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Preface

This text provides the necessary preliminaries for a course on computational complexity. It includes
a discussion of computational tasks and computational models, as well as natural complexity mea-
sures associated with the latter. More specifically, this text recalls the basic notions and results of
computability theory (including the definition of Turing machines, some undecidability results, the
notion of universal machines, and the definition of oracle machines). In addition, this text presents
the basic notions underlying non-uniform models of computation (like Boolean circuits).

We start by introducing the general framework for a discussion of computational tasks (or prob-
lems), which refers to the representation of instances and to two types of tasks (i.e., searching for
solutions and making decisions). Once the stage is set, we consider two types of models of compu-
tation: uniform models that correspond to the intuitive notion of an algorithm, and non-uniform
models (e.g., Boolean circuits) that allow for a closer look at the way computation progresses.

The contents of Sections 1-3 corresponds to a traditional Computability course, and most of this
material is taken for granted in the rest of the current course. In contrast, Section 4 presents basic
preliminaries regarding non-uniform models of computation (i.e., various types of Boolean circuits),
and these are only used lightly in the rest of the current course. Thus, whereas Sections 1-3 are
absolute prerequisites for the rest of this course, Section 4 is not.

Teaching note: I believe that there is no real need for a semester-long course in Com-
putability (i.e., a course that focuses on what can be computed rather than on what
can be computed efficiently). Instead, undergraduates should take a course in computa-
tional complexity, where the computability aspects will serve as a basis for the rest of
the course. Specifically, the former aspects should occupy at most 25% of the course,
and the focus should be on basic complexity (i.e., P, NP and NP-completeness) and on

some more advanced material.

1 Representation

In Mathematics and related sciences, it is customary to discuss objects without specifying their
representation. This is not possible in the theory of computation, where the representation of
objects plays a central role. In a sense, a computation merely transforms one representation of



an object to another representation of the same object. In particular, a computation designed to
solve some problem merely transforms the problem instance to its solution, where the latter can
be though of as a (possibly partial) representation of the instance. Indeed, the answer to any fully
specified question is implicit in the question itself.

Computation refers to objects that are represented in some canonical way, where such canonical
representation provides an “explicit” and “full” description of the corresponding object. We will
counsider only finite objects like sets, graphs, numbers, and functions (and keep distinguishing these
types of objects although, actually, they are all equivalent).

Strings. We consider finite objects, each represented by a finite binary sequence, called a string.
For a natural number n, we denote by {0,1}" the set of all strings of length n, hereafter referred
to as n-bit strings. The set of all strings is denoted {0,1}*; that is, {0,1}* = U,en{0,1}". For
x€{0,1}*, we denote by |z| the length of z (i.e., z€{0,1}/*), and often denote by z; the i*® bit of
z (e, T = 2129 7). For z,y€{0,1}*, we denote by zy the string resulting from concatenation
of the strings x and y.

At times, we associate {0,1}* x{0,1}* with {0,1}*; the reader should merely consider an ade-
quate encoding (e.g., the pair (z1--- T, y1 - yn) € {0,1}* x{0,1}* may be encoded by the string
2121+ Ty @ 0lyy -+ -y, € {0,1}*). Likewise, we may represent sequences of strings (of fixed or
varying length) as single strings. When we wish to emphasize that such a sequence (or some other
object) is to be considered as a single object we use the notation (-) (e.g., “the pair (z,y) is encoded
as the string (z,y)”).

Numbers. Unless stated differently, natural numbers will be encoded by their binary expansion;
that is, the string b, ---b1by € {0,1}" encodes the number Zzﬂ;ol b; - 2°. Rational numbers will be
represented as pairs of natural numbers. In the rare cases in which one considers real numbers as
part of the input to a computational problem, one actually mean rational approximations of these
real numbers.

Special symbols. We denote the empty string by A (i.e., A € {0,1}* and |A| = 0), and the empty
set by 0. It will be convenient to use some special symbols that are not in {0,1}*. One such symbol
is 1, which typically denotes an indication by some algorithm that something is wrong.

2 Computational Tasks

Two fundamental types of computational tasks are so-called search problems and decision problems.
In both cases, the key notions are the problem’s instances and the problem’s specification.

Search problems. A search problem consists of a specification of a set of valid solutions (possibly
an empty one) for each possible instance. That is, given an instance, one is required to find a
corresponding solution (or to determine that no such solution exists). For example, consider the
problem in which one is given a system of equations and is asked to find a valid solution. Needless
to say, much of computer science is concerned with solving various search problems. Furthermore,
search problems correspond to the daily notion of “solving a problem” and thus a discussion of the
possibility and complexity of solving search problems corresponds to the natural concerns of most
people. In the following definition of solving search problems, the potential solver is a function



(which may be thought of as a solving strategy), and the sets of possible solutions associated with
each of the various instances are “packed” into a single binary relation.

Definition 1 (solving a search problem) Let R C {0,1}* x {0,1}*. A function f : {0,1}* —
{0,1}* U {L} solves the search problem of R if for every x it holds that (z, f(z)) € R if and only if
R(x) def {y: (x,y) € R} is not empty.

Indeed, R(z) denotes the set of valid solutions for the problem instance z, and it is required that
whenever there exist valid solutions (i.e., R(x) is not empty) the solver finds one. It is also required
that the solver f never outputs a wrong solution (i.e., if R(x) # () then f(z) € R(x)), and it follows
that if R(z) = 0 then f(x) = L, which in turn means that f indicates that = has no solution.
A special case of interest is the case that |R(z)| = 1 for every z, where R is essentially a (total)
function, and solving the search problem of R means computing (or evaluating) the function R (or

rather the function R’ defined defined by R'(x) Aot y where R(z) = {y}).

Decision problems. A decision problem consists of a specification of a subset of the possible
instances. Given an instance, one is required to determine whether the instance is in the specified
set. For example, consider the problem where one is given a natural number, and is asked to
determine whether or not the number is a prime. One important case, which corresponds to the
aforementioned search problems, is the case of the set of instances having a solution; indeed, being
able to determine whether or not a solution exists is a prerequisite to being able to solve the
corresponding search problem (as per Definition 1). In general, decision problems refer to the
natural task of making binary decision, a task that is not uncommon in daily life. In any case, in
the following definition of solving search problems, the potential solver is again a function (i.e., in
this case it is a Boolean function that is supposed to indicate membership in the said set).

Definition 2 (solving a decision problem) Let S C {0,1}*. A function f: {0,1}* — {0,1} solves
the decision problem of S (or decides membership in S) if for every x it holds that f(z) =1 if and
only if x € S.

Indeed, if f solves the search problem of R then the Boolean function f': {0,1}* — {0,1} defined

by f'(x) 41 if and only if f(x) # L solves the decision problem of S def {z : R(z) # 0}. We often
identify the decision problem of S with S itself, and identify S with its characteristic function (i.e.,
with xg:{0,1}* — {0,1} defined such that y(z) = 1 if and only if z € ).

Most people would consider search problems to be more natural than decision problems: typ-
ically, people seeks solutions more than they stop to wonder whether or not solutions exist. Defi-
nitely, search problems are not less important than decision problems, it is merely that their study
tends to require more cumbersome formulations. This is the main reason that most expositions
choose to focus on decision problems. The current course attempts to devote at least a significant
amount of attention also to search problems.

Promise problems (an advanced comment). Many natural search and decision problems
are captured more naturally by the terminology of promise problems, where the domain of possible
instances is a subset of {0,1}* rather than {0,1}* itself. In particular, note that the natural
formulation of many search and decision problems refers to instances of a certain types (e.g., a
system of equations, a pair of numbers, a graph), whereas the natural representation of these
objects uses only a strict subset of {0,1}*. A nasty convention is to postulate that every string



represents some legitimate object (i.e., each string that is not used in the natural representation of
these objects is postulated as a representation of some fixed object). In the current text, we will
ignore this issue, but refer the interested reader to [1].

