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Abstract

This report describes efficient constructions of small probability spaces that approximate the joint
distribution for general random variables. These results yield eflicient constructions of small sets
with low discrepancy in high dimensional space.

Chapter 1 contains the text (more or less) as it has appeared in the STOCY2 proceedings. In
that version the problem of approximating the product distribution of general random variables is
reduced to the construction of small discrepancy sets, and all constructions are presented in terms
of the latter problem.

Chapter 2 contains contains an ealier version in which only the first construction is presented.
The exposition is in terms of the original problem (i.e., of approximating the product distribution
of general random variables).

In Chapter 3 we provide details for a construction of a small bias sample space over G F(p), for
p > 2. References to this construction are made in Section 2.3.3 (and at the end of Section 1.3.1)
as well as in subsequent literature, however so far details have only appeared in the first author’s

M.Sc. Thesis (in Hebrew).
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Chapter 1

The STOC92 Version: Approximation
and Discrepancies

Abstract
We describe efficient constructions of small probability spaces that approximate the joint
distribution for general random variables. Previous work on efficient constructions concentrate
on approximations of the joint distribution for the special case of uniform boolean-valued random
variables. Our results yield efficient constructions of small sets with low discrepancy in high
dimensional space and have applications to derandomizing randomized algorithms.

1.1 Introduction

The problem of constructing small sample spaces that “approximate” the independent distribution
on n random variables has received considerable attention recently (cf. [7, Chor Goldreich] [9, Karp
Wigderson], [12, Luby], [1, Alon Babai Itai], [15, Naor Naor], [2, Alon Goldreich Hastad Peraltal, [3,
Azar Motwani Naor]). The primary motivation for this line of research is that random variables that
are “approximately” independent suffices for the analysis of many interesting randomized algorithm
and hence constructing a small probability space that “approzimates” the independent distribution
yields a way to “derandomize” these algorithms, i.e. convert them to deterministic algorithms
of reasonable complexity by using the deterministically constructed sample space in place of the
“internal coin tosses” of the algorithm. The culmination of previous works are constructions of small
sample spaces that approximate a constant amount of independence for general random variables
(see for example [12, Luby] or [1, Alon Babai Itai]) or that approximate complete independence for
identically and uniformly distributed boolean-valued random variables [15, Naor Naor], [2, Alon
Goldreich Hastad Peralta], [3, Azar Motwani Naor]). Although previous results are sufficient for
some applications to derandomizing algorithms, in many applications what is needed is a small
sample space that approximates more than a constant amount of independence for general random
variables. In this paper we present constructions of small efficiently constructible sample spaces for
this more general case.

1.1.1 Definitions of Approximation

The probability distribution on n general m-valued random variables is described by a n by m
probability matriz P, = {piv 1 ¢ € {1,...,n},v € {0,...,m — 1}}, which is a matrix of non-
negative entries such that the sum of the entries in each row is equal to 1. The (¢, v)-entry p;,
specifies the probability that the i** random variable should take on value v. For all values of



le{l,....n},forall I =< iy,...,5; >, where 1 < <...<i <n,andforall V =<wvy,...,0 >€
{0,...,m—1},let prv = H;Il Pi; v, be the probability that the subsequence of random variables
indexed by I should take on value V' if the random variables were truly independent.

From P, ,, we want to produce a finite set .5 that induces a distribution on n random variables
Zy,...,%, which approximates the independent distribution for P, ,,,. All constructions for 5 given
in this paper are efficient in the sense that there is a deterministic algorithm which produces S in
time polynomial in the length of the description of P, ,, and in the length of the description of 5.
The description of each point s € S consists of, for each index 7, a value z;(s) € {0,...,m — 1}
for the i*" random variable. We view S as a sample space that induces a distribution on z1,...,z,
defined by choosing a point randomly and uniformly from 5. We let z; be the subsequence of
random variables indexed by I, we let z; = V denote the event that the subsequence z; takes on
the value V', and we let Pg[z; = V] be the probability that event 2; = V occurs in the distribution
induced by S. We say that S is independent for P, ,, if it induces a distribution on zy,...,2,
such that, for all [, I =< ¢,...,4 > and V =< vy,...,v >, Pgle; = V] = prv. (Hereafter, the
quantification “for P, ,,,” is omitted for brevity whenever P, ,, is clear from the context.) We say
S'is a (k, €)-approzimation if for any subsequence I of size [ < k and for any set of possible values
Ve{0,...,m—1} |Pslz; = V] —prv| < e Sis an e-approzimation if this statement is true with
no restriction on the size of I and 5 is a k-wise independent approzimation if this statement is true
with € = 0.

1.1.2 Previous Work on Approximation

Let U, ., be the probability matrix with all entries equal to 1/m that describes the special case of n
identically and uniformly distributed m-valued random variables. Thus, i, » is the important sub-
case where all entries are 1/2 that describes n identically and uniformly distributed boolean-valued
random variables. It is fairly easy to prove that 5 has to be of size at least 2" to be independent
even for U, ». Constructions of sample spaces that are k-wise independent approximations for U, ,,,
of size max{n, m}*, and that are (k, ¢)-approximations for general P, ,, with size (max{n,k/e})*,
are implicit in many works; a brief survey of some of these constructions can be found in either [12,
Luby] or [1, Alon Babai Itai]. For constant k& and 1/¢ polynomial in n, this yields a sample space
of size polynomial in 7.

It has been recognized that in many other examples, what is needed is a sample space that
has more than a constant amount of independence between the m random variables; typically
logarithmic in n independence suffices. On the other hand, it has been shown that the sample space
k12 in order to be a k-wise independent approximation for U, » [6, Chor
Freidmann Goldreich Hastad Rudich Smolensky], and for non-constant & this is not polynomial in
n. [15, Naor Naor] introduced the idea of allowing the error parameter ¢ and gave an ingenious
construction of a sample space that is an e-approximation for U, , where the size of the sample
space is O(nlog(n)/e*). Simpler constructions with a sample space of size O((nlog(n))*/e?) for
U, » were subsequently presented in [2, Alon Goldreich Hastad Peralta]. These constructions can
be extended to U, ,,,, basically using the same ideas, but in a slightly more complicated way (cf. [2,
Alon Goldreich Hastad Peraltal, [3, Azar Motwani Naor], [8, Even]), where the size of the resulting
sample space is O((nlog(n))*/e?).

has to be of size at least n

1.1.3 New Results on Approximation

For some applications the constructions described in the previous subsection are quite useful. For
example, in the analysis of some of the randomized algorithms for graph problems presented in [12,



Luby] and [1, Alon Babai Itai], approximate pairwise independence of the random variables suffices.
Thus, the construction of a sample space of polynomial size that is a pairwise independent approx-
imation for general P, ,, can be used to convert these randomized algorithms into deterministic
algorithms. In other applications (see [15, Naor Naor]), approximations of identically and uniformly
distributed boolean-valued random variables suffice. However, in the more typical application the
random variables are general and more than a constant amount of independence is required in the
analysis, and thus it is of primary importance to develop constructions for these cases.

