
Texts in Computational Complexity:P/poly and PHOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.November 28, 2005Summary: We consider variations on the complexity classes P and NP. We refer specif-ically to the non-uniform version of P, and to the Polynomial-time Hierarchy (whichextends NP). These variations are motivated by relatively technical considerations, andthe resulting classes are referred to quite frequently in the literature.Non-uniform polynomial-time (P/poly) captures e�cient computations that are carriedout by devices that handle speci�c input lengths. The basic formalism ignore thecomplexity of constructing such devices (i.e., a uniformity condition). A �ner formalismthat allows to quantify the amount of non-uniformity refers to so called \machines thattake advice."The Polynomial-time Hierarchy (PH) generalizes NP by considering statements ex-pressed by a quanti�ed Boolean formula with a �xed number of alternations of existen-tial and universal quanti�ers. It is widely believed that each quanti�er alternation addsexpressive power to the class of such formulae.The two di�erent classes are related by showing that if NP is contained in P/polythen the Polynomial-time Hierarchy collapses to its second level. Assuming the lattercollapse does not occur, this means that there is hope to resolve the P-vs-NP Questionby showing that NP is not contained in \non-uniform P" (P/poly).1 Non-uniform polynomial-time (P/poly)In this section we consider two formulations of the notion of non-uniform polynomial-time, present-ing two models of non-uniform (polynomial-time) computing devices. These models are derived byspecializing the treatment of non-uniform computing devices, to the case of polynomially boundedcomplexities. It turns out that both models allow to solve the same class of computational problems,which is a strict superset of the class of problems solvable by polynomial-time algorithms.The two models discussed below are Boolean circuits and \machines that take advice". Wewill focus on the restriction of both models to the case of polynomial complexities, considering(non-uniform) polynomial-size circuits and polynomial-time algorithms that take (non-uniform)polynomially bounded advice.The main motivation for considering non-uniform polynomial-size circuits is that their limita-tions imply analogous limitations on polynomial-time algorithms. The hope is that, as is often the1



case in mathematics and Science, disposing of an auxiliary condition that is not well-understood(i.e., uniformity) may turn out fruitful. In particular, it may facilitate a low-level analysis of theevolution of a computation, by using combinatorial techniques. This hope has materialized in thestudy of restricted classes of circuits (e.g., monotone circuits and constant-depth circuits).Polynomial-time algorithms that take polynomially bounded advice are useful in modeling aux-iliary information available to possible e�cient strategies that are of interest to us. Indeed, thetypical cases are the modeling of adversaries in the context of cryptography and the modelingof arbitrary randomized algorithms in the context of derandomization. Furthermore, the modelof polynomial-time algorithms that take advice allows for a quantitative study of the amount ofnon-uniformity, ranging from zero to polynomial.1.1 Boolean CircuitsWe assume familiarity with the de�nition of (families of) Boolean circuits and the functions com-puted by them. For concreteness and simplicity, we assume throughout this section that all circuitshas bounded fan-in. We highlight the following simple result.Theorem 1 (circuit evaluation): There exists a polynomial-time algorithm that, given a circuitC : f0; 1gn ! f0; 1gm and an n-bit long string x, returns C(x).Recall that the algorithm works by performing the value-determining process described when de�n-ing the value of the circuit vertices on a given input.Circuit size as a complexity measure. We recall the standard de�nitions of circuit complexity:The size of a circuit is de�ned as the number of edges, and the length of its description is almostlinear in the latter; that is, a circuit of size s is commonly described by the list of its edges andthe labels of its vertices, which means that its description length is O(s log s). We are interestedin families of circuits that solve computational problems, and say that the circuit family (Cn)n2Ncomputes the function f : f0; 1g� ! f0; 1g� if for every x 2 f0; 1g� it holds that Cjxj(x) = f(x).The size complexity of this family is the function s : N ! N such that s(n) is the size of Cn. Thecircuit complexity of a function f , denoted sf , is the size complexity of the smallest family of circuitsthat computes f . An equivalent alternative follows.De�nition 2 (circuit complexity): The circuit complexity of f : f0; 1g� ! f0; 1g� is the functionsf : N ! N such that sf (n) is the size of the smallest circuit that computes the restriction of f ton-bit strings.We stress that non-uniformity is implicit in this de�nition, because no conditions are made regardingthe relation between the various circuits used to compute the function on di�erent input lengths.We will be interested in the class of problems that are solvable by families of polynomial-sizecircuits. That is, a problem is solvable by polynomial-size circuits if it can be solved by a functionf that has polynomial circuit complexity (i.e., there exists a polynomial p such that sf (n) � p(n),for every n 2 N).A detour: uniform families. A family of polynomial-size circuits (Cn)n is called uniform ifgiven n one can construct the circuit Cn in poly(n)-time. More generally:De�nition 3 (uniformity): A family of circuits (Cn)n is called uniform if there exists an algorithmA that on input n outputs Cn within a number of steps that is polynomial in the size of Cn.2