3 Uniform Models (Algorithms)

We are all familiar with computers, and the ability of computer programs to manipulate data.
But how does one capture all computational processes? Before being formal, we offer a loose
description, capturing many artificial as well as natural processes, whereas the former are associated
with computers and the latter are used to model (aspects of) the natural reality (be it physical,
biological, or even social).

A computation is a process that modifies an environment via repeated applications of a prede-
termined rule. The key restriction is that this rule is simple: in each application it depends and
affects only a (small) portion of the environment, called the active zone. We contrast the a-priori
bounded size of the active zone (and of the modification rule) with the a-priori unbounded size of
the entire environment. We note that, although each application of the rule has a very limited
effect, the effect of many applications of the rule may be very complex. Put in other words, a
computation may modify the relevant environment in a very complex way, although it is merely a
process of repeatedly applying a simple rule.

As hinted, the notion of computation can be used to model some aspects of the natural reality.
In this case, the process that takes place in the natural reality is the starting point of the study,
and the goal of the study is to learn the (computation) rule that underlies this natural process. In
a sense, the goal of Science at large can be phrased as learning (simple) rules that govern various
aspects of reality (or rather one’s abstraction of these aspects of reality).

Our focus, however, is on artificial computation rules designed by humans in order to achieve
specific desired effects on the corresponding artificial environment. Thus, our starting point is a
desired functionality, and our aim is to design computation rules that effect it. Such a computation
rule is referred to as an algorithm. Loosely speaking, an algorithm corresponds to a computer
program written in a high-level (abstract) programming language. Let us elaborate.

We are interested in the transformation of the environment affected by the computational
process (or the algorithm). Throughout (most of) this course, we will assume that, when invoked
on any finite initial environment, the computation halts after a finite number of steps. Typically,
the initial environment to which the computation is applied encodes an input string, and the end
environment (i.e., at termination of the computation) encodes an output string. We consider the
mapping from inputs to outputs induced by the computation; that is, for each possible input x, we
consider the output y obtained at the end of a computation initiated with input z, and say that
the computation maps input x to output y. Thus, a computation rule (or an algorithm) determines
a function (computed by it): this function is exactly the aforementioned mapping of inputs to
outputs.

In the rest of this course, we will also consider the number of steps (i.e., applications of the rule)
taken by the computation for each possible input. The latter function is called the time complexity
of the computational process (or algorithm). While time complexity is defined per input, we will
often considers it per input length, taking the maximum over all inputs of the same length.

In order to define computation (and computation time) rigorously, one needs to specify some
model of computation; that is, provide a concrete definition of environments and a class of rules
that may be applied to them. Such a model corresponds to an abstraction of a real computer
(be it a PC, mainframe or network of computers). One simple abstract model that is commonly



used is that of Turing machines (see, Section 3.1 below). Thus, specific algorithms are typically
formalized by corresponding Turing machines (and their time complexity is represented by the time
complexity of the corresponding Turing machines). We stress, however, that most results in the
Theory of Computation hold regardless of the specific computational model used, as long as it is
“reasonable” (i.e., satisfies the aforementioned simplicity condition and can perform some obviously
simple computations).

What is being Computed? The above discussion has implicitly referred to computations and
algorithms as means of computing functions. Specifically, an algorithm A computes the function
fa:{0,1}* — {0,1}* defined by fa(z) =y if, when invoked on input z, algorithm A halts with
output y. However, computations can also be viewed as a means of “solving search problems” or
“making decisions” (as in Definitions 1 and 2). Specifically, we will say that algorithm A solves the
search problem of R (resp., decides membership in S) if f4 solves the search problem of R (resp.,
decides membership in S). In the rest of this exposition we associate the algorithm A with the
function f4 computed by it; that is, we write A(z) instead of f4(x). For sake of future reference,
we summarize the foregoing discussion.

Definition 3 (solution by an algorithm) We denote by A(x) the output of algorithm A on input x.
Algorithm A solves the search problem R (resp., the decision problem S) if A, viewed as a function,
solves R (resp., S).

Organization of the rest of this section: In Section 3.1 we provide a sketchy description of the
model of Turing machines. This is done merely for sake of providing a concrete model that supports
the study of computation and its complexity, whereas most of the material in this course will not
depend on the specifics of this model. In Section 3.2 and Section 3.2 we discuss two fundamental
properties of any reasonable model of computation: the existence of uncomputable functions and
the existence of universal computations. The time (and space) complexity of computation is defined
in Section 3.4. We also discuss oracle machines and restricted models of computation (in Section 3.5
and Section 3.6, respectively).

3.1 Turing machines

The model of Turing machines offer a relatively simple formulation of the notion of an algorithm.
The fact that the model is very simple complicates the design of machines that solve desired
problems, but it makes the analysis of such machines simpler. Since the focus of complexity theory
is on the analysis of machines and not on their design, the choice of this model and the trade-off
that it offers is a good one. We stress again that the model is merely used as a concrete formulation
of the intuitive notion of an algorithm, whereas we actually care about the intuitive notion and not
its formulation. In particular, all results mentioned in this course hold for any other “reasonable”
formulation of the notion of an algorithm.

The model of Turing machines is not supposed to provide a good (or “tight”) model of real-life
computers (although a task can be solved by a real-life computer if and only if it can be solved by a
Turing machine). Historically, the model of Turing machines was invented before modern computers
were even built, and was meant to provide a concrete model of computation (as opposed to the
abstract definition of “recursive functions” that defines a class of “computable” functions in terms
of composition of such functions). Indeed, this concrete model clarified fundamental properties of
computable functions and plays a key role in defining the complexity of computable functions.



The model of Turing machines was envisioned as an abstraction of the process of an algebraic
computation carried out by a human using a sheet of paper. In such a process, at each time, the
human looks at some location on the paper, and depending on what he/she sees and what he/she
has in mind (which is little...), he/she modifies the contents of this location and moves its look to
an adjacent location.

The actual model. Following is a high-level description of the model of Turing machines; the
interested reader is referred to standard textbooks (e.g., [9]) for further details. Recall that we
need to specify the set of possible environments, the set of machines (or computation rules), and
the effect of applying such a rule on an environment.

e The main component in the environment of a Turing machine is an infinite sequence of cells,
each capable of holding a single symbol (i.e., member of a finite set ¥ D {0,1}). In addition,
he environment contains the current location of the machine on this sequence, and the internal
state of the machine (which is a member of a finite set @?). The aforementioned sequence of
cells is called the tape, and its contents combined with the machine’s location and internal
state is called the instantaneous configuration of the machine.

e The Turing machine itself consists of a finite rule (i.e., a finite function), called the transition
function, which is defined over the set of all possible symbol-state pairs. Specifically, the
transition function is a mapping from ¥ x @ to ¥ x @ x {—1,0,+1}, where {—1,+1,0} cor-
respond to a movement instruction (which is either “left” or “right” or “stay”, respectively).
In addition, the machine’s description specifies an initial state and a halting state, and the
computation of the machine halts when the machine enters its halting state.!

In contrast to the finite description of the machine, the tape has an a priori unbounded length
(and is considered, for simplicity, as being infinite).

e A single computation step of such a Turing machine depends on its current location on the
tape, on the contents of the corresponding cell and on the internal state of the machine.
Based on the latter two elements, the transition function determines a new symbol-state pair
as well as a movement instruction (i.e., “left” or “right” or “stay”). The machine modifies
the contents of the said cell and its internal state accordingly, and moves as directed. That
is, suppose that the machine is in state ¢ and resides in a cell containing the symbol o, and
suppose that the transition function maps (o, q) to (¢/,¢’, D). Then, the machine modifies
the contents of the said cell to ¢/, modifies its internal state to ¢’, and moves one cell in
direction D. Figure 1 shows a single step of a Turing machine that, when in state ‘b’ and
seeing a binary symbol o, replaces o with the symbol o 4 2, maintains its internal state, and
moves one position to the right.?

