Texts in Computational Complexity:
P /poly and PH

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

November 28, 2005

Summary: We consider variations on the complexity classes P and NP. We refer specif-
ically to the non-uniform version of P, and to the Polynomial-time Hierarchy (which
extends NP). These variations are motivated by relatively technical considerations, and
the resulting classes are referred to quite frequently in the literature.

Non-uniform polynomial-time (P/poly) captures efficient computations that are carried
out by devices that handle specific input lengths. The basic formalism ignore the
complexity of constructing such devices (i.e., a uniformity condition). A finer formalism
that allows to quantify the amount of non-uniformity refers to so called “machines that
take advice.”

The Polynomial-time Hierarchy (PH) generalizes NP by considering statements ex-
pressed by a quantified Boolean formula with a fixed number of alternations of existen-
tial and universal quantifiers. It is widely believed that each quantifier alternation adds
expressive power to the class of such formulae.

The two different classes are related by showing that if NP is contained in P/poly
then the Polynomial-time Hierarchy collapses to its second level. Assuming the latter
collapse does not occur, this means that there is hope to resolve the P-vs-NP Question
by showing that NP is not contained in “non-uniform P” (P/poly).

1 Non-uniform polynomial-time (P/poly)

In this section we consider two formulations of the notion of non-uniform polynomial-time, present-
ing two models of non-uniform (polynomial-time) computing devices. These models are derived by
specializing the treatment of non-uniform computing devices, to the case of polynomially bounded
complexities. It turns out that both models allow to solve the same class of computational problems,
which is a strict superset of the class of problems solvable by polynomial-time algorithms.

The two models discussed below are Boolean circuits and “machines that take advice”. We
will focus on the restriction of both models to the case of polynomial complexities, considering
(non-uniform) polynomial-size circuits and polynomial-time algorithms that take (non-uniform)
polynomially bounded advice.

The main motivation for considering non-uniform polynomial-size circuits is that their limita-
tions imply analogous limitations on polynomial-time algorithms. The hope is that, as is often the

case in mathematics and Science, disposing of an auxiliary condition that is not well-understood
(i.e., uniformity) may turn out fruitful. In particular, it may facilitate a low-level analysis of the
evolution of a computation, by using combinatorial techniques. This hope has materialized in the
study of restricted classes of circuits (e.g., monotone circuits and constant-depth circuits).

Polynomial-time algorithms that take polynomially bounded advice are useful in modeling aux-
iliary information available to possible efficient strategies that are of interest to us. Indeed, the
typical cases are the modeling of adversaries in the context of cryptography and the modeling
of arbitrary randomized algorithms in the context of derandomization. Furthermore, the model
of polynomial-time algorithms that take advice allows for a quantitative study of the amount of
non-uniformity, ranging from zero to polynomial.

1.1 Boolean Circuits

We assume familiarity with the definition of (families of) Boolean circuits and the functions com-
puted by them. For concreteness and simplicity, we assume throughout this section that all circuits
has bounded fan-in. We highlight the following simple result.

Theorem 1 (circuit evaluation): There exists a polynomial-time algorithm that, given a circuit
C:{0,1}" — {0,1}"™ and an n-bit long string x, returns C(z).

Recall that the algorithm works by performing the value-determining process described when defin-
ing the value of the circuit vertices on a given input.

Circuit size as a complexity measure. We recall the standard definitions of circuit complexity:
The size of a circuit is defined as the number of edges, and the length of its description is almost
linear in the latter; that is, a circuit of size s is commonly described by the list of its edges and
the labels of its vertices, which means that its description length is O(slogs). We are interested
in families of circuits that solve computational problems, and say that the circuit family (C,),en
computes the function f : {0,1}* — {0,1}* if for every € {0,1}* it holds that Cj,(z) = f(z).
The size complexity of this family is the function s : N — N such that s(n) is the size of C,,. The
circuit complexity of a function f, denoted sy, is the size complexity of the smallest family of circuits
that computes f. An equivalent alternative follows.

Definition 2 (circuit complexity): The circuit complexity of f : {0,1}* — {0,1}* is the function
sy N — N such that sg(n) is the size of the smallest circuit that computes the restriction of f to
n-bit strings.

We stress that non-uniformity is implicit in this definition, because no conditions are made regarding
the relation between the various circuits used to compute the function on different input lengths.

We will be interested in the class of problems that are solvable by families of polynomial-size
circuits. That is, a problem is solvable by polynomial-size circuits if it can be solved by a function
f that has polynomial circuit complexity (i.e., there exists a polynomial p such that sf(n) < p(n),
for every n € N).

A detour: uniform families. A family of polynomial-size circuits (Cy,), is called uniform if
given n one can construct the circuit C,, in poly(n)-time. More generally:

Definition 3 (uniformity): A family of circuits (Cy,),, is called uniform if there exists an algorithm
A that on input n outputs C,, within a number of steps that is polynomial in the size of C,,.

We note that stronger notions of uniformity have been considered. For example, one may require
the existence of a polynomial-time algorithm that on input n and v, returns the label of vertex v
as well as the list of its children (or an indication that v is not a vertex in C,,).

