
Texts in Computational Complexity:Four Advanced Topics Related to NP and NPCOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.November 21, 20051 Main TextWe discuss four relatively advanced topics. These topics are typically not mentioned in a basiccourse on complexity. Still, pending on time constraints, we suggest discussing them at least at ahigh level.Preliminaries. We denote by PC (standing for \Polynomial-time Check") the class of searchproblems that correspond to polynomially-bounded binary relations that have e�ciently checkablesolutions. That is, R 2 PC if the following two conditions hold:1. For some polynomial p, if (x; y) 2 R then jyj � p(jxj).2. There exists a polynomial-time algorithm that given (x; y) determines whether or not (x; y) 2R.1.1 NP sets that are neither in P nor NP-completeThousands of problems have been shown to be NP-complete (cf., [2, Apdx.], which contains a listof more than three hundreds main entries). Things reached a situation in which people seem toexpect any NP-set to be either NP-complete or in P. This naive view is wrong: Assuming NP 6= P,there exist sets in NP that are neither NP-complete nor in P, where here NP-hardness allows alsoCook-reductions.Theorem 1 Assuming NP 6= P, there exist sets in NP n P such that some set in NP is notCook-reducible to them.We mention that some natural problems (e.g., factoring) are conjectured to be neither solvablein polynomial-time nor NP-hard. One candidate class of such problems is NP \ coNP , wherecoNP = ff0; 1g� n S : S 2 NPg (see Section 1.4). Speci�cally, if � def= NP \ coNP 6= P andNP 6= coNP then � is a class of sets that satisfy the conclusion of Theorem 1.1 Below, the existenceof sets satisfying this conclusion is proved based on the weaker assumption that NP 6= P (whichis actually a necessary condition for this conclusion). (We recommend to either state Theorem 1without a proof or merely provide the proof idea.)1This implication is based on Theorem 7. 1

Proof Sketch: The basic idea is modifying an arbitrary set in NP n P so as to fail all possiblereductions (fromNP to the modi�ed set) as well as all possible polynomial-time decision procedures(for the modi�ed set). Speci�cally, starting with S 2 NP n P, we derive S0 � S such that on onehand there is no polynomial-time reduction of S to S0 while on the other hand S0 2 NP n P. Theprocess of modifying S into S0 proceeds in iterations, alternatively failing a potential reduction (bydropping su�ciently many strings from the rest of S) and failing a potential decision procedure (byincluding su�ciently many strings from the rest of S). Speci�cally, each potential reduction of Sto S0 can be failed by dropping �nitely many elements from the current S0, whereas each potentialdecision procedure can be failed by keeping �nitely many elements of the current S0. These twoassertions are based on the following two corresponding facts:1. Any polynomial-time reduction (of any set not in P) to a �nite set (i.e., a �nite subset of S)must fail, because only sets in P are Cook-reducible to a �nite set. Thus, for any potentialreduction (i.e., a polynomial-time oracle machine), there exists an input x on which thisreduction fails. It follows that this failure is due to a �nite set of queries (i.e., the set of allqueries made by the reduction when invoked on an input that is smaller or equal to x). Thus,for every �nite set F � S, any reduction of S to S0 can be failed by dropping a �nite numberof elements from S0 and without dropping elements of F .2. For every �nite set F , any polynomial-time decision procedure for S n F must fail, becauseS is (trivially) Cook-reducible to S n F . Thus, for any potential decision procedure (i.e., apolynomial-time algorithm), there exists an input x on which this procedure fails. It followsthat this failure is due to a �nite pre�x of S (i.e., the set fz 2 S : z � xg). Thus, for every�nite set F , any polynomial-time decision procedure for S nF can be failed by keeping a �nitesubset of S n F .As stated, the process of modifying S into S0 proceeds in iterations, alternatively failing a potentialreduction (by dropping �nitely many strings from the rest of S) and failing a potential decisionprocedure (by including �nitely many strings from the rest of S). This can be done e�cientlybecause it is inessential to determine the �rst possible points of alternation (in which su�cientlymany strings were dropped (resp., included) to fail the next potential reduction (resp., decisionprocedure)). It su�ces to guarantee that adequate points of alternation (albeit highly non-optimalones) can be e�ciently determined. Thus, S0 is the intersection of S and some set in P, whichimplies that S0 2 NP n P. Following are some comments regarding the implementation of theforegoing idea.The foregoing plan calls for an (\e�ective") enumeration of all polynomial-time oracle machines(resp., polynomial-time algorithms). However, none of these sets can be enumerated (by an al-gorithm). Instead, we enumerate all corresponding machines along with all possible polynomials,and for each pair (M;p) we consider executions of machine M with time bound speci�ed by thepolynomial p. That is, we use the machine Mp obtained from the pair (M;p) by suspending theexecution of M on input x after p(jxj) steps. We stress that we do not know whether machine Mruns in polynomial-time, but the computations of any polynomial-time machine is \covered" bysome pair (M;p).Let us clarify the process in which reductions and decision procedures are ruled out. We presenta construction of a \�lter" set F in P such that the �nal set S0 will equal S\F . Recall that we needto select F such that each polynomial-time reduction of S to S\F fails, and each polynomial-timeprocedure for deciding S \ F fails. The key observation is that for every �nite F each polynomial-time reduction of S to S \ F fails, whereas for every co-�nite F (i.e., �nite f0; 1g� n F) each2

