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1 IntroductionThe rigorous treatment of the security of encryption schemes was initiated in the seminal work ofGoldwasser and Micali [13]. Focusing on (what we now call) passive attacks, they introduced twofundamental notions of security, called semantic security and indistinguishability of encryptions.Semantic security is a computational analogue of Shannon's de�nition of perfect secrecy [21]. Itrequires that whatever information about the plaintext one may compute from the ciphertextand some a-priori information, can be essentially computed as e�ciently from the a-prioriinformation alone.1 This de�nition is the natural one, because it directly addresses the user'sconcerns (i.e., that nothing be gained by looking at the ciphertext). In retrospect, additionalcon�dence in this de�nition may be gained by the fact that it actually follows the simulationparadigm [14], which underlies much of the later de�nitional work.Indistinguishability of encryptions is a technical de�nition requiring that, for any two mes-sages, it is infeasible to distinguish the encryption of the �rst message from the encryption ofthe second message.In our opinion, the importance of the technical de�nition (of indistinguishability of encryptions)stems from the fact that it is equivalent to semantic security (cf. [13, 9]) while being easier to workwith. In particular, it is easier to prove that an encryption scheme has indistinguishable encryptionsand to deduce that it is semantically secure (cf. [13, 9]) than to directly prove that the encryptionscheme is semantically secure. (We stress that all that was said above (and will be said below)applies both to the public-key and private-key models, where the di�erence amounts to whether ornot the adversary is given the encryption-key.)The abovementioned work focuses on passive adversaries that merely eavesdrop the commu-nication channel. However, in some settings, the adversaries may be able to \experiment" withthe keyed encryption and decryption devices, and obtain the encryption (or decryption) of anyplaintext (resp., ciphertext) of their choice. A �rst rigorous attempt to address such active adver-saries was taken in [15], which advocates the establishing of a session-key (generated by the receiverand sent to the sender). In other words, security under a chosen ciphertext attack is provided byusing a bi-directional communication protocol. This left open the question of whether a standard(uni-directional) encryption scheme may be secure under chosen ciphertext attacks, a question thatturned out to be very di�cult in the case of public-key schemes (but solved quite easily in theprivate-key case [11, 12]).Subsequent research focused on constructing public-key schemes that are secure under (twonon-equivalent types of) chosen ciphertext attacks (e.g., [3, 18, 7, 4, 19, 20, 17]). These workshave all related to the technical de�nition of security (i.e., the indistinguishability of encryptions).The same holds with respect to works that have explored relation between various types of activeattacks (e.g., [1, 7, 16]). In our opinion, this leaves a signi�cant gap in the treatment of the subject,because what one would have liked to see is encryption scheme that are semantically secure underchosen ciphertext attacks.1.1 Semantic Security Under Chosen Ciphertext AttacksOur �rst contribution is in developing a semantic security de�nition for the context of chosenciphertext attacks, and in showing that this de�nition is equivalent to indistinguishability of en-cryptions under such attacks. Indeed, this is good news: It means that all schemes proven secure1 This speci�c formulation was �rst suggested by Goldreich [8], and is equivalent to the one presented in [13].1



(in the technical sense) under chosen ciphertext attacks, are actually secure in the (more appealing)semantic security sense.We treat both a-priori chosen ciphertext attacks (CCA1) and a-posteriori chosen ciphertextattacks (CCA2), and refer both to the public-key and private-key models. In all cases the attackeris given access to two oracles, one for encryption and the other for decryption. The attack is brokeninto two stages:Stage 1: The attacker conducts some computation, using both its oracles, and terminates this stageby outputting a challenge templet. We note that in the technical de�nition (i.e., indistinguisha-bility of encryptions) the challenge templet consists of a pair of (equal-length) plaintexts. Inour de�nition of semantic security, the challenge templet consists of three circuits (S;L; F ),where S is a sampling circuit, and L (resp. F ) are circuits with a number of input bits thatequals the number of output bits in S. Loosely speaking, S speci�es a probability spaceon plaintexts (i.e., by feeding S