In this paper, we describe three constructions of small sample spaces that are approximations
of the independent distribution for general P, ,,; the first two constructions are new and the third
is a construction based on a theorem in [16, Nisan]. The first construction yields a sample space
that is a (k, €)-approximation, where the size of the sample space is polynomial in log(n), 2¢ and
1/e. Previous results that achieve the same kind of approximation result in a sample space of size
polynomial in log(n) and (k/¢)*. In contrast to previous results, when k& = O(log(n)) and 1/¢ is
polynomial in n the size of the sample space in our construction is polynomial in n. This case is
important to some applications, and in particular this construction improves the running time of
some of the algorithms presented in [13, Luby Velickovi¢].

The second and third constructions for n general random variables yield samples spaces that are
e-approximations for general P, .., where the size of the sample space is polynomial in (n/e)°8t/<)
for the second construction and polynomial in (n/€)!°5™) for the third. In contrast, the previous
bound on the sample space size, implicit in the classical work on discrepancy theory (see e.g. [4,
Beck Chen] or [17, Niederreiter]), is polynomial in n”/e. For interesting cases of n and ¢, i.e. when
1/¢€ is polynomial in n, the results presented here are dramatic improvements.

1.1.4 Discrepancies

Let [0,1)" be the n dimensional unit cube, let R, be the set of all axis parallel rectangles within
[0,1)", and for each R € R, let vol(R) be the volume of R. For any finite set of points S in [0,1)"
and for any R € R, define the discrepancy of S on R as discs(R) = |vol(R) — |S N R|/|S]||. This
quantity is the absolute value of the difference between the probability that a randomly chosen point
from [0, 1)" falls in R and the probability that a randomly chosen point from S falls in R. For any
K, C R,, the discrepancy of S on K, is defined as Ag(K, ) = maxgex, discg(R). Finding explicit
constructions of sets with small discrepancy have a variety of applications, including applications to
numerical integration. The discrepancy problem can be stated as follows: given n and ¢, construct
aset Sin [0,1)"” with Ag(R,) <e.

As we describe (and as also has been describe before by others, e.g. [17, Niederreiter]), there is
an close connection between discrepancy and approximating independent distributions of n general
random variables. Qur primary interest in sets with small discrepancy is that they are universal for
the problem of constructing sample spaces that are good approximations for general distributions.
For example, a set 5 in [0,1)" for which Ag(R,) < ¢ can be viewed as universal in the following
sense: There is a simple efficient algorithm that given S and any P, ,, computes a sample space
that is an e-approximation for P, ,,. To be of interest in the problem of approximating random
variables, it is crucial that the size of § be small in terms of both parameters ¢ and n.

Classical work on the discrepancy problem concentrates on minimizing the size of S primarily
as a function of 1/e and then secondarily as a function of n [4, Beck Chen], [17, Niederreiter],
i.e. the dimension n is thought of as arbitrary but fixed and the goal is to find a set .S with size
as small as possible as a function of 1/e. Although classical work shows that there are explicit
constructions of S with size smaller than that implied by a random construction for fixed n, the



bounds are exponential in n and say nothing non-trivial for values of n and ¢ interesting for the
case of approximating general distributions. i.e. when n and 1/¢ are comparable.

The constructions presented here give new results for the discrepancy problem. For any constant
B < 1let RO C R, be the set of rectangles R such that in each dimension i the length of R
is either 1 or else it is in the range [0,/3). The first construction yields, for any constant § < 1,
a set S in [0,1)" of size polynomial in both n and 1/e such that Ag(RL#) < e. The second
construction yields a set S in [0,1)" of size polynomial in (n/€)!°5(/9) such that Ag(R,) < ¢, and
the third construction yields a set S with the same properties of size (n/¢)'°5("). In contrast to
these new results, the previous known bounds from classical discrepancy theory on the size of an
explicitly constructible set S in [0,1)" with small discrepancy are exponential in n [4, Beck Chen],
[17, Niederreiter].

It is easy to see that a random set of points S in [0,1)" of size cnlog(n/e€)/e* for some constant
¢ > 1 has the property that Ag(R,) < e with high probability. The crucial property missing
from this proof of existence is efficient constructibility. We leave this as an open question, i.e. the
problem of finding an explicit construction of a set S in [0,1)" with Ag(R,) < ¢ and with |5]
polynomial in both n and 1/e. As stated above, a solution to this problem would yield a universal
set S of size polynomial in both n and 1/e¢ that for all P, ,, can be interpreted as a sample space
that is an e-approximation for P, ,,.

1.2 Linking discrepancy and approximation

In this section we provide the (straightforward) link between sets S with small discrepancy and
sample spaces that approximate the independent distribution on n random variables.

Definition (classes of rectangles): The n dimensional unit cubeis [0,1)". Let R = [;cqy 7
be an axis-parallel rectangle in [0, 1)", where each r; = [a;, ;) is a subinterval of [0,1). We say R is
trivial in dimension ¢ if r; = [0, 1). Without loss of generality, we restrict attention to those rectan-
gles for which thereis no i € {1,...,n} with a; = b;. The volume of Ris vol(R) = [;c(; .y bi—a;.

e Define R,, to be the set of all axis parallel rectangles in [0,1)".

e For constant 3 < 1, define RI®? to be the subset of R, consisting of all rectangles R =
Hz’e{l,...,n} r; such that for each ¢ either R is trivial in dimension ¢ or else r; = [a;,b;) with

bi—aiﬁﬂ-

e For positive integer k, define R¥ to be the subset of R, consisting of all rectangles R such
that R is trivial for all but at most k& dimensions.

e Ior any K, € R, and any positive integer m > 2, define K, ,, as the set of rectangles
R =Tlicq, ay7mi € Ky such that each r; is of the form [a;/m,b;/m) for integers a; and b,
satisfying 0 < a; < b; < m. For example, R,, » is the subset of R,, consisting of all rectangles
R =Tlicq1, ny7i such that for each i € {1,...,n}, r; =[0,1/2) or r; = [1/2,1) or r; = [0, 1).