Formally, we define the successive configuration function that maps each instantaneous config-
uration to the one resulting by letting the machine take a single step. This function modifies
only the contents of one cell (i.e. at which the machine resides), the internal state of the
machine and its location, as described above.

!Envisioning the tape as extending from left to right, we also use the convention by which if the machine tries to
move left of the end of the tape then it is considered to have halted.

2Figure 1 corresponds to a machine that, when in the initial state (i.e., ‘@), replaces the symbol o by o + 4,
modifies its internal state to ‘b’, and moves one position to the right. Indeed, “marking” the leftmost cell (in order
to allow for recognizing it in the future), is a common practice in the design of Turing machines.
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Figure 1: A single step by a Turing machine.

The initial environment (or configuration) of a Turing machine consists of the machine residing
in the first (i.e., left-most) cell and being in its initial state. Typically, one also mandates that, in
the initial configuration, a prefix of the tape’s cells hold bit values, which concatenated together
are considered the input, and the rest of the tape’s cells hold a special symbol (which in Figure 1 is
denoted by ‘-’). Once the machine halts, the output is defined as the contents of the cells that are
to the left of its location (at termination time).> Thus, each machine defines a function mapping
inputs to outputs, called the function computed by the machine.

Multi-tape Turing machines. We comment that in most expositions, one refers to the location
of the “head of the machine” on the tape (rather than to the “location of the machine on the tape”).
The standard terminology is more intuitive when extending the basic model, which refers to a single
tape, to a model that supports a constant number of tapes. In the model of multi-tape machines,
each step of the machine depends and effects the cells that are at the head location of the machine on
each tape. As we shall see in Section 3.4, the extension of the model to multi-tape Turing machines
is crucial to the definition of space complexity. A less fundamental advantage of the model of
multi-tape Turing machines is that it allows for an easier design of machines that compute desired
functions.

Teaching note: I strongly recommend avoiding the standard practice of teaching the
student to program with Turing machines. These exercises seem very painful and point-
less. Instead, one should prove that a function can be computed by a Turing machine
if and only if it is computable by a model that is closer to a real-life computer (see
“sanity check” below). For starters, one should prove that a function can be computed
by a single-tape Turing machine if and only if it is computable by a multi-tape (e.g.,

two-tape) Turing machine.

The Church-Turing Thesis: The entire point of the model of Turing machines is its simplicity.
That is, in comparison to more “realistic” models of computation, it is simpler to formulate the
model of Turing machines and to analyze machines in this model. The Church-Turing Thesis asserts
that nothing is lost by considering the Turing machine model: A function can be computed by some
Turing machine if and only if it can be computed by some machine of any other “reasonable and
general” model of computation.

®By an alternative convention, the machine halts while residing in the left-most cell, and the output is defined as
the maximal prefix of the tape contents that contains only bit values.



This is a thesis, rather than a theorem, because it refers to an intuitive notion that is left
undefined on purpose (i.e., the notion of a reasonable and general model of computation). The
model should be reasonable in the sense that it should refer to computation rules that are “simple”
in some intuitive sense. On the other hand, the model should allow to compute functions that
intuitively seem computable. At the very least the model should allow to emulate Turing machines
(i.e., compute the function that given a description of a Turing machine and an instantaneous
configuration returns the successive configuration).

A philosophical comment. The fact that a thesis is used to link an intuitive concept to a
formal definition is common practice in any science (or, more broadly, in any attempt to reason
rigorously about intuitive concepts). The moment an intuition is rigorously defined, it stops being
an intuition, and becomes a definition and the question of the correspondence between the original
intuition and the derived definition arises. This question can never be rigorously treated, because
it relates to two objects, one being undefined. Thus, the question of correspondence between the
intuition and the definition always transcends a rigorous treatment (i.e., it is always at the domain
of the intuition).

A sanity check: Turing machines can emulate an abstract RAM. To gain confidence in
the Church-Turing Thesis, one may attempt to define an abstract Random-Access Machine (RAM),
and verify that it can be emulated by a Turing machine. An abstract RAM consists of an infinite
number of memory cells, each capable of holding an integer, a finite number of similar registers, one
designated as program counter, and a program consisting of instructions selected from a finite set.
The set of possible instructions includes the following instructions:

e reset(r), where r is an index of a register, results in setting the value of register r to zero.

e inc(r), where r is an index of a register, results in incrementing the content of register r.
Similarly dec(r) causes a decrement.

e load(ry,r2), where r; and re are indices of registers, results in loading to register r; the
contents of the memory location m, where m is the current contents of register rs.

e store(ry,r2), stores the contents of register r; in the memory, analogously to load.

e cond-goto(r,{), where r is an index of a register and ¢ does not exceed the program length,
results in setting the program counter to £ — 1 if the content of register r is non-negative.

The program counter is incremented after the execution of each instruction, and the next instruction
to be executed by the machine is the one to which the program counter points (and the machine
halts if the program counter exceeds the program’s length). The input to the machine may be
defined as the contents of the first n memory cells, where n is placed in a special input register. We
note that the RAM model satisfies the Church-Turing Thesis, but in order to make it closer to a
real-life computer we augment the model by instructions like add(ry,r2) (resp., mult(ry,r2)), which
results in adding (resp., multiplying) the contents of registers r; and 7y and placing the result in
register . We suggest proving that this abstract RAM can be emulated by a Turing machine.*

*We empbhasize this direction of the equivalence of the two models, because the RAM model is introduced in order
to convince the reader that Turing machines are not too weak (as a model of general computation). The fact that
they are not too strong seems self-evident. Thus, it seems pointless to prove that the RAM model can emulate Turing
machines. Still, note that this is indeed the case, by using the RAM’s memory cells to store the contents of the cells
of the Turing machine’s tape.



(Hint: note that during the emulation, we only need to hold the input, the contents of all registers,
and the contents of the memory cells that were accessed during the computation.)?

Observe that the abstract RAM model is more cumbersome than the Turing machine model.
Furthermore, the question of which instructions to allow causes a vicious cycle, which we avoided by
trusting the reader to consider only the standard instructions common in any real-life computer. (In
general, we should only allow instructions that correspond to “simple” operations; i.e., operations
that correspond to easily computable functions...)

3.2 Uncomputable functions

Strictly speaking, the current subsection is not necessary for the rest of this course, but we feel
that it provides a useful perspective.

In contrast to what every layman would think, we know that not all functions are computable.
Indeed, an important message to be communicated to the world is that not every well-defined task
can be solved by applying a “reasonable” procedure (i.e., a procedure that has a simple description
that can be applied to any instance of the problem at hand). Furthermore, not only is it the case
that there exist uncomputable functions, but it is rather that “most” functions are uncomputable.
In fact, only relatively few functions are computable.

Theorem 4 (on the scarcity of computable functions): The set of computable functions is count-
able, whereas the set of all functions (from strings to string) has cardinality X.

We stress that the theorem holds for any reasonable model of computation. In fact, it only relies
on the postulate that each machine in the model has a finite description (i.e., can be described by
a string).