with a random input), L speci�es partial information (i.e.,\information leak") regarding the plaintext that is given to the adversary, and F speci�espartial information (regarding the plaintext) that the adversary claims to be able to learn.Stage 2: In the second stage the adversary is given an encryption of a plaintext x along with L(x),where x is selected according to S. In case of CCA1, at this stage, the adversary is only givenaccess to the encryption oracle. In case of CCA2, at this stage, the adversary is also givenaccess to the decryption oracle, under the restriction that it does not query the latter on theciphertext obtained at the beginning of this stage. In both cases, the adversary halts with aguess for F (x).(Recall that in the technical de�nition, the adversary is given an encryption of one of thechallenge plaintexts, and is outputting a bit (in attempt to distinguish the two cases).)Loosely speaking, an encryption scheme will be said to be semantically secure under CCAi (wherei 2 f1; 2g) if for every e�cient (i-type) attacker as above, there exists a corresponding benignadversary that \performs as well" without seeing the ciphertexts. Speci�cally, the benign adversaryis given no oracle access, it produces a challenge templet (S;L; F ) (as above), is given only L(x)(where x is selected according to S), and is supposed to guess F (x). The benign adversary isrequired to produce challenge templets according to the same distribution as the real adversary,and to be as successful as the real adversary in its guess of F (x).Note that the benign adversary models an ideal situation in which the adversary produces thesame challenge templet as the real adversary, but is given a \perfectly secure encryption" of theplaintext x (where given a \perfectly secure encryption" is equivalent to being given nothing).1.2 Semantic Security Under Multiple-Challenge CCAThe above de�nition of semantic security seems most satisfactory, except that it refers only tothe security of a single encrypted plaintext. Instead, one typically wants to consider the securityof many plaintexts (encrypted under the same key). A simple way of addressing this concernis to generalize the notion of a challenge templet, allowing to sample (via S) polynomially-many(possibly related) plaintexts, and letting L and F be applied to the resulting sequence of plaintexts.We stress that each of the plaintexts will be encrypted independently of the others.The above simple extension does not seem to provide an ultimate de�nition. The reason beingthat, especially in a context in which queries are allowed, producing a single challenge templet2



(which refers to a sequence of plaintexts) is not equivalent to adaptively producing polynomially-many challenge templets (each referring to a single new plaintext and answered by its encryp-tion). Thus, the general notion of multiple plaintext security consists of allowing the generationof polynomially-many challenge templets, each answered analogously to a single challenge templet,when the generation of these challenge templets may be interleaved with the encryption and decryp-tion queries. When generalizing CCA1, we do not allow decryption queries after the �rst challengetemplet is issued. On the other hand, when generalizing CCA2, we allow arbitrary interleaving of(encryption and) decryption queries with the generation of challenge templets. (We will even allowto make a decryption query that refers to a challenge ciphertext; see details below.) For sake ofconcreteness, in the rest of this paper, we focus on the CCA2 case.We now sketch our de�nition of multiple-challenge CCA2 security. The attack proceeds initerations, where each iteration is of the following two types:1. Based on the information it has gathered so far, the attacker makes either an encryption ora decryption query, which is answered by the corresponding oracle.2. Based on the information it has gathered so far, the attacker issues a challenge templet, ofthe form (S;L), which is answered as follows. As before, S is a sampling circuit, but here Stakes as input the random choices made when answering previous challenge templets as wellas a new sequence of random bits. Analogously, L is a circuit that computes informationregarding all challenge plaintext produced so far (including the current one). Denoting theith challenge templet by (Si; Li) and the fresh coins it uses by ri, this templet is answeredwith the encryption of xi along with Li(x1; :::; xi), where xi = Si(r1; :::; ri). That is, xi isgenerated by invoking Si with the coins used in previous challenges (i.e., r1; :::; ri�1) alongwith the fresh coins ri, and the \clear" information obtained (i.e., Li(x1; :::; xi)) refers to allchallenge plaintext produced so far.After completing polynomially-many iterations of