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PrefaceThis text provides the necessary preliminaries for a course on computational complexity. It includesa discussion of computational tasks and computational models, as well as natural complexity mea-sures associated with the latter. More speci�cally, this text recalls the basic notions and results ofcomputability theory (including the de�nition of Turing machines, some undecidability results, thenotion of universal machines, and the de�nition of oracle machines). In addition, this text presentsthe basic notions underlying non-uniform models of computation (like Boolean circuits).We start by introducing the general framework for a discussion of computational tasks (or prob-lems), which refers to the representation of instances and to two types of tasks (i.e., searching forsolutions and making decisions). Once the stage is set, we consider two types of models of compu-tation: uniform models that correspond to the intuitive notion of an algorithm, and non-uniformmodels (e.g., Boolean circuits) that allow for a closer look at the way computation progresses.The contents of Sections 1{3 corresponds to a traditional Computability course, and most of thismaterial is taken for granted in the rest of the current course. In contrast, Section 4 presents basicpreliminaries regarding non-uniform models of computation (i.e., various types of Boolean circuits),and these are only used lightly in the rest of the current course. Thus, whereas Sections 1{3 areabsolute prerequisites for the rest of this course, Section 4 is not.Teaching note: I believe that there is no real need for a semester-long course in Com-putability (i.e., a course that focuses on what can be computed rather than on whatcan be computed e�ciently). Instead, undergraduates should take a course in computa-tional complexity, where the computability aspects will serve as a basis for the rest ofthe course. Speci�cally, the former aspects should occupy at most 25% of the course,and the focus should be on basic complexity (i.e., P, NP and NP-completeness) and onsome more advanced material.1 RepresentationIn Mathematics and related sciences, it is customary to discuss objects without specifying theirrepresentation. This is not possible in the theory of computation, where the representation ofobjects plays a central role. In a sense, a computation merely transforms one representation of1



an object to another representation of the same object. In particular, a computation designed tosolve some problem merely transforms the problem instance to its solution, where the latter canbe though of as a (possibly partial) representation of the instance. Indeed, the answer to any fullyspeci�ed question is implicit in the question itself.Computation refers to objects that are represented in some canonical way, where such canonicalrepresentation provides an \explicit" and \full" description of the corresponding object. We willconsider only �nite objects like sets, graphs, numbers, and functions (and keep distinguishing thesetypes of objects although, actually, they are all equivalent).Strings. We consider �nite objects, each represented by a �nite binary sequence, called a string.For a natural number n, we denote by f0; 1gn the set of all strings of length n, hereafter referredto as n-bit strings. The set of all strings is denoted f0; 1g�; that is, f0; 1g� = [n2Nf0; 1gn. Forx2f0; 1g�, we denote by jxj the length of x (i.e., x2f0; 1gjxj), and often denote by xi the ith bit ofx (i.e., x = x1x2 � � � xjxj). For x; y2f0; 1g�, we denote by xy the string resulting from concatenationof the strings x and y.At times, we associate f0; 1g��f0; 1g� with f0; 1g�; the reader should merely consider an ade-quate encoding (e.g., the pair (x1 � � � xm; y1 � � � yn)2f0; 1g��f0; 1g� may be encoded by the stringx1x1 � � � xmxm01y1 � � � yn 2 f0; 1g�). Likewise, we may represent sequences of strings (of �xed orvarying length) as single strings. When we wish to emphasize that such a sequence (or some otherobject) is to be considered as a single object we use the notation h�i (e.g., \the pair (x; y) is encodedas the string hx; yi").Numbers. Unless stated di�erently, natural numbers will be encoded by their binary expansion;that is, the string bn�1 � � � b1b0 2 f0; 1gn encodes the numberPn�1i=0 bi � 2i. Rational numbers will berepresented as pairs of natural numbers. In the rare cases in which one considers real numbers aspart of the input to a computational problem, one actually mean rational approximations of thesereal numbers.Special symbols. We denote the empty string by � (i.e., � 2 f0; 1g� and j�j = 0), and the emptyset by ;. It will be convenient to use some special symbols that are not in f0; 1g�. One such symbolis ?, which typically denotes an indication by some algorithm that something is wrong.2 Computational TasksTwo fundamental types of computational tasks are so-called search problems and decision problems.In both cases, the key notions are the problem's instances and the problem's speci�cation.Search problems. A search problem consists of a speci�cation of a set of valid solutions (possiblyan empty one) for each possible instance. That is, given an instance, one is required to �nd acorresponding solution (or to determine that no such solution exists). For example, consider theproblem in which one is given a system of equations and is asked to �nd a valid solution. Needlessto say, much of computer science is concerned with solving various search problems. Furthermore,search problems correspond to the daily notion of \solving a problem" and thus a discussion of thepossibility and complexity of solving search problems corresponds to the natural concerns of mostpeople. In the following de�nition of solving search problems, the potential solver is a function2



(which may be thought of as a solving strategy), and the sets of possible solutions associated witheach of the various instances are \packed" into a single binary relation.De�nition 1 (solving a search problem) Let R � f0; 1g� � f0; 1g�. A function f : f0; 1g� !f0; 1g� [ f?g solves the search problem of R if for every x it holds that (x; f(x)) 2 R if and only ifR(x) def= fy : (x; y) 2 Rg is not empty.Indeed, R(x) denotes the set of valid solutions for the problem instance x, and it is required thatwhenever there exist valid solutions (i.e., R(x) is not empty) the solver �nds one. It is also requiredthat the solver f never outputs a wrong solution (i.e., if R(x) 6= ; then f(x) 2 R(x)), and it followsthat if R(x) = ; then f(x) = ?, which in turn means that f indicates that x has no solution.A special case of interest is the case that jR(x)j = 1 for every x, where R is essentially a (total)function, and solving the search problem of R means computing (or evaluating) the function R (orrather the function R0 de�ned de�ned by R0(x) def= y where R(x) = fyg).Decision problems. A decision problem consists of a speci�cation of a subset of the possibleinstances. Given an instance, one is required to determine whether the instance is in the speci�edset. For example, consider the problem where one is given a natural number, and is asked todetermine whether or not the number is a prime. One important case, which corresponds to theaforementioned search problems, is the case of the set of instances having a solution; indeed, beingable to determine whether or not a solution exists is a prerequisite to being able to solve thecorresponding search problem (as per De�nition 1). In general, decision problems refer to thenatural task of making binary decision, a task that is not uncommon in daily life. In any case, inthe following de�nition of solving search problems, the potential solver is again a function (i.e., inthis case it is a Boolean function that is supposed to indicate membership in the said set).De�nition 2 (solving a decision problem) Let S � f0; 1g�. A function f : f0; 1g� ! f0; 1g solvesthe decision problem of S (or decides membership in S) if for every x it holds that f(x) = 1 if andonly if x 2 S.Indeed, if f solves the search problem of R then the Boolean function f 0 : f0; 1g� ! f0; 1g de�nedby f 0(x) def= 1 if and only if f(x) 6= ? solves the decision problem of S def= fx : R(x) 6= ;g. We oftenidentify the decision problem of S with S itself, and identify S with its characteristic function (i.e.,with �S : f0; 1g� ! f0; 1g de�ned such that �(x) = 1 if and only if x 2 S).Most people would consider search problems to be more natural than decision problems: typ-ically, people seeks solutions more than they stop to wonder whether or not solutions exist. De�-nitely, search problems are not less important than decision problems, it is merely that their studytends to require more cumbersome formulations. This is the main reason that most expositionschoose to focus on decision problems. The current course attempts to devote at least a signi�cantamount of attention also to search problems.Promise problems (an advanced comment). Many natural search and decision problemsare captured more naturally by the terminology of promise problems, where the domain of possibleinstances is a subset of f0; 1g� rather than f0; 1g� itself. In particular, note that the naturalformulation of many search and decision problems refers to instances of a certain types (e.g., asystem of equations, a pair of numbers, a graph), whereas the natural representation of theseobjects uses only a strict subset of f0; 1g�. A nasty convention is to postulate that every string3