Proof: Since each computable function is computable by a machine that has a finite description,
there is a 1-1 correspondence between the set of computable functions and the set of strings (which
in turn is in 1-1 correspondence to the natural numbers). On the other hand, there is a 1-1
correspondence between the set of Boolean functions (i.e., functions from strings to a bit) and the
set of real number in [0,1). This correspondence associates each real r € [0,1) to the function
f: N — {0,1} such that f(i) is the 7'M bit in the binary expansion of r. [l

The Halting Problem: In contrast to the preliminary discussion, at this point we consider
also machines that may not halt on some inputs. (The functions computed by such machines are
partial functions that are defined only on inputs on which the machine halts.) Again, we rely on
the postulate that each machine in the model has a finite description, and denote the description
of machine M by (M) € {0,1}*. The halting function, h : {0,1}* x {0,1}* — {0,1}, is defined such
that h((M), x) 1 if and only if M halts on input z. The following result goes beyond Theorem 4
by pointing to an explicit function (of natural interest) that is not computable.

Theorem 5 (undecidability of the halting problem): The halting function is not computable.

The term undecidability means that the corresponding decision problem cannot be solved by an
algorithm. That is, Theorem 5 asserts that the decision problem associated with the set h=1(1) =

5Thus, at each time, the Turning machine’s tape contains a list of the RAM’s memory cells that were accessed so
far as well as their current contents. When we emulate a RAM instruction, we first check whether the relevant RAM
cell appears on this list, and augment the list by a corresponding entry or modify this entry as needed.



{((M),z) : h({M),z) = 1} is not solvable by an algorithm (i.e., there exists no algorithm that,
given a pair ((M),z), decides whether or not M halts on input x). Actually, the following proof
shows that there exists no algorithm that, given (M), decides whether or not A halts on input
(M).

Proof: We will show that even the restriction of h to its “diagonal” (i.e., the function d({(M)) o

h((M}), (M))) is not computable. Note that the value of d((M)) refers to the question of what
happens when we feed M with its own description, which is indeed a “nasty” (but legitimate) thing
to do. We will actually do worse: towards the contradiction, we will consider the value of d when
evaluated at a (machine that is related to a) machine that supposedly computes d.

We start by considering a related function, d’, and showing that this function is uncomputable.

The function d’ : {0,1}* — {0,1} is defined such that d'((M)) ' 1 if and only if M halts on input
(M) with output 0. (That is, d'((M)) = 1 if M halts on input (M) with a specific output, and
d’((M)) = 0 if either M does not halt on input (M) or its output does not equal the designated
value.) Now, suppose, towards the contradiction, that d’' is computable by some machine, denoted
Mygr. Note that machine My is supposed to halt on every input, and so Mg halts on input (Mg/).
But, by definition of d’, it holds that d'((Mg)) = 1 if and only if Mg halts on input (Mg/) with
output 0 (i.e., if and only if Mg/ ((Mg/)) = 0). Thus, Mg ((Mg')) # d'((Mg')) in contradiction to
the hypothesis that Mg computes d’.

We next prove that d is uncomputable, and thus h is uncomputable (because d(z) = h(z, z) for
every z). To prove that d is uncomputable, we show that if d is computable then so is d’ (which we
already know not to be the case). Let A be an algorithm for computing d (i.e., A((M)) = d({(M))
for every machine M). Then we construct an algorithm for computing d’, which given (M), invokes
A on (M"), where M" is defined to operate as follows:

1. On input z, machine M" emulates M’ on input z.
2. If M’ halts on input z with output 0 then M” halts.

3. If M’ halts on input x with an output different from 0 then M" enters an infinite loop (and
thus does not halt).

4. Otherwise (i.e., M’ does not halt on input z), then machine M" does not halt (because it
just stays stuck in Step 1 forever).

Note that the mapping from (M') to (M") is easily computable (by augmenting M’ with instructions
to test its output and enter an infinite loop if necessary), and that d((M")) = d'({(M')), because M"
halts on z if and only if M" halts on z with output 0. We thus derived an algorithm for computing
d’ (i.e., transform the input (M') into (M") and output A((M"))), which contradicts the already
established fact by which d’ is uncomputable. |l

Turing-reductions. The core of the second part of the proof of Theorem 5 is an algorithm that
solves one problem (i.e., computes d') by using as a subroutine an algorithm that solves another
problem (i.e., computes h). In fact, the first algorithm is actually an algorithmic scheme that
refers to a “functionally specified” subroutine rather than to an actual (implementation of such a)
subroutine, which may not exist. Such an algorithmic scheme is called a Turing-reduction (i.e., we
have Turing-reduced the computation of d’ to the computation of d, which in turn Turing-reduces
to h). The “natural” (“positive”) meaning of a Turing-reduction of f’ to f is that when given
an algorithm for computing f we obtain an algorithm for computing f’. In contrast, the proof
of Theorem 5 uses the “unnatural” (“negative”) counter-positive: if (as we know) there exists no
algorithm for computing f’ = d' then there exists no algorithm for computing f = h (which is what
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we wanted to prove). Jumping ahead, we mention that resource-bounded Turing-reductions (e.g.,
polynomial-time reductions) play a central role in complexity theory itself, and again they are used
mostly in a “negative” way. We will define such reductions and extensively use them in the rest of
the course.

Rice’s Theorem. The undecidability of the halting problem (or rather the fact that the function
d is uncomputable) is a special case of a more general phenomenon: Every non-trivial decision
problem regarding the function computed by a given Turing machine has no algorithmic solution.
We state this fact next, clarifying what is the aforementioned class of problems. (Again, we refer
to Turing machines that may not halt on all inputs.)

Theorem 6 (Rice’s Theorem): Let F be a non-trivial subset® of the set of all computable partial
functions, and let S be the set of strings that describe machines that compute functions in F.
Then deciding membership in Sr cannot be solved by an algorithm.

Theorem 6 can be proved by a Turing-reduction from d. We do not provide a proof because this
is too remote from the main subject matter of the course. We stress that Theorems 5 and 6
hold for any reasonable model of computation (referring both to the potential solvers and to the
machines the description of which is given as input to these solvers). Thus, Theorem 6 means that
no algorithm can determine any non-trivial property of the function computed by a given computer
program (written in any programming language). For example, no algorithm can determine whether
or not a given computer program halt on each possible input. The relevance of this assertion to the
project of program verification is obvious.

The Post Correspondence Problem. We mention that undecidability arises also outside of
the domain of questions regarding computing devices (given as input). Specifically, we consider the
Post Correspondence Problem in which the input consists of two (equal length) sequences of strings,
(a1y...,ap) and (fy,..., Ok), and the question is whether or not there exists a sequence of indices
i1,...,% € {1,...,k} such that a;, --- oy, = B, -+ B;,. (We stress that the length of this sequence is
not bounded.)”

Theorem 7 The Post Correspondence Problem is undecidable.

Again, the omitted proof is by a Turing-reduction from d (or h).

3.3 Universal algorithms

So far we have used the postulate that, in any reasonable model of computation, each machine (or
computation rule) has a finite description. Furthermore, we also used the fact that such model
should allow for the easy modification of such descriptions such that the resulting machine com-
putes an easily related function (see the proof of Theorem 5). Here we go one step further and
postulate that the description of machines (in this model) is “effective” in the following natural
sense: there exists an algorithm that, given a description of a machine (resp., computation rule)

®The set S is called a non-trivial subset of U if both S and U \ S are non-empty. Clearly, if F is a trivial set of
computable functions then the corresponding decision problem can be solved by a “trivial” algorithm that outputs
the corresponding constant bit.

"In contrast, the existence of an adequate sequence of a specified length can be determined in time that is
exponential in this length.
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and a corresponding environment, determines the environment that results from performing a single
step of this machine on this environment (resp. the effect of a single application of the computation
rule). This algorithm can, in turn, be implemented in the said model of computation (assuming this
model is general; see the Church-Turing Thesis). Successive applications of this algorithm leads to
the notion of a universal machine, which (for concreteness) is formulated below in terms of Turing
machines.

Definition 8 (universal machines): A universal Turing machine is a Turing machine that on input
a description of a machine M and an input x returns the value of M(xz) if M halts on x and
otherwise does not halt.

