Texts in Computational Complexity:
More Resources, More Power?

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

December 5, 2005

More electricity, less toil.

The Israeli Electricity Company, 1960’s

A brief introduction

Is it indeed the case that the more resources one has, the more one can achieve? The answer
may seem obvious, but the obvious answer (of yes) actually presumes that the worker knows how
much resources are at his/her disposal. In this case, when allocated more resources, the worker (or
computation) can indeed achieve more. But otherwise, nothing may be gained by adding resources.

In the context of computational complexity, an algorithm knows the amount of resources that
it is allocated if it can determine this amount without exceeding the corresponding resources. This
condition is satisfies in all natural cases, but it may not hold in general. The latter fact should
not be that surprising: we already know that some functions are not computable and if these
functions are used to determine resources then the algorithm may be in trouble. Needless to say,
this discussion requires some formalization, which is will provided below.

When using “nice” functions to determine the algorithm’s resources, it is indeed the case that
more resources allow for more tasks to be performed. However, when “ugly” functions are used for
the same purpose, increasing the resources may have no effect. By nice functions we mean functions
that can be computed without exceeding the amount of resources that they specify (e.g., t(n) = n?
or t(n) = 2™). Naturally, “ugly” functions do not allow to present themselves in such nice forms.

The forgoing discussion refers to a uniform model of computation and to (natural) resources
such as time and space complexities. Thus, we get results asserting, for example, that there are
functions computable in cubic-time but not in quadratic-time. In case of non-uniform models of
computation, the issue of “nicety” does not arise, and it is easy to establish separations between
levels of circuit complexity that differ by any unbounded amount.

Results that separate the class of problems solvable within one resource bound from the class of
problems solvable within a larger resource bound are called hierarchy theorems. Results that indicate
the non-existence of such separations, hence indicating a “gap” in the growth of computing power
(or a “gap” in the existence of algorithms that utilize the added resources), are called gap theorems.
A somewhat related phenomenon, called speed-up theorems, refers to the inability to define the
complexity of some problems.

Caveat: Uniform complexity classes based on specific resource bounds (e.g., cubic-time) are
model dependent. Furthermore, the tightness of separation results (i.e., how much more time is
required to solve an additional computational problem) is also model dependent. Still the existence
of such separations is a phenomenon common to all reasonable and general models of computation
(as referred to in the Cobham-Edmonds Thesis). In the following presentation, we will explicitly
differentiate model-specific effects from generic ones.

Organization: We will first demonstrate the “more resources yield more power” phenomenon in
the context of non-uniform complexity. In this case the issue of “knowing” the amount of resources
allocated to the computing device does not arise, because each device is tailored to the amount of
resources allowed for the input length that it handles (see Section 1).

1 Non-uniform complexity hierarchies

The model of machines that use advice offers a very convenient setting for separation results. We
refer specifically, to classes of the form P/{, where { : N — N is an arbitrary function. Recall
that every Boolean function is in P/2", by virtue of a trivial algorithm that is given as advice
the truth-table of the function restricted to the relevant input length. An analogous algorithm
underlies the following separation result.

Theorem 1 For any two functions {',6 : N — N such that £'(n) + 6(n) < 2™ and 6 is unbounded,
it holds that P/l is strictly contained in P/({' + 6).

Proof: Let ¢ % ¢ 4 8, and consider the algorithm A that given advice a,, € {0,1}*®) and input
i €{1,...,2"} (viewed as an n-bit long string), outputs the i*" bit of a,, if i < |a,| and zero otherwise.
Clearly, for any @ = (ay)nen such that |a,| = £(n), it holds that the function fz(x) def A(ayg),)
is in P/¢. Furthermore, different sequences @ yield different functions fz. We claim that some of
these functions fz are not in P/¢, thus obtaining a separation.

The claim is proved by counsidering all possible (polynomial-time) algorithms A’ and all possible
sequences @ = (a,)pen such that |al,| = ¢'(n). Fixing any algorithm A’, we consider the number of
n-bit long functions that are correctly computed by A'(al,,-). Clearly, the number of these functions
is at most 2¢(and thus A’ may account for at most 2-°) fraction of the functions fz (even when
restricted to n-bit strings). This consideration holds for every n and every possible A’, and thus
the measure of the set of functions that are computable by algorithms that take advice of length /¢
is zero.l I

A somewhat less tight bound can be obtained by using the model of Boolean circuits. In this
case some slackness is needed in order to account for the gap between the upper and lower bounds
regarding the number of Boolean functions over {0,1}" that are computed by Boolean circuits of
size s < 2". Specifically (see Exercise 10), an obvious lower-bound on this number is 2¢/€(ogs)
whereas an obvious upper-bound is (382) ~ 22510825 (Compare these to the lower-bound 2°, and the
upper-bound 25H((4(")=2)/2) ysed in the proof of Theorem 1.)

