating the desired properties of the clause gadget, we augment the gadgetby nine external edges (of weight 1), one per each pair of (not necessarily matching) entry and exitvertices such that the edge goes from the exit-vertex to the entry-vertex (see Figure 2). The threeedges that link the designated pairs of vertices that correspond to the three literals are called nice.We say that a collection of edges C (e.g., a collection of cycles) uses the external edges S if theintersection of C with the set of the (nine) external edges equals S. We postulate the followingthree properties of the clause gadget.1. The sum of the weights of all cycle covers (of the gadget) that do not use any external edge(i.e., use the empty set of external edges) equals zero.2



On the left is a gadget with the track edges adjacent to it (as in thereal construction). On the right is a gadget and four out of the nineexternal edges (two of which are nice) used in the analysis.Figure 2: External edges for the analysis of the clause gadget2. Let V (S) denote the set of vertices incident to S, and say that S is nice if it is non-emptyand the vertices in V (G) can be perfectly matched using nice edges.2 Then, there exists aconstant c (indeed the one postulated in the proposition's claim) such that, for any nice setS, the sum of the weights of all cycle covers that use the external edges S equals c.3. For any non-nice set S of external edges, the sum of the weights of all cycle covers that usethe external edges S equals zero.Note that the foregoing three cases exhaust all the possible ones, and that the set of external edgesused by a cycle cover must be a matching (i.e., these edges are vertex disjoint). Using the foregoingconditions, it follows that each satisfying assignment of � contributes exactly cm to the SWCC ofG� (see Exercise 8). It follows that the SWCC of G� equals cm �#R3SAT(�).Having established the validity of the abstract reduction, we turn to the implementation of theclause gadget. The �rst implementation is a Deus ex Machina, with a corresponding adjacencymatrix depicted in Figure 3. Its validity (for the value c = 12) can be veri�ed by computing thepermanent of the corresponding sub-matrices (see analogous analysis in Exercise 10).A more structured implementation of the clause gadget is depicted in Figure 4, which refers to a(hexagon) box to be implemented later. The box contains several vertices and weighted edges, butonly two of these vertices, called terminals, are connected to the outside (and are shown in Figure 4).The clause gadget consists of �ve copies of this box, where three copies are designated for the threeliterals of the clause (and are marked LB1, LB2, and LB3), as well as additional vertices and edgesshown in Figure 4. In particular, the clause gadget contains the six aforementioned designatedvertices (i.e., a pair of entry and exit vertices per each literal), two additional vertices (shown atthe two extremes of the �gure), and some edges (all having weight 1). Each designated vertex hasa self-loop, and is incident to a single additional edge that is outgoing (resp., incoming) in case the2Clearly, any non-empty set of nice edges is a nice set. Thus, a singleton set is nice if and only if the correspondingedge is nice. The set S of three external edges is nice, because V (S) has a perfect matching using all three nice edges.Thus, the notion of nice sets is \non-trivial" only for sets of two edges. Such a set is nice if and only if V (S) consistsof a two pairs of corresponding designated vertices. 3



The gadget uses eight vertices, where the �rst six are the designatedvertices. The entry-vertex (resp., exit-vertex) associated with theith literal is numbered i (resp., i + 3). The corresponding adjacencymatrix follows.0BBBBBBBBBBBB@
1 0 0 2 0 0 0 00 1 0 0 3 0 0 00 0 0 0 0 1 0 00 0 �1 1 �1 0 1 10 0 �1 �1 2 0 1 10 0 0 �1 �1 0 1 10 0 1 1 1 0 2 �10 0 1 1 1 0 0 1