polynomial-time procedure for deciding S \ F fails. Furthermore, each of these failures occur onsome input, and this input is determined by �nite portions of S and F . Thus, we alternate betweenfailing possible reductions and decision procedures, while not trying to determine the \optimal"points of alternation but rather determining points of alternation in a way that allows for e�cientlydeciding membership in F . Speci�cally, we let F = fx : f(jxj) � 0 mod 2g, where f : N ! f0g [Nis de�ned next such that f(n) can be computed in time poly(n).The value of f(n) is de�ned by the the following experiment that consists of exactly n3 com-putation steps (where cubic time is selected to allow for some non-trivial manipulations of dataas conducted next). For i = 0; 1; :::, we scan all inputs in lexicographic order trying to �nd aninput on which the i + 1st (modi�ed) machine fails (where this machine is an oracle machine if iis even and a standard machine otherwise). In order to determine whether or not a failure occurson a particular input, we may need to know the value of f(n0) for some n0, which we just computerecursively (while counting the recursive steps in our total number of steps).2 The point is that,when considering an input x, we may need the values of f only on f1; :::; pi+1(jxj)g, where pi+1 isthe polynomial bounding the running-time of the i+1st (modi�ed) machine, and obtaining such avalue takes at most pi+1(jxj)3 steps Also note that we may need to decide membership in S 2 NP ,which we do by running the straightforward exponential-time algorithm (which tries all possibleNP-witnesses). If we detect a failure of the i + 1st machine, we increase i and proceed to thenext iteration. When we reach the allowed number of steps (i.e., n3 steps), we halt outputting thecurrent value of i (i.e., the current i is output as the value of f(n)). Indeed, it is most likely thatwe will reach n3 steps before examining inputs of length 3 log2 n, but this does not matter. Whatmatters is that f is monotonically non-decreasing (because more steps allow to fail at least as manymachines) as well as unbounded (see Exercise 10). Furthermore, by construction, f(n) is computedin poly(n) time.Comment: The proof of Theorem 1 actually establishes that for every S 62 P there exists S0 62 Psuch that S0 is Karp-reducible to S but S is not Cook-reducible to S0.3 Thus, if P 6= NP thenthere exists an in�nite sequence of sets S1; S2; ::: in NP n P such that Si+1 is Karp-reducible to Sibut Si is not Cook-reducible to Si+1. That is, there exists an in�nite hierarchy of problems (albeitunnatural ones), all in NP , such that each problem is \easier" than the previous ones (in the sensethat it can be reduced to the previous problems while these problems cannot be reduced to it).1.2 Promise ProblemsPromise problems are a natural generalization of (search and decision) problems, where one ex-plicitly considers a set of legitimate instances (rather than considering any string as a legitimateinstance). As noted before, this provides a more adequate formulation of natural computationalproblems (and indeed this formulation is used in all informal discussions). In fact, standard pre-sentation of such problems (see, e.g., [2]) use phrases like \given a graph and an integer..." (or\given a collection of sets..."). In other words, we assumed that the input instance has a certainformat (or rather were \promised" that this is the case). Indeed, we claimed that in these casesthe assumption can be removed without a�ecting the complexity of the problem, but we avoidedproviding a formal treatment of this issue, which is done next.2We do not bother to present an e�cient implementation of this process. That is, we may a�ord to recomputef(n0) every time we need it (rather than store it for later use).3The said Karp-reduction (of S0 to S) maps x to itself if x 2 F and otherwise maps x to a �xed no-instance of S.3

