
Texts in Computational Complexity:Proving Yao's XOR Lemma via the Direct Product LemmaOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.November 23, 20051 PreliminariesOur aim is to relate mild and strong notions of inapproximability. These notions are obtained asspecial cases of the following general de�nition.De�nition 1 (inapproximability, a general formulation): We say that f : f0; 1g� ! f0; 1g is(S; �)-inapproximable if for every family of S-size circuits fCngn2N and all su�ciently large n itholds that Pr[C(Un) 6= f(Un)] � �(n)2 (1)We say that f is T -inapproximable if it is (T; 1� (1=T ))-inapproximable.We refer to mildly inapproximable predicate as provided by the following result of [1].Theorem 2 Suppose that there exists a Boolean function f in E having circuit complexity thatis almost-everywhere greater than S. Then, there exists an exponential-time computable functionf̂ : f0; 1g� ! f0; 1g� that is (S0; �0)-inapproximable for S0(n0) = S(n0=O(1))=poly(n0) and �0(n0) =(1=n0)2 such that jf̂(x)j � jxj. That is, for every family of circuit fC 0n0gn02N of size S0(n0) =S(n0=O(1))=poly(n0) it holds that Pr[C 0n0(Un0) 6= f̂(Un0)] > (1=n0)2.Our aim will be to establish strong inapproximable predicate as stated next.Theorem 3 Suppose that for every polynomial p there exists a problem in E having circuit complex-ity that is almost-everywhere greater than p. Then there exist polynomial-inapproximable Booleanfunctions in E; that is, for every polynomial p there exists a p-inapproximable Boolean function inE.This will be done by using Yao's XOR Lemma (i.e., Theorem 5), which will be proved by combininga Direct Product Lemma (i.e., Theorem 6) with the following result of [3].Theorem 4 (a generic hard-core predicate, revisited): There exists a probabilistic oracle machinethat, given parameters n; " and oracle access to any function B : f0; 1gn ! f0; 1g, for everyx 2 f0; 1gn, given oracle access to any Bx halts after poly(n=") steps and with probability at least1=2 outputs a list of all strings x 2 f0; 1gn that satisfyPrr2f0;1gn [B(r) = b(x; r)] � 12 + ";where b(x; r) denotes the inner-product mod 2 of x and r.1



For motivational purposes, we will refer in a few places to the ampli�cation of one-way functions(see, e.g., [2, Sec. 2.3]), but these references are inessential.2 Main TextHaving obtained a mildly inapproximable predicate, we wish to obtain a strongly inapproximableone. The information theoretic context provides an appealing suggestion: Suppose that X is aBoolean random variable (representing the mild inapproximability of the aforementioned predicate)that equals 1 with probability ". Then XORing the outcome of n=" independent samples of X yieldsa bit that equals 1 with probability 0:5� exp(�
(n)). It is tempting to think that the same shouldhappen in the computational setting. That is, if f is hard to approximate correctly with probabilityexceeding 1�" then XORing the output of f on n=" non-overlapping parts of the input should yielda predicate that is hard to approximate correctly with probability that is non-negligibly higher than1=2. The latter assertion turns out to be correct, but (as in the ampli�cation of one-way functions;cf. [2, Sec. 2.3]) the proof of the computational phenomenon is considerably more complex thanthe analysis of the information theoretic analogue.Theorem 5 (Yao's XOR Lemma): Let p be a polynomial and suppose that the Boolean function fis (T; 1=p)-inapproximable, for every polynomial T . Then the function F (x1; :::; xt(n)) = �t(n)i=1f(xi),where x1; :::; xt(n) 2 f0; 1gn and t(n) = n � p(n), is T 0-inapproximable for every polynomial T 0.Combining Theorems 2 and 5 (and Exercise 8), we complete the (�rst) proof of Theorem 3. Severaldi�erent proofs of Theorem 5 are known. We choose using a proof that \reduces" the analysis ofthe exclusive-or of predicates to the analysis of their direct product. That is, the proof proceedsin two steps: First we prove that the corresponding \direct product" function P (x1; :::; xt(n)) =(f(x1); :::; f(xt(n))) is di�cult to compute in a strong average-case sense, and next we establish thedesired result by an application of Theorem 4. In fact, the �rst step is the main one, and we believethat it is of independent interest (and thus generalize it from Boolean functions to arbitrary ones).Theorem 6 (The Direct Product Lemma): Let p be a polynomial and f : f0; 1g� ! f0; 1g�.Suppose that for every family of polynomial-size circuits, fCngn2N, and all su�ciently large n 2N , it holds that Pr[Cn(Un) 6= f(Un)] > 1=p(n). Let P (x1; :::; xt(n)) = (f(x1); :::; f(xt(n))), wherex1; :::; xt(n) 2 f0; 1gn and t(n) = n � p(n). Then, for every family of polynomial-size circuits,fC 0mgm2N, it holds that Pr[C 0m(Um) = P (Um)] < �(m), where � is a negligible function.Theorem 5 follows from Theorem 6 by considering the function P 0(x1; :::; xt(n); r) = b(f(x1) � � � f(xt(n)); r),where f is a Boolean function, r 2 f0; 1gt(n) , and b(y; r) is the inner-product modulo 2 of the t(n)-bitlong strings y and r. Applying Theorem 4, we infer that P 0 is T 0-inapproximable for every poly-nomial T 0. Lastly, we reduce the approximation of P 0 to the approximation of F (see Exercise 9),and Theorem 5 follows.Proof of Theorem 6. As in the proof of the ampli�cation of one-way functions (see [2, Sec2.3]),we show how to converts circuits that violate the theorem's conclusion into circuits that violatethe theorem's hypothesis. We note, however, that things were much simpler in the context ofthe ampli�cation of one-way functions: There we could (e�ciently) check whether or not a valuecontained in the output of the circuit that solves the direct-product problem constitutes a correctanswer for the corresponding instance of the basic problem. Lacking such an ability in the current2



context, we shall have to use such values more carefully. Loosely speaking, we will take a weightedmajority vote among various answers, where the weights re
ect our con�dence in the correctnessof the various answers.We derive Theorem 6 by applying the following lemma that provides quantitative bounds on thefeasibility of computing the direct product of two functions. In this lemma, fYmgm2N and fZmgm2Nare independent probability ensembles such that Ym; Zm 2 f0; 1gm, and Xn = (Y`(n); Zn�`(n)) forsome function ` : N 7! N . The lemma refers to the success probability of computing the directproduct function F de�ned by F (yz) = (F1(y); F2(z)), where jyj = `(jyzj), when given boundson the success probability of computing F1 and F2 (separately). Needless to say, these probabilitybounds refer to circuits of certain sizes. We stress that the statement of the lemma is not symmetricwith respect to the two functions, guaranteeing a stronger (and in fact lossless) preservation ofcircuit sizes for one of the functions (which is arbitrarily chosen to be F1).Lemma 7 (Direct Product, a quantitative two argument version): For fYmg, fZmg, F1, F2, `,fXng and F as in the foregoing, let �1(�) be an upper-bound on the success probability of s1(�)-sizecircuits in computing F1 over fYmg. That is, for every such circuit family fCmgPr[Cm(Ym)=F1(Ym)] � �1(m)Likewise, suppose that �2(�) is an upper-bound on the probability that s2(�)-size circuits compute F2over fZmg. Then, for every function " :N 7!R , the function � de�ned as�(n) def= �1(`(n)) � �2(n� `(n)) + "(n)is an upper-bound on the probability that families of s(�)-size circuits correctly compute F overfXng, where s(n) def= min�s1(`(n)) ; s2(n� `(n))poly(n="(n))�Theorem 6 is derived from Lemma 7 by using careful induction, which capitalizes on the asym-metry of Lemma 7. Speci�cally, we write P (x1; x2; :::; xt(n)) as P (t(n))(x1; x2; :::; xt(n)), whereP (i)(x1; :::; xi) = (f(x1); :::; f(xi)) and P (i)(x1; :::; xi) � (P (i�1)(x1; :::; xi�1); f(xi)). For every poly-nomial s and a noticeable function " (i.e., "(n) > 1=p(n) for some positive polynomial p), we proveby induction on i that circuits of size s(n) cannot compute P (i)(Ui�n) with success probabilitygreater than (1 � (1=p(n))i + i � "(n). (The induction basis is guaranteed by the theorem's hy-pothesis.) The induction step is proved using Lemma 7 with F1 = P (i�1) and F2 = f (alongwith �1((i � 1)n) = (1 � (1=p(n))i�1 + (i � 1) � "(n), s1((i � 1)n) = s(n), �2(n) = 1 � (1=p(n))and s2(n) = poly(n="(n)) � s(n)). In particular, we use again the theorem's hypothesis regard-ing f , and note that ((1 � (1=p(n))i�1 + (i � 1) � "(n)) � (1 � (1=p(n)) + "(n) is upper-boundedby (1 � (1=p(n))i + i � "(n). Thus, no s(n)-size circuit can compute P (t(n))(Ut(n)�n) with successprobability greater than (1� (1=p(n))t(n) + t(n) � "(n) = exp(�n) + t(n) � "(n).Proof of Lemma 7: Proceeding (as usual) by the contrapositive, we consider a family of s(�)-size circuits fCngn2N that violates the lemma's conclusion; that is, Pr[Cn(Xn) = F (Xn)] > �(n).We will show how to use such circuits in order to obtain either circuits that violate the lemma'shypothesis regarding F1 or circuits that violate the lemma's hypothesis regarding F2. Towards thisend, it is instructive to write the success probability of Cn in a conditional form, while denotingthe ith output of Cn(x) by Cn(x)i (i.e., Cn(x) = (Cn(x)1; Cn(x)2)):Pr[Cn(Y`(n); Zn�`(n))=F (Y`(n); Zn�`(n))]3