We note that stronger notions of uniformity have been considered. For example, one may requirethe existence of a polynomial-time algorithm that on input n and v, returns the label of vertex vas well as the list of its children (or an indication that v is not a vertex in Cn).Proposition 4 If a problem is solvable by a uniform family of polynomial-size circuits then it issolvable by a polynomial-time algorithm.The converse holds as well. The latter fact follows easily from the proof of the NP-completeness ofCSAT (see also the proof of Theorem 6).Proof: On input x, the algorithm operates in two stages. In the �rst stage, it invokes the algorithmguaranteed by uniformity condition, on input n def= jxj, and obtains Cn. Next, it invokes the circuitevaluation algorithm (asserted in Theorem 1) on input Cn and x, and obtains Cn(x). Since the sizeand the description length of Cn are polynomial in n, it follows that each stage of our algorithmruns in polynomial time (in n = jxj). Thus, the algorithm emulates the computation of Cjxj(x),and does so in time polynomial in the length of its own input (i.e., x).1.2 Machines that take adviceGeneral (non-uniform) families of polynomial-size circuits and uniform families of polynomial-sizecircuits are two extremes with respect to the \amounts of non-uniformity" in the computing device.Intuitively, in the former, non-uniformity is only bounded by the size of the device, whereas in thelatter the amounts of non-uniformity is zero. Here we consider a model that allows to decouplethe size of the computing device from the amount of non-uniformity, which may indeed range fromzero to the device's size. Speci�cally, we consider algorithms that \take a non-uniform advice"that depends only on the input length. The amount of non-uniformity will be de�ned to equalthe length of the corresponding advice (as a function of the input length). Here we specialize thede�nition of such algorithms to the case of polynomial-time algorithms.De�nition 5 (non-uniform polynomial-time and P=poly): We say that a function f is computedin polynomial-time with advice of length ` : N ! N if these exists a polynomial-time algorithm Aand an in�nite advice sequence (an)n2N such that1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).We say that a computational problem can be solved in polynomial-time with advice of length ` if afunction solving this problem can be computed within these resources. We denote by P=` the classof decision problems that can be solved in polynomial-time with advice of length `, and by P=polythe union of P=p taken over all polynomials p.Clearly, P=0 = P. But allowing some (non-empty) advice increases the power of the class (aswe shall see below), and allowing advice of length comparable to the time complexity yields aformulation equivalent to circuit complexity (see Theorem 6). We highlight the greater exibilityavailable by the formalism of machines that take advice, which allows for separate speci�cation oftime complexity and advice length. (This comes at the expense of a more cumbersome formulationwhen we wish to focus on the case that both measures are equal.)
3



Relation to families of polynomial-size circuits. As hinted before, the class of problemssolvable by polynomial-time algorithms with polynomially bounded advice equals the class of prob-lems solvable by families of polynomial-size circuits. For concreteness, we state this fact for decisionproblems.Theorem 6 A decision problem is in P=poly if and only if it can solved by a family of polynomial-size circuits.More generally, for any function t, the following proof establishes that equivalence of the power ofmachines having time complexity t and taking advice of length t versus families of circuits of sizepolynomially related to t.Proof: Suppose that a problem can be solved by a polynomial-time algorithm A using the poly-nomially bounded advice sequence (an)n2N. Adapting the proof of the NP-completeness of CSAT,observe that the computation of A(ajxj; x) can be emulated by a circuit of poly(jxj)-size, which in-corporates ajxj and is given x as input. That is, we construct a circuit Cn such that Cn(x) = A(an; x)holds for every x 2 f0; 1gn (analogously to the way Cx was constructed in the proof of the NP-completeness of CSAT, where Cx(y) =MR(x; y)).On the other hand, given a family of polynomial-size circuits, we obtain a polynomial-timealgorithm for emulating this family using advice that provide the description of the relevant cir-cuits. Speci�cally, we use the evaluation algorithm asserted in Theorem 1, while using the circuitdescription as advice. We use the fact that a circuit of size s can be computed using advice oflength O(s log s), where the log factor is due to the fact that a graph with v vertices and e edgescan be described by a string of length 2e log2 v.Another perspective. A set S is called sparse if there exists a polynomial p such that for everyn it holds that jS \ f0; 1gnj � p(n). We note that P=poly equals the class of sets that are Cook-reducible to a sparse set (see Exercise 13). Thus, SAT