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1 Preliminaries

Our aim is to relate mild and strong notions of inapproximability. These notions are obtained as
special cases of the following general definition.

Definition 1 (inapproximability, a general formulation): We say that f : {0,1}* — {0,1} is
(S, p)-inapproximable if for every family of S-size circuits {Cy}en and all sufficiently large n it
holds that

p(n
PrC(U) # £(U)] > X )
We say that f is T-inapproximable if it is (7,1 — (1/T))-inapprozimable.
We refer to mildly inapproximable predicate as provided by the following result of [1].

Theorem 2 Suppose that there exists a Boolean function f in € having circuit complexity that
15 almost-everywhere greater than S. Then, there exists an exponential-time computable function
f:40,1} — {0,1}* that is (S, p')-inapprozimable for S'(n') = S(n'/O(1))/poly(n’) and p'(n') =
(1/n")? such that |f(z)| < |z|. That is, for every family of circuit {C!,}en of size S'(n') =
S(n'/O(1))/poly(n') it holds that Pr[C!,(Uy) # f(Un)] > (1/n)2.

Our aim will be to establish strong inapproximable predicate as stated next.

Theorem 3 Suppose that for every polynomial p there exists a problem in € having circuit complez-

ity that 1s almost-everywhere greater than p. Then there exist polynomaial-inapproximable Boolean
functions in E; that is, for every polynomial p there exists a p-inapproximable Boolean function in

€.

This will be done by using Yao’s XOR Lemma (i.e., Theorem 5), which will be proved by combining
a Direct Product Lemma (i.e., Theorem 6) with the following result of [3].

Theorem 4 (a generic hard-core predicate, revisited): There exists a probabilistic oracle machine
that, given parameters n,e and oracle access to any function B : {0,1}" — {0,1}, for every
x € {0,1}", given oracle access to any By halts after poly(n/e) steps and with probability at least
1/2 outputs a list of all strings = € {0,1}™ that satisfy

1
PrrE{O,l}" [B(T> = b(ZL‘,’F)] > 3 + ¢,

where b(x,r) denotes the inner-product mod 2 of x and r.



For motivational purposes, we will refer in a few places to the amplification of one-way functions
(see, e.g., [2, Sec. 2.3]), but these references are inessential.

2 Main Text

Having obtained a mildly inapproximable predicate, we wish to obtain a strongly inapproximable
one. The information theoretic context provides an appealing suggestion: Suppose that X is a
Boolean random variable (representing the mild inapproximability of the aforementioned predicate)
that equals 1 with probability e. Then XORing the outcome of n/e independent samples of X yields
a bit that equals 1 with probability 0.5 £ exp(—(n)). It is tempting to think that the same should
happen in the computational setting. That is, if f is hard to approximate correctly with probability
exceeding 1 —e then XORing the output of f on n/e non-overlapping parts of the input should yield
a predicate that is hard to approximate correctly with probability that is non-negligibly higher than
1/2. The latter assertion turns out to be correct, but (as in the amplification of one-way functions;
cf. [2, Sec. 2.3]) the proof of the computational phenomenon is considerably more complex than
the analysis of the information theoretic analogue.

Theorem 5 (Yao’s XOR Lemma): Let p be a polynomial and suppose that the Boolean function f
is (T, 1/p)-inapprozimable, for every polynomial T'. Then the function F(x1, ..., Tyn)) = @f(:nl)f(xz),
where x1, ..., Tyn) € {0,1}" and t(n) = n - p(n), is T'-inapprozimable for every polynomial T'.

Combining Theorems 2 and 5 (and Exercise 8), we complete the (first) proof of Theorem 3. Several
different proofs of Theorem 5 are known. We choose using a proof that “reduces” the analysis of
the exclusive-or of predicates to the analysis of their direct product. That is, the proof proceeds
in two steps: First we prove that the corresponding “direct product” function P(z, ...,a;t(n)) =
(f(z1), e, f(wy(ny)) is difficult to compute in a strong average-case sense, and next we establish the
desired result by an application of Theorem 4. In fact, the first step is the main one, and we believe
that it is of independent interest (and thus generalize it from Boolean functions to arbitrary ones).

Theorem 6 (The Direct Product Lemma): Let p be a polynomial and f : {0,1}* — {0,1}*.
Suppose that for every family of polynomial-size circuits, {Cy,}nen, and all sufficiently large n €
N, it holds that Pr[Cn(Uy) # f(Un)| > 1/p(n). Let P(zy1,...,%yn)) = (f(21), - f(T4(n))), where
T1, e Tyny € 10,1} and t(n) = n - p(n). Then, for every family of polynomial-size circuits,
{C] Y men, it holds that Pr[C] (Up) = P(Uy)] < u(m), where p is a negligible function.