That is, a universal Turing machine computes the partial function u that is defined over pairs
((M),x) such that M halts on input z, in which case it holds that u({M),z) = M(x). We note
that if M halts on all possible inputs then u((M),z) is defined for every xz. We stress that the
mere fact that we have defined something does not mean that it exists. But, as hinted above
and obvious to anyone who has written a computer program (and thought about what he/she was
doing), universal Turing machines do exist.

Theorem 9 There exists a universal Turing machine.

Theorem 9 asserts that the partial function u is computable. In contrast, it can be shown that
any extension of u to a total function is uncomputable. That is, for any total function 4 that
agrees with the partial function u on all the inputs on which the latter is defined, it holds that @ is
uncomputable.?

Proof: Given a pair ((M),z), we just emulate the computation of machine M on input z. This
emulation is straightforward, because by the effectiveness of the description of M, we can iteratively
determine the next instantaneous configuration of the computation of M on input z. If the said
computation halts then we will obtain its output and can output it (and so, on input ((M),z),
our algorithm returns M(x)). Otherwise, we turn out emulating an infinite computation, which
means that our algorithm does not halt on input ((M),x). Thus, the foregoing emulation procedure
constitutes a universal machine (i.e., yields an algorithm for computing u). N

As hinted above, the existence of universal machines is the fundamental fact underlying the
paradigm of general-purpose computers. Indeed, a specific Turing machine (or algorithm) is a
device that solves a specific problem. A priori, solving each problem would have required building
a new physical device that allows for this problem to be solved in the physical world (rather than as
a thought experiment). The existence of a universal machine asserts that it is enough to build one
physical device; that is, a general purpose computer. Any specific problem can then be solved by
writing a corresponding program for the general purpose computer. In other words, the existence
of universal machines says that software can be viewed as (part of the) input.

In addition to their practical importance, the existence of universal machines (and their variants)
has important consequences in the theories of computability and computational complexity. Here
we merely note that Theorem 9 implies that many questions about the behavior of a universal

8The claim is easy to prove for the total function G that extends u and assigns the special symbol L to inputs on

which u is undefined (i.e., G({(M}), z) 4 | if u is not defined on ((M),z) and a({M), x) Lot u((M),z) otherwise). In

this case h((M),z) = 1 if and only if 4((M),z) # L, and so the halting function h is Turing-reducible to 4. In the
general case, we may adapt the proof of Theorem 5 by observing that, for a machine M that halts on every input, it

holds that 4((M),z) = u((M), x) for every z (and in particular for z = (M)).
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machine on certain input types are undecidable. In particular, there is no algorithm that, given
x ((M), z), can tell whether or not a (fixed) universal machine halts on input X. Revisiting the
proof of Theorem 7, it follows that the Post Correspondence Problem remains undecidable even if
the sequences are restricted to have a specific length (i.e., k is fixed).

A detour: Kolmogorov Complexity. The existence of universal machines, which may be
viewed as universal languages for writing effective and succinct descriptions of objects, plays a
central role in Kolmogorov Complexity. Loosely speaking, the latter theory is concerned with the
length of (effective) descriptions of objects, and views the minimum such length as the inherent
“complexity” of the object; that is, “simple” objects (or phenomena) are those having short de-
scription (resp., short explanation), whereas “complex” objects have no short description. Needless
to say, these (effective) descriptions have to refer to some fixed “language” (i.e., to a fixed machine
that, given a succinct description of an object, produces its explicit description). Fixing any ma-
chine M, a string z is called a description of s with respect to M if M(xz) = s. The complexity of
s with respect to M, denoted Kj;(s), is the length of the shortest description of s with respect to
M. Certainly, we want to fix M such that every string has a description with respect to M, and
furthermore that this description is not “significantly” longer than the description with respect to
a different machine M'. The following theorem make it natural to use a universal machine as the
“point of reference” (i.e., the aforementioned M).

Theorem 10 (complexity w.r.t a universal machine): Let U be a universal machine. Then, for
every machine M', there exists a constant ¢ such that Ky (s) < Kyp(s) + ¢ for every string s.

The theorem follows by (setting ¢ = O(|(M'})|) and) observing that if = is a description of s with
respect to M’ then ((M'),x) is a description of s with respect to U. Here it is important to use
an adequate encoding of pairs of strings (e.g., the pair (o1 ---og, 71 -+ 7¢) is encoded by the string
o101 -+ 00,017y - - - 7). Fixing any universal machine U, we define the Kolmogorov Complexity of

a string s as K(s) def Ky (s). The reader may easily verify the following facts:

1. K(s) <|s|+ O(1), for every s.
(Hint: apply Theorem 10 to the machine that computes the identity mapping.)

2. There exist infinitely many strings s such that K(s) < |s].
(Hint: consider s = 1™. Alternatively, consider any machine M such that |M(z)| > |z|.)

3. Some strings of length n have complexity at least n. Furthermore, for every n and i,
[{s € {0,1}": K(s) <n —i}| < 2""H!
(Hint: different strings must have different descriptions with respect to U.)

It can be shown that the function K is uncomputable. The proof is related to the paradox captured
by the following “description” of a natural number: the largest natural number that can be
described by an English sentence of up-to a thousand letters. (The paradox amounts
to observing that if the above number is well-defined then so is the integer-successor of the
largest natural number that can be described by an English sentence of up-to a thousand
letters.) Needless to say, the above sentence presupposes that any sentence is a legitimate de-
scription in some adequate sense (e.g., in the sense defined above). Specifically, the above sentence
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presupposes that we can determine the Kolmogorov Complexity of each natural number, and fur-
thermore effectively produce the largest number that has Kolmogorov Complexity not exceeding
some threshold. Indeed, the paradox provides a proof to the fact that the latter task cannot be
performed (i.e., there exists no algorithm that given ¢ produces the lexicographically last string s
such that K(s) < ¢, because if such an algorithm A would have existed then K(s) < O(|(A)])+logt
and K(s0) < K(s)+ O(1) < t in contradiction to the definition of s).

3.4 Time and space complexity

Fixing a model of computation (e.g., Turing machines) and focusing on algorithms that halt on
each input, we consider the number of steps (i.e., applications of the computation rule) taken by the
algorithm on each possible input. The latter function is called the time complexity of the algorithm
(or machine); that is, t4 : {0,1}* — N is called the time complexity of algorithm A if, for every z,
on input z algorithm A halts after exactly t4(x) steps.

We will be mostly interested in the dependence of the time complexity on the input length,
when taking the maximum over all inputs of the relevant length. That is, for ¢4 as above, we will
consider T4 : N — N defined by T'4(n) e maxX,e(p,1}»1tA(7)}. Abusing terminology, we sometimes
refer to T4 as the time complexity of A.

The time complexity of a problem. As stated in the preface and in the introduction, complex-
ity theory is typically unconcerned with the (time) complexity of a specific algorithm. It is rather
concerned with the (time) complexity of a problem, assuming that this problem is solvable by an
algorithm. Intuitively, the time complexity of such a problem is defined as the time complexity
of the fastest algorithm that solves this problem (assuming that the latter term is well-defined).”
More generally, we will be interested in upper and lower bounds on the (time) complexity of algo-
rithms that solve the problem. However, the complexity of a problem may depend on the specific
model of computation in which algorithms that solve it are implemented. The following Cobham-
Edmonds Thesis asserts that the variation (in the time complexity) is not too big, and in particular
is irrelevant for much of the current focus of complexity theory (e.g., for the P-vs-NP Question).