represents some legitimate object (i.e., each string that is not used in the natural representation ofthese objects is postulated as a representation of some �xed object). In the current text, we willignore this issue, but refer the interested reader to [1].3 Uniform Models (Algorithms)We are all familiar with computers, and the ability of computer programs to manipulate data.But how does one capture all computational processes? Before being formal, we o�er a loosedescription, capturing many arti�cial as well as natural processes, whereas the former are associatedwith computers and the latter are used to model (aspects of) the natural reality (be it physical,biological, or even social).A computation is a process that modi�es an environment via repeated applications of a prede-termined rule. The key restriction is that this rule is simple: in each application it depends anda�ects only a (small) portion of the environment, called the active zone. We contrast the a-prioribounded size of the active zone (and of the modi�cation rule) with the a-priori unbounded size ofthe entire environment. We note that, although each application of the rule has a very limitede�ect, the e�ect of many applications of the rule may be very complex. Put in other words, acomputation may modify the relevant environment in a very complex way, although it is merely aprocess of repeatedly applying a simple rule.As hinted, the notion of computation can be used to model some aspects of the natural reality.In this case, the process that takes place in the natural reality is the starting point of the study,and the goal of the study is to learn the (computation) rule that underlies this natural process. Ina sense, the goal of Science at large can be phrased as learning (simple) rules that govern variousaspects of reality (or rather one's abstraction of these aspects of reality).Our focus, however, is on arti�cial computation rules designed by humans in order to achievespeci�c desired e�ects on the corresponding arti�cial environment. Thus, our starting point is adesired functionality, and our aim is to design computation rules that e�ect it. Such a computationrule is referred to as an algorithm. Loosely speaking, an algorithm corresponds to a computerprogram written in a high-level (abstract) programming language. Let us elaborate.We are interested in the transformation of the environment a�ected by the computationalprocess (or the algorithm). Throughout (most of) this course, we will assume that, when invokedon any �nite initial environment, the computation halts after a �nite number of steps. Typically,the initial environment to which the computation is applied encodes an input string, and the endenvironment (i.e., at termination of the computation) encodes an output string. We consider themapping from inputs to outputs induced by the computation; that is, for each possible input x, weconsider the output y obtained at the end of a computation initiated with input x, and say thatthe computation maps input x to output y. Thus, a computation rule (or an algorithm) determinesa function (computed by it): this function is exactly the aforementioned mapping of inputs tooutputs.In the rest of this course, we will also consider the number of steps (i.e., applications of the rule)taken by the computation for each possible input. The latter function is called the time complexityof the computational process (or algorithm). While time complexity is de�ned per input, we willoften considers it per input length, taking the maximum over all inputs of the same length.In order to de�ne computation (and computation time) rigorously, one needs to specify somemodel of computation; that is, provide a concrete de�nition of environments and a class of rulesthat may be applied to them. Such a model corresponds to an abstraction of a real computer(be it a PC, mainframe or network of computers). One simple abstract model that is commonly4



used is that of Turing machines (see, Section 3.1 below). Thus, speci�c algorithms are typicallyformalized by corresponding Turing machines (and their time complexity is represented by the timecomplexity of the corresponding Turing machines). We stress, however, that most results in theTheory of Computation hold regardless of the speci�c computational model used, as long as it is\reasonable" (i.e., satis�es the aforementioned simplicity condition and can perform some obviouslysimple computations).What is being Computed? The above discussion has implicitly referred to computations andalgorithms as means of computing functions. Speci�cally, an algorithm A computes the functionfA : f0; 1g� ! f0; 1g� de�ned by fA(x) = y if, when invoked on input x, algorithm A halts withoutput y. However, computations can also be viewed as a means of \solving search problems" or\making decisions" (as in De�nitions 1 and 2). Speci�cally, we will say that algorithm A solves thesearch problem of R (resp., decides membership in S) if fA solves the search problem of R (resp.,decides membership in S). In the rest of this exposition we associate the algorithm A with thefunction fA computed by it; that is, we write A(x) instead of fA(x). For sake of future reference,we summarize the foregoing discussion.De�nition 3 (solution by an algorithm) We denote by A(x) the output of algorithm A on input x.Algorithm A solves the search problem R (resp., the decision problem S) if A, viewed as a function,solves R (resp., S).Organization of the rest of this section: In Section 3.1 we provide a sketchy description of themodel of Turing machines. This is done merely for sake of providing a concrete model that supportsthe study of computation and its complexity, whereas most of the material in this course will notdepend on the speci�cs of this model. In Section 3.2 and Section 3.2 we discuss two fundamentalproperties of any reasonable model of computation: the existence of uncomputable functions andthe existence of universal computations. The time (and space) complexity of computation is de�nedin Section 3.4. We also discuss oracle machines and restricted models of computation (in Section 3.5and Section 3.6, respectively).3.1 Turing machinesThe model of Turing machines o�er a relatively simple formulation of the notion of an algorithm.The fact that the model is very simple complicates the design of machines that solve desiredproblems, but it makes the analysis of such machines simpler. Since the focus of complexity theoryis on the analysis of machines and not on their design, the choice of this model and the trade-o�that it o�ers is a good one. We stress again that the model is merely used as a concrete formulationof the intuitive notion of an algorithm, whereas we actually care about the intuitive notion and notits formulation. In particular, all results mentioned in this course hold for any other \reasonable"formulation of the notion of an algorithm.The model of Turing machines is not supposed to provide a good (or \tight") model of real-lifecomputers (although a task can be solved by a real-life computer if and only if it can be solved by aTuring machine). Historically, the model of Turing machines was invented before modern computerswere even built, and was meant to provide a concrete model of computation (as opposed to theabstract de�nition of \recursive functions" that de�nes a class of \computable" functions in termsof composition of such functions). Indeed, this concrete model clari�ed fundamental properties ofcomputable functions and plays a key role in de�ning the complexity of computable functions.5