We note that the notion of promise problems was originally introduced in the context of decisionproblems, and is typically used only in that context. However, we believe that it is as natural inthe context of search problems, and present things accordingly.1.2.1 De�nitionsIn the context of search problems, a promise problem is a relaxation in which one is only required to�nd solutions to instances in a predetermined set, called the promise. The requirement of e�cientchecking of solutions is adapted in an analogous manner.De�nition 2 (search problems with a promise): A search problem with a promise consists of abinary relation R � f0; 1g� �f0; 1g� and a promise set P . Such a problem is also referred to as thesearch problem R with promise P .� The search problem R with promise P is solved by algorithm A if for every x 2 P it holdsthat (x;A(x)) 2 R if x 2 SR = fx : R(x) 6= ;g and A(x) = ? otherwise, where R(x) = fy :(x; y) 2 Rg.The time complexity of A on inputs in P is de�ned as TAjP (n) def= maxx2P\f0;1gnftA(x)g, wheretA(x) is the running time of A(x) and TAjP (n) = 0 if P \ f0; 1gn = ;.� The search problem R with promise P is in the promise problem extension of PF if thereexists a polynomial-time algorithm that solves this problem.4� The search problem R with promise P is in the promise problem extension of PC if there existsa polynomial T and an algorithm A such that, for every x 2 P and y 2 f0; 1g�, algorithm Amakes at most T (jxj) steps and it holds that A(x; y) = 1 if and only if (x; y) 2 R.We stress that nothing is required of the solver in the case that the input violates the promise (i.e.,x 62 P); in particular, in such a case the algorithm may halt with a wrong output. (Indeed, thestandard formulation of search problems is obtained by considering the trivial promise P = f0; 1g�.)In addition to the foregoing motivation for promise problems, we mention one natural class of searchproblems with a promise. These are search problem in which the promise is that the instance hasa solution (i.e., in terms of the foregoing notation P = SR). We refer to such search problems bythe name candid search problems.De�nition 3 (candid search problems): An algorithm A solves the candid search problem of thebinary relation R if for every x 2 SR def= fx : 9y s.t. (x; y) 2 Rg it holds that (x;A(x)) 2 R. Thetime complexity of such an algorithm is de�ned as TAjSR(n) def= maxx2P\f0;1gnftA(x)g, where tA(x)is the running time of A(x) and TAjSR(n) = 0 if P \ f0; 1gn = ;.Note that nothing is required when x 62 SR: In particular, Amay output a wrong solution (althoughno solutions exist) or run for more than TAjSR(jxj) steps. Note that for R 2 PC, if we \know" thetime complexity of algorithm A (e.g., if we can compute TAjSR(n) in poly(n)-time), then we maymodify A into an algorithm A0 that solves the (general) search problem of R (i.e., halts on each4In this case it does not matter whether the time complexity of A is de�ned on inputs in P or on all possiblestrings. Suppose that A has polynomial time complexity T on inputs in P , then we can modify A to halt on anyinput x after at most T (jxj) steps. This modi�cation may only e�ects the output of A on inputs not in P (which isOK by us). The modi�cation can be implemented in polynomial-time by computing t = T (jxj) and emulating theexecution of A(x) for t steps. A similar comment applies to the de�nition of PC, P and NP.4

input) in time TA0(n) = TAjSR(n) + poly(n). However, as we shall see in Section 1.3, the naiveassumption by which we always know the running-time of an algorithm that we design is notnecessarily valid.Decision problems with a promise. In the context of decision problems, a promise problemis a relaxation in which one is only required to determine the status of instances that belong toa predetermined set, called the promise. The requirement of e�cient veri�cation is adapted in ananalogous manner. In view of the standard usage of the term, we refer to decision problems with apromise by the name promise problems. Formally, promise problems refer to a three-way partitionof the set of all strings into yes-instances, no-instances and instances that violate the promise.Standard decision problems are obtained as a special case by insisting that all inputs are allowed(i.e., the promise is trivial).De�nition 4 (promise problems): A promise problem consists of a pair of non-intersecting sets ofstrings, denoted (Syes; Sno), and Syes [Sno is called the promise.� The promise problem (Syes; Sno) is solved by algorithm A if for every x 2 Syes it holds thatA(x) = 1 and for every x 2 Sno it holds that A(x) = 0. The promise problem is in the promiseproblem extension of P if there exists a polynomial-time algorithm that solves it.� The promise problem (Syes; Sno) is in the promise problem extension of NP if there exists apolynomial p and a polynomial-time algorithm V such that the following two conditions hold:1. Completeness: For every x 2 Syes, there exists y of length at most p(jxj) such thatV (x; y) = 1.2. Soundness: For every x 2 Sno and every y, it holds that V (x; y) = 0.We stress that for algorithms of polynomial-time complexity, it does not matter whether the timecomplexity is de�ned only on inputs that satisfy the promise or on all strings (see Footnote 4).Thus, the extended classes P and NP (like PF and PC) are invariant under this choice.Reducibility among promise problems. The notion of a Cook-reduction extend naturallyto promise problems, when postulating that a query that violates the promise (of the problemat the target of the reduction) may be answered arbitrarily.5 The latter convention is consistentwith the conceptual meaning of reductions and promise problems. Recall that reductions capturesprocedures that make subroutine calls to an arbitrary procedure that solves the reduced problem.But in case of promise problems, such a solver may behave arbitrarily on instances that violate thepromise. Nevertheless, the main property of a reduction is preserved: if the promise problem �is Cook-reducible to a promise problem that is solvable in polynomial-time, then � is solvable inpolynomial-time.We warn that the extension of a complexity class to promise problems does not necessarilyinherit the \structural" properties of the standard class. For example, in contrast to Theorem 7,there exists promise problems in NP \ coNP such that every set in NP can be Cook-reduced tothem: see Exercise 11. Needless to say, NP = coNP does not seem to follow from Exercise 11.5It follows that Karp-reductions among promise problems are not allowed to make queries that violate the promise.Speci�cally, we say that the promise problem � = (�yes;�no) is Karp-reducible to the promise problem �0 =(�0yes;�0no) if there exists a polynomial-time mapping f such that for every x 2 �yes (resp., x 2 �no) it holds thatf(x) 2 �0yes (resp., f(x) 2 �0no). 5