Proposition 4 If a problem s solvable by a uniform family of polynomial-size circuits then it is
solvable by a polynomial-time algorithm.

The converse holds as well. The latter fact follows easily from the proof of the NP-completeness of
CSAT (see also the proof of Theorem 6).

Proof: On input x, the algorithm operates in two stages. In the first stage, it invokes the algorithm

guaranteed by uniformity condition, on input n def |z|, and obtains C,,. Next, it invokes the circuit
evaluation algorithm (asserted in Theorem 1) on input C,, and z, and obtains C,,(z). Since the size
and the description length of C, are polynomial in n, it follows that each stage of our algorithm
runs in polynomial time (in n = |z|). Thus, the algorithm emulates the computation of C, (),
and does so in time polynomial in the length of its own input (i.e., z). W

1.2 Machines that take advice

General (non-uniform) families of polynomial-size circuits and uniform families of polynomial-size
circuits are two extremes with respect to the “amounts of non-uniformity” in the computing device.
Intuitively, in the former, non-uniformity is only bounded by the size of the device, whereas in the
latter the amounts of non-uniformity is zero. Here we consider a model that allows to decouple
the size of the computing device from the amount of non-uniformity, which may indeed range from
zero to the device’s size. Specifically, we consider algorithms that “take a non-uniform advice”
that depends only on the input length. The amount of non-uniformity will be defined to equal
the length of the corresponding advice (as a function of the input length). Here we specialize the
definition of such algorithms to the case of polynomial-time algorithms.

Definition 5 (non-uniform polynomial-time and P/poly): We say that a function f is computed
in polynomial-time with advice of length £ : N — N if these exists a polynomial-time algorithm A
and an infinite advice sequence (ay),cn such that

1. For every x € {0,1}*, it holds that A(ajy,v) = f(z).
2. For every n € N, it holds that |a,| = £(n).

We say that a computational problem can be solved in polynomial-time with advice of length { if a
function solving this problem can be computed within these resources. We denote by P/l the class
of decision problems that can be solved in polynomial-time with advice of length £, and by P /poly
the union of P/p taken over all polynomials p.

Clearly, P/0 = P. But allowing some (non-empty) advice increases the power of the class (as
we shall see below), and allowing advice of length comparable to the time complexity yields a
formulation equivalent to circuit complexity (see Theorem 6). We highlight the greater flexibility
available by the formalism of machines that take advice, which allows for separate specification of
time complexity and advice length. (This comes at the expense of a more cumbersome formulation
when we wish to focus on the case that both measures are equal.)

Relation to families of polynomial-size circuits. As hinted before, the class of problems
solvable by polynomial-time algorithms with polynomially bounded advice equals the class of prob-
lems solvable by families of polynomial-size circuits. For concreteness, we state this fact for decision
problems.

Theorem 6 A decision problem is in P /poly if and only if it can solved by a family of polynomial-
size circusts.

More generally, for any function ¢, the following proof establishes that equivalence of the power of
machines having time complexity ¢ and taking advice of length t versus families of circuits of size
polynomially related to t.

Proof: Suppose that a problem can be solved by a polynomial-time algorithm A using the poly-
nomially bounded advice sequence (ay,),cn. Adapting the proof of the NP-completeness of CSAT,
observe that the computation of A(a,|,z) can be emulated by a circuit of poly(|x|)-size, which in-
corporates a|, and is given x as input. That is, we construct a circuit Cy, such that Cy,(z) = A(an, v)
holds for every « € {0,1}"™ (analogously to the way C, was constructed in the proof of the NP-
completeness of CSAT, where Cy(y) = Mg(z,y)).

On the other hand, given a family of polynomial-size circuits, we obtain a polynomial-time
algorithm for emulating this family using advice that provide the description of the relevant cir-
cuits. Specifically, we use the evaluation algorithm asserted in Theorem 1, while using the circuit
description as advice. We use the fact that a circuit of size s can be computed using advice of
length O(slog s), where the log factor is due to the fact that a graph with v vertices and e edges
can be described by a string of length 2elog,v. W

Another perspective. A set S is called sparse if there exists a polynomial p such that for every
n it holds that |S N {0,1}"| < p(n). We note that P/poly equals the class of sets that are Cook-
reducible to a sparse set (see Exercise 13). Thus, SAT is Cook-reducible to a sparse set if and only
if NP C P/poly. In contrast, SAT is Karp-reducible to a sparse set if and only if NP = P (see
Exercise 21).

The power of P/poly. We prove the following result.

Theorem 7 (the power of advice, revisited): The class P/1 C P/poly contains P as well as some
undecidable problems.

Actually, P/1 C P/poly. Furthermore, by using a counting argument, one can show that for any
two polynomially bounded functions ¢, ¢y : N — N such that f5 — ¢; > 0 is unbounded, it holds
that P/¢; is strictly contained in P/{y; see Exercise 14.