the above type, the adversary outputs a functionF and a guess v of the value of F when applied to all challenge plaintexts (i.e., it tries to guessF (x1; :::; xt), where t is the number of challenge plaintexts).Loosely speaking, an encryption scheme will be said to be semantically secure under multiple-challenge CCA2 if for every e�cient attacker as above, there exists a corresponding benign adversarythat \performs as well" without seeing the ciphertexts. Speci�cally, the benign adversary is givenno oracle access, it produces challenge templets (Si; Li)'s (as above), is given only Li(x1; :::; xi)(where the xi are selected as above), and is supposed to guess F (x1; :::; xt), for F of its choice. Thebenign adversary is required to produce the challenge templets and the function F according to thesame distribution as the real adversary, and to be as successful as the real adversary in its guess ofF (x1; :::; xt).Again, there are good news: We prove that an encryption schemes is semantically secure undermultiple-challenge CCA2 if and only if it is secure under ordinary CCA2. Thus, all schemes provensecure under CCA2, are actually secure under multiple-challenge CCA2.2 Preliminaries: Chosen Ciphertext AttacksChosen ciphertext attacks are attacks in which the adversary may obtain (from some legitimateuser) plaintexts corresponding to ciphertexts of its choice (as well as ciphertexts corresponding toplaintexts of its choice). We consider two types of such attacks: In the milder type (cf. [18]), calleda-priori chosen ciphertext attacks, decryption requests can be made only before the challenge3



ciphertext (for which the adversary should gain knowledge) is presented. In the stronger type(cf. [22]), called a-posteriori chosen ciphertext attacks, decryption requests can be made also afterthe challenge ciphertext is presented, as long as one does not request to decrypt this very (challenge)ciphertext.Following the outline provided in Section 1.1, we recall the technical de�nition of indistinguisha-bility of encryptions under chosen ciphertext attacks. A few introductory technical comments arein place. Firstly, the attacker is decoupled into two parts, denoted A1 and A2, which correspond tothe two stages in the discussion provided in Section 1.1. The string � (below) is used for passingstate information from A1 to A2. (Thus, also in the public-key case, it is unnecessary to provideA2 with the encryption-key e, because A1 may pass e to A2 as part of �.) The string z encodes(non-uniform) auxiliary information that may be a-priori known to the adversary (which is animportant issue enabling modular composition).2 The challenge templet produced by A1, denoted(x(1); x(2)), consists of a pair of (equal-length) strings, and the challenge ciphertext is an encryptionof one of these strings.De�nition 2.1 (indistinguishability of encryptions under chosen ciphertext attacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is said to have indistin-guishable encryptions under a-priori chosen ciphertext attacks (CCA1) if for every pair of prob-abilistic polynomial-time oracle machines, A1 and A2, for every positive polynomial p(�), andall su�ciently large n and z 2 f0; 1gpoly(n):jp(1)n;z � p(2)n;zj < 1p(n)where p(i)n;z def= Pr 2666664 v = 1 where(e; d) G(1n)((x(1); x(2)); �) AEe;Dd1 (e; z), where jx(1)j = jx(2)j.c Ee(x(i))v  AEe2 (�; c)
3777775Indistinguishability of encryptions under a-posteriori chosen ciphertext attacks (CCA2) is de�nedanalogously, except that A2 is given oracle access to both Ee and Dd with the restriction thatwhen given the challenge c, machine A2 is not allowed to make the query c to the oracle Dd.For private-key schemes: The de�nition is identical except that A1 gets the security parameter1n instead of the encryption-key e.Clearly, the a-posteriori version of De�nition 2.1 implies its a-priori version, which in turn impliesthe standard notion of security under passive attacks. All implications are strict [1, 16].3 Semantic Security Under Chosen Ciphertext AttacksIn this section we provide a de�nition of semantic security under chosen ciphertext attacks andshow that it is equivalent to the existing technical de�nition of security under chosen ciphertextattacks (i.e., De�nition 2.1). Our de�nition is a natural extension of the de�nition of semanticsecurity for passive attacks (cf. [13, 9]), alas the formulation is slightly more complex in the currentcontext.2 Indeed, in a uniform-complexity treatment, the string z must be taken from a polynomially-sampleable ensemble.4