is Cook-reducible to a sparse set if and onlyif NP � P=poly. In contrast, SAT is Karp-reducible to a sparse set if and only if NP = P (seeExercise 21).The power of P=poly. We prove the following result.Theorem 7 (the power of advice, revisited): The class P=1 � P=poly contains P as well as someundecidable problems.Actually, P=1 � P=poly. Furthermore, by using a counting argument, one can show that for anytwo polynomially bounded functions `1; `2 : N ! N such that `2 � `1 > 0 is unbounded, it holdsthat P=`1 is strictly contained in P=`2; see Exercise 14.Proof: Clearly, P = P=0 � P=1 � P=poly. To prove that P=1 contains some undecidableproblems, we note the existence of uncomputable Boolean functions that only depend on theirinput length. Such a function f 0 can be obtained from any uncomputable Boolean function f byletting f 0(x) = f(jxj), where jxj is viewed as a binary string of length log2 jxj. Thus, there existsan undecidable set S � f0; 1g� such that for every pair of equal length strings (x; y) it holds thatx 2 S if and only if y 2 S. In other words, for every x 2 f0; 1g� it holds that x 2 S if and only if1jxj 2 S. But such a set is easily decidable in polynomial-time by a machine that takes one bit ofadvice; that is, consider the algorithm A and the advice sequence (an)n2N such that an = 1 if andonly if 1n 2 S and A(a; x) = a (for a 2 f0; 1g and x 2 f0; 1g�). Note that indeed A(ajxj; x) = 1 ifand only if x 2 S. 4



2 The Polynomial-time Hierarchy (PH)We start with an informal motivating discussion, which will be made formal in Section 2.1.Sets in NP can be viewed as sets of valid assertions that can be expressed as quanti�ed Booleanformulae using only existential quanti�ers. That is, a set S is in NP if there is a Karp-reduction ofS to the problem of deciding whether or not an existentially quanti�ed Boolean formula is valid (i.e.,an instance x is mapped by this reduction to a formula of the form 9y1 � � � 9ym(x)�x(y1; :::; ym(x))).The conjectured intractability of NP seems due to the long sequence of existential quanti�ers.Of course, if somebody else (i.e., a \prover") were to provide us with an adequate assignment (ofthe yi's) whenever such an assignment exists then we would be in good shape. That is, we cane�ciently verify proofs of validity of existentially quanti�ed Boolean formulae.But what if we want to verify the validity of a universally quanti�ed Boolean formulae (i.e.,formulae of the form 8y1 � � � 8ym�(y1; :::; ym)). Here we seem to need the help of a totally di�erententity: we need a \refuter" that is guaranteed to provide us with a refutation whenever suchexist, and we need to believe that if we were not presented with such a refutation then it is thecase that no refutation exists (and hence the universally quanti�ed formulae is valid). Indeed,this new setting (of a \refutation system") is fundamentally di�erent from the setting of a proofsystem: In a proof system we are only convinced by proofs (to assertions) that we have veri�ed byourselves, whereas in the \refutation system" we trust the \refuter" to provide evidence againstfalse assertions.1 Furthermore, there seems to be no way of converting one setting (e.g., the proofsystem) into another (resp., the refutation system).Taking an additional step, we may consider a more complicated system in which we use twoagents: a \supporter" that tries to provide evidence in favor of an assertion and an \objector" thattries to refute it. These two agents conduct a debate (or an argument) in our presence, exchangingmessages with the goal of making us (the referee) rule their way. The assertions that can be provenin this system take the form of general quanti�ed formulae with alternating sequences of quanti�ers,where the number of alternations equals the number of rounds of interaction in the said system.We stress that the exact length of each sequence of quanti�ers of the same type does not matter,what matters is the number of alternations, denoted k.The aforementioned system of alternations can be viewed as a two-party game, and we may askourselves which of the two parties has a k-move winning strategy. In general, we may consider any(0-1 zero-sum) two-party game, in which the game's position can be e�ciently updated (by anygiven move) and evaluated. For such a �xed game, given an initial position, we may ask whetherthe �rst party has a (k-move) winning strategy. It seems that answering this question for some kdoes not help in answering it for k + 1. We now turn to formalize the foregoing discussion.2.1 Alternation of quanti�ersIn the following de�nition, the aforementioned propositional formula �x is replaced by the input xitself. (Correspondingly, the combination of the Karp-reduction and a formula evaluation algorithmare replaced by the veri�cation algorithm V (see Exercise 17).) This is done in order to make thecomparison to the de�nition of NP more transparent (as well as to �t the standard presentations).We also replace a sequence of Boolean quanti�ers of the same type by a single correspondingquanti�er that quanti�es over a string of corresponding length.1More formally, in proof systems the soundness condition relies only on the actions of the veri�er, whereas com-pleteness also relies on the prover using an adequate strategy. In contrast, in \refutation system" the soundnesscondition relies on the proper actions of the refuter, whereas completeness does not depend on the refuter's actions.5