1Tt suffices to show that this measure is strictly less than one. This is easily done by considering, for every
algorithm A’, the performance of A" on inputs of length n such that §(n) > 2|(A")| + 2.

2 Time Hierarchies and Gaps

In this section we show that in the “natural cases” increasing time-complexity allows for more
problems to be solved, whereas in “pathological cases” it may happen that even a dramatic increase
in the time-complexity provides no additional computing power. As hinted in the introduction, the
“natural cases” correspond to time bounds that can be determined by the algorithm itself within
the specified time complexity.

2.1 Time Hierarchies

Note that the non-uniform computing devices considered in the previous section were explicitly
given the relevant resource bounds. Actually, they were given the resources themselves and did
not need to monitor their usage of these resources. In contrast, when designing algorithms of time
complexity ¢ : N — N, we need to make sure that the algorithm does not exceed the time bound.
Furthermore, when invoked on input z, the algorithm is not given the time bound #(|x|) explicitly,
and a reasonable design methodology (for dealing with generic algorithms as we will in the proof
of the following separation results) is to let the algorithm compute this bound (i.e., ¢(|z|)). This,
in turn, requires to read the entire input (see Exercise 11) as well as to compute #(n) using O(t(n))
(or so) time. The latter requirement motivates the following definition (which is related to the
standard definition of “fully time constructibility” (cf. [4, Sec. 12.3])).

Definition 2 (time constructible functions): A function t : N — N s called time constructible if
there exists an algorithm that on input n outputs t(n) using at most t(n) steps.

Equivalently, we may require that the mapping 1" +— ¢(n) be computable within time complexity
t. We warn that the foregoing definition is model dependent; however, typically nice functions
are computable even faster (e.g., in poly(logt(n)) steps), in which case the model-dependency
is irrelevant (for reasonable and general models of computation, as referred to in the Cobham-
Edmonds Thesis). For example, in any reasonable and general model, functions like ¢1(n) = n?,
ta(n) = 2", and t3(n) = 22" are computable in poly(logt;(n)) steps.

Likewise, for a fixed model of computation (to be understood from the context) and for any
function ¢ : N — N, we denote by DTIME(t) the class of decision problems that are solvable in time

complexity t.

2.1.1 The Time Hierarchy Theorem

In the following theorem, we refer to the model of two-tape Turing machines. In this case we
obtain quite a tight hierarchy, when referring to the relation between ¢; and to. We stress that
using the Cobham-Edmonds Thesis, this results yields (possibly less tight) hierarchy theorems for
any reasonable and general model of computation.

Teaching note: The standard statement of the following result asserts that for any time
computable function ty and every function t1 such that to = w(ty logty) and t1(n) > n it
holds that DTIME(t1) is strictly contained in DTIME(t2). We find the proof of the current
version more intuitive, and comment on the proof of the standard version after proving

the current one.

Theorem 3 (time hierarchy for two-tape Turing machines): For any time computable function t
and every function ty such that ty(n) > (logt1(n))%-t1(n) and t1(n) > n it holds that DTIME(t,) is
strictly contained in DTIME(t2).

As will become clear from the proof, an analogous result holds for any model in which a universal
machine can emulate ¢ steps of another machine in O(tlogt) time. Before proving Theorem 3, we
derive the following corollary.

Corollary 4 (time hierarchy for any reasonable and general model): For any reasonable and gen-
eral model of computation there exists a positive polynomial p such that for any time-computable
function t; and every function ty such that ta > p(t1) and t1(n) > n it holds that DTIME(ty) is
strictly contained in DTIME(t2).