Definition (projection sample space): Let S be a finite subset of points from [0,1)"” and let
P, m be a probability matrix. S can be viewed as the projection sample space for P, ,,, inducing

a distribution on random variables z,,...,2, as follows. For all i € {1,...,n} let interval 7, o =
[0,p;0) and for all v € {1,...,m} let interval r;, = [a;,,b;,), Where a;, = > (<, Piw and
b; v = a; v + p;». Random variable x; at a point s =< s4,...,5, >€ 5 takes on the unique value v

that satisfies s; € 7; ,.



A set S C [0,1)" as just described is universal in the sense that it can be interpreted in a
straightforward way as a sample space for any P, ,,,. The interpretation has the property that it is
coordinate independent in the sense that the value given to z; at sample point s € 5 depends only
on the i"" coordinate of s and on the i row of P, ..

The crucial links between discrepancies and approximations are the following observations.

1. If Ag(R,) < ¢ then for any P, ,,, the projection sample space of S for P, ,, is an e-approximation.

2. If Ag(RE) < € then for any P, ,, the projection sample space of S for P, is a (k,€)-
approximation.

3. If Ag(R, 2) < € then the projection sample space of S for U, » is an e-approximation.

From this discussion it is clear that in order to produce sample spaces which approximate the
independent distribution for n general random variables it suffices to produce small finite sets
S C [0,1)" with small discrepancy.

Definition (the natural mapping to [0,1)"): We can view a sample space S that induces a
distribution on zy,...,, for U, ,, in a natural way as a finite set of points in [0,1)", where the ‘"
coordinate of s € S'is ;(s)/m.

From this the converse of observation 3 follows, i.e. it is not hard to verify that if 5 is an
e-approximation for U, » then Ag(R,, ») < ¢ when sample points in S are mapped to [0,1)" in the
natural way. The converses of observations 1 and 2 are not so obvious. For example, it is true that
if §'is a sample space that is a (k, ¢)-approximation for U, ,, then Ag(R} ) < em* when points in
S are mapped to [0,1)" in the natural way, but this is too weak of a bound for most purposes.

Some further useful observations are:

4. Ag(Rp anse) < €/2 implies that Ag(R,) < e. This is because for any rectangle R € R,, there
are rectangles R™, Rt € R,, 4n/c such that R~ C R C Rt and such that vol(RT) — vol(R™) <
€/2.

5. By similar reasoning to that used in observation 4, AS(RZ,M/E) < ¢/2 implies that Ag(RF) <
€.

6. Ag(RE) < e implies that Ag(RI%#)) < e 4+ 3*. This follows because vol(R) < * for any
rectangle R € RI%?) which is non-trivial in more than & dimensions. This shows for constant

B and for k = O(log(1/e€)) that Ag(RE) < ¢/2 implies that Ag(RI>#)) < e.

1.3 The Constructions

All of the results are stated in terms of constructions of sets with small discrepancy. The con-
structions of small sample spaces that approximate the independent distribution follow from the
observations of the previous section.

1.3.1 Construction based on reducing from boolean to general

Theorem 1 There is an explicitly constructible finite set S C [0,1)" with Ag(RE) < € such that
|S| is polynomial in log(n), 2¥ and 1/e.



PROOF:
Let 2l ... 2},...,2}, ..., 2! be n blocks of [ boolean-valued random variables each, where [ is
a positive integer whose value is determined later. For each ¢ € {1,...,n} we let random variable

x; = .x} -2} be a binary fraction where 2 is the j** most significant bit. We show, the event

< Zyy...,%, >€ R occurs with probability within ¢ of vol(R) for every rectangle R € R when
these random variables have the properties we develop below.

Without loss of generality, fix a rectangle R = [[;cqy  nylai,b) € R) such that the first &
dimensions are the non-trivial ones, i.e. for all ¢ = k +1,...,n, [a;,b;) = [0,1). For simplicity of
presentation, for all ¢ = 1,...,k, we restrict the :'" interval to be of the special form [0,b;). (The
analysis for the case when the interval is of the general form [a,, b;) is no more difficult technically,
just not as clean.) To determine if the event < zy,...,z, >€ R occurs, it is enough to determine
if the k subevents x; € [0,b1),...,2; € [0,b;) all occur simultaneously.

We think of determining the outcomes of the k subevents starting with subevent z, € [0,5;) and
ending with z; € [0,by). Let b, be the j% bit in the binary expansion of b;. We compare the bits
zl, ... 2} with b1,... b} one at a time, starting with the most significant bit and working down,
stopping as soon as x; € [0,b;) or &y ¢ [0,b;) has been determined. Note that if #] # b; then the
outcome of the first subevent is determined one way or the other, i.e. if 21 = 0 and b] = 1 then
xy € [0,by), whereas if 1 = 1 and b} = 0 then 2; ¢ [0,b,). In this case, we move on to determine
the outcome of the second subevent. On the other hand, if ] = b7 then the outcome of the first
subevent hasn’t been determined and we next compare z? with b?, etc.

Determining the outcomes of the £ subevents can be viewed as a complete binary tree labeled
with the boolean-valued random variables. The root of the tree is labeled with 21, the left edge out
of the root corresponds to 1 = b7 and the right edge corresponds to ] # b}. At each subsequent
node of the tree, the node is labeled with the boolean-valued random variable that is considered
next; e.g. the left child of the root is labeled 27 and the right child label is 2.

Suppose for now that z1,...,2!, ... o} 2! are independently and uniformly distributed. A

ey T
random setting of the variables defines a random path down the tree, and it is easy to see that if a
random path is taken down this tree (and [ is infinite) then the probability that the & subevents all
simultaneously occur is exactly vol(R). Furthermore, on average the values of two boolean-valued
random variables are examined to determine the outcome of each subevent, and thus on average
we examine 2k boolean-valued random variables to determine the outcomes of all k& subevents.
Consider the probability that the outcomes of all k subevents are not determined by the time the
first &’ boolean-valued random variables are examined. This probability is exactly the same as the
probability that there are less than k& “heads” in &’ tosses of a fair coin. By a standard analysis, when
k' is set to a value that is O(k+log(1/¢)) it can be easily shown that this probability is at most ¢/2.
This shows the probability a random path down the tree to depth &’ doesn’t determine the outcomes
of all k subevents is at most €/2. Consequently if xl,... 2%, ... 2}, ... 2/ are k’-wise independent
and uniformly distributed then the probability that all £ subevents occur simultaneously is within
/2 of vol(R).