1.2.2 DiscussionThe following discussion refers both to the decision and search versions of promise problems. Recallthat promise problems o�er the most direct way to capture natural computational problems.Restricting a computational problem. In addition to the foregoing motivation to promiseproblems, we mention their use in formulating the notion of a restriction of a computational problemto a subset of the instances. Speci�cally, such a restriction means that the promise set of therestricted problem is a subset of the promise problem of the unrestricted problem. For example,when we say that 3SAT is a restriction of SAT, we refer to the fact that the set of allowed instancesis now restricted to 3CNF formulae (rather than to arbitrary CNF formulae). In both cases, thenatural computational problem is to determine satis�ability (or to �nd a satisfying assignment),but the set of instances (i.e., the promise set) is further restricted in the case of 3SAT. The factthat a restricted problem is never harder than the original problem is captured by the fact that therestricted problem is reducible to the original one (via the identity mapping).The standard convention of avoiding promise problems. Recall that, although promiseproblems provide a good framework for presenting natural computational problems, one usuallymanages to avoid this formulation. This is done by relying on the fact that for all the (natural)problems considered in the previous sections, it is easy to decide whether or not a given instancesatis�es the promise. For example, given a formula it is easy to decide whether or not it is in CNF(or 3CNF). Actually, the issue arises already when talking about formulae: What we are actuallygiven is a string that is supposed to encode a formula (under some predetermined encoding scheme),and so the promise (which is easy to decide for natural encodings) is that the input string is a validencoding of a formula. In any case, if the promise is e�ciently recognizable (i.e., membership in itcan be decided in polynomial-time) then we may avoid mentioning the promise by using one of thefollowing two \nasty" conventions:1. Extending the set of instances to the set of all possible strings (and allowing trivial solutionsfor the corresponding dummy instances). For example, in the case of a search problem, wemay either de�ne all instance that violate the promise to have no solution or de�ne them tohave a trivial solution (e.g., be a solution for themselves); that is, for a search problem Rwith promise P , we may consider the (standard) search problem of R where R is modi�edsuch that R(x) = ; for every x 62 P (or, say, R(x) = fxg for every x 62 P). In the case of apromise (decision) problem (Syes; Sno), we may consider the problem of deciding membershipin Syes, which means that instances that violate the promise are considered as no-instances.2. Considering every string as a valid encoding of an object that satis�es the promise. Thatis, �xing any string x0 that satis�es the promise, we consider every string that violates thepromise as if it were x0. In the case of a search problem R with promise P , this meansconsidering the (standard) search problem of R where R is modi�ed such that R(x) = R(x0)for every x 62 P . Similarly, in the case of a promise (decision) problem (Syes; Sno), we considerthe problem of deciding membership in Syes.We stress that in the case that the promise is e�ciently recognizable the aforementioned conventions(or modi�cations) do not e�ect the complexity of the relevant (search or decision) problem. Thatis, rather that considering the original promise problem we consider a (search or decision) problem(without a promise) that is computational equivalent to the original one. Thus, in some sensewe loss nothing by studying the latter problem rather than the original one. On the other hand,6