Proof of Corollary 4: Letting DTIME; denote the classes that correspond to two-tape Turing
machines, we have DTIME(¢;) C DTIME,(#)) and DTIME(ty) 2 DTIMEy(t,), where ¢} = poly(¢;)
and t) is defined such that t2(n) = poly(th(n)). The latter unspecified polynomials, hereafter
denoted p; and py respectively, are the ones guaranteed by the Cobham-Edmonds Thesis. Also,
the hypothesis that ¢; is time-computable implies that ¢] = p1(¢1) is time-constructible with respect
to the two-tape Turing machine model. Thus, for a suitable choice of the polynomial p, it holds
that
th(n) = p3 ' (ta(n)) > p3 (Pt (1)) > b3 (p(pT " (#,(0)))) > (t4(n))?.
Invoking Theorem 3, we have DTIME2(t,) D DTIMEy(t)), and the corollary follows. W

Proof of Theorem 3: The idea is to construct a Boolean function f such that all machines
having time complexity #; fail to compute f. This is done by associating each possible machine
M a different input xp; (e.g., zpy = (M)), and making sure that f(xp) # M'(z), where M'(z)
denotes an emulation of M (z) that is suspended after ¢(|z|) steps. Actually, we are going to use
a mapping p of inputs to machines (i.e., u(xpr) = M), such that each machine is in the range of u
and p is very easy to compute.

The issue is presenting an algorithm for computing f. This algorithm is straightforward: On
input z, it computes ¢t = t;(]z|), determines the machine M = u(x) that corresponds to = (out-
putting a default value of no such machine exists), emulates M(z) for ¢ steps, and returns the
value 1 — M'(z). The question is how much time is required for this emulation. We should bear
in mind that the time complexity of our algorithm needs to be evaluated in the two-tape Turing
machine model, whereas M itself is a two-tape Turing machine. The obvious approach is to im-
plement our algorithm on a three-tape Turing-machine, using two tapes for the emulation itself
and another tape for the emulation procedure. Using this approach, each step of M is emulated
in O(|(M)|) steps (on the three-tape machine). Emulating ¢’ steps of a three-tape machine on
a two-tape machine requires O(t'logt’) steps, and so the emulation costs O(T(|z|) log Ths(|z])),
where Ty (n) = O(|(M)] - ti(n)).

It turns out that the quality of the result we obtain depends on the mapping u of inputs to
machines. Using the naive (identity) mapping of the input z; to the machine M (such that xz) =
(M) is a description of M), we can only establish the theorem for t3(n) = w(n-t1(n)log(n-t1(n))).
The theorem follows by associating with machine M the input zy, = (M)™, where m = 2l (M)
because in this case [(M)| = o(log |zar|) = o(log t1(|zar])). In other words, we may use the mapping

. ol(M)] . .
p such that p(x) = M if x = (M) and p(x) equals some fixed machine otherwise.

Teaching note: Proving the standard version of Theorem 3 cannot be done by associ-
ating a sufficiently long input z,; with each machine M, because this does not allow to
get rid from an additional unbounded factor multiplier of ¢;(n)logt;(n). Note that the
latter factor needs to be computable (at the very least) and thus cannot be accounted
for by the generic w-notation that appears in the standard version (cf. [4, Thm. 12.9]).

Instead, a different approach is taken (see Footnote 2).

Comment: The proof of Theorem 3 associates with each potential machine an input and makes
this machine err on this input. The aforementioned association is rather flexible: it should merely
be efficiently computed (in the direction from the input to a possible machine) and should be
sufficiently shrinking (in that direction).

2.1.2 Impossibility of speed-up for universal computation

The Time Hierarchy Theorem (Theorem 3) implies that the computation of a universal machine

cannot be significantly sped-up. That is, consider the function u'({(M),x,t) def y if on input z

machine M halts within ¢ steps and outputs the string y, and u'((M), z,t) e | if on input z

machine M makes more than ¢ steps. Recall that the value of u'({(M),z,t) can be computed in
O(|z| + [(M)| - t) steps. Theorem 3 implies that this value cannot be computed with significantly
less steps.

Theorem 5 There exists no two-tape Turing machine that, on input (M), and t, computes
W (M), z,t) in o((t + |z|) - F(M)/log®(t + |z|)) steps, where f is an arbitrary function.

A similar result holds for any reasonable and general model of computation (cf., Corollary 4).