There are only 2¥' paths down to depth &’ in the tree. Thus, if, for every path down to depth
k' in the tree, the actual probability of the path is within 6/2k1+1 of 1/2’“1 then the analysis shows
that the probability all & subevents occur simultaneously is within € of vol(R). From this it follows
that any distribution on {,...,2{,...,z.,...,z that is a (K, ¢)-approximation for U, » (with
k' = O(k +log(1/¢)) and ¢ = ¢/2*'+! and [ = k') has the property that the probability that all
subevents occur simultaneously is within € of vol(R) for all R € R¥. For these values of [, &' and
¢ we can use [15, Naor Naor] or [2, Alon Goldreich Hastad Peralta] to construct a sample space 5

which induces a distribution on al,...,2%,...,2}, ... 2! that is a (&', ¢)-approximation for U, -



with || polynomial in log(n), 2* and 1/e.

It should be noted that this analysis uses components of analysis for “Discrete Distribution
Generating tree” described in [10, Knuth Yao] and also component of an analysis presented in [13,
Luby Velickovi¢].

Setting k = O(log(1/¢)) and using observation 6 from section 1.2 shows that for any constant
B < 1 there is a set 9 of size polynomial in 1/€ and log(n) with Ag(RI>#)) <.

Alternative construction for special case

For the special case when p is a small prime (e.g., p = 3) there is a smaller sample space that is a
(k, ¢)-approximation for U, ,; the construction is a generalization of the construction for U, », and
can be found in [2, Alon Goldreich Hastad Peralta], [3, Azar Motwani Naor] and [8, Even].

1.3.2 Construction based on the inclusion-exclusion formula

Let £ = O(log(1/¢)) and let S be a sample space that is a k-wise independent approximation for
Uy anse. In this section, we show this implies Ag(R,) < € when points in S are mapped in the
natural way to [0,1)". Using standard constructions (see for example [12, Luby] or [1, Alon Babai
Itai]), there is a constructible set S with these properties of size polynomial in (n/e)°8t/<),

The first easy observation is that Ag(Rf ,./.) = 0 when points in " are mapped in the natural
way to [0,1)". Then, we use the theorem described below to show that As(R} ,,,) = 0 and
k = O(log(1/¢)) implies that Ag(R, an/c) < €/2. Finally, observation 4 from section 1.2 shows that
Ag(R,) <e.

Theorem 2 Let P, » be a general probability matriz for n boolean-valued random variables z+, ..., z,.
Then,
|Ppl /\ z; = 0] — H Ppio| <2790
1€{1,...,n} 1€{1,...,n}
for any probability space D that induces a distribution on x,...,x, that is a k-wise independent

approzimation for P, 5. (Note that if xq,...,x, are independently distributed for P, ., then the

event Nigpy ny @i = 0 has probability exactly [];cqy oy Pio-)

PROOF: The idea is to use the inclusion-exclusion formula. Fix D to be any space that induces
a distribution on zy,...,z, that is a k-wise independent approximation for P, 5. Define T, = 1

and for all j = 1,...,k define
1; = Z H Pi; 1,

I=<iy,..i;>10=1,...§
i.e. Tjis the j*" term of the inclusion-exclusion formula. Then, for all even values of j,>°,_, (=1)'T;

j
is an upper bound on Pp[A;c;y .y @ = 0], this quantity is a lower bound for all odd values of j

and T}, is an upper bound on |PD[/\ie{1,...,n} x; = 0] — [Licgi, .y Diol.

Define @ = > ;41,3 Pii- There are two cases to the proof, depending on whether a < 2’“—6

or a > 2’“—6 (Where e = 2.718....) Suppose that a < 2’“—6 We show this implies 7}, < 27*, which

finishes the proof for the first case. This inequality holds because, subject to the restriction that
Yier1, .y Pin = @, Ty is maximized when, for all 7 € {1,...,n}, p;y = a/n. Thus, Ty = (%)* <

2%, Now suppose that a > 2’“—6 Consider the first n’ < n random variables such that 2’“—6 -1<

Zie{l,...,n’} pix < 2’“—6 and let o' = Zie{l,...,n’} Pi1 N Zk_e We first show this implies Hz’e{l,...,n’} Pio <
2=U) and then we show how to finish the proof from this for the second case. Subject to the

restriction that 37,y ypi1 = @, [lieqy, uy Pio 18 maximized when, for all i € {1,...,n'},



pin = o' /n’. Thus, because o’ & &=, [Tieqy. un Pio < (1— o /'y = 27" From the same proof
as used in the first case, noting that o/ < £, PolAieqr @ =01 < Tlicqy, oy Pio+27". Because
[Lieqi, nypio < 27%*) and because PolAieqi, oy @i = 0] < Pp[Aigqs, o 2 = 0], this implies
that 0 < Pp[Aieqs, oy = 0] < 27k) . This and 0 < [Licqi, ny Pio < Tlieqi, oy Pio finishes the
proof of the second case.

The obvious corollary to this theorem we use to prove the result stated at the beginning of this
section is that Ag(R} ,,) = 0 implies that Ag(Ry, n») < 2-5k),

This theorem should be contrasted with the main theorem of [11, Linial Nisan]. Loosely stated,
the above theorem says that if the leading O(log(1/¢)) terms of the inclusion-exclusion formula are
exactly the same as they are for the independent distribution then the probability of the union of
n events is completely determined to within an error €. Loosely stated, one direction of the main
theorem in [11, Linial Nisan] says that an arbitrary specification of less than /n of the leading
terms doesn’t even determine the probability of the union of the » events to within a constant
amount.

One application of the result is to deterministic approximation of the number of satisfying
truth assignments to a disjunctive normal form boolean formula [13, Luby Velickovi¢]. A more
philosophical application is that the result says that the probability of unions of events that are
somewhat independent and the probability of unions of events that are totally independent are
not very different. This gives some partial justification for modeling “real world” events, which
are somewhat independent but not totally so, by events that are totally independent, without
drastically affecting the probability of their union.

1.3.3 Construction based on hashing

The third construction uses the results given in section 5 of [16, Nisan] and observation 4 of
section 1.2. The result is that there is an efficiently constructible set 5 of size polynomial in

(n/€)!8™ such that Ag(R,) < e

1.4 Open Problems

One open problem motivated by this work can be found at the end of subsection 1.1.4. An even
harder problem, which was motivation for this work, is the following generalization of that problem:
Find an efficiently constructible set S of size polynomial in n, m and 1/e such that for any union of
at most m rectangles in n dimensional space, the fraction of points in 5 that fall in their union is
within € of the volume of their union. A positive solution to this problem would provide an efficient
deterministic approximation algorithm for the DNF counting problem.
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Chapter 2

Eariler Version: Approximation per se

Abstract

Recently, the problem of contructing small sample spaces, inducing k-wise independent and
almost k-wise independent random variables, has received considerable attention. However, the
positive results obtained so far refer to the special case of identically distributed random variables
each uniformly distributed over the same finite set (typically {0,1}).