3.1 De�nitionWhen de�ning the adversary, we follow the framework used in the technical de�nition (i.e., De�-nition 2.1), while adapting it to the adequate notion of a challenge templet. Speci�cally, followingthe outline provided in Section 1.1, a challenge templet consists of a triplet of circuits, denoted(S;L; F ). Such a challenge is answered by selecting a plaintext x according to the distributionspeci�ed by S (i.e., x = S(r) where r is uniformly selected in the set of strings of adequate length),and providing its encryption along with the leakage L(x). The adversary's goal is to guess F (x),and semantic security amount to saying that the adversary's success probability can be matched bya corresponding benign algorithm that is only given L(x). We stress that it is crucial to require thatthe challenge templet produced by the corresponding algorithm is distributed similarly to the chal-lenge templet produced by the adversary.3 For simplicity, we require below that these distributionsbe identical, but it would have su�ced to require that they be computationally indistinguishable.(As in De�nition 2.1, both the real adversary and its benign simulator are decoupled into two part(and the �rst part passes state information to the second part).)De�nition 3.1 (semantic security under chosen ciphertext attacks):For public-key schemes: A public-key encryption scheme, (G;E;D), is said to be semanticallysecure under a-priori chosen ciphertext attacks (CCA1) if for every pair of probabilistic polynomial-time oracle machines, A1 and A2, there exists a pair of probabilistic polynomial-time algo-rithms, A01 and A02, such that the following two conditions hold:1. For every positive polynomial p(�), and all su�ciently large n and z 2 f0; 1gpoly(n):Pr 2666664 v = F (x) where(e; d) G(1n)((S;L; F ); �)  AEe;Dd1 (e; z)c (Ee(x); L(x)) ; where x S(Upoly(n))v  AEe2 (�; c)
3777775< Pr26664 v = F (x) where((S;L; F ); �)  A01(1n; z)x S(Upoly(n))v  A02(�;L(x)) 37775+ 1p(n)where Um denotes the uniform distribution over f0; 1gm.2. For every n and z, the �rst element (i.e., the (S;L; F ) part) in the random variablesA01(1n; z) and AEG1(1n);DG2(1n)1 (G1(1n); z) are identically distributed.Semantic security under a-posteriori chosen ciphertext attacks (CCA2) is de�ned analogously,except that A2 is given oracle access to both Ee and Dd with the restriction that when giventhe challenge c = (c0; c00), machine A2 is not allowed to make the query c0 to the oracle Dd.For private-key schemes: The de�nition is identical except that algorithm A1 gets the securityparameter 1n instead of the encryption-key e.Clearly, the a-posteriori version of De�nition 3.1 implies its a-priori version, which in turn impliesstandard passive security.3 Thus if the real adversary asks for (and obtains) very informative leaks then the same is allowed to the cor-responding benign algorithm, but if the real adversary asks for no informative leaks then the corresponding benignalgorithm cannot ask for very informative leaks. 5



3.2 Equivalence of semantic security and ciphertext-indistinguishabilityWe show that the two formulations of CCA-security (i.e., semantic security and indistinguishableencryptions) are in fact equivalent.Theorem 3.2 (equivalence of de�nitions for CCA): A public-key (resp., private-key) encryptionscheme (G;E;D) is semantically secure under a-priori CCA if and only if it has indistinguishableencryptions under a-priori CCA. An analogous claim holds for a-posteriori CCA.Proof Sketch: We adapt the known proof for the case of passive attacks (cf. [13, 9]) to the currentsetting. The adaptation is quite easy, and we focus on the case of a-posteriori CCA security (whilecommenting on the case of a-priori CCA security).We start by showing that indistinguishable encryptions implies semantic security. Speci�cally,given an CCA-adversary (A1; A2) we construct the following matching algorithm A01; A02:1. A01(1n; z) def= (�; �0), where (�; �0) is generated as follows:First, A01 generates an instance of the encryption scheme; that is, A01 lets (e; d)  G(1n). Next, A01 invokes A1, while emulating the oracles Ee and Dd, and obtains((S;L; F ); �)  AEe;Dd1 (1n; z). Finally, A01 sets �0 def= (�; e; d; 1m), where m equalsthe number of output bits in S.(In case of a-priori CCA security, we may also set �0 def= (�; e; 1m). Note that the generatedkey-pair (e; d) allows A01 to emulate the encryption and decryption oracles Ee and Dd.)2. A02((�; e; d; 1m); 
) def= AEe;Dd2 (�; (Ee(1m); 
)), where typically 
 = L(x), m = jxj and x  S(Upoly(n)). Again, A02 uses the key-pair (e; d) in order to emulate the oracles Ee and Dd.(As in the previous item, in case of a-priori CCA security, we may also let A02((�; e; 1m); 
) def=AEe2 (�; (Ee(1m); 