Proof: Suppose (towards the contradiction) that, for every M, given x and ¢ > |z|, the value of
W' ((M),z,t) can be computed in o(t/log®t) steps. Consider an arbitrary time computable ¢; (s.t.
t;1(n) > n) and an arbitrary set S € DTIME(ty), where ty(n) = ty(n) - log>t;(n). Let M be a
machine of time complexity to that decides membership in S, and consider an algorithm that, on
input x, first computes t = #,(|z|), and then computes (and outputs) the value u'({(M),z, tlog?t).
By the time constructibility of ¢1, the first computation can be implemented in ¢ steps, and by the
contradiction hypothesis the same holds for the second computation. Thus, S can be decided in
DTIME(?;), implying that DTIME(t2) = DTIME(¢;), which in turn contradicts Theorem 3. W

2.1.3 Hierarchy theorem for non-deterministic time

Analogously to DTIME, for a fixed model of computation (to be understood from the context) and
for any function ¢ : N — N, we denote by NTIME(t) the class of decision problems that are solvable
by a non-deterministic machine of time complexity t. Alternatively, analogously to the definition
of NP, aset S C {0,1}* is in NTIME() if there exists a linear-time algorithm V' such that the two
conditions hold

1. For every z € S there exists y € {0,1}(#1) such that V(z,y) = 1.
2. For every = ¢ S and every y € {0,1}* it holds that V (z,y) = 0.

We warn that the two formulations are not identical, but in sufficiently strong models (e.g., two-
tape Turing machines) they are related up to logarithmic factors (see Exercise 12). The hierarchy
theorem itself is similar to the one for deterministic time, except that here we require that ty(n) >
(logti(n +1))% - t1(n + 1) (rather than t(n) > (logt1(n))? - t1(n)). That is:

2The function f is not defined with reference to t1(|zr|) steps of M(z), but rather with reference to the result of
emulating M (z) while using a total of t2(|za|) steps in the emulation process (i.e., in the algorithm used to compute
f). This guarantees that f is in DTIME(¢2), and pushes the problem to showing that f is not in DTIME(¢1), where the
problem is resolved by noting that each candidate machine having time complexity ¢; will have its executions fully
emulated on any sufficiently long input. Thus, we merely need to associate with each M a disjoint set of infinitely
many inputs and make sure that M errs on each of these inputs.

Theorem 6 (non-deterministic time hierarchy for two-tape Turing machines): For any time com-
putable function t; and every function ty such that to(n) > (logti(n+1))%-t1(n+1) and t1(n) > n
it holds that NTIME(ty) is strictly contained in NTIME(2).

Proof Sketch: We cannot just apply the proof of Theorem 3, because the Boolean function f
defined there requires the ability to determine whether M accepts the input zps in ¢1(|zas]) steps.
In the current context, M is a non-deterministic machine and so the only way we know how
to determine this questions (both for a yes and no answers) is to try all the (201(#mD) relevant
executions. But this would put f in DTIME(2"), rather than in NTIME(O(t)), and so a different
approach is needed.

We associate with each machine M, a large interval of strings (viewed as integers), denoted
Ing = [€ar,upr], such that the various intervals do not intersect and such that it is easy to determine
for each string x in which interval it falls. For each = € [{js,ups — 1], we define f(x) = 1 if and
only if there exists a non-deterministic computation of M that accepts the input z’ Ly +1in
t1(|2'|) steps. As for f(ups), we define it as zero if and only if there exists a non-deterministic
computation of M that accepts the input £y in t1(|€ps|) steps. This definition is coupled with a
non-deterministic machine for accepting the set {x : f(z) = 1}. On input « € [{pr,ups — 1], this
non-deterministic machine emulates a non-deterministic computation of M, which can be done in
time (logt1 (|« +1]))% - t1(|z + 1]). On input 2 = uyy, the machine just tries all 2000uD) (¢, (]05])-
step) executions of M (€y), which can be done in time ¢;(|Jups]) - t1(Juas]) provided the interval was
chosen to be large enough (i.e., t,(Jups|) > 21104 which certainly holds when |uy| > 201 (€ D),

Defining f this way guarantees that it is not in NTIME(#1). Suppose on the contrary, that
some non-deterministic machine M of time complexity ¢; accepts the set {z : f(x) = 1}. We
define a Boolean function Ajs such that Ap/(z) = 1 if and only if there exists a non-deterministic
computation of M that accepts the input x, and note that Ay;(x) = f(x). Focusing on the interval
[¢nr, upr], we have Apf(x) = f(x) for every © € [{pr,ups], which (combined with the definition of
f) implies that Ap(z) = f(z) = Ap(z + 1) for every © € [y, ups — 1] and Apr(ups) = f(up) =
1—Ap(Lpr). Thus, we reached a contraction (i.e., Apr(€pr) = -+ = Apr(upr) =1—Ap(Lyy)). O

2.2 Time Gaps and Speed-Up

In contrast to Theorem 3, there exists functions ¢ : N — N such that DTiME(t) = DTiME(t?) (or
even DTIME(t) = DTIME(2")). Needless to say, these functions are not time-constructible (and thus
the aforementioned fact does not contradict Theorem 3). The reason for this phenomenon is that,
for such functions ¢, there exists not algorithms that have time complexity above ¢ but below 2
(resp., 2¢).