1CCCCCCCCCCCCANote that the edge 3 ! 6 can be contracted, but the resulting 7-vertex graph will not be consistent with our (inessentially stringent)de�nition of a gadget by which the six designated vertices should bedistinct.Figure 3: A Deus ex Machina clause gadget for the reduction to cycle cover.vertex is an entry-vertex (resp., exit-vertex) of the gadget. The two terminals of each box that isassociated with some literal are connected to the corresponding pair of designated vertices (e.g.,the outgoing edge of entry1 is incident at the right terminal of the box LB1). Note that the �veboxes reside on a directed path (going from left to right), and the only edges going in the oppositedirection are those drawn below this path.In continuation to the foregoing, we wish to state the desired properties of the box. Again,we do so by considering the augmentation of the box by external edges (of weight 1) incident atthe speci�ed vertices. In this case (see Figure 5), we have a pair of anti-parallel edges connectingthe two terminals of the box as well as two self-loops (one on each terminal). We postulate thefollowing three properties of the box.1. The sum of the weights of all cycle covers (of the box) that do not use any external edgeequals zero.2. There exists a constant b (in our case b = 4) such that, for each of the two anti-parallel edges,the sum of the weights of all cycle covers that use this edge equals b.3. For any (non-empty) set S of the self-loops, the sum of the weights of all cycle covers (of thebox) that use S equals zero.Note that the foregoing three cases exhaust all the possible ones. It can be shown that the conditionsregarding the box imply that the construction presented in Figure 4 satis�es the conditions thatwere postulated for the clause gadget (see Exercise 9). Speci�cally, we have c = b5. As for box
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Figure 4: A structured clause gadget for the reduction to cycle cover.
On the left is a box with potential edges adjacent to it (as in thegadget construction). On the right is a box and the four externaledges used in the analysis.Figure 5: External edges for the analysis of the boxitself, a smaller Deus ex Machina is provided by the following 4-by-4 adjacency matrix0BBB@ 0 1 �1 �11 �1 1 10 1 1 20 1 3 0 1CCCA (1)where the two terminals correspond to the �rst and the fourth vertices. Its validity (for thevalue b = 4) can be veri�ed by computing the permanent of the corresponding sub-matrices (seeExercise 10).Proof of Proposition 3: The proof proceeds in two steps. In the �rst step we show thatcomputing the permanent of integer matrices is reducible to computing the permanent of non-negative matrices. This reduction proceeds as follows. Given an n-by-n integer matrix A = (ai;j)i;j ,let kAk1 = maxi;j(jai;j j) and QA = 2(n!) � kAkn1 + 1. The reduction constructs the matrix A0 =(ai;j mod QA)i;j (i.e., the entries of A0 are in f0; 1; :::; QA�1g), and outputs v def= perm(A0) mod QAif v < QA=2 and �(QA�v) otherwise. The key observation is that perm(A) � perm(A0) (mod QA)5



while jperm(A)j � (n!) � kAkn1 < QA=2. Thus, perm(A0) mod QA (which is in f0; 1; :::; QA � 1g)determines perm(A). We note that perm(A0) is likely to be much larger than QA > jperm(A)j; it ismerely that perm(A0) and perm(A) are equivalent modulo QA.In the second step we show that computing the permanent of non-negative matrices is reducibleto computing the permanent of 0/1-matrices. In this reduction, we view the computation of thepermanent as the computation of the sum of the weights of the cycle covers (SWCC) of the corre-sponding weighted directed graph (see proof of Proposition 2). Thus, we reduce the computationof the SWCC of directed graphs with non-negative weights to the computation of the SWCC of un-weighted directed graphs with no parallel edges (which correspond to 0/1-matrices). The reductionis via local replacements that preserve the value of the SWCC. These local replacements combinedthe following two local replacements (which preserve the SWCC):1. Replacing an edge of weight w = w1 � � �wt by a path of length t (i.e., t � 1 internal nodes)with the corresponding weights w1; :::; wt, and self-loops (with weight 1) on all internal nodes.Note that a cycle-cover that uses the original edge corresponds to a cycle-cover that usesthe entire path, whereas a cycle-cover that does not use the original edge corresponds to acycle-cover that uses all the self-loops.2. Replacing an edge of weight w = w1 + � � � + wt by t parallel 2-edge paths such that the �rstedge on the ith path has weight wi, the second edges has weight 1, and the intermediate nodehas a self-loop (with weight 1). (Paths of length two are used because parallel edges are