
Texts in Computational Complexity:More Resources, More Power?Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.December 5, 2005 More electricity, less toil.The Israeli Electricity Company, 1960'sA brief introductionIs it indeed the case that the more resources one has, the more one can achieve? The answermay seem obvious, but the obvious answer (of yes) actually presumes that the worker knows howmuch resources are at his/her disposal. In this case, when allocated more resources, the worker (orcomputation) can indeed achieve more. But otherwise, nothing may be gained by adding resources.In the context of computational complexity, an algorithm knows the amount of resources thatit is allocated if it can determine this amount without exceeding the corresponding resources. Thiscondition is satis�es in all natural cases, but it may not hold in general. The latter fact shouldnot be that surprising: we already know that some functions are not computable and if thesefunctions are used to determine resources then the algorithm may be in trouble. Needless to say,this discussion requires some formalization, which is will provided below.When using \nice" functions to determine the algorithm's resources, it is indeed the case thatmore resources allow for more tasks to be performed. However, when \ugly" functions are used forthe same purpose, increasing the resources may have no e�ect. By nice functions we mean functionsthat can be computed without exceeding the amount of resources that they specify (e.g., t(n) = n2or t(n) = 2n). Naturally, \ugly" functions do not allow to present themselves in such nice forms.The forgoing discussion refers to a uniform model of computation and to (natural) resourcessuch as time and space complexities. Thus, we get results asserting, for example, that there arefunctions computable in cubic-time but not in quadratic-time. In case of non-uniform models ofcomputation, the issue of \nicety" does not arise, and it is easy to establish separations betweenlevels of circuit complexity that di�er by any unbounded amount.Results that separate the class of problems solvable within one resource bound from the class ofproblems solvable within a larger resource bound are called hierarchy theorems. Results that indicatethe non-existence of such separations, hence indicating a \gap" in the growth of computing power(or a \gap" in the existence of algorithms that utilize the added resources), are called gap theorems.A somewhat related phenomenon, called speed-up theorems, refers to the inability to de�ne thecomplexity of some problems. 1



Caveat: Uniform complexity classes based on speci�c resource bounds (e.g., cubic-time) aremodel dependent. Furthermore, the tightness of separation results (i.e., how much more time isrequired to solve an additional computational problem) is also model dependent. Still the existenceof such separations is a phenomenon common to all reasonable and general models of computation(as referred to in the Cobham-Edmonds Thesis). In the following presentation, we will explicitlydi�erentiate model-speci�c e�ects from generic ones.Organization: We will �rst demonstrate the \more resources yield more power" phenomenon inthe context of non-uniform complexity. In this case the issue of \knowing" the amount of resourcesallocated to the computing device does not arise, because each device is tailored to the amount ofresources allowed for the input length that it handles (see Section 1).1 Non-uniform complexity hierarchiesThe model of machines that use advice o�ers a very convenient setting for separation results. Werefer speci�cally, to classes of the form P=`, where ` : N ! N is an arbitrary function. Recallthat every Boolean function is in P=2n, by virtue of a trivial algorithm that is given as advicethe truth-table of the function restricted to the relevant input length. An analogous algorithmunderlies the following separation result.Theorem 1 For any two functions `0; � : N ! N such that `0(n) + �(n) � 2n and � is unbounded,it holds that P=`0 is strictly contained in P=(`0 + �).Proof: Let ` def= `0 + �, and consider the algorithm A that given advice an 2 f0; 1g`(n) and inputi 2 f1; :::; 2ng (viewed as an n-bit long string), outputs the ith bit of an if i � janj and zero otherwise.Clearly, for any a = (an)n2N such that janj = `(n), it holds that the function fa(x) def= A(ajxj; x)is in P=`. Furthermore, di�erent sequences a yield di�erent functions fa. We claim that some ofthese functions fa are not in P=`, thus obtaining a separation.The claim is proved by considering all possible (polynomial-time) algorithms A0 and all possiblesequences a0 = (a0n)n2N such that ja0nj = `0(n). Fixing any algorithm A0, we consider the number ofn-bit long functions that are correctly computed by A0(a0n; �). Clearly, the number of these functionsis at most 2`0(n), and thus A0 may account for at most 2��(n) fraction of the functions fa (even whenrestricted to n-bit strings). This consideration holds for every n and every possible A0, and thusthe measure of the set of functions that are computable by algorithms that take advice of length `is zero.1A somewhat less tight bound can be obtained by using the model of Boolean circuits. In thiscase some slackness is needed in order to account for the gap between the upper and lower boundsregarding the number of Boolean functions over f0; 1gn that are computed by Boolean circuits ofsize s < 2n. Speci�cally (see Exercise 10), an obvious lower-bound on this number is 2s=O(log s)whereas an obvious upper-bound is �s2s � � 22s log2 s. (Compare these to the lower-bound 2s, and theupper-bound 2s+((�(n)�2)=2) used in the proof of Theorem 1.)1It su�ces to show that this measure is strictly less than one. This is easily done by considering, for everyalgorithm A0, the performance of A0 on inputs of length n such that �(n) > 2jhA0ij + 2.