Theorem 7 (the time gap theorem): For every non-decreasing computable function g : N — N
there exists a non-decreasing computable function t : N — N such that DTIME(t) = DTIME(g(t)).

The forgoing examples referred to g(m) = m? and g(m) = 2™. Since we are mainly interested in
dramatic gaps (i.e., super-polynomial functions g¢), the model of computation does not matter here
(as long as it is reasonable and general).

Proof: Consider an enumeration of all possible algorithms (or machines) and let ¢; denote the time
complexity of the i*" algorithm. Recall that we cannot enumerate only machines that halt on every
input, and that t;(n) = oo if the i*" machine does not halt on some n-bit long input. The basic
idea is to define ¢ such that no ¢; is “sandwiched” between t and ¢(¢). Intuitively, if ¢;(n) is finite,

then we may define ¢ such that ¢;(n) < ¢(n), whereas if #;(n) = oo then any finite value of ¢(n) will
do (because then t;(n) > g(t(n))). The problem is that we want ¢ to be computable, whereas we
cannot tell whether or not ¢;(n) is finite. However, we don’t really need to make the latter decision:
for each candidate value v of ¢(n), we should just determine whether or not ¢;(n) € [v, g(v)], which
can be decided by running the i*" machine for at most g(v) steps (on each n-bit long string).
Bearing in mind that we should deal with all possible machines, we obtain the following procedure
for setting t(n).

Let pn: N — N be any unbounded and computable function (e.g., u(n) = n will do). Starting
with v = 1, we keep incrementing v until v satisfies, for every i € {1,...,u(n)}, either ¢;(n) < v
or t;(n) > g(v). This condition can be verified by computing p(n) and g(v), and emulating the
execution of of the y(n) machines on each of the n-bit long strings for g(v) steps. The procedure
sets g(n) to equal the first value v satisfying the aforementioned condition, and halts. To show
that the procedure halts on every n, consider the set H,, C {1,...,u(n)} of indices of the relevant
machines that halt on all inputs of length n. Then the procedure definitely halts before reaching
the value v = m + 2, where m = max;ep, {ti(n)}. (Indeed, the procedure may halt with v < m,
provide that g(v) <m.) W

Comment: The function ¢ defined by the foregoing proof is computable in time that exceeds g(t).
Specifically, the presented procedure computes t(n) (as well as g(f(n))) in time O(2" - g(¢t(n)) +
Ty(t(n))), where Ty(m) denotes the number of steps required to compute g(m) on input m.

Speed-up Theorems. Theorem 7 can be viewed as asserting that some time complexity classes
(i.e., DTIME(g(t)) in the theorem) collapse to lower classes (i.e., to DTIME(t)). A conceptually
related phenomenon is of problems that have no optimal algorithm (not even in a very mild sense);
that is, every algorithm for these (“pathological”) problems can be drastically sped-up. It follows
that the complexity of these problems can not be defined (i.e., as the complexity of the best
algorithm solving this problem). The following drastic speed-up theorem should not be confused
with the linear speed-up that is an artifact of the definition of a Turing machine (see Exercise 13).3

Theorem 8 (the time speed-up theorem): For every computable (and super-linear) function g
there exists a decidable set S such that if S € DTIME(t) then S € DTIME(t) for t' satisfying

g(#'(n)) < t(n).

Taking g(n) = n® (or g(n) = 2"), the theorem asserts that, for every t, if S € DTIME(t) then
S € DTIME(\/t) (resp., S € DTiME(logt)). Note that Theorem 8 can be applied any number
of times, which means that we cannot give a reasonable estimate to the complexity of deciding
membership in S. In contrast, recall that in some important cases optimal algorithms for solving
computational problems do exist. Specifically, algorithms solving (candid) search problems in NP
cannot be speed-up nor can the computation of a universal machine (see Theorem 5).

The proof of Theorem 8 (given in [4, Sec. 12.6]) constructs a set S in DTIME(#') \ DTIME(¢")
for any t'(n) = t(n — O(1)) and t"(n) = t(n — w(1)), where t(n) denoted g iterated n times on 2
(ie., t(n) = g (2), where gD (m) = g(¢')(m)) and ¢ = g).

3We note that this fact was implicitly addressed in the proof of Theorem 3, by allowing an emulation overhead
that depends on the length of the description of the emulated machine.