Proof: Clearly, P = P/0 C P/1 C P/poly. To prove that P/1 contains some undecidable
problems, we note the existence of uncomputable Boolean functions that only depend on their
input length. Such a function f’ can be obtained from any uncomputable Boolean function f by
letting f'(x) = f(|z|), where |z| is viewed as a binary string of length log, |x|. Thus, there exists
an undecidable set S C {0,1}* such that for every pair of equal length strings (z,y) it holds that
x € S if and ounly if y € S. In other words, for every x € {0,1}* it holds that € S if and only if
112l € S. But such a set is easily decidable in polynomial-time by a machine that takes one bit of
advice; that is, consider the algorithm A and the advice sequence (ay),cn such that a, = 1 if and
only if 1" € S and A(a,z) = a (for a € {0,1} and = € {0,1}*). Note that indeed A(aj,,r) =1 if
and only if x € S. |

2 The Polynomial-time Hierarchy (PH)

We start with an informal motivating discussion, which will be made formal in Section 2.1.

Sets in /P can be viewed as sets of valid assertions that can be expressed as quantified Boolean
formulae using only existential quantifiers. That is, a set S is in NP if there is a Karp-reduction of
S to the problem of deciding whether or not an existentially quantified Boolean formula is valid (i.e.,
an instance z is mapped by this reduction to a formula of the form Jy; - -+ 3y, () P2 (Y1, s Yrn(a)))-

The conjectured intractability of NP seems due to the long sequence of existential quantifiers.
Of course, if somebody else (i.e., a “prover”) were to provide us with an adequate assignment (of
the y;’s) whenever such an assignment exists then we would be in good shape. That is, we can
efficiently verify proofs of validity of existentially quantified Boolean formulae.

But what if we want to verify the validity of a universally quantified Boolean formulae (i.e.,
formulae of the form Yy; - - - Yy, od(y1, ..., ym)). Here we seem to need the help of a totally different
entity: we need a “refuter” that is guaranteed to provide us with a refutation whenever such
exist, and we need to believe that if we were not presented with such a refutation then it is the
case that no refutation exists (and hence the universally quantified formulae is valid). Indeed,
this new setting (of a “refutation system”) is fundamentally different from the setting of a proof
system: In a proof system we are only convinced by proofs (to assertions) that we have verified by
ourselves, whereas in the “refutation system” we trust the “refuter” to provide evidence against
false assertions.! Furthermore, there seems to be no way of converting one setting (e.g., the proof
system) into another (resp., the refutation system).

Taking an additional step, we may consider a more complicated system in which we use two
agents: a “supporter” that tries to provide evidence in favor of an assertion and an “objector” that
tries to refute it. These two agents conduct a debate (or an argument) in our presence, exchanging
messages with the goal of making us (the referee) rule their way. The assertions that can be proven
in this system take the form of general quantified formulae with alternating sequences of quantifiers,
where the number of alternations equals the number of rounds of interaction in the said system.
We stress that the exact length of each sequence of quantifiers of the same type does not matter,
what matters is the number of alternations, denoted k.

The aforementioned system of alternations can be viewed as a two-party game, and we may ask
ourselves which of the two parties has a k-move winning strategy. In general, we may consider any
(0-1 zero-sum) two-party game, in which the game’s position can be efficiently updated (by any
given move) and evaluated. For such a fixed game, given an initial position, we may ask whether
the first party has a (k-move) winning strategy. It seems that answering this question for some k
does not help in answering it for £ + 1. We now turn to formalize the foregoing discussion.

2.1 Alternation of quantifiers

In the following definition, the aforementioned propositional formula ¢, is replaced by the input x
itself. (Correspondingly, the combination of the Karp-reduction and a formula evaluation algorithm
are replaced by the verification algorithm V' (see Exercise 17).) This is done in order to make the
comparison to the definition of NP more transparent (as well as to fit the standard presentations).
We also replace a sequence of Boolean quantifiers of the same type by a single corresponding
quantifier that quantifies over a string of corresponding length.

!More formally, in proof systems the soundness condition relies only on the actions of the verifier, whereas com-
pleteness also relies on the prover using an adequate strategy. In contrast, in “refutation system” the soundness
condition relies on the proper actions of the refuter, whereas completeness does not depend on the refuter’s actions.

Definition 8 (the class Xx): For a natural number k, a decision problem S C {0,1}* is in Xy if
there exists a polynomial p and a polynomial time algorithm V such that x € S if and only if

Jy; € {0, 1}p(\w\)vy2 {0, 1}10(|93|)3y3 {0, 1}?(\$\) - Quyr €10, 1}P(|$|)
sit. V(z,y1,.yr) =1
where Qr, 15 an existential quantifier if k is odd and is a universal quantifier otherwise.

Note that ¥; = NP and ¥y = P. The Polynomial-time Hierarchy, denoted PH, is the union of all
the aforementioned classes (i.e., PH = UXy), and X is often referred to as the kM level of PH.
The levels of the Polynomial-time Hierarchy can also be defined inductively, by defining ;1 based

on T % cony & {{0,11*\ S: S € oy}

Proposition 9 The set S is in Y11 if and only if there exists a polynomial p and a set S' € 11y
such that S = {z : Jye{0,1}2(#) st. (x,y)€ 5},

Proof: Suppose that S is in X;,; and let p and V be as in Definition 8. Then define S’
as the set of pairs (z,y) such that |y| = p(|z|) and Vy; € {0,1}2(=D3y, € {0,1}20=D ... Qryy €
{0,1}202D) s.t. V(z,y,y1,...,yx) = 1. Note that = € S if and only if there exists y € {0, 1}?(#) such
that (z,y) € S, and that S’ € Il (by replacing V with 1 — V).