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2 Time Hierarchies and GapsIn this section we show that in the \natural cases" increasing time-complexity allows for moreproblems to be solved, whereas in \pathological cases" it may happen that even a dramatic increasein the time-complexity provides no additional computing power. As hinted in the introduction, the\natural cases" correspond to time bounds that can be determined by the algorithm itself withinthe speci�ed time complexity.2.1 Time HierarchiesNote that the non-uniform computing devices considered in the previous section were explicitlygiven the relevant resource bounds. Actually, they were given the resources themselves and didnot need to monitor their usage of these resources. In contrast, when designing algorithms of timecomplexity t : N ! N , we need to make sure that the algorithm does not exceed the time bound.Furthermore, when invoked on input x, the algorithm is not given the time bound t(jxj) explicitly,and a reasonable design methodology (for dealing with generic algorithms as we will in the proofof the following separation results) is to let the algorithm compute this bound (i.e., t(jxj)). This,in turn, requires to read the entire input (see Exercise 11) as well as to compute t(n) using O(t(n))(or so) time. The latter requirement motivates the following de�nition (which is related to thestandard de�nition of \fully time constructibility" (cf. [4, Sec. 12.3])).De�nition 2 (time constructible functions): A function t : N ! N is called time constructible ifthere exists an algorithm that on input n outputs t(n) using at most t(n) steps.Equivalently, we may require that the mapping 1n 7! t(n) be computable within time complexityt. We warn that the foregoing de�nition is model dependent; however, typically nice functionsare computable even faster (e.g., in poly(log t(n)) steps), in which case the model-dependencyis irrelevant (for reasonable and general models of computation, as referred to in the Cobham-Edmonds Thesis). For example, in any reasonable and general model, functions like t1(n) = n2,t2(n) = 2n, and t3(n) = 22n are computable in poly(log ti(n)) steps.Likewise, for a �xed model of computation (to be understood from the context) and for anyfunction t : N ! N , we denote by Dtime(t) the class of decision problems that are solvable in timecomplexity t.2.1.1 The Time Hierarchy TheoremIn the following theorem, we refer to the model of two-tape Turing machines. In this case weobtain quite a tight hierarchy, when referring to the relation between t1 and t2. We stress thatusing the Cobham-Edmonds Thesis, this results yields (possibly less tight) hierarchy theorems forany reasonable and general model of computation.Teaching note: The standard statement of the following result asserts that for any timecomputable function t2 and every function t1 such that t2 = !(t1 log t1) and t1(n) > n itholds that Dtime(t1) is strictly contained in Dtime(t2). We �nd the proof of the currentversion more intuitive, and comment on the proof of the standard version after provingthe current one.Theorem 3 (time hierarchy for two-tape Turing machines): For any time computable function t1and every function t2 such that t2(n) � (log t1(n))2 � t1(n) and t1(n) > n it holds that Dtime(t1) isstrictly contained in Dtime(t2). 3



As will become clear from the proof, an analogous result holds for any model in which a universalmachine can emulate t steps of another machine in O(t log t) time. Before proving Theorem 3, wederive the following corollary.Corollary 4 (time hierarchy for any reasonable and general model): For any reasonable and gen-eral model of computation there exists a positive polynomial p such that for any time-computablefunction t1 and every function t2 such that t2 > p(t1) and t1(n) > n it holds that Dtime(t1) isstrictly contained in Dtime(t2).Proof of Corollary 4: Letting Dtime2 denote the classes that correspond to two-tape Turingmachines, we have Dtime(t1) � Dtime2(t01) and Dtime(t2) � Dtime2(t02), where t01 = poly(t1)and t02 is de�ned such that t2(n) = poly(t02(n)). The latter unspeci�ed polynomials, hereafterdenoted p1 and p2 respectively, are the ones guaranteed by the Cobham-Edmonds Thesis. Also,the hypothesis that t1 is time-computable implies that t01 = p1(t1) is time-constructible with respectto the two-tape Turing machine model. Thus, for a suitable choice of the polynomial p, it holdsthat t02(n) = p�12 (t2(n)) > p�12 (p(t1(n))) > p�12 (p(p�11 (t01(n)))) > (t01(n))2 :Invoking Theorem 3, we have Dtime2(t02) � Dtime2(t01), and the corollary follows.Proof of Theorem 3: The idea is to construct a Boolean function f such that all machineshaving time complexity t1 fail to compute f . This is done by associating each possible machineM a di�erent input xM (e.g., xM = hMi), and making sure that f(xM) 6= M 0(x), where M 0(x)denotes an emulation of M(x) that is suspended after t1(jxj) steps. Actually, we are going to usea mapping � of inputs to machines (i.e., �(xM ) =M), such that each machine is in the range of �and � is very easy to compute.The issue is presenting an algorithm for computing f . This algorithm is straightforward: Oninput x, it computes t = t1(jxj), determines the machine M = �(x) that corresponds to x (out-putting a default value of no such machine exists), emulates M(x) for t steps, and returns thevalue 1 �M 0(x). The question is how much time is required for this emulation. We should bearin mind that the time complexity of our algorithm needs to be evaluated in the two-tape Turingmachine model, whereas M itself is a two-tape Turing machine. The obvious approach is to im-plement our algorithm on a three-tape Turing-machine, using two tapes for the emulation itselfand another tape for the emulation procedure. Using this approach, each step of M is emulatedin O(jhMij) steps (on the three-tape machine). Emulating t0 steps of a three-tape machine ona two-tape machine requires O(t0 log t0) steps, and so the emulation costs O(TM (jxj) log TM (jxj)),where TM (n) = O(jhMij � t1(n)).It turns out that the quality of the result we obtain depends on the mapping � of inputs tomachines. Using the naive (identity) mapping of the input xM to the machine M (such that xM =hMi is a description of M), we can only establish the theorem for t2(n) = !(n � t1(n) log(n � t1(n))).The theorem follows by associating with machine M the input xM = hMim, where m = 2jhMij,because in this case jhMij = o(log jxM j) = o(log t1(jxM j)). In other words, we may use the mapping� such that �(x) =M if x = hMi2jhMij and �(x) equals some �xed machine otherwise.Teaching note: Proving the standard version of Theorem 3 cannot be done by associ-ating a su�ciently long input xM with each machine M , because this does not allow toget rid from an additional unbounded factor multiplier of t1(n) log t1(n). Note that thelatter factor needs to be computable (at the very least) and thus cannot be accountedfor by the generic !-notation that appears in the standard version (cf. [4, Thm. 12.9]).Instead, a di�erent approach is taken (see Footnote 2).4



Comment: The proof of Theorem 3 associates with each potential machine an input and makesthis machine err on this input. The aforementioned association is rather 
exible: it should merelybe e�ciently computed (in the direction from the input to a possible machine) and should besu�ciently shrinking (in that direction).2.1.2 Impossibility of speed-up for universal computationThe Time Hierarchy Theorem (Theorem 3) implies that the computation of a universal machinecannot be signi�cantly sped-up. That is, consider the function u0(hMi; x; t) def= y if on input xmachine M halts within t steps and outputs the string y, and u0(hMi; x; t) def= ? if on input xmachine M makes more than t steps. Recall that the value of u0(hMi; x; t) can be computed ineO(jxj + jhMij � t) steps. Theorem 3 implies that this value cannot be computed with signi�cantlyless steps.Theorem 5 There exists no two-tape Turing machine that, on input hMi; x and t, computesu0(hMi; x; t) in o((t+ jxj) � f(M)= log2(t+ jxj)) steps, where f is an arbitrary function.A similar result holds for any reasonable and general model of computation (cf., Corollary 4).Proof: Suppose (towards the contradiction) that, for every M , given x and t > jxj, the value ofu0(hMi; x; t) can be computed in o(t= log2 t) steps. Consider an arbitrary time computable t1 (s.t.ti1(n) > n) and an arbitrary set S 2 Dtime(t2), where t2(n) = t1(n) � log2 t1(n). Let M be amachine of time complexity t2 that decides membership in S, and consider an algorithm that, oninput x, �rst computes t = t1(jxj), and then computes (and outputs) the value u0(hMi; x; t log2 t).By the time constructibility of t1, the �rst computation can be implemented in t steps, and by thecontradiction hypothesis the same holds for the second computation. Thus, S can be decided