3 Space Hierarchies and Gaps

Hierarchy and Gap Theorems analogous to Theorem 3 and Theorem 7, respectively, are known for
space complexity. In fact, since space-efficient emulation of space-bounded machines is simpler
than time-efficient emulations of time-bounded machines, the results tend to be sharper. This is
most conspicuous in the case of the separation result (stated next), which is optimal (in light of
linear speed-up results; see Exercise 13).

Before stating the result, we need a few preliminaries. We assume familiarity with the definition
of space complexity. As in case of time complexity, we consider a specific model of computation,
but the results hold for any other reasonable and general model. Specifically, we consider three-tape
Turing machines, because we designate two special tapes for input and output. For any function
s : N = N, we denote by DSPACE(s) the class of decision problems that are solvable in space
complexity s. Analogously to Definition 2, we call a function s : N — N space constructible if there
exists an algorithm that on input n outputs s(n) using at most s(n) cells of the work-tape. Actually,
functions like s1(n) = logn, sa(n) = (logn)?, and s3(n) = 2" are computable using log s;(n) space.

Theorem 9 (space hierarchy for three-tape Turing machines): For any space computable function
so and every function s1 such that so = w(s1) and s1(n) > logn it holds that DSPACE(sy) is strictly
contained in DSPACE(s2).

Theorem 9 is analogous to the traditional version of Theorem 3 (rather to the one we presented),
and is proven using the alternative approach sketched in Footnote 2.

Notes

The hierarchy theorems (e.g., Theorem 3) were proved by Hartmanis and Stearns [3]. Gap theorems
(e.g., Theorem 7, often referred to as Borodin’s Gap Theorem) were proven by Borodin [2]. A ax-
iomatic treatment of complexity measures and corresponding speed-up theorems (e.g., Theorem 8,
often referred to as Blum’s Speed-up Theorem) are due to Blum [1].

Exercises

Exercise 10 For s < 2", prove that the number of Boolean functions over {0,1}" that are com-
puted by Boolean circuits of size s is at least 2/90°8%) and at most (s:).

Guideline: Any Bollean function f : {0,1}* — {0,1} can be computed by a circuit of size s = O(£ - 2°).
Thus, circuits of size s may compute 22° > 25/0(1°¢%) different Boolean functions. On the other hand, the
number of circuits of size s is less than (S;), where the upper-bound represents the number of possible choices
of pair of gates that feed any gate in the circuit.

Exercise 11 Referring to a reasonable model of computation (and assuming that the input length
is not given explicitly), prove that any algorithm that has sub-linear time-complexity actually has
constant time-complexity.

(Hint: Consider the question of whether or not there exists an infinite set of strings S such that when invoked on
any input x € S the algorithm reads all of . Note that if S is infinite then the algorithm cannot have sub-linear

time-complexity, and prove that if S is finite then the algorithm has constant time-complexity.)

Exercise 12 Prove that the two definitions of NTIME, presented at the end of Section 2.1, are
related up to logarithmic factors. Note the importance of condition that V' has linear (rather than
polynomial) time-complexity.

(Hint: when emulating a non-deterministic machine by the verification procedure V', encode the non-deterministic
choices in y while using sufficient padding such that ¢ steps of the original machine can be emulated in |y| = O(tlogt)
steps of V.)

Exercise 13 Prove that any problem that can be solved by a two-tape Turing machine that has
time complexity ¢ can be solved by another two-tape Turing machine having time complexity #',
where t'(n) = O(n) + (t(n)/2).

(Hint: Consider a machine that uses a larger alphabet, capable of encoding a constant number of symbols of the
original machine, and thus capable of emulating a constant number of steps of the original machine in a smaller
constant number of steps. Note that the O(n) term accounts to a preprocessing required to encode the input in the
work-alphabet of the new machine, and that a similar result for one-tape Turing machine seems to require a O(n?)
term.)

State and prove an analogous result for space complexity.

References

[1] M. Blum. A Machine-Independent Theory of the Complexity of Recursive Functions. Journal
of the ACM, Vol. 14 (2), pages 290-305, 1967.

[2] A. Borodin. Computational Complexity and the Existence of Complexity Gaps. Journal of
the ACM, Vol. 19 (1), pages 158-174, 1972.

[3] J. Hartmanis and R.E. Stearns. On the Computational Complexity of of Algorithms. Trans-
actions of the AMS, Vol. 117, pages 285-306, 1965.

[4] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley, 1979.