)).)Since A01 merely emulates the generation of a key-pair and the actions of A1 with respect to sucha pair, the equal distribution condition (i.e., Item 2 in De�nition 3.1) holds. Using the (corre-sponding) indistinguishability of encryption hypothesis, we show that (even in the presence of theencryption oracle Ee and a restricted decryption oracle Dd) the distributions (�; (Ee(x); L(x))) and(�; (Ee(1jxj); L(x))) are indistinguishable (in particular byA2), where (e; d) G(1n), ((S;L; F ); �)  AEe;Dd1 (y; z) (with y = e or y = 1n depending on the model), and x S(Upoly(n)). The main thingto notice is that the oracle queries made by a possible distinguisher of the above distributions canbe handled by a distinguisher of encryptions (as in De�nition 2.1), by passing these queries to itsown oracles.4 It follows that indistinguishable encryptions (as per De�nition 2.1) implies semanticsecurity (as per De�nition 3.1).4 Suppose that given ((S; L; F ); �) generated by AEe;Dd1 (y; z) and oracle access to Ee and Dd, where (e; d) G(1n)(and y is as above), one can distinguish (�; (Ee(x); L(x))) and (�; (Ee(1jxj); L(x))), where x S(Upoly(n)) (and onedoes not query Dd on the input ciphertext). Then we obtain a distinguisher as in De�nition 2.1 as follows. The �rstpart of the distinguisher invokes A1 (while answering its oracle queries by forwarding these queries to its own Eeand Dd oracle), and obtains ((S; L; F ); �) AEe;Dd1 (y; z). It sets x(1)  S(Upoly(n)) and x(2) = 1jx(1)j. and outputs((x(1); x(2)); (�; L(x(1)))). That is, (x(1); x(2)) is the challenge templet, and it is answered with Ee(x(i)), where i iseither 1 or 2. The second part of the new distinguisher, gets as input a challenge ciphertext �  Ee(x(i)) and thestate generated by the �rst part (�; L(x(1))), and invokes the distinguisher of the contradiction hypothesis with input(�; (�; L(x(1)))), while answering its oracle queries by forwarding these queries to its own Ee and Dd oracles. Indeed,the new distinguisher does not query Dd on �, because the original distinguisher was guaranteed not to do so. Thus,the new distinguisher violates the condition in De�nition 2.1, in contradiction to the hypothesis that (G;E;D) hasindistinguishable encryptions. 6



We now turn to the opposite direction. Here the construction of a challenge templet (as perDe�nition 3.1) is analogous to the corresponding construction in passive attack case. Speci�cally,using the \indistinguishable-encryptions challenge templet" (x(1); x(2)), we construct the following\semantic security challenge" (S;H; F ):� The circuit S samples uniformly in fx(1); x(2)g.� The function F satis�es F (x(1)) = 1 and F (x(2)) = 0.� The function L is de�ned arbitrarily subject to L(x(1)) = L(x(2)).Again, the thing to notice is that the oracle queries made by a possible distinguisher of encryptions(as in De�nition 2.1) can be handled by the semantic-security adversary, by passing these queries toits own oracles. We derive a contradiction to the hypothesis that (G;E;D) satis�es De�nition 3.1,and the theorem follows.4 Semantic Security Under Multiple-Challenge CCA2In continuation to the discussion in Section 1.2, we consider general attacks during which severalchallenge templets may be produced (at arbitrary times and possibly interleaved with decryptionqueries). Each of these challenge templets will be answered similarly to the way such templetswere answered above (i.e., by selecting a plaintext from the speci�ed distribution and providingits encryption together with the speci�ed partial information). Unlike in Section 3, we will evenallow attacks that make decryption queries regarding ciphertexts obtained as (part of the) answerto previous challenge templets. After such an attack, the adversary will try to obtain informationabout the unrevealed plaintexts, and security holds if its success probability can be met by acorresponding benign adversary that does not see the ciphertexts. Indeed, the above discussionrequires clari�cation and careful formulation, provided next.4.1 De�nitionWe start with a description of the actual attacks. It will be convenient to change the formalism andconsider the generation of challenge templets as challenge queries that are answered by a specialoracle called the tester, and denoted Te;r, where e is an encryption-key and r is a random string ofadequate length.5 On query a challenge templet of the form (S;L), where S is a sampling circuit andL is a function (evaluation circuit), the (randomized) oracle Te;r returns the pair (Ee(S(r)); L(r)).(Indeed, we are further generalizing the attack by allowing the leak L to be an arbitrary function ofr, rather only a function of the plaintext S(r) (or all prior plaintexts).) We stress that r is not knownto the adversary, and that this formalism generalizes the one in Section 1.2. A multiple-challengeCCA is allowed queries to Te;r as well as unrestricted queries to both Ee and the corresponding Dd,including decryption queries referring to previously obtained challenge ciphertexts. It terminatesby outputting a function F and a value v, hoping that F (r) = v. (Again, this generalizes thedescription in Section 1.2, where F was applied to the sequence of generated plaintexts (x1; :::; xt).)Note that the description of F may encode various information gathered by the adversary duringits attack (e.g., it may even encode its entire computation transcript).5 The formulation of Section 1.2 is obtained by letting r = (r1; :::; rt), and making the ith sampling circuit onlyrefer to (r1; :::; ri). Similarly, the ith leak circuit should be restricted to depend only on S1(r1); :::; Si(r1; :::; ri).Actually, given the independence of S from L, one could have replaced the challenge queries by two types of queries:leak queries that correspond to the L's, and encrypted leak queries that correspond to the S's.7