The model of Turing machines was envisioned as an abstraction of the process of an algebraiccomputation carried out by a human using a sheet of paper. In such a process, at each time, thehuman looks at some location on the paper, and depending on what he/she sees and what he/shehas in mind (which is little...), he/she modi�es the contents of this location and moves its look toan adjacent location.The actual model. Following is a high-level description of the model of Turing machines; theinterested reader is referred to standard textbooks (e.g., [9]) for further details. Recall that weneed to specify the set of possible environments, the set of machines (or computation rules), andthe e�ect of applying such a rule on an environment.� The main component in the environment of a Turing machine is an in�nite sequence of cells,each capable of holding a single symbol (i.e., member of a �nite set � � f0; 1g). In addition,he environment contains the current location of the machine on this sequence, and the internalstate of the machine (which is a member of a �nite set Q). The aforementioned sequence ofcells is called the tape, and its contents combined with the machine's location and internalstate is called the instantaneous con�guration of the machine.� The Turing machine itself consists of a �nite rule (i.e., a �nite function), called the transitionfunction, which is de�ned over the set of all possible symbol-state pairs. Speci�cally, thetransition function is a mapping from ��Q to ��Q� f�1; 0;+1g, where f�1;+1; 0g cor-respond to a movement instruction (which is either \left" or \right" or \stay", respectively).In addition, the machine's description speci�es an initial state and a halting state, and thecomputation of the machine halts when the machine enters its halting state.1In contrast to the �nite description of the machine, the tape has an a priori unbounded length(and is considered, for simplicity, as being in�nite).� A single computation step of such a Turing machine depends on its current location on thetape, on the contents of the corresponding cell and on the internal state of the machine.Based on the latter two elements, the transition function determines a new symbol-state pairas well as a movement instruction (i.e., \left" or \right" or \stay"). The machine modi�esthe contents of the said cell and its internal state accordingly, and moves as directed. Thatis, suppose that the machine is in state q and resides in a cell containing the symbol �, andsuppose that the transition function maps (�; q) to (�0; q0;D). Then, the machine modi�esthe contents of the said cell to �0, modi�es its internal state to q0, and moves one cell indirection D. Figure 1 shows a single step of a Turing machine that, when in state `b' andseeing a binary symbol �, replaces � with the symbol �+2, maintains its internal state, andmoves one position to the right.2Formally, we de�ne the successive con�guration function that maps each instantaneous con�g-uration to the one resulting by letting the machine take a single step. This function modi�esonly the contents of one cell (i.e. at which the machine resides), the internal state of themachine and its location, as described above.1Envisioning the tape as extending from left to right, we also use the convention by which if the machine tries tomove left of the end of the tape then it is considered to have halted.2Figure 1 corresponds to a machine that, when in the initial state (i.e., `a'), replaces the symbol � by � + 4,modi�es its internal state to `b', and moves one position to the right. Indeed, \marking" the leftmost cell (in orderto allow for recognizing it in the future), is a common practice in the design of Turing machines.6
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----- - - -Figure 1: A single step by a Turing machine.The initial environment (or con�guration) of a Turing machine consists of the machine residingin the �rst (i.e., left-most) cell and being in its initial state. Typically, one also mandates that, inthe initial con�guration, a pre�x of the tape's cells hold bit values, which concatenated togetherare considered the input, and the rest of the tape's cells hold a special symbol (which in Figure 1 isdenoted by `-'). Once the machine halts, the output is de�ned as the contents of the cells that areto the left of its location (at termination time).3 Thus, each machine de�nes a function mappinginputs to outputs, called the function computed by the machine.Multi-tape Turing machines. We comment that in most expositions, one refers to the locationof the \head of the machine" on the tape (rather than to the \location of the machine on the tape").The standard terminology is more intuitive when extending the basic model, which refers to a singletape, to a model that supports a constant number of tapes. In the model of multi-tape machines,each step of the machine depends and e�ects the cells that are at the head location of the machine oneach tape. As we shall see in Section 3.4, the extension of the model to multi-tape Turing machinesis crucial to the de�nition of space complexity. A less fundamental advantage of the model ofmulti-tape Turing machines is that it allows for an easier design of machines that compute desiredfunctions.Teaching note: I strongly recommend avoiding the standard practice of teaching thestudent to program with Turing machines. These exercises seem very painful and point-less. Instead, one should prove that a function can be computed by a Turing machineif and only if it is computable by a model that is closer to a real-life computer (see\sanity check" below). For starters, one should prove that a function can be computedby a single-tape Turing machine if and only if it is computable by a multi-tape (e.g.,two-tape) Turing machine.The Church-Turing Thesis: The entire point of the model of Turing machines is its simplicity.That is, in comparison to more \realistic" models of computation, it is simpler to formulate themodel of Turing machines and to analyze machines in this model. The Church-Turing Thesis assertsthat nothing is lost by considering the Turing machine model: A function can be computed by someTuring machine if and only if it can be computed by some machine of any other \reasonable andgeneral" model of computation.3By an alternative convention, the machine halts while residing in the left-most cell, and the output is de�ned asthe maximal pre�x of the tape contents that contains only bit values.7



This is a thesis, rather than a theorem, because it refers to an intuitive notion that is leftunde�ned on purpose (i.e., the notion of a reasonable and general model of computation). Themodel should be reasonable in the sense that it should refer to computation rules that are \simple"in some intuitive sense. On the other hand, the model should allow to compute functions thatintuitively seem computable. At the very least the model should allow to emulate Turing machines(i.e., compute the function that given a description of a Turing machine and an instantaneouscon�guration returns the successive con�guration).A philosophical comment. The fact that a thesis is used to link an intuitive concept to aformal de�nition is common practice in any science (or, more broadly, in any attempt to reasonrigorously about intuitive concepts). The moment an intuition is rigorously de�ned, it stops beingan intuition, and becomes a de�nition and the question of the correspondence between the originalintuition and the derived de�nition arises. This question can never be rigorously treated, becauseit relates to two objects, one being unde�ned. Thus, the question of correspondence between theintuition and the de�nition always transcends a rigorous treatment (i.e., it is always at the domainof the intuition).A sanity check: Turing machines can emulate an abstract RAM. To gain con�dence inthe Church-Turing Thesis, one may attempt to de�ne an abstract Random-Access Machine (RAM),and verify that it can be emulated by a Turing machine. An abstract RAM consists of an in�nitenumber of memory cells, each capable of holding an integer, a �nite number of similar registers, onedesignated as program counter, and a program consisting of instructions selected from a �nite set.The set of possible instructions includes the following instructions:� reset(r), where r is an index of a register, results in setting the value of register r to zero.� inc(r), where r is an index of a register, results in incrementing the content of register r.Similarly dec(r) causes a decrement.� load(r1; r2), where r1 and r2 are indices of registers, results in loading to register r1 thecontents of the memory location m, where m is the current contents of register r2.� store(r1; r2), stores the contents of register r1 in the memory, analogously to load.� cond-goto(r; `), where r is an index of a register and ` does not exceed the program length,results in setting the program counter to `� 1 if the content of register r is non-negative.The program counter is incremented after the execution of each instruction, and the next instructionto be executed by the machine is the one to which the program counter points (and the machinehalts if the program counter exceeds the program's length). The input to the machine may bede�ned as the contents of the �rst n memory cells, where n is placed in a special input register. Wenote that the RAM model satis�es the Church-Turing Thesis, but in order to make it closer to areal-life computer we augment the model by instructions like add(r1; r2) (resp., mult(r1; r2)), whichresults in adding (resp., multiplying) the contents of registers r1 and r2 and placing the result inregister r1. We suggest proving that this abstract RAM can be emulated by a Turing machine.44We emphasize this direction of the equivalence of the two models, because the RAM model is introduced in orderto convince the reader that Turing machines are not too weak (as a model of general computation). The fact thatthey are not too strong seems self-evident. Thus, it seems pointless to prove that the RAM model can emulate Turingmachines. Still, note that this is indeed the case, by using the RAM's memory cells to store the contents of the cellsof the Turing machine's tape. 8



(Hint: note that during the emulation, we only need to hold the input, the contents of all registers,and the contents of the memory cells that were accessed during the computation.)5Observe that the abstract RAM model is more cumbersome than the Turing machine model.Furthermore, the question of which instructions to allow causes a vicious cycle, which we avoided bytrusting the reader to consider only the standard instructions common in any real-life computer. (Ingeneral, we should only allow instructions that correspond to \simple" operations; i.e., operationsthat correspond to easily computable functions...)3.2 Uncomputable functionsStrictly speaking, the current subsection is not necessary for the rest of this course, but we feelthat it provides a useful perspective.In contrast to what every layman would think, we know that not all functions are computable.Indeed, an important message to be communicated to the world is that not every well-de�ned taskcan be solved by applying a \reasonable" procedure (i.e., a procedure that has a simple descriptionthat can be applied to any instance of the problem at hand). Furthermore, not only is it the casethat there exist uncomputable functions, but it is rather that \most" functions are uncomputable.In fact, only relatively few functions are computable.Theorem 4 (on the scarcity of computable functions): The set of computable functions is count-able, whereas the set of all functions (from strings to string) has cardinality @.We stress that the theorem holds for any reasonable model of computation. In fact, it only relieson the postulate that each machine in the model has a �nite description (i.e., can be described bya string).Proof: Since each computable function is computable by a machine that has a �nite description,there is a 1-1 correspondence between the set of computable functions and the set of strings (whichin turn is in 1-1 correspondence to the natural numbers). On the other hand, there is a 1-1correspondence between the set of Boolean functions (i.e., functions from strings to a bit) and theset of real number in [0; 1). This correspondence associates each real r 2 [0; 1) to the functionf : N ! f0; 1g such that f(i) is the ith bit in the binary expansion of r.The Halting Problem: In contrast to the preliminary discussion, at this point we consideralso machines that may not halt on some inputs. (The functions computed by such machines arepartial functions that are de�ned only on inputs on which the machine halts.) Again, we rely onthe postulate that each machine in the model has a �nite description, and denote the descriptionof machine M by hMi 2 f0; 1g�. The halting function, h : f0; 1g� �f0; 1g� ! f0; 1g, is de�ned suchthat h(hMi; x) def= 1 if and only if M halts on input x. The following result goes beyond Theorem 4by pointing to an explicit function (of natural interest) that is not computable.Theorem 5 (undecidability of the halting problem): The halting function is not computable.The term undecidability means that the corresponding decision problem cannot be solved by analgorithm. That is, Theorem 5 asserts that the decision problem associated with the set h�1(1) =5Thus, at each time, the Turning machine's tape contains a list of the RAM's memory cells that were accessed sofar as well as their current contents. When we emulate a RAM instruction, we �rst check whether the relevant RAMcell appears on this list, and augment the list by a corresponding entry or modify this entry as needed.9