On the other hand, suppose that for some polynomial p and a set S’ € Il it holds that
S = {z:3ye{0,1}*=) s.t. (z,y)€S'}. Then for some p’ and V" it holds that (z,y) € S’ if and only
if Jy| = p(|=[) and Yy, € {0, 137003y, € {0, 170D ... Qyp € {0, 110D st V' (, 9,1, yk) # 1.
By suitable encoding (of all 3’s to the same length) and a trivial modification of V' we conclude
that S € Xg41. [|

Determining the winner in k-move games. Definition 8 can be interpreted as capturing the
complexity of determining the winner in certain efficient two-party game. Specifically, we refer to
two-party games that satisfy the following three conditions:

1. The parties alternate in taking moves that effect the game’s (global) position, where each
move has a description length that is bounded by a polynomial in the length of the current
position.

2. The current position can be updated in polynomial-time based on the previous position and

the current party’s move.?

3. The winner in each position can be determined in polynomial-time.

A set S € ¥ can be viewed as the set of initial positions (in a suitable game) for which the first
party has a k-move winning strategy. Specifically, x € S if starting at the initial position z, there
exists move y; for the first party, such that for every response move yo of the second party, there
exists move y3 for the first party, etc, such that after £ moves the parties reach a position in which
the first party wins, where the final position as well as which party wins in it are determined by
the predicate V' (in Definition 8). That is, V(z,y1,...,yx) = 1 if the position that is reached when
starting from position z and taking the move sequence y1, ..., yr is a winning position for the first

party.

ZNote that, since we consider a constant number of moves, the length of all possible final positions is bounded by

a polynomial in the length of the initial position, and thus all items have an equivalent form in which one refers to
the complexity as a function of the length of the initial position. The latter form allows for a smooth generalization
to games with a polynomial number of moves, where it is essential to state all complexities in terms of the length of
the initial position.

The collapsing effect of some equalities. Extending the intuition behind the NP # coN'P
conjecture, it is conjectured that Xy # [Ty for every k € N. The failure of this conjecture causes the
collapse of the Polynomial-time Hierarchy to the corresponding level, which violates the conjecture
that g1 # Xk (which, in turn, may seem as an extension of the conjecture that NP # P).

Proposition 10 For every k, if X = 1l then X1 = Xg, which in turn tmplies PH = Xy,.

Proof: Assuming that ¥y = I, we consider any set S in ¥4;. By Proposition 9, there exists
a polynomial p and a set S’ € Il such that S = {x : Iy € {0,1}P(2D) s.t. (z,y) € S'}. Using the
hypothesis, we infer that S’ € ¥, and it follows that S € Xy (by collapsing two adjacent existential
quantifiers). We also note that X1 = X (or, equivalently, I, = II;) implies Y19 = Ygiq
(again by using Proposition 9), and thus X1 = X implies PH =%,. W

Decision problems that are Cook-reductions to NP. We review two types of optimization
problems, which (under some natural conditions) are computationally equivalent (under Cook re-
ductions). One type of problems referred to finding a solution that have a value exceeding some
given threshold, whereas the second type called for finding optimal solutions. Typically, NP-
complete optimization problems are problems of the first type, and the corresponding versions of
the second type are believed not to be in NP. For example, the problem of deciding whether or
not a given graph G has a clique of a given size K is NP-complete. In contract, the problem of
deciding whether or not K is the maximum clique size of the graph G is not known (and quite
unlikely) to be in NP, although it is Cook-reducible to NP. Thus, the class of decision problems
that are Cook-reducible to NP contains many natural problems that are unlikely to be in NP.
The Polynomial-time Hierarchy contains all these problems, because ¥y contains all problems that
are Cook-reductions to NP (see Exercise 15).

Complete problems and a relation to AC0. We note that quantified Boolean formulae with
a bounded number of quantifier alternation provide complete problems for the various levels of
the Polynomial-time Hierarchy (see Exercise 17). We also note the correspondnace between these
formulae and (highly uniform) constant-depth circuits of unbounded fan-in that get as input the
truth-table of the underlying (quantifier-free) formula (see Exercise 18).

2.2 Non-deterministic oracle machines

The Polynomial-time Hierarchy is commonly defined in terms of non-deterministic polynomial-time
(oracle) machines that are given oracle access to a set of the lower level of the same hierarchy. Such
machines are defined by combining the definitions of non-deterministic (polynomial-time) machines
and oracle machines. Specifically, for an oracle f : {0,1}* — {0,1}*, a non-deterministic machine
M, and a string x, one considers the question of whether or not there exists an accepting (non-
deterministic) computation of M on input = and access to the oracle f. The class of sets that can
be accepted by non-deterministic polynomial-time (oracle) machines with access to f is denoted
NP/, (We note that this notation makes sense because we can associate the class NP with a
collection of machines that lends itself to be extended to oracle machines.) For any class of decision
problems C, we denote by ANP¢ the union of AP’/ taken over all decision problems f in C. The
following result provides an alternative definition of the Polynomial-time Hierarchy.