notallowed.)Note that a cycle-cover that uses the original edge corresponds to a collection of cycle-coversthat use one out of the t paths (and the self-loops of all other intermediate nodes), whereas acycle-cover that does not use the original edge corresponds to a cycle-cover that uses all theself-loops.In particular, writing the positive integer w, having binary expansion �jwj�1 � � � �0, asPi:�i=1(1+1)i,we may apply the additive replacement (for the sum over fi : �i=1g), next the product replacement(for each 2i), and �nally the additive replacement (for 1+1). Applying this process to the matrix A0obtained in the �rst step, we e�ciently obtain a matrix A00 with 0/1-entries such that perm(A0) =perm(A00). Combining the two reductions (steps), the proposition follows.NotesThe counting class #P was introduced by Valiant [2], who proved that computing the permanentof 0/1-matrices is #P-complete (i.e., Theorem 1).Our presentation of Theorem 1 is based both on Valiant's paper [2] and on subsequent studies(most notably [1]). Speci�cally, the high-level structure of the reduction presented in Proposition 2as well as the \structured" design of the clause gadget is taken from [2], whereas the Deus ExMachina gadget presented in Figure 3 is based on [1]. The proof of Proposition 3 is also basedon [1] (with some variants). Turning back to the design of clause gadgets we regret not being ableto cite and/or use a systematic study of this design problem.On the hardness of unique solution problems. In the main text, we refer to the followingversion of the Valiant-Vazirani Theorem, which is stated next. For a binary relation R, we denoteR(x) = fy : (x; y)2Rg, and say that x has a unique solution jR(x)j = 1. We say that a many-to-one6



reduction f of R0 to R is parsimonious if for every x it holds that jR(x)j = jR0(f(x))j. We denote byPC the class of search problems that correspond to NP; that is, R 2 PC if there exists a polynomialp such that for every (x; y) 2 R it holds that jyj � p(jxj) and membership in R can be decided inpolynomial-time.Theorem 4 Let R 2 PC and suppose that every search problem in PC is parsimoniously reducibleto R. Then solving the search problem of R (resp., deciding membership in SR = fx : jR(x)j � 1g)is reducible in probabilistic polynomial-time to �nding unique solutions for R (resp., the promiseproblem (USR; SR), where USR = fx : jR(x)j = 1g and SR = fx : jR(x)j = 0g).Exercise 5 (computing the permanent of integer matrices) Prove that computing the per-manent of matrices with 0/1-entries is computationally equivalent to computing the number ofperfect matchings in bipartite graphs.(Hint: Given a bipartite graph G = ((X;Y ); E), consider the matrix M representing the edges between X and Y(i.e., the (i; j)-entry in M is 1 if the ith vertex of X is connected to the jth entry of Y ), and note that only perfectmatchings in G contribute to the permanent of M .)Exercise 6 (computing the permanent modulo 3) Combining Proposition 2 and Theorem 4,prove that for every integer n > 1 that is relatively prime to c, computing the permanent modulo nis NP-hard under randomized reductions. Since Proposition 2 holds for c = 210, hardness holds forevery odd integer n > 1.Guideline: Applying the reduction of Proposition 2 to the promise problem of deciding whether a 3CNFformula has a unique satis�able assignment or is unsatis�able. Use the fact that n does not divide any powerof c.Exercise 7 (negative values in Proposition 2) Assuming P 6= NP, prove that Proposition 2cannot hold for a set I containing only non-negative integers. Note that the claim holds even if theset I is not �nite (and even if I is the set of all non-negative integers).Guideline: A reduction as in Proposition 2 provides a Karp-reduction of 3SAT to deciding whether thepermanent of a matrix with entries in I is non-zero. Note that the permanent of a non-negative matrix isnon-zero if and only if the corresponding bipartite graph has a perfect matching.Exercise 8 (high-level analysis of the permanent reduction) Establish the correctness ofthe high-level reduction presented in the proof of Proposition 2. That is, show that if the clausegadget satisfy the three conditions postulated in the said proof, then each satisfying assignment of� contributes exactly cm to the SWCC of G� and unsatisfying assignments