In this paper, we deal with the general problem: given a specification of n independent
distributions, we show how to construct a small sample space defining a sequence of n ran-
dom variables such that the joint distribution of every k variables is statistically close to the
corresponding joint distribution specified.

Our construction reduces the general problem of (k-wise) approximating an arbitrary product
distribution to the extensively studied special case of (k-wise) approximating uniform distribu-
tion over {0,1}".

2.1 Introduction

In recent years, much research effort has been invested in constructing small sample spaces for k-wise
independent and almost k-wise independent random variables (cf. [7, 1, 15, 2, 3]). The motivation
for this line of research has been the belief that limited stochastic independence suffices for the
analysis of many interesting randomized algorithm and hence constructing small probability spaces
implementing limited independence yields a way to “derandomize” these algorithms (i.e., convert
them to deterministic algorithms of reasonable complexity) '. A typical example of the use of this
methodology has been provided by Luby in his work on the maximal indepedent set problem [12].
Surprisingly, it is often ignored that the random variables used in that work are neither identically
distributed nor uniformly distributed over some sets, and furthermore that this is likely to be the case
in many applications. In contrast, all constructions (for limited independence), presented so far,
apply to random variables uniformly distributed over the same set (in most cases the two-element
set {0, 1}). Hence, it is of primary importance to investigate the extent to which these constructions
can be generalized to deal with the “k-wise approximation” of arbitrarly stochastically indepedent
events.

!By enumerating determinstically all elements in the sample space, and running the algorithm using each of them
as the “outcome of the internal coin tosses” of the algorithm.
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2.1.1 What are k-wise c-approximations

Throughout the paper we consider the approximation of product distributions; namely, distributions
which are the product of many (say n) independent distributions. In other words, we consider
random variables of the form X = X;.--X,, where the X;’s are indepedent random variables.
These X,’s are not necessarily identically distributed or uniformly distributed over some finite
sets. The support of the product variable X, provided none of the X; is trivial, has cardinality
exponential in n. Our aim is to approximate such an X by a random variable Y =Y, -..Y,, which
has much smaller support. It follows that the Y;’s cannot be indepedent of each other. Hence, our
aim is to approximate product distributions by distributions of smaller support (which necessarily
are not product distributions themselves).

By a k-wise e-approximation of a product (random variable) X = X, ---X,,, we mean a random
variable Y = Y;--.Y, (where the Y; are not necessarily independent) so that every k-subproduct
of the X,;’s is “approximated with error ¢” by joint distribution of the corresponding Y;’s. In the
sequel, the phrase “approximated with error ¢” means that the variation distance?, between the
resulting random variables, is bounded by e.

2.1.2 Known and new results about k-wise e-approximations

All previous works deal with the approximation of identical random variables which are uniformly
distributed over a finite set. In particaulr, Naor and Naor [15] presented an efficient k-wise e
approximation of identical random variables each uniformly distributed over {0,1}. The support
of their approximation has cardinality O((klogn)-2%" - L). Simpler constructions using a support
of size O((klogn)®-2* - L), were presented in [2]. These constructions can be easily extended to
approximate identical random variables, each uniformly distributed over a finite field (cf. [2, 3, 8]).
The size of the support, for a finite field of cardinality ¢, is O((klogn)?-¢" - }2) Hence, the support
size is polynomial in %

The obvious way to get k-wise e-approximation of arbitrary (n-fold product) distributions from
the above is to use a k - log,(2/¢)-wise €/2-approximation of product of n - log,(2/¢) independent
and uniformly distributed 0-1 random variables®. This yields a support size which is polynomial in
(2"

In this paper we present a simple method for constructing k-wise e-approximations, of arbitrary
(n-fold product) distributions, using a much smaller support. Let s be a bound on the number
of elements in the support of a single distribution in the n-fold product distribution, and suppose
€ < 1/s (which is the natural case). Then, loosely speaking, the k-wise e-approximation presented
in this paper has support of size polynomial in % Hence, whenever s < %, our improvement is
meaningful. Let us consider two typical examples:

Example 1 Suppose we wish to approxzimate a product of n indepedently distributed 0-1 random

variables, each assigned 1 with probability %—I—g and 0 otherwise. Using previously known techniques,

a k-wise $-approximation of this n-fold random variable would have required using a sample space

2The variation distance between the random variables U/ and V is

Y IP(U=a) - P(V=a)|

®These n - log,(2/¢) 0-1 variables are partitioned into blocks of length log,(2/¢), each encoding elements of the
corresponding set in the obvious manner.

11



of size €2%) whereas an n-fold of uniformly and indentically distributed 0-1 random variables could

be k-wise S-approximated using a sample space of size poly(%, 2% logn). Using our results the first
(i.e., “non-uniform”) n-fold can be k-wise e-approximated at essentially the same “cost” as the
“uniform” one (i.e., using a sample space of size poly(Z,2* logn)).

Example 2 Suppose we wish to approximate an n-fold product of indepedently distributed ran-

dom variables, where the 1™ random variable is uniformly distributed over the set {1,2,...,8;}.
Let s ¥ max;{s;} and L € lem{s; : i < n}. Using previously known techniques a k-wise
e-approximation of this n-fold random variable would have required using a sample space of

. . e . . . .
size min{Z - ,Eelw}, whereas the n-fold consisting of indepedent random variables each uni-

formly distributed over {1,2,...,s} could be k-wise e-approximated using a sample space of size
poly(%,s*,logn). Using our results the first n-fold (in which variables are not identical) can be
k-wise e-approximated at essentially the same “cost” as the indentical case (i.e., using a sample

space of size poly(Z,s*,logn)).

2.1.3 An overview of our construction

Our construction is quite simple and is described below. For simplicity, we consider here the
special case of approximating n-folds of 0-1 distributions. Namely, each random variable X; satisfies
X; €40,1}. Let p; = P(X;=0). To construct a k-wise e-approximation of X = X, ---X,,, we use
a O(k + log(2/¢))-wise poly(e/2%)-approximation of the uniform distribution over {0,1}", where
= O(log(2/¢€). The approximation to X, denoted Y =Y, ---Y,, is determined by letting Y; = 0 if
the B; < p;-2', where B, is the integer encoded in the :*" ({-bit long) block of the nl-bit long sample
string. The crucial point is that we are using a O(k + log(2/¢))-wise poly(e/2")-approximation of
the uniform distribution over {0,1}", rather than using a (k - log(2/€))-wise (¢/2)-approximation
of it. This requires a more careful analysis.

The analysis of the approximation Y uses in an essential way the fact that each Y; is determined
by specific fized locations in the binary string produced by the approximation to the uniform
distribution.