The Cobham-Edmonds Thesis. As stated above, the time complexity of a problem may de-
pend on the model of computation. For example, deciding membership in the set {zz : x € {0,1}*}
can be done in linear-time on a two-tape Turing machine, but requires quadratic-time on a single-
tape Turing machine.'® On the other hand, any problem that has time complexity ¢ in the model
of multi-tape Turing machines, has complexity O(¢?) in the model of single-tape Turing machines.
The Cobham-Edmonds Thesis asserts that the time complexities in any two “reasonable and gen-
eral” models of computation are polynomially related. That is, a problem has time complezity t in

?Advanced comment: Actually (see “Borodin’s Gap Theorem” and “Blum’s Speed-up Theorem” in [2,
Sec. 12.6]), the naive assumption that a “fastest algorithm” for solving a problem exists is not always justified. On
the other hand, the assumption is justified in some important cases (see, e.g., “Levin’s optimal search algorithm” [5]).

OProving the latter fact is quite non-trivial. One proof is by a “reduction” from a communication complexity
problem [4, Sec. 12.2]. Intuitively, a single-tape Turing machine that decides membership in the aforementioned set
can be viewed as a channel of communication between the two parts of the input. Focusing our attention on inputs
of the form y0"z0", for y,z € {0,1}", each time the machine passes from the first part to the second part it carries
O(1) bits of information (in its internal state) while making at least n steps. The proof is completed by invoking
the linear lower bound on the communication complexity of the (two-argument) identity function (i.e, id(y,z) =1 if
y = z and id(y, z) = 0 otherwise, cf. [4, Chap. 1]).
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some “reasonable and general” model of computation if and only if it has time complexity poly(t)
in the model of (single-tape) Turing machines.

Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis. It asserts not
only that the class of solvable problems is invariant as far as “reasonable and general” models of
computation are concerned but also that the time complexity (of the solvable problems) in such
models be polynomially related.

Efficient algorithms. As hinted above, much of complexity theory is concerned with efficient
algorithms. The latter are defined as polynomial-time algorithms (i.e., algorithms that have a time
complexity that is bounded by a polynomial in the length of the input). By the Cobham-Edmonds
Thesis, the choice of a “reasonable and general” model of computation is irrelevant to the definition
of this class. The association of efficient algorithms with polynomial-time computation is grounded
in the following two counsiderations:

e Philosophical consideration: Intuitively, efficient algorithms are those that can be imple-
mented within a number of steps that is a moderately growing function of the input length.
To allow for reading the entire input, at least linear time complexity should be allowed,
whereas exponential time (as in “exhaustive search”) must be avoided. Furthermore, a good
definition of the class of efficient algorithms should be closed under natural composition of
algorithms (as well as be robust with respect to reasonable models of computation and with
respect to simple changes in the encoding of problems’ instances).

Selecting polynomials as the set of time-bounds for efficient algorithms satisfy all the above
requirements: polynomials constitute a “closed” set of moderately growing functions, where
“closure” means closure under addition, multiplication and functional composition. These
closure properties guarantee the closure of the class of efficient algorithm under natural com-
position of algorithms (as well as its robustness with respect to any reasonable and general
model of computation). Furthermore, polynomial-time algorithms can conduct computations
that are definitely simple (although not totally trivial), and on the other hand they do not
include naturally inefficient algorithms like exhaustive search.

o Empirical consideration: It is clear that algorithms that are considered efficient in practice
have running-time that is bounded by a small polynomial (at least on the inputs that occur in
practice). The question is whether any polynomial-time algorithm can be considered efficient
in an intuitive sense. The belief, which is supported by past experience, is that every natural
problem that can be solved in polynomial-time also has “reasonably efficient” algorithms.

We stress that the association of efficient algorithms with polynomial-time computation is not
essential to most of the notions, results and questions of complexity theory. Any other class of
algorithms that supports the aforementioned closure properties and allows to conduct some simple
computations but not overly complex ones gives rise to a similar theory, albeit the formulation of
such a theory may be much more complicated. Specifically, all results and questions treated in
this course relate the complexity of different computational tasks (rather than provide absolute
assertions about the complexity of some computational tasks). These relations can be stated
explicitly, by stating how any upper-bound on the time complexity of one task gets translated to
an upper-bound on the time complexity of another task. Such cumbersome statements will maintain
the contents of the standard statements; they will merely be much more complicated. Thus, we
follow the tradition of focusing on polynomial-time computations, stressing that this focus is both
natural and provides the simplest way of addressing the fundamental issues underlying the nature
of efficient computation.
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Universal machines, revisited. Time complexity yields an important variant of the universal

function u (presented in Section 3.3). Define u'((M),z,t) def y if on input z machine M halts

within ¢ steps and outputs the string y, and u'((M), z,t) | if on input x machine M makes

more than ¢ steps. Unlike u, the function v’ is computable. Furthermore, u’ is computable by a
machine U’ that on input X = ((M), z,t) halts after poly(¢) steps. Indeed, machine U’ is a variant
of a universal machine (i.e., on input X, machine U’ merely emulates M for t steps rather than
forever). Note that the number of steps taken by U’ depends on the specific model of computation
(and that some overhead is unavoidable because emulating each step of M requires reading the
relevant portion of the description of M).

Space complexity. Another natural measure of the “complexity” of an algorithm (or a task) is
the amount of memory consumed by the computation. We refer to the memory used for storing
some intermediate results of the computation. Since much of our focus will be on using memory
that is sub-linear in the input length, it is important to use a model in which one can differentiate
memory used for computation from memory used for storing the initial input or the final output.
In the context of Turing machines, this is done by considering multi-tape Turing machines such
that the input is presented on a special read-only tape (called the input tape), the output is written
on a special write-only tape (called the output tape), and intermediate results are stored on a work-
tape. Thus, the input and output tapes cannot be used for storing intermediate results. The space
complexity of such a machine M is defined as a function sy such that sps(z) is the number of cells
of the work-tape scanned by M on input z.

3.5 Oracle machines

The notion of Turing-reductions, which was discussed in Section 3.2, is captured by the definition
of oracle machines. Loosely speaking, an oracle machine is a machine that is augmented such that
it may pose questions to the outside. (A rigorous formulation of this notion is provided below.)
We consider the case in which these questions, called queries, are answered consistently by some
function f:{0,1}* — {0,1}*, called the oracle. That is, if the machine makes a query ¢ then the
answer it obtains is f(g). In such a case, we say that the oracle machine is given access to the
oracle f. For an oracle machine M, a string # and a function f, we denote by M/ (z) the output
of M on input x when given access to the oracle f. (Re-examining the second part of the proof
of Theorem 5, observe that we have actually described an oracle machine that computes h when
given access to the oracle d'.)

The notion of an oracle machine extends the notion of a standard computing device (machine),
and thus a rigorous formulation of the former extends a formal model of the latter. Specifically,
extending the model of Turing machines, we derive the following model of oracle Turing machines.

Definition 11 (using an oracle): An oracle machine is a Turing machine with an additional tape,
called the oracle tape, and two special states, called oracle invocation and oracle spoke. The compu-
tation of the oracle machine M on input z and access to the oracle f : {0,1}* — {0,1}* is defined
based on the successive configuration function. For configurations with state different from oracle
invocation the next configuration is defined as usual. Let v be a configuration in which the ma-
chine’s state is oracle invocation and suppose that the actual contents of the oracle tape is q (i.e.,
q is the contents of the mazimal prefiz of the tape that holds bit values).'* Then, the configuration

1A common convention is that the oracle can be invoked only when the machine’s head resides at the left-most
cell of the oracle tape. We comment that, in the context of space complexity, one uses two oracle tapes: a write-only
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following v 1s identical to v, except that the state is oracle spoke, and the actual contents of the
oracle tape is f(q). The string q is called M’s query and f(q) is called the oracle’s reply.

We stress that the running time of an oracle machine is the number of steps made during its
computation, and that the oracle’s reply on each query is obtained in a single step.

3.6 Restricted models

We mention that restricted models of computation are often mentioned in the context of a course
on computability, but they will play no role in the current course. One such model is the model of
finite automata, which in some variant coincides with Turing machines that have space complexity
zero.