even in case the two problems are computationally equivalent, it is useful to have a formulationthat allows to distinguish between them (as we do distinguish between the di�erent NP-completeproblems although they are all computationally equivalent). This conceptual concern becomes ofcrucial importance in the case (to be discussed next) that the promise is not e�ciently recognizable.The foregoing transformations of promise problems into computationally equivalent standard(decision and search) problems does not necessarily preserve the complexity of the problem inthe case that the promise is not e�ciently recognizable. In this case, the terminology of promiseproblems is unavoidable. Consider, for example, the problem of deciding whether a Hamiltoniangraph is 3-colorable. On the face of it, such a problem may have fundamentally di�erent complexitythan the problem of deciding whether a given graph is both Hamiltonian and 3-colorable.The notion of a promise problem provides an adequate formulation for a variety of computa-tional complexity notions and results. Examples include the notion of \unique solutions" and theformulation of \gap problems" as capturing various approximation tasks.1.2.3 The common conventionIn spite of the foregoing opinions, we adopt the common convention of focusing on standard decisionand search problems. That is, by default, all complexity classes refer to standard decision and searchproblems, and the exceptions in which we refer to promise problems are stated explicitly as such.Indeed, an exception appears in Section 1.3.1.3 Optimal search algorithms for NP-relationsWe refer to the candid search problem of any relation in PC. Recall that PC is the class ofsearch problems that allow for e�cient checking of the correctness of candidate solutions (seepreliminaries), and that the candid search problem is a search problem in which the solver ispromised that the given instance has a solution (see De�nition 3).We claim the existence of an optimal algorithm for solving any candid search problem of anyrelation in PC. Furthermore, we will explicitly present such an algorithm, and prove that it isoptimal in a very strong sense: for any algorithm solving the candid search problem of R 2 PC,our algorithm solves the same problem in time that is at most a constant factor slower (ignoringa �xed additive polynomial term, which may be disregarded in case the problem is not solvablein polynomial-time). Needless to say, we do not know the time complexity of the aforementionedoptimal algorithm (indeed if we knew it then we would have resolved the P-vs-NP Question).However, viewed di�erently, we \reduce" the P-vs-NP Question to determining the time complexityof a single explicitly presented algorithm (i.e., the optimal algorithm claimed in Theorem 5).Theorem 5 For every binary relation R 2 PC there exists an algorithm A that satis�es the fol-lowing:1. A solves the candid search problem of R.2. There exists a polynomial p such that for every algorithm A0 that solves the candid searchproblem of R and for every x 2 SR def= fx : R(x) 6= ;g it holds that tA(x) = O(tA0(x)+p(jxj)),where tA (resp., tA0) denotes the number of steps taken by A (resp., A0) on input x.Interestingly, we establish the optimality of A without knowing what its (optimal) running-time is.Furthermore, the optimality claim is \point-wise" (i.e., it refers to any input) rather than \global"(i.e., referring to the (worst case) time complexity as a function of the input length).7