We end the introduction by presenting an alternative construction of unknown quality. The
problem of constructing k-wise approximations to arbitrary product distributions, is remenisence of
the classic problem of generating arbitrary probability distributions by using a uniform probability
distribution over binary strings (or in other words by using an unbiased coin). In particular, Knuth
and Yao have extensively analyzed the expected number of coin tosses required in such schemes
[10]. A natural suggestion is to use one of these schemes (termed “Discrete Distribution Generating
tree”) to produce an a k-wise approximation to the n-fold distribution by using as input a O(k)-
wise approximation to the uniform binary distribution. We do not know whether this alternative
approach works and our conjecture is that it does not.

2.2 Formal Setting

2.2.1 Preliminaries

Convention: Throughout the rest of this paper we consider only random variables ranging over
finite sets. Without loss of generality, each finite set, say of cardinality s, is associated with the set
of the first s non-negative integers.

We recall two standard definitions. The first definition will be used in the definition of approx-
imation, whereas the second definition is given merely for methodological purposes.

12



Definition 1 (distance between distributions): Let X and Y be two random variables ranging over
some finite set 5.

e (max-norm): The distance in maz-norm (L., norm) between X andY is defined as max cs |P(X =

e)—P(Y=¢e)|.

e (variation distance): The variation distance (L, norm distance) between X andY is defined

as Y e |P(X=¢) - P(Y =¢)|.

Definition 2 (k-wise independence): A sequence of random variables 7 = 7, ..., 7, is k-wise
independent if for any k positions i} < iy < --- < iy, the random variables Z; , Z;,, ..., Z;, are
totally independent. Namely, for every k-long sequence of integers, a = oy, as, ..., a, we have

PriZ; Z;, - Z;, = a| = Pr[Z;, = ay]- Pr[Z;, = as] -+ Pr[Z;, = a;]

2.2.2 Definition of k-wise approximation

The following definition is central to the current paper.

Definition 3 (k-wise approximation): Let X = X,---X, be a product of independent random
variables, and Y = Y, ---Y, be an arbitrary sequence of (not necessarily independent) random
variables.

e (max-norm approximation): We say that Y is a k-wise e-approximation of X in max-norm if
for any | <k positions, 11 < i3 < --- < ¥, the maz-norm distance between X;, X, ---X;, and
Y, Y, - Y., is bounded above by €.

e (L, approximation): We say that Y is a k-wise e-approximation of X in norm L, if for any
k positions, i1 < iy < --- < iy, the Li-norm distance between X; X;,---X;, and Y, Y, ---Y;,
is bounded above by «.

The above two measures of approximation seem to be most useful in applications. Other notions
of approximation are discussed in [5].

When constructing a k-wise approximation to a product variable X, we get as input a “specifi-
cation” of X. A specification of X is an n-by-s matrix, P = {p; ; }, satisfying P(X;=a) = p; , (for
every pair i,a) and 3°Z} Pio = 1 (for every 7). (We stress that we consider k-wise approximations
only to products of independent random variables.)

Definition 4 (k-wise approximators): Let A be an algorithm that on input a specification of a
product variable spec(X ), an integer k a rational €, and integers i <n, and j, outputs an element
(in the support of X;). Algorithm A is called a k-wise L., (resp. L) e-approximator of X if
for M = A(spec(X),k,¢€), the random variable Y =Y, ....Y, defined by selecting j uniformly in
{1, ..., M} and setting Y; = A(spec(X), k,€,1,7), for each i <n, constitues a k-wise e-approximation
of X in max norm (resp. Ly norm). (M = A(spec(X ), k,¢€) is called the size of A’s sample space.)
Algorithm A is called a product approximator if for every X, k, ¢ as above, A constitutes a k-wise
e-approxmator of X.

13



2.2.3 Our Result

Theorem 1 (efficient product approximator): There exists a polynomial-time product approzima-
tor in Ly norm (resp., Lo, norm) satisfying, for every X, k, €, the size of A’s sample space is bounded

above by
(O(s)" - (=) F*

(resp., 216k( )10 . FZ )

L

def

where s is a bound on the support of individual X;, and F = O((k+log(1/¢))-(logn+loglog(k/¢))).
In fact, the algorithm can be implemented in NC.

A better result is possible for the special case of s = 2.

2.3 Constructions

We first present our construction for the special (yet interesting) case of approximating Boolean-
valued random variables. We later generalize the construction to handle random variables ranging
over arbitrary sets.

2.3.1 Special Case: Boolean-valued random variables

Assume we are give a specification of a random variable X = X, ..., X,,, consisting of a sequence of
n independent Boolean random variables. Clearly, it suffices to specify the probability that each of
these variables is assigned 0. Let p; ! P(X;=0), for every i <n, and denote by p;(1), p;(2), ... the
bits in the binary expansion of p; (i.e., pi = 37,5, pi (7)-277). We construct a k-wise e-approximation
of X as follows.

Let [ and ¢ be integers to be determined latter (I = 2 + log,(k/¢) and t = 5(k 4 log(1/¢)) will
do). In our construction we use an arbitrary t-wise (¢/2'*!)-approximation in max-norm of the

uniform distribution over {0, 1}™. Let us denote the 0-1 random variable in this approximation by

Z0(1)s ees Zo(1), ooy Zon(1)s ooy Z(1).

Construction 1 Let Z1(1), ..., Z1(1)y oeey Zn(1), oo, Zo(1) be a t-wise (¢/2'T)-approxzimation in L.,
norm of the uniform distribution over {0,1}'". For every i, if the string Z;(1)---Z;(l) is smaller
than (in lexicographic order) the string p;(1)---p;(1) then set Y; = 0 otherwise set Y; = 1.

Our analysis of the above construction is somewhat analogous to the proof of Theorem 3 in [13].
We fix k variables in Y, without loss of generality Y7, ..., Y,, and a k-bit string, o, and evaluate the
difference P(X,--- X, =a) — P(Y;---Yi=a).