Proposition 11 For every k € N, it holds that Sy 1 = N'P>*.

Proof: The proof of Proposition 11 follows the ideas of the proof of Proposition 9. The first
direction is straightforward: For any S € ¥y, let S’ € Iy and p be as in Proposition 11, and
consider a non-deterministic machine that on input = generates y € {0, 1}7’('“/") and accepts if and
only if (z,) € S'. Thus, S € NP = A"P> (because we can flip the answer given by the oracle).?

For the opposite direction, suppose that the non-deterministic polynomial-time oracle machine
M accepts S when given oracle access to S’ € Y. Note that (unlike the machine constructed
in the foregoing argument) machine M may issue several queries to S’, and these queries may be
determined based on previous oracle answers. To simplify the argument, we assume without loss
of generality, that at the very beginning of its execution M guesses (non-deterministic) all oracle
answers and accepts only if the actual answers match its guesses. Thus, M’s queries to the oracle
are determined by its input, denoted z, and its non-deterministic choices, denoted y. We denote by
¢ (z,y) the i*" query made by M (on input = and non-deterministic choices y), and by (¥ (z,)
the corresponding (a priori) guessed answer (which is a bit in y). Thus, M accepts z if and only if
there exists y € {0,1}P°Y(#D) such that the following two conditions hold:

1. Machine M accepts z on input x and non-deterministic choices y, provided that all oracle
answers fit the correspondingly guessed answers a(z)(ac, Y).

2. All oracle answers fit the correspondingly guessed answers a()(z,y); that is, () (z,y) =1 if
and only if ¢ (z,y) € §', for every i = 1, ...,q(x,y), where ¢(z,y) = poly(|z|) is the number
of queries made by M.

Denoting the first event by A(x,y) and denoting the verification algorithm of S’ by V', it holds
that z € S if and only if

q(z,y) L , . , ,
Ay A A (@@ =1) & 3 Q) Vi(aD (@, 9) 17 i) =1)
=1

The proof is completed by observing that the foregoing expression can be rearranged to fit the
definition of ¥j ;. Details follow.

Starting with the foregoing expression, we first pull all quantifiers outside, and obtain a quanti-
fied expression with k-1 alternations, starting with an existential quantifier.* (We get k+1 alterna-

tions rather than k, because a(”) (x,) =0 introduces an expression of the form ﬂﬂygi)‘v’yéi) e Qky,(:) V(¢ (x,y), ygi),

1, which in turn is equivalent to the expression Vyli)EIygi) . -Qky,(:) V' (¢ (z,y), ygi), very y,(cl)) =1).)
Once this is done, we may incorporate the computation of all the ¢ (x,y)’s (and a®(z,y)’s) as
well as the polynomial number of invocations of V'’ (and other logical operations) into the new
verification algorithm V. It follows that S € X¢r ;. W

A general perspective — what does C;“> mean? By the above discussion it should be clear

that the class C;? can be defined for two complexity classes C; and Cq, provided that C1 1s associated
with a class of machines that extends naturally to allow for oracle access. Actually, the class C;©2

3Don’t get confused by the fact that the class of oracles may not be closed under complementation. From the
point of view of the oracle machine, the oracle is merely a function, and the machine may do with its answer whatever
it pleases (and in particular negate it).

“For example, note that for predicates P, and P, the expression Jy (Pi(y) < 3z Ps(y,z)) is equivalent
to the expression Jy ((Pi(y) A 3z P2(y,z)) V ((-Pi(y) A =3z P2(y,2))), which in turn is equivalent to the ex-
pression Jy3z'Vz" ((Pi(y) A Pa(y,2")) V ((=Pi(y) A =P2(y,z"))). Note that pulling the quantifiers outside in
AL IOV Py @) 2 yields an expression of the type Iy, ..., yOvz1 . 2O AlL, P(y@,29).

15 not defined based on the class Cy but rather by analogy to it. Specifically, suppose that C; is
the class of sets recognizable by machines of certain type (e.g., deterministic or non-deterministic)
with certain resource bounds (e.g., time and/or space bounds). Then we consider analogous oracle
machines (i.e., of the same type and with the same resource bounds), and say that S € €1 if there
exists such an oracle machine M; and a set Sy € C9 such that MIS2 accepts the set S.

Decision problems that are Cook-reductions to NP, revisited. Using the foregoing nota-
tion, the class of decision problems that are Cook-reductions to NP is denoted PNP, and thus is
a subset of NPVP =5, (see Exercise 19). In contrast, recall that the class of decision problems
that are Karp-reductions to NP equals N'P.

2.3 The P/poly-versus-NP Question and PH

As stated in Section 1, a main motivation for the definition of P/poly is the hope that it can
serve to separate P from NP (by showing that AP is not even contained in P/poly, which is a
(strict) superset of P). In light of the fact that P/poly extends far beyond P (and in particular
contains undecidable problems), one may wonder if this approach does not run the risk of NP
being in P/poly (even if P # N'P). Ideally, we would like to know that NP C P/poly may occur
only if P = NP (which means that the Polynomial-time Hierarchy collapses to its zero level).
The following result may seem to get close, showing that NP C P/poly may occur only if the
Polynomial-time Hierarchy collapses to its second level.