In our opinion, the most important motivation for the study of these restricted models of
computation is that they provide simple models for some natural (or artificial) phenomena. This
motivation, however, seems only remotely related to the study of the complexity of various com-
putational tasks. Thus, in our opinion, the study of these restricted models (e.g., any of the lower
levels of Chomsky’s Hierarchy [2, Chap. 9]) should be decoupled from the study of computability
theory (let alone the study of complexity theory).

4 Non-uniform Models (Circuits and Advice)

By a non-uniform model of computation we mean a model in which for each possible input length
one considers a different computing device. That is, there is no “uniformity” requirement relating
devices that correspond to different input lengths. Furthermore, this collection of devices is infi-
nite by nature, and (in absence of a uniformity requirement) this collection may not even have a
finite description. Nevertheless, each device in the collection has a finite description. In fact, the
relationship between the size of the device (resp., the length of its description) and the length of
the input that it handles will be of major concern. The hope is that the finiteness of all parameters
(which refer to a single device in such a collection) will allow for the application of combinatorial
techniques to analyze the limitations of certain settings of parameters.

In complexity theory, non-uniform models of computation are studied either towards the de-
velopment of lower-bound techniques or as simplified upper-bounds on the ability of efficient algo-
rithms. In both cases, the uniformity condition is eliminated in the interest of simplicity and with
the hope (and belief) that nothing substantial is lost as far as the questions in focus are concerned.

We will focus on two related models of non-uniform computing devices: Boolean circuits (Sec-
tion 4.1) and “machines that take advice” (Section 4.2). The former model is more adequate for
the study of the evolution of computation (i.e., development of lower-bound techniques), whereas
the latter is more adequate for modeling purposes (e.g., upper-bounding the ability of efficient
algorithms).

4.1 Boolean Circuits

The most popular model of non-uniform computation is the one of Boolean circuits. Historically,
this model was introduced for the purpose of describing the “logic operation” of real-life electronic
circuits. Ironically, nowadays this model provides the stage for some of the most practically removed

tape for the query and a read-only tape for the answer.
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studies in complexity theory (which aim at developing methods that may eventually lead to an
understanding of the inherent limitations of efficient algorithms).

A Boolean circuit is a directed acyclic graph with labels on the vertices, to be discussed shortly.
For sake of simplicity, we disallow isolated vertices (i.e., vertices with no in-going or out-going
edges), and thus the graph vertices are of three types: sources, sinks, and internal vertices.

1. Internal vertices are vertices having in-coming and out-going edges (i.e., they have in-degree
and out-degree at least 1). In the context of Boolean circuits, internal vertices are called
gates. Each gate is labeled by a Boolean operation, where the operations typically considered
are A, V and — (corresponding to and, or and neg). In addition, we require that gates labeled
= have in-degree 1. (The in-coming degree of A-gates and V-gates may be any number greater
than zero, and the same holds for the out-degree of any gate.)

2. The graph sources (i.e., vertices with no in-going edges) are called input terminals. Each
input terminal is labeled by a natural number (which is to be thought of the index of an
input variable). (For sake of defining formulae, we allow different input terminals to be
labeled by the same number.)!?

3. The graph sinks (i.e., vertices with no out-going edges) are called output terminals, and we
require that they have in-degree 1. Each output terminal is labeled by a natural number
such that if the circuit has m output terminals then they are labeled 1,2,...,m. That is, we
disallow different output terminals to be labeled by the same number, and insist that the
labels of the output terminals are consecutive numbers. (Indeed, the labels of the output
terminals will correspond to the indices of locations in the circuit’s output.)

For sake of simplicity, we also mandate that the labels of the input terminals are consecutive
numbers.'3

A Boolean circuit with n different input labels and m output terminals induces (and indeed
computes) a function from {0,1}" to {0,1}" defined as follows. For any fixed string « € {0,1}", we
iteratively define the value of vertices in the circuit such that the input terminals are assigned the
corresponding bits in x = x1 - -z, and the values of other vertices are determined in the natural
manner. That is:

e An input terminal with label i € {1,...,n} is assigned the i*® bit of x (i.e., the value ;).

e If the children of a gate (of in-degree d) labeled A have values v1,vs,...,v4 then the gate is
assigned the value AL v;. The value of a gate labeled V (or =) is determined analogously.

Indeed, the hypothesis that the circuit is acyclic implies that the process of determining values
for the circuit’s vertices is well-defined: As long as the value of some vertex is undetermined,
there exists a vertex such that its value is undetermined but the values of all its children
are determined. Thus, the process can make progress, and terminates when the values of all
vertices (including the output terminals) are determined.

12This is not needed in case of general circuits, because we can just feed out-going edges of the same input terminal
to many gates. Note, however, that this is not allowed in case of formulae, where all non-sinks are required to have
out-degree 1.

13This convention slightly complicates the construction of circuits that ignore some of the input values. Specifically,
we use artificial gadgets that have in-coming edges from the corresponding input terminals, and compute an adequate
constant. To avoid having this constant as an output terminal, we feed it into an auxiliary gate such that the value
of the latter is determined by the other in-going edge (e.g., a constant 1 fed into an V-gate). See example of dealing
with z3 in Figure 2.
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The value of the circuit on input x (i.e., the output computed by the circuit on input z) is y =
Y1 Ym, Where y; is the value assigned by the above process to the output terminal labeled i. We
note that there exists a polynomual-time algorithm that, given a circuit C' and a corresponding input
x, outputs the value of C' on input x. This algorithm determines the values of the circuit’s vertices,
going from the circuit’s input terminals to its output terminals.

We say that a family of circuits (C},),en computes a function f : {0,1}* — {0,1}* if for every
n the circuit C, computes the restriction of f to strings of length n. In other words, for every
x € {0,1}%, it must hold that Cjy(x) = f(z).

Bounded and unbounded fan-in. We will be most interested in circuits in which each gate has
at most two in-coming edges. In this case, the types of (two-argument) Boolean operations that we
allow is immaterial (as long as we consider a “full basis” of such operations; i.e., a set of operations
that can implement any other two-argument Boolean operation). Such circuits are called circuits
of bounded fan-in. In contrast, other studies are concerned with circuits of unbounded fan-in, where
each gate may have an arbitrary number of in-going edges. Needless to say, in the case of circuits
of unbounded fan-in, the choice of allowed Boolean operations is important and one focuses on
operations that are “uniform” (across the number of operants; e.g., A and V).

Circuit size as a complexity measure. The size of a circuit is the number of its edges. When
considering a family of circuits (C),),en that computes a function f : {0,1}* — {0,1}*, we are
interested in the size of C}, as a function of n. Specifically, we say that this family has size complexity
s : N — N if for every n the size of C,, is s(n). The circuit complexity of a function f, denoted sy,
is the infimum of the size complexity of all families of circuits that compute f. Alternatively, for
each n we may consider the size of the smallest circuit that computes the restriction of f to n-bit
strings (denoted fy), and set sy(n) accordingly. We stress that non-uniformity is implicit in this
definition, because no conditions are made regarding the relation between the various circuits used
to compute the function on different input lengths.
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The circuit complexity of functions. We highlight some simple facts about the circuit com-
plexity of functions. (These facts are in clear correspondence to facts regarding Kolmogorov Com-
plexity mentioned in Section 3.3.)

1. Most importantly, any Boolean function can be computed by some family of circuits, and
thus the circuit complexity of any function is well-defined. Furthermore, each function has
at most exponential circuit complexity.

(Hint: f, : {0,1}" — {0,1} can be computed by a circuit of size O(n2") that implements a
look-up table.)