We stress that the hidden constant in the O-notation depends only on A0, but in the followingproof the dependence is exponential in the length of the description of algorithm A0 (and it is notknown whether a better dependence can be achieved). Indeed, this dependence as well as the ideaunderlying it constitute one negative aspect of this otherwise amazing result. Another negativeaspect is that the optimality of algorithm A refers only to inputs that have a solution (i.e., inputsin SR). Finally, we note that the theorem as stated refers only to models of computation that havemachines that can emulate a given number of steps of other machines with a constant overhead. Wemention that in most natural models the overhead of such emulation is at most poly-logarithmicin the number of steps, in which case it holds that tA(x) = eO(tA0(x) + p(jxj)).Proof Sketch: Fixing R, we let M be a polynomial-time algorithm that decides membership inR, and let p be a polynomial bounding the running-time of M . We present the following algorithmA that merely emulates all possible search algorithms \in parallel" and checks the result providedby each of them (using M), halting whenever it obtains a correct solution.Since there are in�nitely many possible algorithms, it may not be clear what we mean by theexpression \emulating all possible algorithms in parallel." What we mean is emulating them atdi�erent \rates" such that the in�nite sum of these rates converges to 1 (or to any other constant).Speci�cally, we will emulate the ith possible algorithm at rate 1=(i+1)2, which means emulating asingle step of this algorithm per (i+1)2 emulation steps (performed for all algorithms). Note that astraightforward implementation of this idea may create a signi�cant overhead, involved in switchingfrequently from the emulation of one machine to the emulation of another. Instead, we present analternative implementation that proceeds in iterations. In the jth iteration, for i = 1; :::; 2j=2 � 1,algorithm A emulates 2j=(i+1)2 steps of the ith machine. Each of these emulations is conducted inone chunk, and thus the overhead of switching between the various emulations is insigni�cant (incomparison to the total number of steps being emulated). In the case that some of these emulationshalts with output y, algorithm A invokes M on input (x; y) and output y if and only ifM(x; y) = 1.Furthermore, the veri�cation of a solution provided by a candidate algorithm is also emulated atthe expense of its step-count. (Put in other words, we augment each algorithm with a canonicalprocedure (i.e., M) that checks the validity of the solution o�ered by the algorithm.)Clearly, whenever A(x) outputs y (i.e., y 6= ?) it must hold that (x; y) 2 R. To show theoptimality of A, we consider an arbitrary algorithm A0 that solves the candid search problem ofR. Our aim is to show that A is not much slower than A0. Intuitively, this is the case because theoverhead of A results from emulating other algorithms (in addition to A0), but the total number ofemulation steps wasted (due to these algorithms) is inversely proportional to the rate of algorithmA0, which in turn is exponentially related to the length of the description of A0. The punch-line isthat since A0 is �xed, the length of its description is a constant. Details follow.For every x, let us denote by t0(x) the number of steps taken by A0 on input x, where t0(x) alsoaccounts for the running time of M(x; �); that is, t0(x) = tA0(x)+p(jxj), where tA0(x) is the numberof steps taken by A0(x). Then, the emulation of t0(x) steps of A0 on input x is \covered" by the jthiteration of A, provided that 2j=(2jA0j+1)2 � t0(x) where jA0j denotes the length of the descriptionof A0. (Indeed, we assume that the algorithms are emulated in lexicographic order, and note thatthere are at most 2jA0j+1 � 2 algorithms that precede A0 in lexicographic order.) Thus, on input x,algorithm A halts after at most jA0(x) iterations, where jA0(x) = 2(jA0j+1)+ log2(tA0(x) + p(jxj)),after emulating a total number of steps that is at mostt(x) def= jA0(x)Xj=1 2j=2�1Xi=1 2j(i+ 1)2 < 2jA0 (x)+1 = O �22jA0j � (tA0(x) + p(jxj))�:8

The question of how much time is required for emulating these many steps depends on the speci�cmodel of computation. In many models of computation, the emulation of t steps of one machine byanother machine requires eO(t) steps of the emulating machines, and in some models this emulationcan even be performed with constant overhead. The theorem follows.Comment: By construction, the foregoing algorithm A does not halt on input x 62 SR. This canbe easily recti�ed by letting A emulate a straightforward exhaustive search for a solution, and haltwith output ? if this this exhaustive search indicates that there is no solution to the current input.This extra emulation will be done in parallel to all other emulations at a rate of one step for theextra emulation per each step of everything else.1.4 The class coNP and its intersection with NPBy prepending the name of a complexity class (of decision problems) with the pre�x \co" we meanthe class of complement sets; that is,coC def= ff0; 1g� n S : S 2 CgSpeci�cally, coNP = ff0; 1g� n S : S 2 NPg is the class of sets that are complements of sets inNP . Recalling that sets in NP are characterized by their witness relations such that x 2 S if andonly if there exists an adequate NP-witness, it follows that their complement sets consists of allinstances for which there are no NP-witness (i.e., x 2 f0; 1g� n S if there is no NP-witness for xbeing in S).Another perspective on coNP is obtained by considering the search problems in PC. Recallthat for such R 2 PC, the set of instances having a solution (i.e., SR = fx : 9y s.t. (x; y)2Rg) is inNP . It follows that the set of instances having no solution (i.e., f0; 1g� n SR = fx : 8y (x; y) 62Rg)is in coNP .It is widely believed that NP 6= coNP (which means that NP is not closed under complementa-tion). Indeed, this conjecture implies P 6= NP (because P is closed under complementation). Theconjecture NP 6= coNP means that some sets in coNP do not have NP-proof systems (becauseNP is the class of sets having NP-proof systems). As we will show next, under this conjecture,the complements of NP-complete sets do not have NP-proof systems; for example, there exists noNP-proof system for proving that a given formula is not satis�able. We �rst establish this fact forNP-completeness in the standard sense (i.e., under Karp-reductions).Proposition 6 Suppose that NP 6= coNP and let S 2 NP such that every set in NP is Karp-reducible to S. Then S def= f0; 1g� n S is not in NP.Proof: We �rst observe that the fact that every set in NP is Karp-reducible to S implies thatevery set in coNP is Karp-reducible to S. We next claim that if S0 is in NP then every set thatis Karp-reducible to S0 is also in NP . Applying the claim to S0 = S, we conclude that S 2 NPimplies coNP � NP , which in turn implies NP = coNP in contradiction to the main hypothesis.We now turn to prove the foregoing claim; that is, we prove that if S0 has an NP-proof systemand S00 is Karp-reducible to S0 then S00 has an NP-proof system. Let V 0 be the veri�cation procedureassociated with S0, and let f be a Karp-reduction of S00 to S0. Then, we de�ne the veri�cationprocedure V 00 (for membership in S00) by V 00(x; y) = V 0(f(x); y). That is, any NP-witness thatf(x) 2 S0 serves as an NP-witness for x 2 S00 (and these are the only NP-witnesses for x 2 S00).9