f(hMi; x) : h(hMi; x) = 1g is not solvable by an algorithm (i.e., there exists no algorithm that,given a pair (hMi; x), decides whether or not M halts on input x). Actually, the following proofshows that there exists no algorithm that, given hMi, decides whether or not M halts on inputhMi.Proof: We will show that even the restriction of h to its \diagonal" (i.e., the function d(hMi) def=h(hMi; hMi)) is not computable. Note that the value of d(hMi) refers to the question of whathappens when we feed M with its own description, which is indeed a \nasty" (but legitimate) thingto do. We will actually do worse: towards the contradiction, we will consider the value of d whenevaluated at a (machine that is related to a) machine that supposedly computes d.We start by considering a related function, d0, and showing that this function is uncomputable.The function d0 : f0; 1g� ! f0; 1g is de�ned such that d0(hMi) def= 1 if and only if M halts on inputhMi with output 0. (That is, d0(hMi) = 1 if M halts on input hMi with a speci�c output, andd0(hMi) = 0 if either M does not halt on input hMi or its output does not equal the designatedvalue.) Now, suppose, towards the contradiction, that d0 is computable by some machine, denotedMd0 . Note that machine Md0 is supposed to halt on every input, and so Md0 halts on input hMd0i.But, by de�nition of d0, it holds that d0(hMd0i) = 1 if and only if Md0 halts on input hMd0i withoutput 0 (i.e., if and only if Md0(hMd0i) = 0). Thus, Md0(hMd0i) 6= d0(hMd0i) in contradiction tothe hypothesis that Md0 computes d0.We next prove that d is uncomputable, and thus h is uncomputable (because d(z) = h(z; z) forevery z). To prove that d is uncomputable, we show that if d is computable then so is d0 (which wealready know not to be the case). Let A be an algorithm for computing d (i.e., A(hMi) = d(hMi)for every machineM). Then we construct an algorithm for computing d0, which given hM 0i, invokesA on hM 00i, where M 00 is de�ned to operate as follows:1. On input x, machine M 00 emulates M 0 on input x.2. If M 0 halts on input x with output 0 then M 00 halts.3. If M 0 halts on input x with an output di�erent from 0 then M 00 enters an in�nite loop (andthus does not halt).4. Otherwise (i.e., M 0 does not halt on input x), then machine M 00 does not halt (because itjust stays stuck in Step 1 forever).Note that the mapping from hM 0i to hM 00i is easily computable (by augmentingM 0 with instructionsto test its output and enter an in�nite loop if necessary), and that d(hM 00i) = d0(hM 0i), becauseM 00halts on x if and only if M 00 halts on x with output 0. We thus derived an algorithm for computingd0 (i.e., transform the input hM 0i into hM 00i and output A(hM 00i)), which contradicts the alreadyestablished fact by which d0 is uncomputable.Turing-reductions. The core of the second part of the proof of Theorem 5 is an algorithm thatsolves one problem (i.e., computes d0) by using as a subroutine an algorithm that solves anotherproblem (i.e., computes h). In fact, the �rst algorithm is actually an algorithmic scheme thatrefers to a \functionally speci�ed" subroutine rather than to an actual (implementation of such a)subroutine, which may not exist. Such an algorithmic scheme is called a Turing-reduction (i.e., wehave Turing-reduced the computation of d0 to the computation of d, which in turn Turing-reducesto h). The \natural" (\positive") meaning of a Turing-reduction of f 0 to f is that when givenan algorithm for computing f we obtain an algorithm for computing f 0. In contrast, the proofof Theorem 5 uses the \unnatural" (\negative") counter-positive: if (as we know) there exists noalgorithm for computing f 0 = d0 then there exists no algorithm for computing f = h (which is what10



we wanted to prove). Jumping ahead, we mention that resource-bounded Turing-reductions (e.g.,polynomial-time reductions) play a central role in complexity theory itself, and again they are usedmostly in a \negative" way. We will de�ne such reductions and extensively use them in the rest ofthe course.Rice's Theorem. The undecidability of the halting problem (or rather the fact that the functiond is uncomputable) is a special case of a more general phenomenon: Every non-trivial decisionproblem regarding the function computed by a given Turing machine has no algorithmic solution.We state this fact next, clarifying what is the aforementioned class of problems. (Again, we referto Turing machines that may not halt on all inputs.)Theorem 6 (Rice's Theorem): Let F be a non-trivial subset6 of the set of all computable partialfunctions, and let SF be the set of strings that describe machines that compute functions in F .Then deciding membership in SF cannot be solved by an algorithm.Theorem 6 can be proved by a Turing-reduction from d. We do not provide a proof because thisis too remote from the main subject matter of the course. We stress that Theorems 5 and 6hold for any reasonable model of computation (referring both to the potential solvers and to themachines the description of which is given as input to these solvers). Thus, Theorem 6 means thatno algorithm can determine any non-trivial property of the function computed by a given computerprogram (written in any programming language). For example, no algorithm can determine whetheror not a given computer program halt on each possible input. The relevance of this assertion to theproject of program veri�cation is obvious.The Post Correspondence Problem. We mention that undecidability arises also outside ofthe domain of questions regarding computing devices (given as input). Speci�cally, we consider thePost Correspondence Problem in which the input consists of two (equal length) sequences of strings,(�1; :::; �k) and (�1; :::; �k), and the question is whether or not there exists a sequence of indicesi1; :::; i` 2 f1; :::; kg such that �i1 � � ��i` = �i1 � � � �i` . (We stress that the length of this sequence isnot bounded.)7Theorem 7 The Post Correspondence Problem is undecidable.Again, the omitted proof is by a Turing-reduction from d (or h).3.3 Universal algorithmsSo far we have used the postulate that, in any reasonable model of computation, each machine (orcomputation rule) has a �nite description. Furthermore, we also used the fact that such modelshould allow for the easy modi�cation of such descriptions such that the resulting machine com-putes an easily related function (see the proof of Theorem 5). Here we go one step further andpostulate that the description of machines (in this model) is \e�ective" in the following naturalsense: there exists an algorithm that, given a description of a machine (resp., computation rule)6The set S is called a non-trivial subset of U if both S and U n S are non-empty. Clearly, if F is a trivial set ofcomputable functions then the corresponding decision problem can be solved by a \trivial" algorithm that outputsthe corresponding constant bit.7In contrast, the existence of an adequate sequence of a speci�ed length can be determined in time that isexponential in this length. 11