2. Some functions have polynomial circuit complexity. In particular, any function that has time
complexity t (i.e., is computed by an algorithm of time complexity ¢) has circuit complexity
poly(t). Furthermore, the corresponding circuit family is uniform (in a natural sense to be
discussion below).

(Hint: consider a Turing machine that computes the function, and consider its computation
on a generic n-bit long input. The corresponding computation can be emulated by a circuit
that consists of t(n) layers such that each layer represents an instantaneous configuration of
the machine, and the relation between consecutive configurations is captured by (“uniform”)
local gadgets in the circuit.)

3. Almost all Boolean functions have exponential circuit complexity. Specifically, the number of
functions mapping {0,1}" to {0,1} that can be computed by a circuit of size s is at most s2*.
(Hint: the number of circuits having v vertices and s edges is at most (3)°.)

Note that the first fact implies that families of circuits can compute functions that are uncomputable
by algorithms. Furthermore, this phenomenon occurs also when restricting attention to families of
polynomial-size circuits. See further discussion in Section 4.2.

Uniform families. A family of polynomial-size circuits (Cy,)nen is called uniform if given n
one can construct the circuit Cj, in poly(n)-time. Note that if a function is computable by a
uniform family of polynomial-size circuits then it s computable by a polynomial-time algorithm.
The algorithm first constructs the adequate circuit (which can be done in polynomial-time by the
uniformity hypothesis), and then evaluate this circuit on the given input (which can be done in
time that is polynomial in the size of the circuit).

Note that limitations on the computing power of arbitrary families of polynomial-size circuits
certainly hold for uniform families (of polynomial-size), which in turn yield limitations on the
computing power of polynomial-time algorithms. Thus, lower bounds on the circuit complexity
of functions yield analogous lower bounds on their time complexity. Furthermore, as is often the
case in mathematics and Science, disposing of an auxiliary condition that is not well-understood
(i.e., uniformity) may turn out fruitful. Indeed, this has occured in the study of limited classes of
circuits, which is reviewed in Section 4.3.

4.2 Machines that take advice

General (non-uniform) circuit families and uniform circuit families are two extremes with respect to
the “amounts of non-uniformity” in the computing device. Intuitively, in the former, non-uniformity
is only bounded by the size of the device, whereas in the latter the amounts of non-uniformity is
zero. Here we consider a model that allows to decouple the size of the computing device from the
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amount of non-uniformity, which may range from zero to the device’s size. Specifically, we consider
algorithms that “take a non-uniform advice” that depends only on the input length. The amount
of non-uniformity will be defined to equal the length of the corresponding advice (as a function of
the input length).

Definition 12 (taking advice): We say that algorithm A computes the function f using advice of
length ¢ : N — N if there exzists an infinite sequence (ap),en such that

1. For every x € {0,1}*, it holds that A(aj,,v) = f(z).

2. For every n € N, it holds that |a,| = £(n).

The sequence (an)nen 18 called the advice sequence.

Note that any function having circuit complexity s can be computed using advice of length
O(slog s), where the log factor is due to the fact that a graph with v vertices and e edges can
be described by a string of length 2elog, v. Note that the model of machines that use advice allows
for some sharper bounds than the ones stated in Section 4.1: every function can be computed using
advice of length ¢ such that ¢(n) = 2™, and some uncomputable functions can be computed using
advice of length 1.

Theorem 13 (the power of advice): There exist functions that can be computed using one-bit
advice but cannot be computed without advice.

Proof: Taking any uncomputable Boolean function f : N — {0,1}, consider the function f’
defined as f'(x) = f(|z|). Note that f is Turing-reducible to f’ (e.g., on input n make any n-bit
query to f’, and return the answer).!* Thus, f’ cannot be computed without advice. On the
other hand, f’ can be easily computed by using the advice sequence (a,)ncn such that a,, = f(n);
that is, the algorithm merely outputs the advice bit (and indeed aj, = f(|z]) = f'(z), for every
re{0,1}*). N

4.3 Restricted models

As noted in Section 4.1, the model of Boolean circuits allows for the introduction of many natural
subclasses of computing devices. Following is a laconic review of a few of these subclasses. We will
refer to various types of Boolean formulae in the rest of this course, and thus suggest not to skip
the following two paragraphs.

Boolean formulae. In general Boolean circuits the non-sink vertices are allowed arbitrary out-
degree. This means that the same intermediate value can be re-used (without being re-computed
(while increasing the size complexity by only one unit)). Such “free” re-usage of intermediate
values is disallowed in Boolean formulae, which corresponds to a Boolean expression over Boolean
variables. Formally, a Boolean formula is a circuit in which all non-sink vertices have out-degree 1,
which means that the underlying graph is a tree (and the formula as an expression can be read by
traversing the tree scanning the leaves in order). Indeed, we have allowed different input terminals
to be assigned the same label in order to allow formulae in which the same variable occurs multiple
times. As in case of general circuits, one is interested in the size of these restricted circuits (i.e., the
size complexity of families of formulae computing various functions). We mention that quadratic
lower bounds are known for the formula size of simple functions (e.g., parity), whereas these
functions have linear circuit complexity.

'Indeed, this Turing-reduction is not efficient (i.e., it runs in exponential time in |n| = log, n), but this is immaterial
in the current context.
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Figure 3: Recursive construction of parity circuits and formulae.

Formulae in CNF and DNF. A restricted type of Boolean formulae consists of formulae that
are in conjunctive normal form (CNF). Such a formula consists of a conjunction of clauses, where
each clause is a disjunction of literals each being either a variable or its negation. That is, such
formulae are represented by layered circuits of unbounded fan-in in which the first layer consists of
neg-gates that compute the negation of input variables, the second layer consist of or-gates that
compute the logical-or of subsets of inputs and negated inputs, and the third layer consists of a
single and-gate that computes the logical-and of the values computed in the second layer. Note
that each Boolean function can be computed by a family of CNF formulae of exponential size,
and that the size of CNF formulae may be exponentially larger than the size of ordinary formulae
computing the same function (e.g., parity). For a constant k, a formula is said to be in k-CNF if
its CNF has disjunctions of size at most k. An analogous restricted type of Boolean formulae refers
to formulae that are in disjunctive normal form (DNF). Such a formula consists of a disjunction of a
conjunctions of literals, and when each conjunction has at most & literals we say that the formula
is in k-DNF.

Constant-depth circuits. Circuits have a “natural structure” (i.e., their structure as graphs).
One natural parameter regarding this structure is the depth of a circuit, which is defined as the
longest directed path from any source to any sink. Of special interest are constant-depth circuits of
unbounded fan-in. We mention that sub-exponential lower bounds are known for the size of such
circuits that compute a simple function (e.g., parity).

Monotone circuits. The circuit model also allows for the consideration of monotone computing
devices: a monotone circuit is one having only monotone gates (e.g., gates computing A and V, but
no negation gates (i.e., —-gates)). Needless to say, monotone circuits can only compute monotone
functions, where a function f is called monotone if for any x < y it holds that f(z) < f(y)
(where we refer to the lexicographic order on strings). One natural question is whether, as far as
monotone functions are concerned, there is a substantial loss in using only monotone circuits. The
answer is yes: there exist monotone functions that have polynomial circuit complexity but require
sub-exponential size monotone circuits.
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Notes

It is quite remarkable that the theories of uniform and non-uniform computational devices have
emerged in two single papers. We refer to Turing’s paper [10], which introduced the model of
Turing machines, and to Shannon’s paper [8], which introduced Boolean circuits.

In addition to introducing the Turing machine model and arguing that it corresponds to the
intuitive notion of computability, Turing’s paper [10] introduces universal machines and contains
proofs of undecidability (e.g., of the Halting Problem). Rice’s Theorem is proven in [7], and the
undecidability of the Post Correspondence Problem is proven in [6].

The formulation of machines that take advice (as well as the equivalence to the circuit model)
originates in [3].
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