This may not be a \natural" proof system (for S00), but it is de�nitely an NP-proof system for S00.Assuming that NP 6= coNP , Proposition 6 implies that sets in NP \ coNP cannot be NP-complete with respect to Karp-reductions. In light of other limitations of Karp-reductions (see,e.g., Exercise 9), one may wonder whether or not the exclusion of NP-complete sets from the classNP \ coNP is due to the use of a restricted notion of reductions (i.e., Karp-reductions). Thefollowing theorem asserts that this is not the case: some sets in NP cannot be reduced to sets inthe intersection NP \ coNP even under general reductions (i.e., Cook-reductions).Theorem 7 If every set in NP can be Cook-reduced to some set in NP\coNP then NP = coNP.In particular, assuming NP 6= coNP , no set in NP \ coNP can be NP-complete, even when NP-completeness is de�ned with respect to Cook-reductions. Since NP \ coNP is conjectured to be aproper superset of P, it follows (assuming NP 6= coNP) that there are decision problems in NPthat are neither in P nor NP-hard (i.e., speci�cally, the decision problems in (NP \ coNP) n P).We stress that Theorem 7 refers to standard decision problems and not to promise problems (seeSection 1.2 and Exercise 11).Proof: Using the theorem's hypothesis, we will show that for every S 2 coNP it holds thatS 2 NP . Fixing any S 2 coNP, let S0 2 NP \ coNP be a set such that S is Cook-reducible to S0.Such a reduction exists because S def= f0; 1g� n S is in NP, and thus S is Cook-reducible to someset in NP \ coNP (whereas S is Cook-reducible to S). Let us denote by M the oracle machinereducing S to S0. That is, on input x, machine M makes queries and decides whether or not toaccept x, and its decision is correct provided all queries are answered according to S0.To show that S 2 NP, we will present an NP-proof system for S. This proof system (or ratherits veri�cation procedure), denoted V , accepts a pair of the form (x; ((z1; �1; w1); :::; (zt; �t; wt)) ifthe following two conditions hold:1. On input x, machine M accepts after making the queries z1; :::; zt, and obtaining the corre-sponding answers �1; :::; �t.That is, V check that, on input x, after obtaining the answers �1; :::; �i�1 to the �rst i � 1queries, the ith query made byM equals zi. In addition, V checks thatM outputs 1 (indicatingacceptance).2. For every i, it holds that if �i = 1 then wi is an NP-witness for zi 2 S0, whereas if �i = 0then wi is an NP-witness for zi 2 f0; 1g� n S0.Thus, if this condition holds then it is the case that each �i indicates the correct status of ziwith respect to S0 (i.e., �i = 1 if and only if zi 2 S0).We stress that we use the fact that both S0 and S0 def= f0; 1g� n S have NP-proof systems, and referto the corresponding NP-witnesses.Note that V is indeed an NP-proof system for S. Firstly, the length of the correspondingwitnesses is bounded by the running-time of the reduction (and the length of the NP-witnessessupplied for the various queries). Next note that V runs in polynomial time (i.e., verifying the�rst condition requires an emulation of the polynomial-time execution of M on input x when usingthe �i's to emulate the oracle, whereas verifying the second condition is done by invoking therelevant NP-proof systems). Finally, observe that x 2 S if and only if there exists a sequence10

y def= ((z1; �1; w1); :::; (zt; �t; wt)) such that V (x; y) = 1. In particular, V (x; y) = 1 holds only if ycontains a valid sequence of queries and answers made by M(x) to the oracle S0 and M acceptsbased on that sequence.The world view { a digest. Recall that on top of the P 6= NP conjecture, we mentioned twoother conjectures (which clearly imply P 6= NP):1. The conjecture that NP 6= coNP (equivalently, NP \ coNP 6= NP).This conjecture is equivalent to the conjecture that CNF formula have no short proofs ofunsatis�ability (i.e., the set f0; 1g� n SAT has no NP-proof system).2. The conjecture that NP \ coNP 6= P.Notable candidates for the class NP \ coNP 6= P include decision problems that are com-putationally equivalent to the integer factorization problem (i.e., the search problem (in PC)in which, given a composite number, the task is to �nd its prime factors).Combining these conjectures, we get the world view depicted in Figure 1, which also shows theclass of coNP-complete sets (de�ned next).
P