and a corresponding environment, determines the environment that results from performing a singlestep of this machine on this environment (resp. the e�ect of a single application of the computationrule). This algorithm can, in turn, be implemented in the said model of computation (assuming thismodel is general; see the Church-Turing Thesis). Successive applications of this algorithm leads tothe notion of a universal machine, which (for concreteness) is formulated below in terms of Turingmachines.De�nition 8 (universal machines): A universal Turing machine is a Turing machine that on inputa description of a machine M and an input x returns the value of M(x) if M halts on x andotherwise does not halt.That is, a universal Turing machine computes the partial function u that is de�ned over pairs(hMi; x) such that M halts on input x, in which case it holds that u(hMi; x) = M(x). We notethat if M halts on all possible inputs then u(hMi; x) is de�ned for every x. We stress that themere fact that we have de�ned something does not mean that it exists. But, as hinted aboveand obvious to anyone who has written a computer program (and thought about what he/she wasdoing), universal Turing machines do exist.Theorem 9 There exists a universal Turing machine.Theorem 9 asserts that the partial function u is computable. In contrast, it can be shown thatany extension of u to a total function is uncomputable. That is, for any total function û thatagrees with the partial function u on all the inputs on which the latter is de�ned, it holds that û isuncomputable.8Proof: Given a pair (hMi; x), we just emulate the computation of machine M on input x. Thisemulation is straightforward, because by the e�ectiveness of the description ofM , we can iterativelydetermine the next instantaneous con�guration of the computation of M on input x. If the saidcomputation halts then we will obtain its output and can output it (and so, on input (hMi; x),our algorithm returns M(x)). Otherwise, we turn out emulating an in�nite computation, whichmeans that our algorithm does not halt on input (hMi; x). Thus, the foregoing emulation procedureconstitutes a universal machine (i.e., yields an algorithm for computing u).As hinted above, the existence of universal machines is the fundamental fact underlying theparadigm of general-purpose computers. Indeed, a speci�c Turing machine (or algorithm) is adevice that solves a speci�c problem. A priori, solving each problem would have required buildinga new physical device that allows for this problem to be solved in the physical world (rather than asa thought experiment). The existence of a universal machine asserts that it is enough to build onephysical device; that is, a general purpose computer. Any speci�c problem can then be solved bywriting a corresponding program for the general purpose computer. In other words, the existenceof universal machines says that software can be viewed as (part of the) input.In addition to their practical importance, the existence of universal machines (and their variants)has important consequences in the theories of computability and computational complexity. Herewe merely note that Theorem 9 implies that many questions about the behavior of a universal8The claim is easy to prove for the total function û that extends u and assigns the special symbol ? to inputs onwhich u is unde�ned (i.e., û(hMi; x) def= ? if u is not de�ned on (hMi; x) and û(hMi; x) def= u(hMi; x) otherwise). Inthis case h(hMi; x) = 1 if and only if û(hMi; x) 6= ?, and so the halting function h is Turing-reducible to û. In thegeneral case, we may adapt the proof of Theorem 5 by observing that, for a machine M that halts on every input, itholds that û(hMi; x) = u(hMi; x) for every x (and in particular for x = hMi).12



machine on certain input types are undecidable. In particular, there is no algorithm that, givenX def= (hMi; x), can tell whether or not a (�xed) universal machine halts on input X. Revisiting theproof of Theorem 7, it follows that the Post Correspondence Problem remains undecidable even ifthe sequences are restricted to have a speci�c length (i.e., k is �xed).A detour: Kolmogorov Complexity. The existence of universal machines, which may beviewed as universal languages for writing e�ective and succinct descriptions of objects, plays acentral role in Kolmogorov Complexity. Loosely speaking, the latter theory is concerned with thelength of (e�ective) descriptions of objects, and views the minimum such length as the inherent\complexity" of the object; that is, \simple" objects (or phenomena) are those having short de-scription (resp., short explanation), whereas \complex" objects have no short description. Needlessto say, these (e�ective) descriptions have to refer to some �xed \language" (i.e., to a �xed machinethat, given a succinct description of an object, produces its explicit description). Fixing any ma-chine M , a string x is called a description of s with respect to M if M(x) = s. The complexity ofs with respect to M , denoted KM (s), is the length of the shortest description of s with respect toM . Certainly, we want to �x M such that every string has a description with respect to M , andfurthermore that this description is not \signi�cantly" longer than the description with respect toa di�erent machine M 0. The following theorem make it natural to use a universal machine as the\point of reference" (i.e., the aforementioned M).Theorem 10 (complexity w.r.t a universal machine): Let U be a universal machine. Then, forevery machine M 0, there exists a constant c such that KU (s) � KM 0(s) + c for every string s.The theorem follows by (setting c = O(jhM 0ij) and) observing that if x is a description of s withrespect to M 0 then (hM 0i; x) is a description of s with respect to U . Here it is important to usean adequate encoding of pairs of strings (e.g., the pair (�1 � � � �k; �1 � � � �`) is encoded by the string�1�1 � � � �k�k01�1 � � � �`). Fixing any universal machine U , we de�ne the Kolmogorov Complexity ofa string s as K(s) def= KU (s). The reader may easily verify the following facts:1. K(s) � jsj+O(1), for every s.(Hint: apply Theorem 10 to the machine that computes the identity mapping.)2. There exist in�nitely many strings s such that K(s)� jsj.(Hint: consider s = 1n. Alternatively, consider any machine M such that jM(x)j � jxj.)3. Some strings of length n have complexity at least n. Furthermore, for every n and i,jfs 2 f0; 1gn : K(s) � n� igj < 2n�i+1(Hint: di�erent strings must have di�erent descriptions with respect to U .)It can be shown that the function K is uncomputable. The proof is related to the paradox capturedby the following \description" of a natural number: the largest natural number that can bedescribed by an English sentence of up-to a thousand letters. (The paradox amountsto observing that if the above number is well-de�ned then so is the integer-successor of thelargest natural number that can be described by an English sentence of up-to a thousandletters.) Needless to say, the above sentence presupposes that any sentence is a legitimate de-scription in some adequate sense (e.g., in the sense de�ned above). Speci�cally, the above sentence13



presupposes that we can determine the Kolmogorov Complexity of each natural number, and fur-thermore e�ectively produce the largest number that has Kolmogorov Complexity not exceedingsome threshold. Indeed, the paradox provides a proof to the fact that the latter task cannot beperformed (i.e., there exists no algorithm that given t produces the lexicographically last string ssuch that K(s) � t, because if such an algorithm A would have existed then K(s) � O(jhAij)+log tand K(s0) < K(s) +O(1) < t in contradiction to the de�nition of s).3.4 Time and space complexityFixing a model of computation (e.g., Turing machines) and focusing on algorithms that halt oneach input, we consider the number of steps (i.e., applications of the computation rule) taken by thealgorithm on each possible input. The latter function is called the time complexity of the algorithm(or machine); that is, tA : f0; 1g� ! N is called the time complexity of algorithm A if, for every x,on input x algorithm A halts after exactly tA(x) steps.We will be mostly interested in the dependence of the time complexity on the input length,when taking the maximum over all inputs of the relevant length. That is, for tA as above, we willconsider TA : N ! N de�ned by TA(n) def= maxx2f0;1gnftA(x)g. Abusing terminology, we sometimesrefer to TA as the time complexity of A.The time complexity of a problem. As stated in the preface and in the introduction, complex-ity theory is typically unconcerned with the (time) complexity of a speci�c algorithm. It is ratherconcerned with the (time) complexity of a problem, assuming that this problem is solvable by analgorithm. Intuitively, the time complexity of such a problem is de�ned as the time complexityof the fastest algorithm that solves this problem (assuming that the latter term is well-de�ned).9More generally, we will be interested in upper and lower bounds on the (time) complexity of algo-rithms that solve the problem. However, the complexity of a problem may depend on the speci�cmodel of computation in which algorithms that solve it are implemented. The following Cobham-Edmonds Thesis asserts that the variation (in the time complexity) is not too big, and in particularis irrelevant for much of the current focus of complexity theory (e.g., for the P-vs-NP Question).The Cobham-Edmonds Thesis. As stated above, the time complexity of a problem may de-pend on the model of computation. For example, deciding membership in the set fxx : x 2 f0; 1g�gcan be done in linear-time on a two-tape Turing machine, but requires quadratic-time on a single-tape Turing machine.10 On the other hand, any problem that has time complexity t in the modelof multi-tape Turing machines, has complexity O(t2) in the model of single-tape Turing machines.The Cobham-Edmonds Thesis asserts that the time complexities in any two \reasonable and gen-eral" models of computation are polynomially related. That is, a problem has time complexity t in9Advanced comment: Actually (see \Borodin's Gap Theorem" and \Blum's Speed-up Theorem" in [2,Sec. 12.6]), the naive assumption that a \fastest algorithm" for solving a problem exists is not always justi�ed. Onthe other hand, the assumption is justi�ed in some important cases (see, e.g., \Levin's optimal search algorithm" [5]).10Proving the latter fact is quite non-trivial. One proof is by a \reduction" from a communication complexityproblem [4, Sec. 12.2]. Intuitively, a single-tape Turing machine that decides membership in the aforementioned setcan be viewed as a channel of communication between the two parts of the input. Focusing our attention on inputsof the form y0nz0n, for y; z 2 f0; 1gn, each time the machine passes from the �rst part to the second part it carriesO(1) bits of information (in its internal state) while making at least n steps. The proof is completed by invokingthe linear lower bound on the communication complexity of the (two-argument) identity function (i.e, id(y; z) = 1 ify = z and id(y; z) = 0 otherwise, cf. [4, Chap. 1]). 14