Consider a mental experiment in which the Y;’s are determined by a random walk on an infinite
labelled binary tree as follows. The edges in the tree are labelled by {0, 1}, so that each node
has one 0-child and one 1-child. Pictorially, one may visualize the 0-child as the left-child and the
1-child as the right-child. The nodes in the tree are labelled by pairs of the form (7,0), where
i€{l,...,k}and o € {0,1,*}. The root is labelled (1,x). There is a unique path going down from
the root with all nodes on it labelled (1,x). This is the path corresponding to the binary expansion
of p;. All the nodes reached by following this path upto some node and then leaving it to the left
(assuming the path continues to the right) are labelled (1,0). Intuitively, reaching such a node via
a random walk down the tree results in setting Y; to 0. Likewise, the nodes reached by following
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the “pj-expansion path” upto some node and then leaving it to the right are labelled (1,1). From
each node labelled (7,0),¢ < k and ¢ € {0, 1}, there is a unique path going down labelled (¢ + 1, ).
This is the path corresponding to the binary expansion of p;;;. The nodes reached from a node
labelled (¢,0) by following the “p;;,-expansion path” upto some node and then leaving it to the
left are labelled (¢+1,0), and reaching them via a random walk results in setting Y;,, to 0. Finaly,
both children of nodes labelled (k,o0), with o € {0,1}, are labelled (k,0) too. These nodes are
called complete. Intuitively, reaching them via a random path from the root means that all ¥;’s
were given values.

The following claims are easily verified

Claim 1 Consider a random infinite path going down the tree and set Y; = o; if and only if the
path goes through a node labelled (i,0;). Then X, --- Xy and Y, ---Y}, are identically distrubted.

Claim 2 The number of nodes at level t which are not complete is Zfz_ol (:) & 25t

Claim 3 Consider a random path of length t going down the tree and set Y; = o, if the path
goes through a node labelled (i,0;). In case the path does not go through any node labelled (i,0)
(with o € {0,1}), set Y; arbitrarily. Then the variation distance between X --- X, and Y, ---Y} is
bounded by 2-(5=F),

Clearly, the mental experiment described in Claim 3 corresponds to the setting of the Y; in
Construction 1, provided that the Z;(j)’s are t-wise independent and that [ > k. Waiving these
requirements (namely, allowing the Z;(j)’s to constitute a ¢-wise (¢/2t!)-approximation in max-
norm of the uniform 0-1 distribution and [ be arbitrary) adds error terms bounded by £ and % - 271
respectively. Hence, we get

Proposition 1 Let t = 4(k + log,(4/¢)) and | = log,(4k/¢). Then Y;’s presented in Construction
1 constitute a k-wise e-approzimation (in Ly norm) of the n-fold X .

2.3.2 The General Case

The construction for the general case extends Construction 1 in the obvious manner. Let X =
X;---X, be an n-fold random variable, s a bound on the support of each X;, and P = {p;; : 1 <
i1<n,0<j<s—1} be a specification of the n-fold X. For every ¢, 7, let ¢; ; Lt Zézl Pin. Denote by
¢; j(1),4; j(2),... the bits in the binary expansion of ¢; ;. Let [ and ¢ be integers to be determined
latter (I = 24 log,(k/¢) and t = 9(k + log(1/¢)) will do).

Construction 2 Let Z,(1), ..., Z1(1)yoeey Zo(1), .., Zn(1) be a t-wise (¢/2'T)-approxzimation in L.,
norm of the uniform distribution over {0,1}". For every i, if the string Z;(1)---Z;(1) is between
(in lexicographic order) the string ¢; ; (1) ---¢; ;(1) and the string ¢; j41(1) -+ -q; j11(1) then setY; = j.

Extending the argument used in the previous subsection we can easily evaluate the quality of
Construction 2 as a max-norm approximator. The statement and proof of Claim 2 are slightly
changed: the number of nodes at level ¢ which are not complete is now bounded by Zf;ol (:) 2 <
23142k We get

Proposition 2 Lett = 4-(2k +log,(4/¢)) and | = 3+1og,(k/€). ThenY;’s presented in Construc-
tion 2 constitute a k-wise e-approximation in L., norm of the n-fold X .
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Approximation in L; norm follows immediately by bounding the L; approximation error by s*
times the L., approximation error. Using the known results on ¢-wise approximation of the uniform
distribution over {0,1}", Theorem 1 follows*.

2.3.3 Alternative construction for special case

In the special case where the specification of the n-fold variable X can be expressed by a matrix

in which all entries are rationals of the form %, for some small prime p (e.g., p = 3), much better
P

k-wise approximation schemes can be constructed. In this case, a k-wise e-approximation of X is
constructed using a k-wise e-approximation of the uniform distribution over G F(p)", in the obvious
manner®.

The construction can be extended to the case that where the specification of the n-fold variable
X can be well approximated by a matrix in which all entries are rationals of the form ;—;, for some
small prime p (e.g., p = 3). By well approximation we mean that the absolute difference between
an entry in the specification matrix of X and the corresponding entry in the approximation matrix
should not exceed the approximation error in the desired construction (i.e., the parameter ¢). Hence,
this approach is applicable only if the specification matrix has good approximation by a rational
matrix with relatively small common denominator.

*Recall that we need a t-wise 2_(t+1)6—approximation in max-norm of the uniform distribution over {0, l}l".
By results of [2 %)2 =
(2tlog,(In))” - (£)°. Substituting the values of ¢ and I, we get F* - (fTG;), where F' = O((k + log(1/¢)) - (log, n +
loglog(k/¢€))).

®Recall that k-wise e-approximation (in max norm) of the uniform distribution over GF(p)™ can be constructed

using support of the same cardinality as in the construction of such approximations for the uniform binary distribution
[2, 3, 8].

such approximations can be efficiently constructed having sample space of size (

[y
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Chapter 3

Some Probablity Spaces over GF(p)

In the first section we define what we mean by a small-bias probability space over G F(p)”, for prime
p > 2, and provide a construction. Qur definition generalizes the one commonly used for p = 2,
and our constructions of e-biased spaces over GF(p)" maintain the size of known constructions for
G F(2)", independent of p. In the second section we relate such small-bias spaces to more standard
notions of approximation, which refer to the pointwise difference between probability spaces.

3.1 Small Bias Spaces over GF(p), for p > 2

In this section we present a construction of small biased probability spaces over the prime field
G F(p). Such spaces consists of n-long sequences over G F'(p), where n and € are parameters so that
for every t-long sequence (cy,...,¢;) of elements in G'F(p), so that not all ¢;’s are zero, and every

v e GF(p)
- 1
|P(Zciri =v)— —|<e¢
i=1 p

where the probability is taken uniformly over all possible sequences, (74, ..., 7;), in the sample space.

The sample space we construct has size O(n/e€)?. It generalizes the first construction (i.e., the
LFSR Construction) of [2] (which was presented there for p = 2). We point out that other two
constructions are known, generalizing the second and third constructions of [2] (cf., [3] and [2],
respectively).

A point in the sample space is specified by two sequences of length m Lt log,(n/€) over GF(p),
denoted fy--- f,_1 and sg - 8,,_1, Wwhere fy = 1 and ™ + Z?;Bl ;-1 is an irreducible polynomial.
The n-bit sample string, denoted rq---7,_; is determined by r; = s; for ¢ < m and r; = Z;n:_ol 1
Ti—m4; for @ > m.