Theorem 12 If N'P C P/poly then Xy = Il;.

Recall that Y9 = IIy implies PH = X9 (see Proposition 10). Thus, an unexpected behavior of the
non-uniform complexity class P/poly implies an unexpected behavior of in the world of uniform
complexity (i.e., the ability to reduce any constant number of quantifier alternations into two).

Proof: (We present the proof in terms of machines that take advice, although a presentation in
terms of circuits may be somewhat less cumbersome.)

Using Proposition 9, for every S € Il there exists a polynomial p and a set S’ € NP such that
S = {z:Vye{0,1}2UeD) (z,4) € S'}. Using the theorem’s hypothesis, it follows that S’ € P/poly,
which means that there exists polynomially bounded advice that allow for deciding S’ in polynomial-
time. That is, there exists a polynomial-time algorithm A and an advice sequence (a,),ecn such
that |a,| = poly(n) and A(ay,-) correctly decides the membership of n-bit long strings in S’. Thus,
x € S if and only if there exists a “correct advice” a € {0,1}P°Y (=) for (|z|+p(]z|))-bit long inputs
such that for every y € {0,1}7(2]) it holds that A(a, (z,)) = 1, where the correctness condition
means that A(a,-) decides correctly the membership of (|| + p(|x]))-bit long strings in S’. Note
that the conditions made have the right form: there exists a string a such that for all y and z
some condition holds (i.e., A(a,(x,y)) = 1 and A(a,z) = xg/(z), where xg/(z) =11if z € S" and
Xs'(z) = 0 otherwise).

The problem is that part of the aforementioned condition is not checkable in polynomial-time.
We refer to the need to check that the advice is correct (i.e., that it allows to correctly decide S’
on (x| + p(]z|))-bit long inputs). Suppose, for a moment, that S’ is downwards self-reducible; that
is, that deciding whether z € S’ can be reduced to deciding membership in S’ of shorter (than
z) strings. Then, referring to the aforementioned algorithm A and polynomial p, we revise the
foregoing suggestion and assert that x € S if and only if there exists a sequence of poly(|z|)-bit
long strings ay, ..., @y, where m = (|z| + p(|x|)), such that the following two conditions hold

1. For every y € {0,1}7(=D it holds that A(ap,, (z,y)) = 1.

2. For i =1,...,m, for every z € {0,1}" it holds that A(a;,2) = 1 if and only if z € S'.

Using downwards self-reducible this condition can be expressed by referring to the values of
A(aj,2') for some j < i and 2/ € {0,1}7. Specifically, we check the value of A(a;,z) = 1
against the value obtained by reducing the question of whether z € S’ to the membership of
shorter strings in S’, where the latter decisions are made by relying on the hypothesis that
we have correct advice for shorter strings. That is, we verify the correctness of the advice a;,
by relying on the correctness of the advice aq,...,a;—1. (Needless to say, the correctness of
the advice a; can be verified in a constant number of steps by using a brute force algorithm
for deciding membership in S’.)

There is a minor problem with this plan, because we have assumed that S’ is downwards self-
reducible, while S’ may be an arbitrary set in AN”P. The solution is to reduce S’ to SAT, and rely
on the fact that SAT is downwards self-reducible. The latter fact is implicit in the proof of the
self-reducibility of SAT; that is, ¢ € SAT if and only if either ¢, —¢ € SAT or ¢,,—1 € SAT, where
¢z,—o denotes the formula obtained from ¢ by setting the first variable (denoted x;) to ¢ and
simplifying the formula in the obvious way (thus reducing its length).

For simplicity, in the rest of the proof, we rely on the fact that S’ is Karp-reducible to SAT
(rather than only Cook-reducible to it). Specifically, let f be a Karp-reduction of S’ to SAT. Thus,

x € S if and only if Vy € {0,1}2(=) ¢z,y € SAT. where ¢, , def f(z,y). Using the hypothesis, we
have SAT € P/poly, and thus there exists a polynomial-time algorithm A that solves SAT using
advice of polynomial length. Now, we assert that € S if and only if there exists a sequence of
poly(|z|)-bit long strings ay, ..., a,, where m = poly(|z|) satisfies m > maxye{ml}p(\z\)ﬂf(:n,y)|},
such that the following two conditions hold:

1. For every y € {0,1}7(=D it holds that Ala)p(zy)s f(2,9) = 1.

2. For i = 1,...,m, for every ¢ € {0,1}* it holds that A(a;,¢) = 1 if and only if ¢ € SAT. This
condition is checked as follows.

For every (non-empty) formula ¢, we denote by ¢, the formula resulting from ¢ by setting
its first variable to o and making the obvious simplifications (i.e., omitting constants from
clauses and omitting empty clauses). Thus, |¢,| < |d|.