De�nition 8 (the class �k): For a natural number k, a decision problem S � f0; 1g� is in �k ifthere exists a polynomial p and a polynomial time algorithm V such that x 2 S if and only if9y12f0; 1gp(jxj)8y22f0; 1gp(jxj)9y32f0; 1gp(jxj) � � �Qkyk2f0; 1gp(jxj)s.t. V (x; y1; :::; yk) = 1where Qk is an existential quanti�er if k is odd and is a universal quanti�er otherwise.Note that �1 = NP and �0 = P. The Polynomial-time Hierarchy, denoted PH, is the union of allthe aforementioned classes (i.e., PH = [k�k), and �k is often referred to as the kth level of PH.The levels of the Polynomial-time Hierarchy can also be de�ned inductively, by de�ning �k+1 basedon �k def= co�k def= ff0; 1g� n S : S 2 �kg.Proposition 9 The set S is in �k+1 if and only if there exists a polynomial p and a set S0 2 �ksuch that S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g.Proof: Suppose that S is in �k+1 and let p and V be as in De�nition 8. Then de�ne S0as the set of pairs (x; y) such that jyj = p(jxj) and 8y1 2 f0; 1gp(jxj)9y2 2 f0; 1gp(jxj) � � �Qkyk 2f0; 1gp(jxj) s.t. V (x; y; y1; :::; yk) = 1. Note that x 2 S if and only if there exists y 2 f0; 1gp(jxj) suchthat (x; y) 2 S0, and that S0 2 �k (by replacing V with 1� V ).On the other hand, suppose that for some polynomial p and a set S0 2 �k it holds thatS = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Then for some p0 and V 0 it holds that (x; y) 2 S0 if and onlyif jyj = p(jxj) and 8y1 2 f0; 1gp(jxj)9y2 2f0; 1gp(jxj) � � �Qkyk 2f0; 1gp(jxj) s.t. V 0(x; y; y1; :::; yk) 6= 1.By suitable encoding (of all y's to the same length) and a trivial modi�cation of V 0 we concludethat S 2 �k+1.Determining the winner in k-move games. De�nition 8 can be interpreted as capturing thecomplexity of determining the winner in certain e�cient two-party game. Speci�cally, we refer totwo-party games that satisfy the following three conditions:1. The parties alternate in taking moves that e�ect the game's (global) position, where eachmove has a description length that is bounded by a polynomial in the length of the currentposition.2. The current position can be updated in polynomial-time based on the previous position andthe current party's move.23. The winner in each position can be determined in polynomial-time.A set S 2 �k can be viewed as the set of initial positions (in a suitable game) for which the �rstparty has a k-move winning strategy. Speci�cally, x2S if starting at the initial position x, thereexists move y1 for the �rst party, such that for every response move y2 of the second party, thereexists move y3 for the �rst party, etc, such that after k moves the parties reach a position in whichthe �rst party wins, where the �nal position as well as which party wins in it are determined bythe predicate V (in De�nition 8). That is, V (x; y1; :::; yk) = 1 if the position that is reached whenstarting from position x and taking the move sequence y1; :::; yk is a winning position for the �rstparty.2Note that, since we consider a constant number of moves, the length of all possible �nal positions is bounded bya polynomial in the length of the initial position, and thus all items have an equivalent form in which one refers tothe complexity as a function of the length of the initial position. The latter form allows for a smooth generalizationto games with a polynomial number of moves, where it is essential to state all complexities in terms of the length ofthe initial position. 6



The collapsing e�ect of some equalities. Extending the intuition behind the NP 6= coNPconjecture, it is conjectured that �k 6= �k for every k 2 N . The failure of this conjecture causes thecollapse of the Polynomial-time Hierarchy to the corresponding level, which violates the conjecturethat �k+1 6= �k (which, in turn, may seem as an extension of the conjecture that NP 6= P).Proposition 10 For every k, if �k = �k then �k+1 = �k, which in turn implies PH = �k.Proof: Assuming that �k = �k, we consider any set S in �k+1. By Proposition 9, there existsa polynomial p and a set S0 2 �k such that S = fx : 9y 2 f0; 1gp(jxj) s.t. (x; y) 2 S0g. Using thehypothesis, we infer that S0 2 �k, and it follows that S 2 �k (by collapsing two adjacent existentialquanti�ers). We also note that �k+1 = �k (or, equivalently, �k+1 = �k) implies �k+2 = �k+1(again by using Proposition 9), and thus �k+1 = �k implies PH = �k.Decision problems that are Cook-reductions to NP. We review two types of optimizationproblems, which (under some natural conditions) are computationally equivalent (under Cook re-ductions). One type of problems referred to �nding a solution that have a value exceeding somegiven threshold, whereas the second type called for �nding optimal solutions. Typically, NP-complete optimization problems are problems of the �rst type, and the corresponding versions ofthe second type are believed not to be in NP. For example, the problem of deciding whether ornot a given graph G has a clique of a given size K is NP-complete. In contract, the problem ofdeciding whether or not K is the maximum clique size of the graph G is not known (and quiteunlikely) to be in NP , although it is Cook-reducible to NP. Thus, the class of decision problemsthat are Cook-reducible to NP contains many natural problems that are unlikely to be in NP .The Polynomial-time Hierarchy contains all these problems, because �2 contains all problems thatare Cook-reductions to NP (see Exercise 15).Complete problems and a