Theorem 5 follows from Theorem 6 by considering the function P'(x1, ..., 2yn),7) = b(f (x1) -+ f(T4(n)), ),
where f is a Boolean function, r € {0,1}4™) and b(y, ) is the inner-product modulo 2 of the ¢(n)-bit

long strings y and r. Applying Theorem 4, we infer that P’ is T'-inapproximable for every poly-
nomial 7". Lastly, we reduce the approximation of P’ to the approximation of F (see Exercise 9),

and Theorem 5 follows.

Proof of Theorem 6. As in the proof of the amplification of one-way functions (see [2, Sec2.3]),
we show how to converts circuits that violate the theorem’s conclusion into circuits that violate
the theorem’s hypothesis. We note, however, that things were much simpler in the context of
the amplification of one-way functions: There we could (efficiently) check whether or not a value
contained in the output of the circuit that solves the direct-product problem constitutes a correct
answer for the corresponding instance of the basic problem. Lacking such an ability in the current



context, we shall have to use such values more carefully. Loosely speaking, we will take a weighted
majority vote among various answers, where the weights reflect our confidence in the correctness
of the various answers.

We derive Theorem 6 by applying the following lemma that provides quantitative bounds on the
feasibility of computing the direct product of two functions. In this lemma, {Y;, }en and {Z, bonen
are independent probability ensembles such that Y., Z,, € {0,1}™, and X,, = (Yy(n), Zn—g(n)) for
some function £ : N — N. The lemma refers to the success probability of computing the direct
product function F defined by F(yz) = (Fi(y), F2(2)), where |y| = £(|yz|), when given bounds
on the success probability of computing F; and F; (separately). Needless to say, these probability
bounds refer to circuits of certain sizes. We stress that the statement of the lemma is not symmetric
with respect to the two functions, guaranteeing a stronger (and in fact lossless) preservation of
circuit sizes for one of the functions (which is arbitrarily chosen to be F}).

Lemma 7 (Direct Product, a quantitative two argument version): For {Y,,}, {Zw.}, F1, F», ¢,
{X,} and F as in the foregoing, let p1(-) be an upper-bound on the success probability of si(-)-size
circutts in computing Fy over {Y,,}. That is, for every such circuit family {C,,}

Pr[Cm(Ym):Fl(Ym)] < Pl(m)

Likewise, suppose that pa(+) is an upper-bound on the probability that so(-)-size circuits compute Fy
over {Zy}. Then, for every function e :N— R, the function p defined as

p(n) € pi(E(n)) - pa(n — €(n)) + e(n)

is an upper-bound on the probability that families of s(-)-size circuits correctly compute F over
{X,}, where
so(n —L(n)) }

def min< s n
s(n) = { 1(ém)) poly(n/s(n))

Theorem 6 is derived from Lemma 7 by using careful induction, which capitalizes on the asym-
metry of Lemma 7. Specifically, we write P(x1,%g,..., %)) as P(t("))(xl,:cg,...,xt(n)), where
POz, .., x;) = (f(x1), ..., f(23)) and PO (zy, ..., 25) = (PO (2, ...,x;_1), f(2;)). For every poly-
nomial s and a noticeable function ¢ (i.e., £(n) > 1/p(n) for some positive polynomial p), we prove
by induction on 4 that circuits of size s(n) cannot compute P®)(Uj.,) with success probability
greater than (1 — (1/p(n))’ + i - e(n). (The induction basis is guaranteed by the theorem’s hy-
pothesis.) The induction step is proved using Lemma 7 with F; = P(~1) and F, = f (along
with pi((i = 1)n) = (1 = (1/p(n))"' + (i = 1) -e(n), s1((i = n) = s(n), p2(n) = 1 - (1/p(n))
and sg(n) = poly(n/e(n)) - s(n)). In particular, we use again the theorem’s hypothesis regard-
ing f, and note that ((1 — (1/p(n))"* + (i — 1) - e(n)) - (1 — (1/p(n)) + &(n) is upper-bounded
by (1 — (1/p(n))* + i -e(n). Thus, no s(n)-size circuit can compute P(t("))(Ut(n)_n) with success
probability greater than (1 — (1/p(n))"™ 4 t(n) - £(n) = exp(—n) + t(n) - £(n).