We now turn to describe the benign adversary (which does not see the ciphertexts). Such anadversary is given oracle access to a corresponding oracle, Tr, that behave as follows. On querya challenge templet of the form (S;L), the oracle returns L(r). (Again, r is not known to theadversary.) Like the real adversary, the benign adversary also terminates by outputting a functionF and a value v, hoping that F (r) = v.Security amounts to asserting the the e�ect of any e�cient multiple-challenge CCA can besimulated by a e�cient benign adversary that does not see the ciphertexts. As in De�nition 3.1,the simulation has to satisfy two conditions: First, the probability that F (r) = v in the CCAmust be met by the probability that a corresponding event holds in the benign model (where theadversary does not see the ciphertexts). Second, the challenge queries as well as the function Fshould be distributed similarly in the two models. Actually, each decryption query (of the realattacker) that refer to a ciphertext c that is contained in the answer given to a challenge query(S;L) is considered (or counted) as a (�ctitious) challenge query (S; S). Note that this convention isjusti�ed by the fact that the challenge query (S; S) is equivalent to the decryption query c (followedby the encryption query x = Dd(c)). Put in other words, if the real adversary made a decryptionquery that refers to a ciphertext c contained in the answer given to the challenge (S;L) (and thusobtained Dd(c) = Dd(Ee(S(r))) = S(r)), then it is only fair that we allow the benign adversary(which sees no ciphertexts) to make the challenge query (S; S) and so obtain S(r).In order to obtain the actual de�nition, we need to de�ne the trace of the execution of the abovetwo types of adversaries. For a multiple-challenge CCA adversary, denoted A, the trace is de�nedas the sequence of challenge queries made during the attack, augmented by (�ctitious) challengequeries such that the (�ctitious challenge) query (S; S) is included if and only if the adversary madea decryption query c such that (c; �) is the answer given to a previous challenge query of the form(S; �). For the benign adversary, denoted B, the trace is de�ned as the sequence of challenge queriesmade during the attack.De�nition 4.1 (multiple-challenge CCA security):For public-key schemes: A public-key encryption scheme, (G;E;D), is said to be secure undermultiple-challenge chosen ciphertext attacks if for every probabilistic polynomial-time oraclemachine A there exists a probabilistic polynomial-time oracle machine B such that the follow-ing two conditions hold:1. For every positive polynomial p(�), and all su�ciently large n and z 2 f0; 1gpoly(n):Pr 264 v = F (r) where(e; d) G(1n) and r  Upoly(n)(F; v) AEe;Dd;Te;r(e; z) 375< Pr264 v = F (r) wherer  Upoly(n)(F; v) BTr(1n; z) 375+ 1p(n)2. The following two probability ensembles, indexed by n 2 N and z 2 f0; 1gpoly(n), arecomputationally indistinguishable:(a) The trace of AEG1(1n);DG2(1n);TG1(1n);Upoly(n) (G1(1n); z), augmented by its output.(b) The trace of BTUpoly(n) (1n; z) augmented by its output.8



For private-key schemes: The de�nition is identical except that machine A gets the securityparameter 1n instead of the encryption-key e.To get more comfortable with De�nition 4.1, consider the special case in which the real CCAadversary does not make decryption queries to ciphertexts obtained as part of answers to challengequeries. (In the proof of Theorem 4.2, such adversaries will be called canonical and will be shown tobe as powerful as the general ones.) The trace of such adversaries equals the sequence of challengequeries made during the attack, which simpli�es Condition 2.4.2 Relation to ordinary CCA2-securityIt is easy to see that De�nition 4.1 implies ordinary CCA2-security (e.g., De�nition 2.1).6 The moreimportant fact (proven below) is that CCA2-security implies security under multiple-challenge CCA(i.e., De�nition 4.1).Theorem 4.2 (a-posteriori-CCA implies De�nition 4.1): Let (G;E;D) be a public-key (resp.,private-key) encryption scheme that is secure under a-posteriori