For every i > 1 and ¢ € {0,1}?, we check that A(a;, $) = 1 if and only if either A(ajgol, $0) =1
or A(ajg,|,¢1) = 1. For ¢ € {0, 1}!, we check that A(a,¢) = 1 if and only if ¢ is satisfiable
(which can be determined in constant time). (Indeed, for any threshold ¢ = O(log |z|), we
could have distinguished the cases ¢ > ¢t and ¢ < ¢, where the latter can be handled in time

poly(2').)

Observe that the expression obtained for membership in S is indeed of the Yo-form. The theorem
follows. I}

A technical perspective. The proof of Theorem 12 implies that any set S’ € P/poly that
ts downwards self-reducible is in Yo. The point is that the existential quantifier selects advice
that are checked for correctness using the universal quantifier, while relying on the downwards
self-reducibility process.

10

Notes

The class P/poly was defined by Karp and Lipton [4] as part of a general formulation of “ma-
chines which take advise” [4]. They have noted the equivalence to the traditional formulation of
polynomial-size circuits as well as the effect of uniformity (Proposition 4).

The Polynomial-Time Hierarchy (PH) was introduced by Stockmeyer [5]. A third equivalent
formulation of PH (via “alternating machines”) can be found in [1].

The effect of NP C P/poly on the Polynomial-time hierarchy (i.e., Theorem 12) was observed
by Karp and Lipton [4]. This interesting connection between non-uniform and uniform complexity
provides the main motivation for presenting P/poly and PH in the same lecture. We (gain) call the
reader’s attention to the proof of Theorem 12, and specifically to the inspiring use of downwards
self-reducibility.

Exercise 13 (sparse sets) A set S C {0,1}* is called sparse if there exists a polynomial p such
that |SN{0,1}"| < p(n) for every n.

1. Prove that any sparse set is in P/poly.

2. Prove that a set is in P/poly if and only if it is Cook-reducible to some sparse set.

Guideline: For the forward direction of Part 2, encode the advice sequence (a,),cN as a sparse set
{(1",4,00,;) :n€N, i <la,|}, where o, ; is the i*! bit of a,,. For the opposite direction, note that on input
x the Cook-reduction makes queries of length at most poly(|z|), and so all the relevant strings in the target
of the reduction can be encoded in the n*" advice.

Exercise 14 (advise hierarchy) Prove that for any two functions ¢,6 : N — N such that ¢(n) <
271 and § is unbounded, it holds that P/{ is strictly contained in P/(£ + 6).

(Hint: for every sequence @ = (an),, ¢y such that |a,| = £(n) + 6(n), consider the set Sz where € S if and only if =
is the ¢*" string of length |z| and i < |a|,|| and the i*" bit in a|,| is 1.)

Exercise 15 Prove that Y5 contains all sets that are Cook-reducible to A/P.

(Hint: This is quite obvious when using the definition of ¥, as presented in Section 2.2; see Exercise 19.)

Exercise 16 (the class II;) Prove that for any natural number k, a decision problem S C {0, 1}*
is in Il if there exists a polynomial p and a polynomial time algorithm V' such that « € S if and
only if

Vi €10, 1}1”(‘3”‘)32/2 € {0, 1}P(|$|)vy3 € {0, 1}?(\$\) - Qryr {0, 1}P(|$|)
sit. V(z,y1,.yx) =1

where Qi is a universal quantifier if £ is odd and is an existential quantifier otherwise.
(Recall that II} was defined as coXy, which in turn is defined as {{0,1}*\ S : S € ¥;}.)

Exercise 17 (complete problems for PH) A k-alternating quantified Boolean formula is a quan-
tified Boolean formula with up to k alternations between existential and universal quantifiers,
starting with an existential quantifier. For example, 3z)329V23¢(21, 22, 23) (where the z;’s are
Boolean variables) is a 2-alternating quantified Boolean formula. Prove that the problem of de-
ciding whether or not a k-alternating quantified Boolean formula is valid is Xg-complete. That is,
denoting the aforementioned problem by kQBF, prove that kQBF is in ¥} and every problem in 3
is Karp-reducible to kQBF.

11

Exercise 18 (on the relation between PH and .AC") Note that there is an obvious analogy
between PH and constant depth circuits of unbounded fan-in, where existential (resp., universal)
quantifiers are represented by “large” \/ (rep., A\) gates. To articulate this relationship, consider
the following definitions.

e A family of circuits {Cy} is called highly uniform if there exists a polynomial-time algorithm
that answers local queries regarding the structure of the relevant circuit. Specifically, on
input (N, u,v), the algorithm determines the type of gates represented by the vertices v and
v in Cn as well as whether there exists a directed edge from u to v. Note that this algorithm
operates in time that polylogarithmic in the size of Cly.

We focus on family of polynomial-size circuits, meaning that the size of Cy is polynomial in
N, which in turn represents the number of inputs to Cly.

e Fixing a polynomial p, a p-succinctly represented input X € {0,1}¥ is a circuit cy of size at
most p(logy N) such that for every i € [N] it holds that cx (i) equals the i*! bit of X.

e For a fixed family of highly uniform circuits {Cy} and a fixed polynomial p, the problem of
evaluating a succinctly represented input is defined as follows. Given p-succinct representation
of an input X € {0,1}"V, determine whether or not Cn(X) = 1.