inDtime(t1), implying that Dtime(t2) = Dtime(t1), which in turn contradicts Theorem 3.2.1.3 Hierarchy theorem for non-deterministic timeAnalogously to Dtime, for a �xed model of computation (to be understood from the context) andfor any function t : N ! N , we denote by Ntime(t) the class of decision problems that are solvableby a non-deterministic machine of time complexity t. Alternatively, analogously to the de�nitionof NP , a set S � f0; 1g� is in Ntime(t) if there exists a linear-time algorithm V such that the twoconditions hold1. For every x 2 S there exists y 2 f0; 1gt(jxj) such that V (x; y) = 1.2. For every x 62 S and every y 2 f0; 1g� it holds that V (x; y) = 0.We warn that the two formulations are not identical, but in su�ciently strong models (e.g., two-tape Turing machines) they are related up to logarithmic factors (see Exercise 12). The hierarchytheorem itself is similar to the one for deterministic time, except that here we require that t2(n) �(log t1(n+ 1))2 � t1(n+ 1) (rather than t2(n) � (log t1(n))2 � t1(n)). That is:2The function f is not de�ned with reference to t1(jxM j) steps of M(xM ), but rather with reference to the result ofemulatingM(xM ) while using a total of t2(jxM j) steps in the emulation process (i.e., in the algorithm used to computef). This guarantees that f is in Dtime(t2), and pushes the problem to showing that f is not in Dtime(t1), where theproblem is resolved by noting that each candidate machine having time complexity t1 will have its executions fullyemulated on any su�ciently long input. Thus, we merely need to associate with each M a disjoint set of in�nitelymany inputs and make sure that M errs on each of these inputs.5



Theorem 6 (non-deterministic time hierarchy for two-tape Turing machines): For any time com-putable function t1 and every function t2 such that t2(n) � (log t1(n+1))2 � t1(n+1) and t1(n) > nit holds that Ntime(t1) is strictly contained in Ntime(t2).Proof Sketch: We cannot just apply the proof of Theorem 3, because the Boolean function fde�ned there requires the ability to determine whether M accepts the input xM in t1(jxM j) steps.In the current context, M is a non-deterministic machine and so the only way we know howto determine this questions (both for a yes and no answers) is to try all the (2t1(jxM j)) relevantexecutions. But this would put f in Dtime(2t1), rather than in Ntime( eO(t1)), and so a di�erentapproach is needed.We associate with each machine M , a large interval of strings (viewed as integers), denotedIM = [`M ; uM ], such that the various intervals do not intersect and such that it is easy to determinefor each string x in which interval it falls. For each x 2 [`M ; uM � 1], we de�ne f(x) = 1 if andonly if there exists a non-deterministic computation of M that accepts the input x0 def= x + 1 int1(jx0j) steps. As for f(uM ), we de�ne it as zero if and only if there exists a non-deterministiccomputation of M that accepts the input `M in t1(j`M j) steps. This de�nition is coupled with anon-deterministic machine for accepting the set fx : f(x) = 1g. On input x 2 [`M ; uM � 1], thisnon-deterministic machine emulates a non-deterministic computation of M , which can be done intime (log t1(jx + 1j))2 � t1(jx + 1j). On input x = uM , the machine just tries all 2t1(j`M j) (t1(j`M j)-step) executions of M(`M ), which can be done in time t1(juM j) � t1(juM j) provided the interval waschosen to be large enough (i.e., t1(juM j) � 2t1(j`M j), which certainly holds when juM j � 2t1(j`M j)).De�ning f this way guarantees that it is not in Ntime(t1). Suppose on the contrary, thatsome non-deterministic machine M of time complexity t1 accepts the set fx : f(x) = 1g. Wede�ne a Boolean function AM such that AM (x) = 1 if and only if there exists a non-deterministiccomputation of M that accepts the input x, and note that AM (x) = f(x). Focusing on the interval[`M ; uM ], we have AM (x) = f(x) for every x 2 [`M ; uM ], which (combined with the de�nition off) implies that AM (x) = f(x) = AM (x + 1) for every x 2 [`M ; uM � 1] and AM (uM ) = f(uM ) =1�AM (`M ). Thus, we reached a contraction (i.e., AM (`M ) = � � � = AM (uM ) = 1�AM (`M )).2.2 Time Gaps and Speed-UpIn contrast to Theorem 3, there exists functions t : N ! N such that Dtime(t) = Dtime(t2) (oreven Dtime(t) = Dtime(2t)). Needless to say, these functions are not time-constructible (and thusthe aforementioned fact does not contradict Theorem 3). The