some \reasonable and general" model of computation if and only if it has time complexity poly(t)in the model of (single-tape) Turing machines.Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis. It asserts notonly that the class of solvable problems is invariant as far as \reasonable and general" models ofcomputation are concerned but also that the time complexity (of the solvable problems) in suchmodels be polynomially related.E�cient algorithms. As hinted above, much of complexity theory is concerned with e�cientalgorithms. The latter are de�ned as polynomial-time algorithms (i.e., algorithms that have a timecomplexity that is bounded by a polynomial in the length of the input). By the Cobham-EdmondsThesis, the choice of a \reasonable and general" model of computation is irrelevant to the de�nitionof this class. The association of e�cient algorithms with polynomial-time computation is groundedin the following two considerations:� Philosophical consideration: Intuitively, e�cient algorithms are those that can be imple-mented within a number of steps that is a moderately growing function of the input length.To allow for reading the entire input, at least linear time complexity should be allowed,whereas exponential time (as in \exhaustive search") must be avoided. Furthermore, a goodde�nition of the class of e�cient algorithms should be closed under natural composition ofalgorithms (as well as be robust with respect to reasonable models of computation and withrespect to simple changes in the encoding of problems' instances).Selecting polynomials as the set of time-bounds for e�cient algorithms satisfy all the aboverequirements: polynomials constitute a \closed" set of moderately growing functions, where\closure" means closure under addition, multiplication and functional composition. Theseclosure properties guarantee the closure of the class of e�cient algorithm under natural com-position of algorithms (as well as its robustness with respect to any reasonable and generalmodel of computation). Furthermore, polynomial-time algorithms can conduct computationsthat are de�nitely simple (although not totally trivial), and on the other hand they do notinclude naturally ine�cient algorithms like exhaustive search.� Empirical consideration: It is clear that algorithms that are considered e�cient in practicehave running-time that is bounded by a small polynomial (at least on the inputs that occur inpractice). The question is whether any polynomial-time algorithm can be considered e�cientin an intuitive sense. The belief, which is supported by past experience, is that every naturalproblem that can be solved in polynomial-time also has \reasonably e�cient" algorithms.We stress that the association of e�cient algorithms with polynomial-time computation is notessential to most of the notions, results and questions of complexity theory. Any other class ofalgorithms that supports the aforementioned closure properties and allows to conduct some simplecomputations but not overly complex ones gives rise to a similar theory, albeit the formulation ofsuch a theory may be much more complicated. Speci�cally, all results and questions treated inthis course relate the complexity of di�erent computational tasks (rather than provide absoluteassertions about the complexity of some computational tasks). These relations can be statedexplicitly, by stating how any upper-bound on the time complexity of one task gets translated toan upper-bound on the time complexity of another task. Such cumbersome statements will maintainthe contents of the standard statements; they will merely be much more complicated. Thus, wefollow the tradition of focusing on polynomial-time computations, stressing that this focus is bothnatural and provides the simplest way of addressing the fundamental issues underlying the natureof e�cient computation. 15



Universal machines, revisited. Time complexity yields an important variant of the universalfunction u (presented in Section 3.3). De�ne u0(hMi; x; t) def= y if on input x machine M haltswithin t steps and outputs the string y, and u0(hMi; x; t) def= ? if on input x machine M makesmore than t steps. Unlike u, the function u0 is computable. Furthermore, u0 is computable by amachine U 0 that on input X = (hMi; x; t) halts after poly(t) steps. Indeed, machine U 0 is a variantof a universal machine (i.e., on input X, machine U 0 merely emulates M for t steps rather thanforever). Note that the number of steps taken by U 0 depends on the speci�c model of computation(and that some overhead is unavoidable because emulating each step of M requires reading therelevant portion of the description of M).Space complexity. Another natural measure of the \complexity" of an algorithm (or a task) isthe amount of memory consumed by the computation. We refer to the memory used for storingsome intermediate results of the computation. Since much of our focus will be on using memorythat is sub-linear in the input length, it is important to use a model in which one can di�erentiatememory used for computation from memory used for storing the initial input or the �nal output.In the context of Turing machines, this is done by considering multi-tape Turing machines suchthat the input is presented on a special read-only tape (called the input tape), the output is writtenon a special write-only tape (called the output tape), and intermediate results are stored on a work-tape. Thus, the input and output tapes cannot be used for storing intermediate results. The spacecomplexity of such a machine M is de�ned as a function sM such that sM (x) is the number of cellsof the work-tape scanned by M on input x.3.5 Oracle machinesThe notion of Turing-reductions, which was discussed in Section 3.2, is captured by the de�nitionof oracle machines. Loosely speaking, an oracle machine is a machine that is augmented such thatit may pose questions to the outside. (A rigorous formulation of this notion is provided below.)We consider the case in which these questions, called queries, are answered consistently by somefunction f : f0; 1g� ! f0; 1g�, called the oracle. That is, if the machine makes a query q then theanswer it obtains is f(q). In such a case, we say that the oracle machine is given access to theoracle f . For an oracle machine M , a string x and a function f , we denote by Mf (x) the outputof M on input x when given access to the oracle f . (Re-examining the second part of the proofof Theorem 5, observe that we have actually described an oracle machine that computes h whengiven access to the oracle d0.)The notion of an oracle machine extends the notion of a standard computing device (machine),and thus a rigorous formulation of the former extends a formal model of the latter. Speci�cally,extending the model of Turing machines, we derive the following model of oracle Turing machines.De�nition 11 (using an oracle): An oracle machine is a Turing machine with an additional tape,called the oracle tape, and two special states, called oracle invocation and oracle spoke. The compu-tation of the oracle machine M on input x and access to the oracle f : f0; 1g� ! f0; 1g� is de�nedbased on the successive con�guration function. For con�gurations with state di�erent from oracleinvocation the next con�guration is de�ned as usual. Let 
 be a con�guration in which the ma-chine's state is oracle invocation and suppose that the actual contents of the oracle tape is q (i.e.,q is the contents of the maximal pre�x of the tape that holds bit values).11 Then, the con�guration11A common convention is that the oracle can be invoked only when the machine's head resides at the left-mostcell of the oracle tape. We comment that, in the context of space complexity, one uses two oracle tapes: a write-only16