NPC

coNP

NP

coNPCFigure 1: The world view under P 6= coNP \NP 6= NP .De�nition 8 A set S is called coNP-hard if every set in coNP is Karp-reducible to S. A set iscalled coNP-complete if it is both in coNP and coNP-hard.Indeed, insisting on Karp-reductions is essential for a distinction between NP-hardness and coNP-hardness.2 NotesThe existence of NP-sets that are neither in P nor NP-complete (i.e., Theorem 1) was proven byLadner [4], Theorem 7 was proven by Selman [6], and the existence of optimal search algorithms forNP-relations (i.e., Theorem 5) was proven by Levin [5]. (Interestingly, the latter result was provedin the same paper in which Levin presented the discovery of NP-completeness, independently of11

Cook and Karp.) Promise problems were explicitly introduced by Even, Selman and Yacobi [1];see [3] for a survey of their numerous applications.Exercise 9 Show that some decision problems are not Karp-reducible to their complement (e.g.,the empty set is not Karp-reducible to f0; 1g�).A popular exercise of dubious nature is to show that any decision problem in P is Karp-reducibleto any non-trivial decision problem, where the decision problem regarding a set S is called non-trivial if S 6= ; and S 6= f0; 1g�. It follows that every non-trivial set in P is Karp-reducible to itscomplement.Exercise 10 Referring to the proof of Theorem 1, prove that the function f is unbounded (i.e.,for every i there exists an n such that n3 steps of the process de�ned in the proof allow for failingthe i+ 1st machine).Guideline: Consider n0 such that f(n0) = i. Assuming, towards the contradiction that f(n) = i for everyn > n0, it follows that F = F 00 [F 00, where F 0 = fx : jxj � n0 ^ f(jxj) � 0 (mod 2)g is a �nite set andF 00 = fx : jxj>n0g if i is odd and F 00 = ; otherwise. In case i is odd, the i + 1st machine tries to decideS \ F (which di�ers from S on �nitely many strings), and must fail on some x. Derive a contradiction byshowing that the number of steps that the process makes till reaching and considering the input x is at mostexp(poly(jxj)). A similar argument applies to the case that i is even, where we use the fact that F is �niteand so the relevant reduction of S to S \ F must fail on some input x.Exercise 11 (NP-complete promise problems in coNP (following [1])) Consider the promiseproblem xSAT, having instances that are pairs of CNF formulae. The yes-instances consists of pairs(�1; �2) such that �1 is satis�able and �2 is unsatis�able, whereas the no-instances consists of pairssuch that �1 is unsatis�able and �2 is satis�able.1. Show that xSAT is in the intersection of (the promise problem classes that are analogous to)NP and coNP .2. Prove that any promise problem in NP is Cook-reducible to xSAT. In designing the reduction,recall that queries that violate the promise may be answered arbitrarily.Guideline: Show a reduction of SAT to xSAT. Speci�cally, show that the search problem associatedwith SAT is Cook-reducible to xSAT, by following the ideas used in the reduction of RSAT to SAT (i.e.,the \self-reducibility" of SAT). Actually, we need a more careful implementation of the search process.Suppose that we know (or assume) that � is a pre�x of a satisfying assignment to �, and we wish toextend � by one bit. Then, for each � 2 f0; 1g, we construct a formula, denoted �0� , by setting the�rst j� j+1 variables of � according to the values ��. We query the oracle about the pair (�01; �00), andextend � accordingly (i.e., we extend � by the value 1 if and only if the answer is positive). Note thatif both �01 and �00 are satis�able then it does not matter which bit we use in the extension, whereas ifexactly one formula is satis�able then the oracle answer is reliable.3. Pinpoint the source of failure of the proof of Theorem 7 when applied to the reduction providedin the previous item.References[1] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Applicationsto Public-Key Cryptography. Information and Control, Vol. 61, pages 159{173, 1984.12

[2] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory ofNP-Completeness. W.H. Freeman and Company, New York, 1979.[3] O. Goldreich. On Promise Problems (a survey in memory of Shimon Even [1935-2004]).ECCC, TR05-018, 2005.[4] R.E. Ladner. On the Structure of Polynomial Time Reducibility. Journal of the ACM, Vol. 22,1975, pages 155{171.[5] L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9, pages 115{116,1973. Translated in problems of Information Transmission 9, pages 265{266.[6] A. Selman. On the structure of NP. Notices Amer. Math. Soc., Vol. 21 (6), page 310, 1974.

13