CCA. Then (G;E;D) is secureunder multiple-challenge chosen ciphertext attacks.Proof Sketch: As a bridge between the multiple-challenge CCA and the corresponding benignadversary that does not see the ciphertext, we consider canonical adversaries that can perfectlysimulate any multiple-challenge CCA without making decryption queries to ciphertexts obtainedas part of answers to challenge queries. Instead, these canonical adversaries make correspondingqueries of the form (S; S), where (S; �) is the challenge-query that was answered with the saidciphertext. Speci�cally, suppose that a multiple-challenge CCA has made the challenge query (S;L),which was answered by (c; L(r)), where c = Ee(S(r)), and at a later stage makes the decryptionquery c, which is to be answered by Dd(c) = S(r). Then, the corresponding canonical adversarymakes the challenge query (S;L) as the original adversary, receiving the same pair (c; L(r)), butlater instead of making the decryption query c the canonical adversary makes the challenge query(S; S), which is answered by S(r) = Dd(c). Note that the trace of the corresponding canonicaladversary is identical to the trace of the original CCA adversary (and the same holds with respectto their outputs).Thus, given an a-posteriori-CCA secure encryption scheme, it su�ces to establish De�nition 4.1when the quanti�cation is restricted to canonical adversaries A. Indeed, as in the proof of Theo-rem 3.2, we construct a benign adversary B in the natural manner: On input (1n; z), machine Bgenerates (e; d)  G(1n), and invokes A on input (y; z), where y = e if we are in the public-keycase and y = 1n otherwise. Next, B emulates all oracles expected by A, while using its own oracleTr. Speci�cally, the oracles Ee and Dd are perfectly emulated by using the corresponding keys(known to B), and the oracle Te;r is (non-perfectly) emulated using the oracle Tr (i.e., the query(S;L) is forwarded to Tr, and the answer L(r) is augmented with Ee(1m), wherem is the number ofoutput bits in S). Note that the latter emulation (i.e., the answer (Ee(1jS(r)j); L(r))) is non-perfectsince the answer of Te;r would have been (Ee(S(r)); L(r)), yet (as we shall show) A cannot tell thedi�erence.In order to show that B satis�es both conditions of De�nition 4.1 (w.r.t the above A), we willshow that the following two ensembles are computationally indistinguishable:6 This can be shown by considering the special case (of De�nition 4.1) in which the adversary makes a singlechallenge query, and does not make a decryption query that refers to the ciphertext provided as answer. Using ideasas in the second part of the proof of Theorem 3.2, this special case of De�nition 4.1 implies De�nition 2.1 (as a specialcase). 9



1. The global view in real attack of A on (G;E;D). That is, we consider the output of thefollowing experiment:(a) (e; d) G(1n) and r  Upoly(n).(b) (F; v)  AEe;Dd;Te;r(y; z), where y = e if we are in the public-key case and y = 1notherwise. Furthermore, we let ((S1; L1); :::; (St; Lt)) denote the trace of the executionAEe;Dd;Te;r(y; z).(c) The output is ((S1; L1); :::; (St; Lt)); (F; v); r.2. The global view in an attack emulated by B. That is, we consider the output of an experimentas above, except that AEe;Dd;Te;r(y; z) is replaced by AEe;Dd;T 0e;r(y; z), where on query (S;L)the oracle T 0e;r replies with (Ee(1jS(r)j); L(r)) rather than with (Ee(S(r)); L(r)).Note that computational indistinguishability of the above ensembles immediately implies Condi-tion 2 of De�nition 4.1, whereas Condition 1 also follows because using r we can determine whetheror not F (r) = v holds (for (F; v)). Also note that the above ensembles may be computationallyindistinguishable only in case A is canonical (which we have assumed to be the case).7The computational indistinguishability of the above ensembles is proven using a hybrid argu-ment, which in turn relies on the hypothesis that (G;E;D) has indistinguishable encryptions undera-posteriori-CCAs. Speci�cally, we introduce t + 1 mental experiments that are hybrids of theabove two ensembles (which we wish to relate). Each of these mental experiments is given oracleaccess to Ee and Dd, where (e; d) G(1n) is selected from the outside. The ith hybrid experimentuses these two oracles (in addition to y which equals e in the public-key case and 1n otherwise), inorder to emulate an execution of AEe;Dd;�ie;r(y; z), where r is selected by the experiment itself and�ie;r is a hybrid of Te;r and T 0e;r. Speci�cally, �ie;r is a history-dependent process that answers likeTe;r on the �rst i queries and like T 0e;r on the rest. Thus, for i = 0; :::; t, we de�ne the ith hybridexperiment as a process that given y (which equals either e or 1n) and oracle access to Ee and Dd,where (e; d) G(1n), behaves as follows:1. The process selects