following 
 is identical to 
, except that the state is oracle spoke, and the actual contents of theoracle tape is f(q). The string q is called M 's query and f(q) is called the oracle's reply.We stress that the running time of an oracle machine is the number of steps made during itscomputation, and that the oracle's reply on each query is obtained in a single step.3.6 Restricted modelsWe mention that restricted models of computation are often mentioned in the context of a courseon computability, but they will play no role in the current course. One such model is the model of�nite automata, which in some variant coincides with Turing machines that have space complexityzero.In our opinion, the most important motivation for the study of these restricted models ofcomputation is that they provide simple models for some natural (or arti�cial) phenomena. Thismotivation, however, seems only remotely related to the study of the complexity of various com-putational tasks. Thus, in our opinion, the study of these restricted models (e.g., any of the lowerlevels of Chomsky's Hierarchy [2, Chap. 9]) should be decoupled from the study of computabilitytheory (let alone the study of complexity theory).4 Non-uniform Models (Circuits and Advice)By a non-uniform model of computation we mean a model in which for each possible input lengthone considers a di�erent computing device. That is, there is no \uniformity" requirement relatingdevices that correspond to di�erent input lengths. Furthermore, this collection of devices is in�-nite by nature, and (in absence of a uniformity requirement) this collection may not even have a�nite description. Nevertheless, each device in the collection has a �nite description. In fact, therelationship between the size of the device (resp., the length of its description) and the length ofthe input that it handles will be of major concern. The hope is that the �niteness of all parameters(which refer to a single device in such a collection) will allow for the application of combinatorialtechniques to analyze the limitations of certain settings of parameters.In complexity theory, non-uniform models of computation are studied either towards the de-velopment of lower-bound techniques or as simpli�ed upper-bounds on the ability of e�cient algo-rithms. In both cases, the uniformity condition is eliminated in the interest of simplicity and withthe hope (and belief) that nothing substantial is lost as far as the questions in focus are concerned.We will focus on two related models of non-uniform computing devices: Boolean circuits (Sec-tion 4.1) and \machines that take advice" (Section 4.2). The former model is more adequate forthe study of the evolution of computation (i.e., development of lower-bound techniques), whereasthe latter is more adequate for modeling purposes (e.g., upper-bounding the ability of e�cientalgorithms).4.1 Boolean CircuitsThe most popular model of non-uniform computation is the one of Boolean circuits. Historically,this model was introduced for the purpose of describing the \logic operation" of real-life electroniccircuits. Ironically, nowadays this model provides the stage for some of the most practically removedtape for the query and a read-only tape for the answer. 17



studies in complexity theory (which aim at developing methods that may eventually lead to anunderstanding of the inherent limitations of e�cient algorithms).A Boolean circuit is a directed acyclic graph with labels on the vertices, to be discussed shortly.For sake of simplicity, we disallow isolated vertices (i.e., vertices with no in-going or out-goingedges), and thus the graph vertices are of three types: sources, sinks, and internal vertices.1. Internal vertices are vertices having in-coming and out-going edges (i.e., they have in-degreeand out-degree at least 1). In the context of Boolean circuits, internal vertices are calledgates. Each gate is labeled by a Boolean operation, where the operations typically consideredare ^, _ and : (corresponding to and, or and neg). In addition, we require that gates labeled: have in-degree 1. (The in-coming degree of ^-gates and _-gates may be any number greaterthan zero, and the same holds for the out-degree of any gate.)2. The graph sources (i.e., vertices with no in-going edges) are called input terminals. Eachinput terminal is labeled by a natural number (which is to be thought of the index of aninput variable). (For sake of de�ning formulae, we allow di�erent input terminals to belabeled by the same number.)123. The graph sinks (i.e., vertices with no out-going edges) are called output terminals, and werequire that they have in-degree 1. Each output terminal is labeled by a natural numbersuch that if the circuit has m output terminals then they are labeled 1; 2; :::;m. That is, wedisallow di�erent output terminals to be labeled by the same number, and insist that thelabels of the output terminals are consecutive numbers. (Indeed, the labels of the outputterminals will correspond to the indices of locations in the circuit's output.)For sake of simplicity, we also mandate that the labels of the input terminals are consecutivenumbers.13A Boolean circuit with n di�erent input labels and m output terminals induces (and indeedcomputes) a function from f0; 1gn to f0; 1gm de�ned as follows. For any �xed string x 2 f0; 1gn, weiteratively de�ne the value of vertices in the circuit such that the input terminals are assigned thecorresponding bits in x = x1 � � � xn and the values of other vertices are determined in the naturalmanner. That is:� An input terminal with label i 2 f1; :::; ng is assigned the ith bit of x (i.e., the value xi).� If the children of a gate (of in-degree d) labeled ^ have values v1; v2; :::; vd then the gate isassigned the value ^di=1vi. The value of a gate labeled _ (or :) is determined analogously.Indeed, the hypothesis that the circuit is acyclic implies that the process of determining valuesfor the circuit's vertices is well-de�ned: As long as the value of some vertex is undetermined,there exists a vertex such that its value is undetermined but the values of all its childrenare determined. Thus, the process can make progress, and terminates when the values of allvertices (including the output terminals) are determined.12This is not needed in case of general circuits, because we can just feed out-going edges of the same input terminalto many gates. Note, however, that this is not allowed in case of formulae, where all non-sinks are required to haveout-degree 1.13This convention slightly complicates the construction of circuits that ignore some of the input values. Speci�cally,we use arti�cial gadgets that have in-coming edges from the corresponding input terminals, and compute an adequateconstant. To avoid having this constant as an output terminal, we feed it into an auxiliary gate such that the valueof the latter is determined by the other in-going edge (e.g., a constant 1 fed into an _-gate). See example of dealingwith x3 in Figure 2. 18
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Figure 2: A circuit computing f(x1; x2; x3; x4) = (x1 � x2; x1 ^ :x2 ^ x4).The value of the circuit on input x (i.e., the output computed by the circuit on input x) is y =y1 � � � ym, where yi is the value assigned by the above process to the output terminal labeled i. Wenote that there exists a polynomial-time algorithm that, given a circuit C and a corresponding inputx, outputs the value of C on input x. This algorithm determines the values of the circuit's vertices,going from the circuit's input terminals to its output terminals.We say that a family of circuits (Cn)n2N computes a function f : f0; 1g� ! f0; 1g� if for everyn the circuit Cn computes the restriction of f to strings of length n. In other words, for everyx 2 f0; 1g�, it must hold that Cjxj(x) = f(x).Bounded and unbounded fan-in. We will be most interested in circuits in which each gate hasat most two in-coming edges. In this case, the types of (two-argument) Boolean operations that weallow is immaterial (as long as we consider a \full basis" of such operations; i.e., a set of operationsthat can implement any other two-argument Boolean operation). Such circuits are called circuitsof bounded fan-in. In contrast, other studies are concerned with circuits of unbounded fan-in, whereeach gate may have an arbitrary number of in-going edges. Needless to say, in the case of circuitsof unbounded fan-in, the choice of allowed Boolean operations is important and one focuses onoperations that are \uniform" (across the number of operants; e.g., ^ and _).Circuit size as a complexity measure. The size of a circuit is the number of its edges. Whenconsidering a family of circuits (Cn)n2N that computes a function f : f0; 1g� ! f0; 1g�, we areinterested in the size of Cn as a function of n. Speci�cally, we say that this family has size complexitys : N ! N if for every n the size of Cn is s(n). The circuit complexity of a function f , denoted sf ,is the in�mum of the size complexity of all families of circuits that compute f . Alternatively, foreach n we may consider the size of the smallest circuit that computes the restriction of f to n-bitstrings (denoted fn), and set sf (n) accordingly. We stress that non-uniformity is implicit in thisde�nition, because no conditions are made regarding the relation between the various circuits usedto compute the function on di�erent input lengths.
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The circuit complexity of functions. We highlight some simple facts about the circuit com-plexity of functions. (These facts are in clear correspondence to facts regarding Kolmogorov Com-plexity mentioned in Section 3.3.)1. Most importantly, any Boolean function can be computed by some family of circuits, andthus the circuit complexity of any function is well-de�ned. Furthermore, each function hasat most exponential circuit complexity.(Hint: fn : f0; 1gn ! f0; 1g can be computed by a circuit of size O(n2n) that implements alook-up table.)2. Some functions have polynomial circuit complexity. In particular, any function that has timecomplexity t (i.e., is computed by an algorithm of time complexity t) has circuit complexitypoly(t). Furthermore, the corresponding circuit family is uniform (in a natural sense to bediscussion below).(Hint: consider a Turing machine that computes the function, and consider its computationon a generic n-bit long input. The corresponding computation can be emulated by a circuitthat consists of t(n) layers such that each layer represents an instantaneous con�guration ofthe machine, and the relation between consecutive con�gurations is captured by (\uniform")local gadgets in the circuit.)3. Almost all Boolean functions have exponential circuit complexity. Speci�cally, the number offunctions mapping f0; 1gn to f0; 1g that can be computed by a circuit of size s is at most s2s.(Hint: the number of circuits having v vertices and s edges is at most �v2�s.)Note that the �rst fact implies that families of circuits can compute functions that are uncomputableby algorithms. Furthermore, this phenomenon occurs also when restricting attention to families ofpolynomial-size circuits. See further discussion in Section 4.2.Uniform families. A family of polynomial-size circuits (Cn)n2N is called uniform if given none can construct the circuit Cn in poly(n)-time. Note that if a function is computable by auniform family of polynomial-size circuits then it is computable by a polynomial-time algorithm.The algorithm �rst constructs the adequate circuit (which can be done in polynomial-time by theuniformity hypothesis), and then evaluate this circuit on the given input (which can be done intime that is polynomial in the size of the circuit).Note that limitations on the computing power of arbitrary families of polynomial-size circuitscertainly hold for uniform families (of polynomial-size), which in turn yield limitations on thecomputing power of polynomial-time algorithms. Thus, lower bounds on the circuit complexityof functions yield analogous lower bounds on their time complexity. Furthermore, as is often thecase in mathematics and Science, disposing of an auxiliary condition that is not well-understood(i.e., uniformity) may turn out fruitful. Indeed, this has occured in the study of limited classes ofcircuits, which is reviewed in Section 4.3.4.2 Machines that take adviceGeneral (non-uniform) circuit families and uniform circuit families are two extremes with respect tothe \amounts of non-uniformity" in the computing device. Intuitively, in the former, non-uniformityis only bounded by the size of the device, whereas in the latter the amounts of non-uniformity iszero. Here we consider a model that allows to decouple the size of the computing device from the20