Proof of Lemma 7: Proceeding (as usual) by the contrapositive, we consider a family of s(-)-
size circuits {C), },en that violates the lemma’s conclusion; that is, Pr[C,(X,) = F(X,)] > p(n).
We will show how to use such circuits in order to obtain either circuits that violate the lemma’s
hypothesis regarding F; or circuits that violate the lemma’s hypothesis regarding F». Towards this
end, it is instructive to write the success probability of C, in a conditional form, while denoting
the " output of Cy,(x) by Cp(2); (i.e., Cp(z) = (Cp(z)1, Cr(z)2)):

PI’[Cn (}/Z(n)a ané(n)) = F(lfé(n)a anf(n))]



= Pr(C.(Yomys Zn—om))1 = F1(Yy(m))]
’ Pr[Cn(n(n)7 Zn—[(n))Q :FQ(ZH—Z(n)) | Cn(n(n)v Zn—[(n))l =5 (Yi(n))]

The basic idea is that if the first factor is greater than p;(¢(n)) then we derive a circuit contradicting
the lemma’s hypothesis regarding Fj, whereas if the second factor is significantly greater than
p2(n — £(n)) then we derive a circuit contradicting the lemma’s hypothesis regarding F». The
basic idea for the latter case is that a sufficiently large sample of (Y, F1(Yyy))), which may
be hard-wired into the circuit, allows using the conditional probability space (in such a circuit)
towards an attempt to approximate F». This may work provided the condition holds with noticeable
probability. The last caveat motivates a separate treatment of 2’s with noticeable Pr[C, (Y, 2)1=
F1(Yy(n)] and of the rest.

Let us first simplify the notations by fixing a generic n and using the abbreviations C = C,,
e=c¢(n), L =14Ln),Y =Y, and Z =Y, 4. We call z good if Pr[C(Y,z); = F1(Y)] > ¢/2 and
let G be the set of good z’s. Then, we upper-bound the success probability of C' by Pr[C(Y, Z)=
F(Y,Z) N Z€ @]+ ¢/2, where the bound follows by observing that for any z ¢ G:

PriC(Y,z)=F(Y,2)] < PriC(Y,z)1=F1(Y)] < ¢/2.
Thus, using Pr[C(Y, z)=F (Y, z)] > p(n) = p1(€) - p2(n — £) + €, we have

PriC(Y,Z)=F(Y,Z) N ZeG] > p1({) - pa(n — ) + (2)

We proceed according to the forgoing outline, first showing that if Pr[C(Y, Z); =F1(Y)] > p1({) then
we derive circuits violating the hypothesis concerning Fy. Actually, we prove something stronger
(which we will actually need for the other case).

Claim 7.1: For every z, it holds that Pr[C(Y, z)1 =F1(Y)] < p1(0).
Proof: Otherwise, using any z € {0,1}" ¢ that satisfies Pr[C(Y,2)1 = F1(Y)] > p1({), we obtain a
circuit C'(y) def C(y, z)1 that contradicts the lemma’s hypothesis concerning Fy. O

N ™

Using Claim 7.1, we show how to obtain a circuit that violates the lemma’s hypothesis concerning
F5, and doing so we complete the proof of the lemma.

Claim 7.2: There exists a circuit C” of size sa(n — £) such that
PriC(Y,Z)=F(Y,Z) N Z€G]

PrC"(Z)=Fy(Z)] > p1(¢) )

N ™

> pa(n—1{)

Proof: The second inequality is due to Eq. (2), and thus we focus on establishing the first one. We
construct the circuit C” as suggested in the foregoing outline. Specifically, we take a poly(n/c)-

large sample, denoted S, from the distribution (Y, F1(Y")) and let C"(2) def C(y, 2z)2, where (y,v)

is a uniformly selected among the elements of S for which C(y, z); = v holds. Details follow.

Let S be a sequence of m def poly(n/e) pairs, generated by taking m independent samples

from the distribution (Y, F1(Y)). We stress that we do not assume here that such a sample can
be produced by an efficient (uniform) algorithm (but, jumping ahead, we remark that such a
sequence can be fixed non-uniformly). For each z € G C {0,1}"~¢, we denote by S, the set of pairs
(y,v) € S for which C(y,z); = v. Note that S, is a random sample for the residual probability
space defined by (Y, F1(Y)) conditioned on C(Y,z); = F1(Y). Also, with overwhelmingly high
probability, |S,| = Q(n/e?), because z € G implies Pr[C(Y, 2); = F1(Y)] > ¢/2 and m = Q(n?/e3).