r  Upoly(n).2. The process emulates an execution of AEe;Dd;�ie;r(y; z), where y = e if we are in the public-key case and y = 1n otherwise, by using the oracles Ee and Dd. Speci�cally, the answersof �ie;r are emulated using the knowledge of r and oracle access to Ee: the jth query to�ie;r, denoted (Sj ; Lj), is answered by (Ee(Sj(r)); Lj(Sj(r))) if j � i and is answered by(Ee(1jSj(r)j); Lj(Sj(r))) otherwise. (The process answers A's queries to Ee and Dd by for-warding them to its own corresponding oracles.)3. As before, (F; v) denotes the output of AEe;Dd;�ie;r(y; z) and ((S1; L1); :::; (St; Lt)) denotes itstrace. The process outputs ((S1; L1); :::; (St; Lt)); (F; v); r.We stress that since A is canonical, none of the Dd-queries equals a ciphertext obtained as part ofthe answer of a �ie;r-query.7 Non-canonical adversaries can easily distinguish the two types of views by distinguishing the oracle Te;r fromoracle T 0e;r. For example, suppose we make a challenge query with a sampling-circuit S that generates some distri-bution over f0; 1gm n f1mg, next make a decryption query on the ciphertext obtained in the challenge query, andoutput the answer. Then, in case we query the oracle Te;r, we output Dd(Ee(S(r))) 6= 1m; whereas in case we querythe oracle T 0e;r, we output Dd(Ee(1m)) = 1m. Recall that, at this point, we are guaranteed that A is canonical (andindeed it might have been derived for perfectly-emulating some non-canonical A0). An alternative way of handlingnon-canonical adversaries is to let B handled the disallowed (decryption) queries by making the corresponding chal-lenge query, and returning its answer rather than the decryption value. (Note that B that emulates T 0r;e can detectwhich queries are disallowed.) 10



Clearly, the distribution of the 0-hybrid is identical to the distribution of the global view inan attack emulated by B, whereas the distribution of the t-hybrid is identical to the distributionof the global view in a real attack by A. On the other hand, distinguishing the i-hybrid fromthe (i+1)-hybrid yields a successful a-posteriori-CCA (in the sense of distinguishing encryptions).That is, assuming that one can distinguish the i-hybrid from the (i + 1)-hybrid, we construct aa-posteriori-CCA adversary (as per De�nition 2.1) as follows. For (e; d)  G(1n), given y = e ifwe are in the public-key case and y = 1n otherwise, the attacker (having oracle access to Ee andDd) behaves as follows1. The attacker selects r  Upoly(n).2. The attacker emulates an execution of AEe;Dd;�je;r(y; z), where j 2 fi; i + 1g (is unknown tothe attacker), as follows. The queries to Ee and Dd are answered by using the correspondingoracles available to the attacker, and the issue is answering the queries to �je;r. The �rsti queries to �je;r are answered as in both �ie;r and �i+1e;r (i.e., query (S;L) is answered by(Ee(S(r)); L(r))), and the last t� (i+ 1) queries are also answered as in both �ie;r and �i+1e;r(i.e., by (Ee(1jS(r)j); L(r)), this time). The i + 1 query, denoted (Si+1; Li+1), is answeredby producing the challenge templet (Si+1(r); 1jSi+1(r)j), which is answered by the challengeciphertext c (where c 2 fEe(Si+1(r)); Ee(1jSi+1(r)j)g), and replying with (c; Li+1(r)).Note that if c = Ee(Si+1(r)) then we emulate �i+1e;r , whereas if c = Ee(1jSi+1(r)j) then weemulate �ie;r.3. Again, (F; v) denotes the output of AEe;Dd;�je;r(y; z), and ((S1; L1); :::; (St; Lt)) denotes itstrace. The attacker feeds ((S1; L1); :::; (St; Lt)); (F; v); r to the hybrid distinguisher (whichwe have assumed to exist towards the contradiction), and outputs whatever the latter does.The above is an a-posteriori-CCA as in De�nition 2.1: it produces a single challenge (i.e., the pair ofplaintexts (Si+1(r); 1jSi+1(r)j)), and distinguishes the case it is given the ciphertext c = Ee(Si+1(r))from the case it is given the ciphertext c = Ee(1jSi+1(r)j), without querying Dd on the challengeciphertext c. The last assertion follows by the hypothesis that A is canonical, and so none of theDd-queries that A makes equals the ciphertext c obtained as (part of) the answer to the i + 1st�je;r-query. Thus, distinguishing the i + 1st and ith hybrids implies distinguishing encryptionsunder an a-posteriori-CCA, which contradicts our hypothesis regarding (G;E;D). The theoremfollows.AcknowledgmentsWe are grateful to Sha� Goldwasser for useful discussions.References[1] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions of securityfor public-key encryption schemes. In Crypto98, Springer Lecture Notes in ComputerScience (Vol. 1462), pages 26{45.[2] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-KnowledgeProof Systems. SIAM Journal on Computing, Vol. 20, No. 6, pages 1084{1118, 1991.(Considered the journal version of [3].)11
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