relation to AC0. We note that quanti�ed Boolean formulae witha bounded number of quanti�er alternation provide complete problems for the various levels ofthe Polynomial-time Hierarchy (see Exercise 17). We also note the correspondnace between theseformulae and (highly uniform) constant-depth circuits of unbounded fan-in that get as input thetruth-table of the underlying (quanti�er-free) formula (see Exercise 18).2.2 Non-deterministic oracle machinesThe Polynomial-time Hierarchy is commonly de�ned in terms of non-deterministic polynomial-time(oracle) machines that are given oracle access to a set of the lower level of the same hierarchy. Suchmachines are de�ned by combining the de�nitions of non-deterministic (polynomial-time) machinesand oracle machines. Speci�cally, for an oracle f : f0; 1g� ! f0; 1g�, a non-deterministic machineM , and a string x, one considers the question of whether or not there exists an accepting (non-deterministic) computation of M on input x and access to the oracle f . The class of sets that canbe accepted by non-deterministic polynomial-time (oracle) machines with access to f is denotedNPf . (We note that this notation makes sense because we can associate the class NP with acollection of machines that lends itself to be extended to oracle machines.) For any class of decisionproblems C, we denote by NPC the union of NPf taken over all decision problems f in C. Thefollowing result provides an alternative de�nition of the Polynomial-time Hierarchy.Proposition 11 For every k 2 N , it holds that �k+1 = NP�k .7



Proof: The proof of Proposition 11 follows the ideas of the proof of Proposition 9. The �rstdirection is straightforward: For any S 2 �k+1, let S0 2 �k and p be as in Proposition 11, andconsider a non-deterministic machine that on input x generates y 2 f0; 1gp(jxj) and accepts if andonly if (x; y) 2 S0. Thus, S 2 NP�k = NP�k (because we can ip the answer given by the oracle).3For the opposite direction, suppose that the non-deterministic polynomial-time oracle machineM accepts S when given oracle access to S0 2 �k. Note that (unlike the machine constructedin the foregoing argument) machine M may issue several queries to S0, and these queries may bedetermined based on previous oracle answers. To simplify the argument, we assume without lossof generality, that at the very beginning of its execution M guesses (non-deterministic) all oracleanswers and accepts only if the actual answers match its guesses. Thus, M 's queries to the oracleare determined by its input, denoted x, and its non-deterministic choices, denoted y. We denote byq(i)(x; y) the ith query made by M (on input x and non-deterministic choices y), and by a(i)(x; y)the corresponding (a priori) guessed answer (which is a bit in y). Thus, M accepts x if and only ifthere exists y 2 f0; 1gpoly(jxj) such that the following two conditions hold:1. Machine M accepts x on input x and non-deterministic choices y, provided that all oracleanswers �t the correspondingly guessed answers a(i)(x; y).2. All oracle answers �t the correspondingly guessed answers a(i)(x; y); that is, a(i)(x; y) = 1 ifand only if q(i)(x; y)2S0, for every i = 1; :::; q(x; y), where q(x; y) = poly(jxj) is the numberof queries made by M .Denoting the �rst event by A(x; y) and denoting the veri�cation algorithm of S0 by V 0, it holdsthat x 2 S if and only if9y0@A(x; y) ^ q(x;y)î=1 �((a(i)(x; y)=1), 9y(i)1 8y(i)2 � � �Qky(i)k V 0(q(i)(x; y); y(i)1 ; :::; y(i)k )=1)�1AThe proof is completed by observing that the foregoing expression can be rearranged to �t thede�nition of �k+1. Details follow.Starting with the foregoing expression, we �rst pull all quanti�ers outside, and obtain a quanti-�ed expression with k+1 alternations, starting with an existential quanti�er.4 (We get k+1 alterna-tions rather than k, because a(i)(x; y)=0 introduces an expression of the form :9y(i)1 8y(i)2 � � �Qky(i)k V 0(q(i)(x; y); y(i)1 ; :::; y(i)k )=1, which in turn is equivalent to the expression 8y(i)1 9y(i)2 � � �Qky(i)k :V 0(q(i)(x; y); y(i)1 ; :::; y(i)k )=1).)Once this is done, we may incorporate the computation of all the q(i)(x; y)'s (and a(i)(x; y)'s) aswell as the polynomial number of invocations of V 0 (and other logical operations) into the newveri�cation algorithm V . It follows that S 2 �k+1.A general perspective { what does C1C2 mean? By the above discussion it should be clearthat the class C1C2 can be de�ned for two complexity classes C1 and C2, provided that C1 is associatedwith a class of machines that extends naturally to allow for oracle access. Actually, the class C1C23Don't get confused by the fact that the class of oracles may not be closed under complementation. From thepoint of view of the oracle machine, the oracle is merely a function, and the machine may do with its answer whateverit pleases (and in particular negate it).4For example, note that for predicates P1 and P2, the expression 9y (P1(y) , 9z P2(y; z)) is equivalentto the expression 9y ((P1(y) ^ 9z P2(y; z)) _ ((:P1(y) ^ :9z P2(y; z))), which in turn is equivalent to the ex-pression 9y9z08z00 ((P1(y) ^ P2(y; z0)) _ ((:P1(y) ^ :P2(y; z00))). Note that pulling the quanti�ers outside in^ti=19y(i)8z(i)P (y(i); z(i)) yields an expression of the type 9y(1); :::; y(t)8z(1); :::; z(t) ^ti=1 P (y(i); z(i)).8