For every k and every S € ¥y, show that there exists a family of highly uniform unbounded fan-in
circuits of depth k£ and polynomial-size such that S is Karp-reducible to evaluating a succinctly
represented input (with respect to that family of circuits). That is, the reduction should map an
instance z € {0,1}" to a p-succinct representation of some X = X, € {0,1}" such that € S if
and only if Cn(X) = 1. (Note that X is represented by a circuit cx of size at most p(logy N), and
that it must hold that |cx| < poly(n) and thus N < exp(poly(n)).)®

Guideline: Let S € ¥ and let V' be the corresponding verification algorithm as in Definition 8. That
is, z € S if and only if Jy;Vys - - - Qryx, where each y; € {0, 1}P°W(=D) such that V(z,y1,...,yr) = 1. Then,
for m = poly(|z|) and N = 2¥™ consider the circuit Cn(Z) = Visepn Nisepm) - @i ezm Zin izennsins
and the problem of evaluating it at the input consisting of the truth-table of V(z,---) (i.e., when setting
Zivvigoin, = V (11, ..., 11)). Note that the size of Cy is O(N).5

Exercise 19 Verify the following facts:
1. For every k > 1, it holds that ¥, C P¥ C ¥ ;.

(Note that, for any complexity class C, the class PC is the class of sets that are Cook-reducible
to some set in C. In particular, P” = P.)

2. For every k > 1, II, C Ps C Mg 4.
(Hint: For any complexity class C, it holds that P¢ = P*°C and P¢ = coPC.)
3. For every k > 1, it holds that ¥ C Iliy; and Iy C ¥ ;. Thus, PH = Ugll.

SAssuming P # NP, it cannot be that N < poly(n) (because circuit evaluation can be performed in time
polynomial in the size of the circuit).

6Advanced comment: the limitations of AC® circuits imply limitations on the functions of the truth-table of a
generic V that such the aforementioned circuits Cny can compute. Unfortunately, these limitations do not seem to
provide useful information on the limitations of functions that are confined to truth-tables that have succinct repre-
sentation (as in the case of the actual V). This fundamental problem is “resolved” in the context of “relativization”
by providing V' with oracle access to an arbitrary input of length N (or so); cf. [3].

12

Exercise 20 Referring to the notion of downwards self-reducibility (as defined in the proof of
Theorem 12), prove that if P = NP (resp., NP = coNP) then any set S’ € P/poly that is
downwards self-reducible is in P (resp., in N'P).

(Hint: any set S’ € P/poly that is downwards self-reducible is in ¥.)

Exercise 21 In continuation to Part 2 of Exercise 13, we consider the class of sets that are Karp-
reducible to a sparse set. It can be proved that this class contains SAT if and only if P = NP
(see [2]). Here, we only consider the special case in which the sparse set is contained in another
sparse set that is in P (e.g., the latter set may be {1}*, in which case the former set may be an
arbitrary unary set). Specifically, we claim that

if SAT is Karp-reducible to a set S C G such that G € P and G is sparse then SAT € P.

Using the hypothesis, we outline a polynomial-time procedure for solving the search problem of
SAT, and leave providing the details as an exercise. The procedure conducts a DFS on the tree
of all possible partial truth assignment to the input formula, while truncating the search at nodes
that are roots of sub-trees that were already proved to contain no satisfying assignment (at the
leaves).”

Guideline: The key observation is that each internal node (which yields a formula derived from the initial
formulae by instantiating the corresponding partial truth assignment) is mapped by the reduction either
to a string not in G (in which case we conclude that the sub-tree contains no satisfying assignments and
backtrack from this node) or to a string in G. In the latter case, unless we already know that this string is
not in S, we start a scan of the sub-tree rooted at this node. but once we backtrack from this internal node,
we know that the corresponding element of G is not in S, and we will never extend a node mapped to this
element again. Also note that once we reach a leaf, we can check by ourselves whether or not it corresponds
to a satisfying assignment to the initial formula.

(Hint: When analyzing the forgoing procedure, note that on input an n-variable formulae ¢ the number of times
we start to scan a sub-tree is at most 7 - | Uf:lyw)‘) {0,1}' n(G'\ 9)|.)

References

[1] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. Journal of the ACM, Vol. 28,
pages 114-133, 1981.

[2] S. Fortune. A Note on Sparse Complete Sets. SIAM Journal on Computing, Vol. 8, pages
431-433, 1979.

[3] M.L. Furst, J.B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy.
Mathematical Systems Theory, Vol. 17 (1), pages 13-27, 1984. Preliminary version in 22nd
FOCS, 1981.

[4] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform complexity
classes. In 12th ACM Symposium on the Theory of Computing, pages 302-309, 1980.

[5] L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, Vol. 3,
pages 1-22, 1977.

LaTeX Warning: Citation ‘Stock77’ on page 11 undefined on input LaTeX Warning: Citation
‘KL’ on page 11 undefined on input line

"For an n-variable formulae, the leaves of the tree correspond to all possible n-bit long strings, and an internal
node corresponding to 7 is the parent of nodes corresponding to 70 and 71.

13