Thus, for each z € G, with overwhelming probability taken over the choices of S, the sample S,
provides a good approximation to the conditional probability space. In particular, with probability
greater than 1 — 27", it holds that

{yv) € 5:: OW 22 =B & by 1)y = Fy(2) | OV, 201 = 1 (V)] —

5. (3)

N ™

Thus, with positive probability, Eq. (3) holds for all z € G C {0,1}"*. The circuit C" computing
F, is now defined as follows. A set S = {(y;,v;) : i = 1,...,m} satisfying Eq. (3) for all good 2’s is
“hard-wired” into the circuit C”. (In particular, S, is not empty for any good z.) On input z, the
circuit C” first determines the set S,, by running C for m times and checking, for each i =1, ...,m,
whether or not C(y;,2) = v;. In case S, is empty, the circuit returns an arbitrary value. Otherwise,
the circuit selects uniformly a pair (y,v) € S, and outputs C(y,2)2. (The latter random choice
can be eliminated by a standard averaging argument.) Using the definition of C”, Eq. (3), and
Claim 7.1, we have:

PrC"(Z)=F3(2)] > Y. PrlZ=2]PrlC"(z)=F(2)]

2€CG
— Z Pr[Z:z] . H(yav) €S,: g(?raz)2:F2(z)}|
2€G z
> S Priz=d] - (PO, 2l =Fa2) | OV, n =Fi(Y)] - 5)
2€CG
. 7=, PF[C(Y,Z>2:F2(Z) A C(Y,Z)lel(Y>] B E
- z%c:;P = ( PriC(Y, 2)1=F1(Y)] 2)
PO =R o)) e
§ (;;Pr[z_ | p1(f) ) 2

where the last inequality is due to Claim 7.1. The claim follows. O

This completes the proof of the lemma. W

Comments. Firstly, we wish to call attention to the care with which an inductive argument needs
to be carried out in the computational setting, especially when a non-constant number of inductive
steps is concerned. Indeed, our inductive proof of Theorem 6 involves invoking a quantitative
lemma that allows to keep track of the relevant quantities (e.g., success probability and circuit size)
throughout the induction process. Secondly, we mention that Lemma 7 (as well as Theorem 6)
has a uniform complexity version that assumes that one can efficiently sample the distribution
(Yenys F1(Ye(n))) (resp., (U, f(Un))). For details see [4]. Indeed, a good lesson from the proof of
Lemma 7 is that non-uniform circuits can “effectively sample” any distribution. Lastly, we mention
that Theorem 5 (Yao’s XOR Lemma) also has a (tight) quantitative version (see, e.g., [4, Sec. 3]).

3 Notes

Like several other fundamental insights attributed to Yao’s paper [5], Yao’s XOR Lemma (Theo-
rem 5) is not even stated in [5] but is rather due to Yao’s oral presentations of his paper. The first
published proof of Yao’s XOR Lemma was given by Levin (see [4, Sec. 3]). Levin’s proof is the only
one known giving a tight quantitative analysis (on the decrease in the level of approximability),



and the interested reader is referred to it (via the non-laconic presentation of [4, Sec. 3]). The proof
presented in Section 2 is due to Goldreich, Nisan and Wigderson [4, Sec. 5].

Exercise 8 Let f be as in the conclusion of Theorem 2. Prove that there exists a Boolean function
g in & that is (p,¢e)-inapproximable for every polynomial p and for e(n) = 1/n3.
(Hint: consider the function g defined such that g(z,4) equals the i*" bit of f(w))

Exercise 9 Let f be a Boolean function, and b(y,r) denote the inner-product modulo 2 of the
equal-length strings y and r. Suppose that F'(x1, ..., ¥yn),7) def b(f(w1) -+ f(wyn)),7), where
T1, ., Tyny € 10,1} and r € {0, 1}t(”), is T-inapproximable for every polynomial 7. Assuming that
n — t(n)-n is 1-1, prove that F(x) o F'(2,190=D) where #(t(n) - n) = t(n), is T-inapproximable
for every polynomial T

Guideline: Reduce the approximation of F’ to the approximation of F'. An important observation is that
for any x = (21, ..., Ty(n)), ¥’ = (x’l,...,x;(n)), and 7 = 71 -+ 7y(n) such that z} = z; if r; = 1, it holds that
F'(z,r) = F(2')®®::r,—0 f (). Note that the equality holds regardless of the choice of the string =} € {0,1}"
for which 7; = 0. Also note that the suggested reduction requires knowledge of 0 = ®;.r, =0 f(x}), but in our
context the reduction may be performed by a small non-uniform circuit, which may incorporate the values
of f(2)’s for a small number of 2’s. Indeed, for uniformly chosen z1, ..., 2;) € {0,1}", we use these 2;’s as
well as the f(z;)’s as advice to the reduction. On input 1, ..., Ty(n), 1 - - * Ty(n), the reduction sets x; = x; if
ri = 1 and @; = z; otherwise, makes the query 2’ = (21, ..., 7},)) to F, and returns F(z') @:.p,=0 f(2:).
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