is not de�ned based on the class C1 but rather by analogy to it. Speci�cally, suppose that C1 isthe class of sets recognizable by machines of certain type (e.g., deterministic or non-deterministic)with certain resource bounds (e.g., time and/or space bounds). Then we consider analogous oraclemachines (i.e., of the same type and with the same resource bounds), and say that S 2 C1C2 if thereexists such an oracle machine M1 and a set S2 2 C2 such that MS21 accepts the set S.Decision problems that are Cook-reductions to NP, revisited. Using the foregoing nota-tion, the class of decision problems that are Cook-reductions to NP is denoted PNP , and thus isa subset of NPNP = �2 (see Exercise 19). In contrast, recall that the class of decision problemsthat are Karp-reductions to NP equals NP .2.3 The P/poly-versus-NP Question and PHAs stated in Section 1, a main motivation for the de�nition of P=poly is the hope that it canserve to separate P from NP (by showing that NP is not even contained in P=poly, which is a(strict) superset of P). In light of the fact that P=poly extends far beyond P (and in particularcontains undecidable problems), one may wonder if this approach does not run the risk of NPbeing in P=poly (even if P 6= NP). Ideally, we would like to know that NP � P=poly may occuronly if P = NP (which means that the Polynomial-time Hierarchy collapses to its zero level).The following result may seem to get close, showing that NP � P=poly may occur only if thePolynomial-time Hierarchy collapses to its second level.Theorem 12 If NP � P=poly then �2 = �2.Recall that �2 = �2 implies PH = �2 (see Proposition 10). Thus, an unexpected behavior of thenon-uniform complexity class P=poly implies an unexpected behavior of in the world of uniformcomplexity (i.e., the ability to reduce any constant number of quanti�er alternations into two).Proof: (We present the proof in terms of machines that take advice, although a presentation interms of circuits may be somewhat less cumbersome.)Using Proposition 9, for every S 2 �2 there exists a polynomial p and a set S0 2 NP such thatS = fx : 8y2f0; 1gp(jxj) (x; y)2S0g. Using the theorem's hypothesis, it follows that S0 2 P=poly,which means that there exists polynomially bounded advice that allow for deciding S0 in polynomial-time. That is, there exists a polynomial-time algorithm A and an advice sequence (an)n2N suchthat janj = poly(n) and A(an; �) correctly decides the membership of n-bit long strings in S0. Thus,x 2 S if and only if there exists a \correct advice" a 2 f0; 1gpoly(jxj) for (jxj+p(jxj))-bit long inputssuch that for every y 2 f0; 1gp(jxj) it holds that A(a; (x; y)) = 1, where the correctness conditionmeans that A(a; �) decides correctly the membership of (jxj + p(jxj))-bit long strings in S0. Notethat the conditions made have the right form: there exists a string a such that for all y and zsome condition holds (i.e., A(a; (x; y)) = 1 and A(a; z) = �S0(z), where �S0(z) = 1 if z 2 S0 and�S0(z) = 0 otherwise).The problem is that part of the aforementioned condition is not checkable in polynomial-time.We refer to the need to check that the advice is correct (i.e., that it allows to correctly decide S0on (jxj + p(jxj))-bit long inputs). Suppose, for a moment, that S0 is downwards self-reducible; thatis, that deciding whether z 2 S0 can be reduced to deciding membership in S0 of shorter (thanz) strings. Then, referring to the aforementioned algorithm A and polynomial p, we revise theforegoing suggestion and assert that x 2 S if and only if there exists a sequence of poly(jxj)-bitlong strings a1; :::; am, where m = (jxj+ p(jxj)), such that the following two conditions hold9



1. For every y 2 f0; 1gp(jxj), it holds that A(am; (x; y)) = 1.2. For i = 1; :::;m, for every z 2 f0; 1gi it holds that A(ai; z) = 1 if and only if z 2 S0.Using downwards self-reducible this condition can be expressed by referring to the values ofA(aj ; z0) for some j < i and z0 2 f0; 1gj . Speci�cally, we check the value of A(ai; z) = 1against the value obtained by reducing the question of whether z 2 S0 to the membership ofshorter strings in S0, where the latter decisions are made by relying on the hypothesis thatwe have correct advice for shorter strings. That is, we verify the correctness of the advice ai,by relying on the correctness of the advice a1; :::; ai�1. (Needless to say, the correctness ofthe advice a1 can be veri�ed in a constant number of steps by using a brute force algorithmfor deciding membership in S0.)There is a minor problem with this plan, because we have assumed that S0 is downwards self-reducible, while S0 may be an arbitrary set in NP . The solution is to reduce S0 to SAT, and relyon the fact that SAT is downwards self-reducible. The latter fact is implicit in the proof of theself-reducibility of SAT; that is, � 2 SAT if and only if either �x1=0 2 SAT or �x1=1 2 SAT, where�x1=� denotes the formula obtained from � by setting the �rst variable (denoted x1) to � andsimplifying the formula in the obvious way (thus reducing its length).For simplicity, in the rest of the proof, we rely on the fact that S0 is Karp-reducible to SAT(rather than only Cook-reducible to it). Speci�cally, let f be a Karp-reduction of S0 to SAT. Thus,x 2 S if and only if 8y 2 f0; 1gp(jxj) �x;y 2 SAT. where �x;y def= f(x; y). Using the hypothesis, wehave SAT 2 P=poly, and thus there exists a polynomial-time algorithm A that solves SAT usingadvice of polynomial length. Now, we assert that x 2 S if and only if there exists a sequence ofpoly(jxj)-bit long strings a1; :::; am, where m = poly(jxj) satis�es m � maxy2f0;1gp(jxj)fjf(x; y)jg,such