= Pr[Cn(Y`(n); Zn�`(n))1=F1(Y`(n))]� Pr[Cn(Y`(n); Zn�`(n))2=F2(Zn�`(n)) jCn(Y`(n); Zn�`(n))1=F1(Y`(n))]:The basic idea is that if the �rst factor is greater than �1(`(n)) then we derive a circuit contradictingthe lemma's hypothesis regarding F1, whereas if the second factor is signi�cantly greater than�2(n � `(n)) then we derive a circuit contradicting the lemma's hypothesis regarding F2. Thebasic idea for the latter case is that a su�ciently large sample of (Y`(n); F1(Y`(n))), which maybe hard-wired into the circuit, allows using the conditional probability space (in such a circuit)towards an attempt to approximate F2. This may work provided the condition holds with noticeableprobability. The last caveat motivates a separate treatment of z's with noticeable Pr[Cn(Y`(n); z)1=F1(Y`(n))] and of the rest.Let us �rst simplify the notations by �xing a generic n and using the abbreviations C = Cn," = "(n), ` = `(n), Y = Y`, and Z = Yn�`. We call z good if Pr[C(Y; z)1 = F1(Y )] � "=2 andlet G be the set of good z's. Then, we upper-bound the success probability of C by Pr[C(Y;Z)=F (Y;Z) ^ Z2G] + "=2, where the bound follows by observing that for any z 62 G:Pr[C(Y; z)=F (Y; z)] � Pr[C(Y; z)1=F1(Y )] < "=2 :Thus, using Pr[C(Y; z)=F (Y; z)] > �(n) = �1(`) � �2(n� `) + ", we havePr[C(Y;Z)=F (Y;Z) ^ Z2G] > �1(`) � �2(n� `) + "2 : (2)We proceed according to the forgoing outline, �rst showing that if Pr[C(Y;Z)1=F1(Y )] > �1(`) thenwe derive circuits violating the hypothesis concerning F2. Actually, we prove something stronger(which we will actually need for the other case).Claim 7.1: For every z, it holds that Pr[C(Y; z)1=F1(Y )] � �1(`).Proof: Otherwise, using any z 2 f0; 1gn�` that satis�es Pr[C(Y; z)1=F1(Y )] > �1(`), we obtain acircuit C 0(y) def= C(y; z)1 that contradicts the lemma's hypothesis concerning F1. 2Using Claim 7.1, we show how to obtain a circuit that violates the lemma's hypothesis concerningF2, and doing so we complete the proof of the lemma.Claim 7.2: There exists a circuit C 00 of size s2(n� `) such thatPr[C 00(Z)=F2(Z)] � Pr[C(Y;Z)=F (Y;Z) ^ Z2G]�1(`) � "2> �2(n� `)Proof: The second inequality is due to Eq. (2), and thus we focus on establishing the �rst one. Weconstruct the circuit C 00 as suggested in the foregoing outline. Speci�cally, we take a poly(n=")-large sample, denoted S, from the distribution (Y; F1(Y )) and let C 00(z) def= C(y; z)2, where (y; v)is a uniformly selected among the elements of S for which C(y; z)1 = v holds. Details follow.Let S be a sequence of m def= poly(n=") pairs, generated by taking m independent samplesfrom the distribution (Y; F1(Y )). We stress that we do not assume here that such a sample canbe produced by an e�cient (uniform) algorithm (but, jumping ahead, we remark that such asequence can be �xed non-uniformly). For each z 2 G � f0; 1gn�`, we denote by Sz the set of pairs(y; v) 2 S for which C(y; z)1 = v. Note that Sz is a random sample for the residual probabilityspace de�ned by (Y; F1(Y )) conditioned on C(Y; z)1 = F1(Y ). Also, with overwhelmingly highprobability, jSzj = 
(n="2), because z 2 G implies Pr[C(Y; z)1=F1(Y )] � "=2 and m = 
(n2="3).4



Thus, for each z 2 G, with overwhelming probability taken over the choices of S, the sample Szprovides a good approximation to the conditional probability space. In particular, with probabilitygreater than 1� 2�n, it holds thatjf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSzj � Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y )]� "2 (3)Thus, with positive probability, Eq. (3) holds for all z 2 G � f0; 1gn�`. The circuit C 00 computingF2 is now de�ned as follows. A set S = f(yi; vi) : i = 1; :::;mg satisfying Eq. (3) for all good z's is\hard-wired" into the circuit C 00. (In particular, Sz is not empty for any good z.) On input z, thecircuit C 00 �rst determines the set Sz, by running C for m times and checking, for each i = 