amount of non-uniformity, which may range from zero to the device's size. Speci�cally, we consideralgorithms that \take a non-uniform advice" that depends only on the input length. The amountof non-uniformity will be de�ned to equal the length of the corresponding advice (as a function ofthe input length).De�nition 12 (taking advice): We say that algorithm A computes the function f using advice oflength ` : N ! N if there exists an in�nite sequence (an)n2N such that1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).The sequence (an)n2N is called the advice sequence.Note that any function having circuit complexity s can be computed using advice of lengthO(s log s), where the log factor is due to the fact that a graph with v vertices and e edges canbe described by a string of length 2e log2 v. Note that the model of machines that use advice allowsfor some sharper bounds than the ones stated in Section 4.1: every function can be computed usingadvice of length ` such that `(n) = 2n, and some uncomputable functions can be computed usingadvice of length 1.Theorem 13 (the power of advice): There exist functions that can be computed using one-bitadvice but cannot be computed without advice.Proof: Taking any uncomputable Boolean function f : N ! f0; 1g, consider the function f 0de�ned as f 0(x) = f(jxj). Note that f is Turing-reducible to f 0 (e.g., on input n make any n-bitquery to f 0, and return the answer).14 Thus, f 0 cannot be computed without advice. On theother hand, f 0 can be easily computed by using the advice sequence (an)n2N such that an = f(n);that is, the algorithm merely outputs the advice bit (and indeed ajxj = f(jxj) = f 0(x), for everyx 2 f0; 1g�).4.3 Restricted modelsAs noted in Section 4.1, the model of Boolean circuits allows for the introduction of many naturalsubclasses of computing devices. Following is a laconic review of a few of these subclasses. We willrefer to various types of Boolean formulae in the rest of this course, and thus suggest not to skipthe following two paragraphs.Boolean formulae. In general Boolean circuits the non-sink vertices are allowed arbitrary out-degree. This means that the same intermediate value can be re-used (without being re-computed(while increasing the size complexity by only one unit)). Such \free" re-usage of intermediatevalues is disallowed in Boolean formulae, which corresponds to a Boolean expression over Booleanvariables. Formally, a Boolean formula is a circuit in which all non-sink vertices have out-degree 1,which means that the underlying graph is a tree (and the formula as an expression can be read bytraversing the tree scanning the leaves in order). Indeed, we have allowed di�erent input terminalsto be assigned the same label in order to allow formulae in which the same variable occurs multipletimes. As in case of general circuits, one is interested in the size of these restricted circuits (i.e., thesize complexity of families of formulae computing various functions). We mention that quadraticlower bounds are known for the formula size of simple functions (e.g., parity), whereas thesefunctions have linear circuit complexity.14Indeed, this Turing-reduction is not e�cient (i.e., it runs in exponential time in jnj = log2 n), but this is immaterialin the current context. 21
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Figure 3: Recursive construction of parity circuits and formulae.Formulae in CNF and DNF. A restricted type of Boolean formulae consists of formulae thatare in conjunctive normal form (CNF). Such a formula consists of a conjunction of clauses, whereeach clause is a disjunction of literals each being either a variable or its negation. That is, suchformulae are represented by layered circuits of unbounded fan-in in which the �rst layer consists ofneg-gates that compute the negation of input variables, the second layer consist of or-gates thatcompute the logical-or of subsets of inputs and negated inputs, and the third layer consists of asingle and-gate that computes the logical-and of the values computed in the second layer. Notethat each Boolean function can be computed by a family of CNF formulae of exponential size,and that the size of CNF formulae may be exponentially larger than the size of ordinary formulaecomputing the same function (e.g., parity). For a constant k, a formula is said to be in k-CNF ifits CNF has disjunctions of size at most k. An analogous restricted type of Boolean formulae refersto formulae that are in disjunctive normal form (DNF). Such a formula consists of a disjunction of aconjunctions of literals, and when each conjunction has at most k literals we say that the formulais in k-DNF.Constant-depth circuits. Circuits have a \natural structure" (i.e., their structure as graphs).One natural parameter regarding this structure is the depth of a circuit, which is de�ned as thelongest directed path from any source to any sink. Of special interest are constant-depth circuits ofunbounded fan-in. We mention that sub-exponential lower bounds are known for the size of suchcircuits that compute a simple function (e.g., parity).Monotone circuits. The circuit model also allows for the consideration of monotone computingdevices: a monotone circuit is one having only monotone gates (e.g., gates computing ^ and _, butno negation gates (i.e., :-gates)). Needless to say, monotone circuits can only compute monotonefunctions, where a function f is called monotone if for any x < y it holds that f(x) � f(y)(where we refer to the lexicographic order on strings). One natural question is whether, as far asmonotone functions are concerned, there is a substantial loss in using only monotone circuits. Theanswer is yes: there exist monotone functions that have polynomial circuit complexity but requiresub-exponential size monotone circuits.
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NotesIt is quite remarkable that the theories of uniform and non-uniform computational devices haveemerged in two single papers. We refer to Turing's paper [10], which introduced the model ofTuring machines, and to Shannon's paper [8], which introduced Boolean circuits.In addition to introducing the Turing machine model and arguing that it corresponds to theintuitive notion of computability, Turing's paper [10] introduces universal machines and containsproofs of undecidability (e.g., of the Halting Problem). Rice's Theorem is proven in [7], and theundecidability of the Post Correspondence Problem is proven in [6].The formulation of machines that take advice (as well as the equivalence to the circuit model)originates in [3].References[1] O. Goldreich. On Promise Problems (a survey in memory of Shimon Even [1935-2004]).ECCC, TR05-018, 2005.[2] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computa-tion. Addison-Wesley, 1979.[3] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform complexityclasses. In 12th ACM Symposium on the Theory of Computing, pages 302-309, 1980.[4] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1996.[5] L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9, pages 115{116,1973. Translated in problems of Information Transmission 9, pages 265{266.[6] E. Post. A Variant of a Recursively Unsolvable Problem. Bull. AMS, Vol. 52, pages 264{268,1946.[7] H.G. Rice. Classes of Recursively Enumerable Sets and their Decision Problems. Trans.AMS, Vol. 89, pages 25{59, 1953.[8] C.E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans. AmericanInstitute of Electrical Engineers, Vol. 57, pages 713{723, 1938.[9] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.[10] C.E. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem.Proc. Londom Mathematical Soceity, Ser. 2, Vol. 42, pages 230{265, 1936. A Correction, ibid.,Vol. 43, pages 544{546.
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