reason for this phenomenon is that,for such functions t, there exists not algorithms that have time complexity above t but below t2(resp., 2t).Theorem 7 (the time gap theorem): For every non-decreasing computable function g : N ! Nthere exists a non-decreasing computable function t : N ! N such that Dtime(t) = Dtime(g(t)).The forgoing examples referred to g(m) = m2 and g(m) = 2m. Since we are mainly interested indramatic gaps (i.e., super-polynomial functions g), the model of computation does not matter here(as long as it is reasonable and general).Proof: Consider an enumeration of all possible algorithms (or machines) and let ti denote the timecomplexity of the ith algorithm. Recall that we cannot enumerate only machines that halt on everyinput, and that ti(n) = 1 if the ith machine does not halt on some n-bit long input. The basicidea is to de�ne t such that no ti is \sandwiched" between t and g(t). Intuitively, if ti(n) is �nite,6



then we may de�ne t such that ti(n) < t(n), whereas if ti(n) =1 then any �nite value of t(n) willdo (because then ti(n) > g(t(n))). The problem is that we want t to be computable, whereas wecannot tell whether or not ti(n) is �nite. However, we don't really need to make the latter decision:for each candidate value v of t(n), we should just determine whether or not ti(n) 2 [v; g(v)], whichcan be decided by running the ith machine for at most g(v) steps (on each n-bit long string).Bearing in mind that we should deal with all possible machines, we obtain the following procedurefor setting t(n).Let � : N ! N be any unbounded and computable function (e.g., �(n) = n will do). Startingwith v = 1, we keep incrementing v until v satis�es, for every i 2 f1; :::; �(n)g, either ti(n) < vor ti(n) > g(v). This condition can be veri�ed by computing �(n) and g(v), and emulating theexecution of of the �(n) machines on each of the n-bit long strings for g(v) steps. The proceduresets g(n) to equal the �rst value v satisfying the aforementioned condition, and halts. To showthat the procedure halts on every n, consider the set Hn � f1; :::; �(n)g of indices of the relevantmachines that halt on all inputs of length n. Then the procedure de�nitely halts before reachingthe value v = m + 2, where m = maxi2Hnfti(n)g. (Indeed, the procedure may halt with v � m,provide that g(v) < m.)Comment: The function t de�ned by the foregoing proof is computable in time that exceeds g(t).Speci�cally, the presented procedure computes t(n) (as well as g(f(n))) in time eO(2n � g(t(n)) +Tg(t(n))), where Tg(m) denotes the number of steps required to compute g(m) on input m.Speed-up Theorems. Theorem 7 can be viewed as asserting that some time complexity classes(i.e., Dtime(g(t)) in the theorem) collapse to lower classes (i.e., to Dtime(t)). A conceptuallyrelated phenomenon is of problems that have no optimal algorithm (not even in a very mild sense);that is, every algorithm for these (\pathological") problems can be drastically sped-up. It followsthat the complexity of these problems can not be de�ned (i.e., as the complexity of the bestalgorithm solving this problem). The following drastic speed-up theorem should not be confusedwith the linear speed-up that is an artifact of the de�nition of a Turing machine (see Exercise 13).3Theorem 8 (the time speed-up theorem): For every computable (and super-linear) function gthere exists a decidable set S such that if S 2 Dtime(t) then S 2 Dtime(t0) for t0 satisfyingg(t0(n)) < t(n).Taking g(n) = n2 (or g(n) = 2n), the theorem asserts that, for every t, if S 2 Dtime(t) thenS 2 Dtime(pt) (resp., S 2 Dtime(log t)). Note that Theorem 8 can be applied any numberof times, which means that we cannot give a reasonable estimate to the complexity of decidingmembership in S. In contrast, recall that in some important cases optimal algorithms for solvingcomputational problems do exist. Speci�cally, algorithms solving (candid) search problems in NPcannot be speed-up nor can the computation of a universal machine (see Theorem 5).The proof of Theorem 8 (given in [4, Sec. 12.6]) constructs a set S in Dtime(t0) n Dtime(t00)for any t0(n) = t(n � O(1)) and t00(n) = t(n � !(1)), where t(n) denoted g iterated n times on 2(i.e., t(n) = g(n)(2), where g(i+1)(m) = g(g(i)(m)) and g(1) = g).3We note that this fact was implicitly addressed in the proof of Theorem 3, by allowing an emulation overheadthat depends on the length of the description of the emulated machine.