that the following two conditions hold:1. For every y 2 f0; 1gp(jxj), it holds that A(ajf(x;y)j; f(x; y)) = 1.2. For i = 1; :::;m, for every � 2 f0; 1gi it holds that A(ai; �) = 1 if and only if � 2 SAT. Thiscondition is checked as follows.For every (non-empty) formula �, we denote by �� the formula resulting from � by settingits �rst variable to � and making the obvious simpli�cations (i.e., omitting constants fromclauses and omitting empty clauses). Thus, j��j < j�j.For every i > 1 and � 2 f0; 1gi, we check that A(ai; �) = 1 if and only if either A(aj�0j; �0) = 1or A(aj�1j; �1) = 1. For � 2 f0; 1g1, we check that A(a1; �) = 1 if and only if � is satis�able(which can be determined in constant time). (Indeed, for any threshold t = O(log jxj), wecould have distinguished the cases i > t and i � t, where the latter can be handled in timepoly(2t).)Observe that the expression obtained for membership in S is indeed of the �2-form. The theoremfollows.A technical perspective. The proof of Theorem 12 implies that any set S0 2 P=poly thatis downwards self-reducible is in �2. The point is that the existential quanti�er selects advicethat are checked for correctness using the universal quanti�er, while relying on the downwardsself-reducibility process. 10



NotesThe class P=poly was de�ned by Karp and Lipton [4] as part of a general formulation of \ma-chines which take advise" [4]. They have noted the equivalence to the traditional formulation ofpolynomial-size circuits as well as the e�ect of uniformity (Proposition 4).The Polynomial-Time Hierarchy (PH) was introduced by Stockmeyer [5]. A third equivalentformulation of PH (via \alternating machines") can be found in [1].The e�ect of NP � P=poly on the Polynomial-time hierarchy (i.e., Theorem 12) was observedby Karp and Lipton [4]. This interesting connection between non-uniform and uniform complexityprovides the main motivation for presenting P=poly and PH in the same lecture. We (gain) call thereader's attention to the proof of Theorem 12, and speci�cally to the inspiring use of downwardsself-reducibility.Exercise 13 (sparse sets) A set S � f0; 1g� is called sparse if there exists a polynomial p suchthat jS \ f0; 1gnj � p(n) for every n.1. Prove that any sparse set is in P=poly.2. Prove that a set is in P=poly if and only if it is Cook-reducible to some sparse set.Guideline: For the forward direction of Part 2, encode the advice sequence (an)n2N as a sparse setf(1n; i; �n;i) : n2N ; i � janjg, where �n;i is the ith bit of an. For the opposite direction, note that on inputx the Cook-reduction makes queries of length at most poly(jxj), and so all the relevant strings in the targetof the reduction can be encoded in the nth advice.Exercise 14 (advise hierarchy) Prove that for any two functions `; � : N ! N such that `(n) <2n�1 and � is unbounded, it holds that P=` is strictly contained in P=(`+ �).(Hint: for every sequence a = (an)n2N such that janj = `(n) + �(n), consider the set Sa where x 2 S if and only if xis the ith string of length jxj and i � jajxjj and the ith bit in ajxj is 1.)Exercise 15 Prove that �2 contains all sets that are Cook-reducible to NP .(Hint: This is quite obvious when using the de�nition of �2 as presented in Section 2.2; see Exercise 19.)Exercise 16 (the class �i) Prove that for any natural number k, a decision problem S � f0; 1g�is in �k if there exists a polynomial p and a polynomial time algorithm V such that x 2 S if andonly if 8y12f0; 1gp(jxj)9y22f0; 1gp(jxj)8y32f0; 1gp(jxj) � � �Qkyk2f0; 1gp(jxj)s.t. V (x; y1; :::; yk) = 1where Qk is a universal quanti�er if k is odd and is an existential quanti�er otherwise.(Recall that �k was de�ned as co�k, which in turn is de�ned as ff0; 1g� n S : S 2 �kg.)Exercise 17 (complete problems for PH) A k-alternating quanti�ed Boolean formula is a quan-ti�ed Boolean formula with up to k alternations between existential and universal quanti�ers,starting with an existential quanti�er. For example, 9z19z28z3�(z1; z2; z3) (where the zi's areBoolean variables) is a 2-alternating quanti�ed Boolean formula. Prove that the problem of de-ciding whether or not a k-alternating quanti�ed Boolean formula is valid is �k-complete. That is,denoting the aforementioned problem by kQBF, prove that kQBF is in �k and every problem in �kis Karp-reducible to kQBF. 11



Exercise 18 (on the relation between PH and AC0) Note that there is an obvious analogybetween PH and constant depth circuits of unbounded fan-in, where existential (resp., universal)quanti�ers are represented by \large" W (rep., V) gates. To articulate this relationship, considerthe following de�nitions.� A family of circuits fCNg is called highly uniform if there exists a polynomial-time algorithmthat answers local queries regarding the structure of the relevant circuit. Speci�cally, oninput (N;u; v), the algorithm determines the type of gates represented by the vertices u andv in CN as well as whether there exists a directed edge from u to v. Note that this algorithmoperates in time that polylogarithmic in the size of CN .We focus on family of polynomial-size circuits, meaning that the size of CN is polynomial inN , which in turn represents the number of inputs to CN .� Fixing a polynomial p, a p-succinctly represented input X 2 f0; 1gN is a circuit cX of size atmost p(log2N) such that for every i 2 [N ] it holds that cX(i) equals the ith bit of X.