1; :::;m,whether or not C(yi; z) = vi. In case Sz is empty, the circuit returns an arbitrary value. Otherwise,the circuit selects uniformly a pair (y; v) 2 Sz and outputs C(y; z)2. (The latter random choicecan be eliminated by a standard averaging argument.) Using the de�nition of C 00, Eq. (3), andClaim 7.1, we have:Pr[C 00(Z)=F2(Z)] � Xz2GPr[Z=z] � Pr[C 00(z)=F2(z)]= Xz2GPr[Z=z] � jf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSzj� Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y )] � "2�= Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) ^ C(Y; z)1=F1(Y )]Pr[C(Y; z)1=F1(Y )] � "2��  Xz2GPr[Z=z] � Pr[C(Y; z)=F (Y; z)]�1(`) ! � "2where the last inequality is due to Claim 7.1. The claim follows. 2This completes the proof of the lemma.Comments. Firstly, we wish to call attention to the care with which an inductive argument needsto be carried out in the computational setting, especially when a non-constant number of inductivesteps is concerned. Indeed, our inductive proof of Theorem 6 involves invoking a quantitativelemma that allows to keep track of the relevant quantities (e.g., success probability and circuit size)throughout the induction process. Secondly, we mention that Lemma 7 (as well as Theorem 6)has a uniform complexity version that assumes that one can e�ciently sample the distribution(Y`(n); F1(Y`(n))) (resp., (Un; f(Un))). For details see [4]. Indeed, a good lesson from the proof ofLemma 7 is that non-uniform circuits can \e�ectively sample" any distribution. Lastly, we mentionthat Theorem 5 (Yao's XOR Lemma) also has a (tight) quantitative version (see, e.g., [4, Sec. 3]).3 NotesLike several other fundamental insights attributed to Yao's paper [5], Yao's XOR Lemma (Theo-rem 5) is not even stated in [5] but is rather due to Yao's oral presentations of his paper. The �rstpublished proof of Yao's XOR Lemma was given by Levin (see [4, Sec. 3]). Levin's proof is the onlyone known giving a tight quantitative analysis (on the decrease in the level of approximability),5



and the interested reader is referred to it (via the non-laconic presentation of [4, Sec. 3]). The proofpresented in Section 2 is due to Goldreich, Nisan and Wigderson [4, Sec. 5].Exercise 8 Let f̂ be as in the conclusion of Theorem 2. Prove that there exists a Boolean functiong in E that is (p; ")-inapproximable for every polynomial p and for "(n) = 1=n3.(Hint: consider the function g de�ned such that g(x; i) equals the ith bit of f̂(x).)Exercise 9 Let f be a Boolean function, and b(y; r) denote the inner-product modulo 2 of theequal-length strings y and r. Suppose that F 0(x1; :::; xt(n); r) def= b(f(x1) � � � f(xt(n)); r), wherex1; :::; xt(n) 2 f0; 1gn and r 2 f0; 1gt(n) , is T -inapproximable for every polynomial T . Assuming thatn 7! t(n) � n is 1-1, prove that F (x) def= F 0(x; 1t0(jxj)), where t0(t(n) � n) = t(n), is T -inapproximablefor every polynomial T .Guideline: Reduce the approximation of F 0 to the approximation of F . An important observation is thatfor any x = (x1; :::; xt(n)), x0 = (x01; :::; x0t(n)), and r = r1 � � � rt(n) such that x0i = xi if ri = 1, it holds thatF 0(x; r) = F (x0)��i:ri=0f(x0i). Note that the equality holds regardless of the choice of the string x0i 2 f0; 1gnfor which ri = 0. Also note that the suggested reduction requires knowledge of � = �i:ri=0f(x0i), but in ourcontext the reduction may be performed by a small non-uniform circuit, which may incorporate the valuesof f(z)'s for a small number of z's. Indeed, for uniformly chosen z1; :::; zt(n) 2 f0; 1gn, we use these zi's aswell as the f(zi)'s as advice to the reduction. On input x1; :::; xt(n); r1 � � � rt(n), the reduction sets x0i = xi ifri = 1 and x0i = zi otherwise, makes the query x0 = (x01; :::; x0t(n)) to F , and returns F (x0)�i:ri=0 f(zi).References[1] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponential Time Simulationsunless EXPTIME has Publishable Proofs. Complexity Theory, Vol. 3, pages 307{318, 1993.[2] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press, 2001.[3] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACMSymposium on the Theory of Computing, pages 25{32, 1989.[4] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC, TR95-050, 1995.[5] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium onFoundations of Computer Science, pages 80{91, 1982.
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