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3 Space Hierarchies and GapsHierarchy and Gap Theorems analogous to Theorem 3 and Theorem 7, respectively, are known forspace complexity. In fact, since space-e�cient emulation of space-bounded machines is simplerthan time-e�cient emulations of time-bounded machines, the results tend to be sharper. This ismost conspicuous in the case of the separation result (stated next), which is optimal (in light oflinear speed-up results; see Exercise 13).Before stating the result, we need a few preliminaries. We assume familiarity with the de�nitionof space complexity. As in case of time complexity, we consider a speci�c model of computation,but the results hold for any other reasonable and general model. Speci�cally, we consider three-tapeTuring machines, because we designate two special tapes for input and output. For any functions : N ! N , we denote by Dspace(s) the class of decision problems that are solvable in spacecomplexity s. Analogously to De�nition 2, we call a function s : N ! N space constructible if thereexists an algorithm that on input n outputs s(n) using at most s(n) cells of the work-tape. Actually,functions like s1(n) = log n, s2(n) = (log n)2, and s3(n) = 2n are computable using log si(n) space.Theorem 9 (space hierarchy for three-tape Turing machines): For any space computable functions2 and every function s1 such that s2 = !(s1) and s1(n) > log n it holds that Dspace(s1) is strictlycontained in Dspace(s2).Theorem 9 is analogous to the traditional version of Theorem 3 (rather to the one we presented),and is proven using the alternative approach sketched in Footnote 2.NotesThe hierarchy theorems (e.g., Theorem 3) were proved by Hartmanis and Stearns [3]. Gap theorems(e.g., Theorem 7, often referred to as Borodin's Gap Theorem) were proven by Borodin [2]. A ax-iomatic treatment of complexity measures and corresponding speed-up theorems (e.g., Theorem 8,often referred to as Blum's Speed-up Theorem) are due to Blum [1].ExercisesExercise 10 For s < 2n, prove that the number of Boolean functions over f0; 1gn that are com-puted by Boolean circuits of size s is at least 2s=O(log s) and at most �s2s �.Guideline: Any Bollean function f : f0; 1g` ! f0; 1g can be computed by a circuit of size s = O(` � 2`).Thus, circuits of size s may compute 22` > 2s=O(log s) di�erent Boolean functions. On the other hand, thenumber of circuits of size s is less than �s2s �, where the upper-bound represents the number of possible choicesof pair of gates that feed any gate in the circuit.Exercise 11 Referring to a reasonable model of computation (and assuming that the input lengthis not given explicitly), prove that any algorithm that has sub-linear time-complexity actually hasconstant time-complexity.(Hint: Consider the question of whether or not there exists an in�nite set of strings S such that when invoked onany input x 2 S the algorithm reads all of x. Note that if S is in�nite then the algorithm cannot have sub-lineartime-complexity, and prove that if S is �nite then the algorithm has constant time-complexity.)8



Exercise 12 Prove that the two de�nitions of Ntime, presented at the end of Section 2.1, arerelated up to logarithmic factors. Note the importance of condition that V has linear (rather thanpolynomial) time-complexity.(Hint: when emulating a non-deterministic machine by the veri�cation procedure V , encode the non-deterministicchoices in y while using su�cient padding such that t steps of the original machine can be emulated in jyj = O(t log t)steps of V .)Exercise 13 Prove that any problem that can be solved by a two-tape Turing machine that hastime complexity t can be solved by another two-tape Turing machine having time complexity t0,where t0(n) = O(n) + (t(n)=2).(Hint: Consider a machine that uses a larger alphabet, capable of encoding a constant number of symbols of theoriginal machine, and thus capable of emulating a constant number of steps of the original machine in a smallerconstant number of steps. Note that the O(n) term accounts to a preprocessing required to encode the input in thework-alphabet of the new machine, and that a similar result for one-tape Turing machine seems to require a O(n2)term.)State and prove an analogous result for space complexity.References[1] M. Blum. A Machine-Independent Theory of the Complexity of Recursive Functions. Journalof the ACM, Vol. 14 (2), pages 290{305, 1967.[2] A. Borodin. Computational Complexity and the Existence of Complexity Gaps. Journal ofthe ACM, Vol. 19 (1), pages 158{174, 1972.[3] J. Hartmanis and R.E. Stearns. On the Computational Complexity of of Algorithms. Trans-actions of the AMS, Vol. 117, pages 285{306, 1965.[4] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computa-tion. Addison-Wesley, 1979.
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