have no contribution.Guideline: Cluster the cycle covers of G� according to the set of track edges that they use (i.e., the edgesof the cycle cover that belong to the various tracks). (Note the correspondence between these edges and theexternal edges used in the de�nition of the gadget's properties.) Using the postulated conditions (regardingthe clause gadget) prove that, for each such set T of track edges, if the sum of the weights of all cycle coversthat use the track edges T is non-zero then the following hold:1. The intersection of T with the set of track edges incident at each speci�c clause gadget is non-empty.Furthermore, if this set contains an incoming edge (resp., outgoing edge) of some entry-vertex (resp.,exit-vertex) then it also contains an outgoing edge (resp., incoming edge) of the corresponding exit-vertex (resp., entry-vertex).2. If T contains an edge that belongs to some track then it contains all edges of this track. It followsthat, for each variable x, the set T contains the edges of a single track associated with x.7



3. The tracks \picked" by T correspond to a single truth assignment to the variables of �, and thisassignment satis�es � (because, for each clause, T contains an external edges that correspond to aliteral that satis�es this clause).It follows that each satisfying assignment of � contributes exactly cm to the SWCC of G�.Exercise 9 (analysis of the implementation of the clause gadget) Establish the correctnessof the implementation of the clause gadget presented in the proof of Proposition 2. That is, showthat if the box satisfy the three conditions postulated in the said proof, then the clause gadget ofFigure 4 satis�es the conditions postulated for it.Guideline: Cluster the cycle covers of a gadget according to the set of non-box edges that they use, wherenon-box edges are the edges shown in Figure 4. Using the postulated conditions (regarding the box) provethat, for each set S of non-box edges, if the sum of the weights of all cycle covers that use the non-box edgesS is non-zero then the following hold:1. The intersection of S with the set of edges incident at each box must contain two (non-seloop) edges,one incident at each of the box's terminals. Needless to say, one edge is incoming and the otheroutgoing. Referring to the six edges that connects one of the six designated vertices (of the gadget)with the corresponding box terminals as connectives, note that if S contains a connective incident atthe terminal of some box then it must also contain the connective incident at the other terminal. Insuch a case, we say that this box is picked by S,2. Each of the three (literal-designated) boxes that is not picked by S is \traversed" from left to right(i.e., the cycle cover contains an incoming edge of the left terminal and an outgoing edge of the rightterminal). Thus, the set S must contain a connective, because otherwise no directed cycle may coverthe leftmost vertex shown in Figure 4. That is, S must pick some box.3. The set S is fully determined by the non-empty set of boxes that it picks.The postulated properties of the clause gadget follow, with c = b5.Exercise 10 (analysis of the design of a box for the clause gadget) Prove that the 4-by-4matrix presented in Eq. (1) satis�es the properties postulated for the \box" used in the second partof the proof of Proposition 2. In particular:1. Show a correspondence between the conditions required of the box and conditions regardingthe value of the permanent of certain sub-matrices of the adjacency matrix of the graph.(Hint: For example, show that the �rst condition correspond to requiring that the value of the permanentof the entire matrix equals zero. The second condition refers to sub-matrices obtained by omitting either the�rst row and fourth column or the fourth row and �rst column.)2. Verify that the matrix in Eq. (1) satis�es the aforementioned conditions (regarding the valueof the permanent of certain sub-matrices).Prove that no 3-by-3 matrix (and thus also no 2-by-2 matrix) can satisfy the aforementionedconditions.References[1] A. Ben-Dor and S. Halevi. In 2nd Israel Symp. on Theory of Computing and Systems, IEEEComputer Society Press, pages 108-117, 1993.[2] L.G. Valiant. The Complexity of Computing the Permanent. Theoretical Computer Science,Vol. 8, pages 189{201, 1979. 8