� For a �xed family of highly uniform circuits fCNg and a �xed polynomial p, the problem ofevaluating a succinctly represented input is de�ned as follows. Given p-succinct representationof an input X 2 f0; 1gN , determine whether or not CN (X) = 1.For every k and every S 2 �k, show that there exists a family of highly uniform unbounded fan-incircuits of depth k and polynomial-size such that S is Karp-reducible to evaluating a succinctlyrepresented input (with respect to that family of circuits). That is, the reduction should map aninstance x 2 f0; 1gn to a p-succinct representation of some X = Xx 2 f0; 1gN such that x 2 S ifand only if CN (X) = 1. (Note that X is represented by a circuit cX of size at most p(log2N), andthat it must hold that jcX j � poly(n) and thus N � exp(poly(n)).)5Guideline: Let S 2 �k and let V be the corresponding veri�cation algorithm as in De�nition 8. Thatis, x 2 S if and only if 9y18y2 � � �Qkyk, where each yi 2 f0; 1gpoly(jxj) such that V (x; y1; :::; yk) = 1. Then,for m = poly(jxj) and N = 2k�m, consider the circuit CN (Z) = Wi12[2m]Vi22[2m] � � �Q0ik2[2m]Zi1;i2;:::;ik ,and the problem of evaluating it at the input consisting of the truth-table of V (x; � � �) (i.e., when settingZi1;i2;:::;ik = V (x; i1; :::; ik)). Note that the size of CN is O(N).6Exercise 19 Verify the following facts:1. For every k � 1, it holds that �k � P�k � �k+1.(Note that, for any complexity class C, the class PC is the class of sets that are Cook-reducibleto some set in C. In particular, PP = P.)2. For every k � 1, �k � P�k � �k+1.(Hint: For any complexity class C, it holds that PC = PcoC and PC = coPC .)3. For every k � 1, it holds that �k � �k+1 and �k � �k+1. Thus, PH = [k�k.5Assuming P 6= NP, it cannot be that N � poly(n) (because circuit evaluation can be performed in timepolynomial in the size of the circuit).6Advanced comment: the limitations of AC0 circuits imply limitations on the functions of the truth-table of ageneric V that such the aforementioned circuits CN can compute. Unfortunately, these limitations do not seem toprovide useful information on the limitations of functions that are con�ned to truth-tables that have succinct repre-sentation (as in the case of the actual V ). This fundamental problem is \resolved" in the context of \relativization"by providing V with oracle access to an arbitrary input of length N (or so); cf. [3].12



Exercise 20 Referring to the notion of downwards self-reducibility (as de�ned in the proof ofTheorem 12), prove that if P = NP (resp., NP = coNP) then any set S0 2 P=poly that isdownwards self-reducible is in P (resp., in NP).(Hint: any set S0 2 P=poly that is downwards self-reducible is in �2.)Exercise 21 In continuation to Part 2 of Exercise 13, we consider the class of sets that are Karp-reducible to a sparse set. It can be proved that this class contains SAT if and only if P = NP(see [2]). Here, we only consider the special case in which the sparse set is contained in anothersparse set that is in P (e.g., the latter set may be f1g�, in which case the former set may be anarbitrary unary set). Speci�cally, we claim thatif SAT is Karp-reducible to a set S � G such that G 2 P and G is sparse then SAT 2 P.Using the hypothesis, we outline a polynomial-time procedure for solving the search problem ofSAT, and leave providing the details as an exercise. The procedure conducts a DFS on the treeof all possible partial truth assignment to the input formula, while truncating the search at nodesthat are roots of sub-trees that were already proved to contain no satisfying assignment (at theleaves).7Guideline: The key observation is that each internal node (which yields a formula derived from the initialformulae by instantiating the corresponding partial truth assignment) is mapped by the reduction eitherto a string not in G (in which case we conclude that the sub-tree contains no satisfying assignments andbacktrack from this node) or to a string in G. In the latter case, unless we already know that this string isnot in S, we start a scan of the sub-tree rooted at this node. but once we backtrack from this internal node,we know that the corresponding element of G is not in S, and we will never extend a node mapped to thiselement again. Also note that once we reach a leaf, we can check by ourselves whether or not it correspondsto a satisfying assignment to the initial formula.(Hint: When analyzing the forgoing procedure, note that on input an n-variable formulae � the number of timeswe start to scan a sub-tree is at most n � j [poly(j�j)i=1 f0; 1gi \ (G n S)j.)References[1] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. Journal of the ACM, Vol. 28,pages 114{133, 1981.[2] S. Fortune. A Note on Sparse Complete Sets. SIAM Journal on Computing, Vol. 8, pages431{433, 1979.[3] M.L. Furst, J.B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy.Mathematical Systems Theory, Vol. 17 (1), pages 13{27, 1984. Preliminary version in 22ndFOCS, 1981.[4] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform complexityclasses. In 12th ACM Symposium on the Theory of Computing, pages 302-309, 1980.[5] L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, Vol. 3,pages 1{22, 1977.LaTeX Warning: Citation `Stock77' on page 11 unde�ned on input LaTeX Warning: Citation`KL' on page 11 unde�ned on input line7For an n-variable formulae, the leaves of the tree correspond to all possible n-bit long strings, and an internalnode corresponding to � is the parent of nodes corresponding to �0 and �1.13