3.1.1 Formal Setting

The following definition of small-bias sample spaces implies the informal definition presented above.
Both definitions are legitimate generalizations of the definition of small-biased sample spaces for
the binary case (and indeed they are equivalent for p = 2).

Definition 5 Let n be an integer, p be a prime and w be a p™ root of unity (in the complex field).
A set S C GF(p)* is said to have e-bias (sample space for GF(p)") if, for every n-long sequence
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ai, ...,a,) of elements in GF(p), so that not all a;’s are zero, the expectation of (the magnitude of)

ATy

=" taken over all (ry,...,7,) € S with uniform distribution, is bounded above by €. That is,
HE(h,...,Tn)ES (wz’zl a,r,)

Theorem 2 For every integer n, prime p and € > 0, there exists an efficiently constructible e-bias
sample space for GF(p)" of size (2n/e¢)?.

| <« (3.1)

3.1.2 The Construction

Our construction is based on linear feedback shift register (LF'SR) sequences over G F(p). We stress
that the arithmetics in the LF'SR is that of G F(p).

Definition 6 (linear feedback shift register sequences): Given two sequences 3 = sq,S1,...5m_1
and f = fo, fi,... fm_1 over GF(p), the shift register sequence generated by the feedback rule f and
the start sequence S is rq,7,...7,_1 where r; = s; for i < m and r; = Z;n:_ol fi ricmyy Jor v > m.

Our sample space will consist of all shift register sequences generated by “non-degenerate” feedback
rules and any starting sequence. A feedback rule fy, fi,... fin_1 is called non-degenerate if f(t) Lt

™+ Z;n:_ol f; -t/ is an irreducible polynomial over G F(p).

Construction 1 (Sample Space ST (p)): The sample space ST (p) is the set of all shift regis-
ter sequences generated by a non-degenerate feedback rule. Namely, ST (p) contains all sequences

T = 1Ty Trn_1 Such that there exists a non-degenerate feedback rule, f, and a start sequence, 3,
generating 7.

For the rest of this section we consider polynomials over G F(p). The number of irreducible monic
polynomials of degree m is (cf., [14, Chap. 4, Thm. 15])

LS um/d) -
dm

where i is the ordinary Mobius function (i.e. p(z) = (—1)° where s is the number of primes that
divide « if z is squarefree and p(z) = 0 otherwise). Since also p(1) = 1 the above expression is
(1+ O(p_m/z))’%. For the rest of this section we will, for notational simplicity, treat the number of

irreducible monic polynomials of degree m as if it is exactly ’%. (The error introduced is absorbed

in the error term.) Hence, with this convention we say that the size of 57'(p) is ©—. Thus, setting

m log,(1/¢€) and proving the proposition below, Theorem 2 follows.

Proposition 3 : The sample space S)7'(p) is ’;;1(1 + O(27™/2))-biased.

m

Proof: We fix an arbitrary (not all-zero) sequence, a ! (ag,...,@n_1), and consider the value of
the expression in the Lh.s. of Eq. (3.1). Furthermore, we fix a feedback rule, f, and consider

HE(SD""VSM—I)EGF(Z))WL (wzzl:_ol a,r,)

‘ < e (3.2)

where 7q,...,7,_; is the shift register sequence generated by the feedback rule f and the start

_ def
sequence 3 = (Sg, ..y Sm_1)-
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Towards evaluating Eq. (3.2), we consider the distribution of («, ), st gy (when we only

vary the starting vector 5). A key observation is that the r;’s are a linear combination of the s;’s
(which are the only indeterminates as the f;’s were fixed). It is useful (and standard practice) to
notice that in G'F(p), the reduction of ## modulo f() (= t™ + 325" fi - ') is a linear combination
of t°,#1,...t™~1 and that this linear combination is identical to the coefficients in the expression
of r; as a linear combination of the s;’s. Hence, a linear combination of the r;’s (which is exactly
what (a,r), is) corresponds to a linear combination of the corresponding powers of ¢*. This linear
combination can be either identically zero or not. The first case means that the polynomial f(t)
divides the polynomial a(t) ¥ S"=!a; - #; whereas in the second case (a, 7), being a non-constant
combination of the s;’s is unbiased when the s;’s are uniformly selected. Thus, Eq. (3.2) is 1 if the
polynomial f(t) divides the polynomial a(t) and is 0 otherwise (since in that case the expectation
equals zl? ?;é W =0).

Thus, the value of Eq. (3.1) equals the probability that the polynomial f(¢) divides the poly-
nomial a(t). The latter probability is bounded by the fraction of irreducible monic polynomials of
degree m which divide a specific polynomial of degree n — 1. There are at most ”m;l irreducible
monic polynomials of degree m which divide a polynomial of degree n — 1. Dividing by the number
of irreducible monic polynomials of degree m (i.e., ’%), the proposition follows. Il

3.2 Notions of approximations versus various norms

Notation. One may view probability spaces over a finite Abelian group G as elements in the
vector space Hg consisting of functions that map G to the complex numbers.
An inner product in the vector space H is defined by

(f.9)=> f(z) g(x)

We are interested in two orthonormal bases: the character functions {7,},c¢ and Kronecker
functions {6,},eq. The Character function for a cyclic group & generated by g is defined by

= 1,
ﬂ-g’(g)_\/@

where w = €2™/I6l is the complex root of unity of order |G|. For G = GF(p)", the characters are
of the form

ij

ﬂ‘flyf2y'~~yfn($17 Loy .- '7$n) = p_n/sz’:D fu

where w = €27/?. The Kronecker function ¢, (for g € () is defined by

, 1 ifg=y¢
69(9):{

0 otherwise

Norms over the vector space Hg are defined by considering the Fourier series. Namely, the
series of coefficients in the representation of functions by orthonormal bases. Given an orthonormal
base B = {b1,bs,...,big}, 7 > 1, and a function f € Hg, The norm Ng . (f) is defined by

1/r
G| /

Noolf) = [ 1)
When r = 00, Np o(f) equals maxl»ill | (f,b:)].

19



Relations between definitions. Let (' denote the orthonormal basis of characters, and let K
denote the orthonormal basis of Kronecker functions defined above. Let S denote a probability
space over (&, and let U denote the uniform probability space over (G. The following relations hold:

1. The probability space S is e-biased iff

£
|G

NC,OO(S - U) S

This follows from the following observation. Since the group of characters of G is isomorphic
to G, we denote by 7w, the character that corresponds by the isomorphism to ¢ € G. By
definition,

Neo(S=U)= I;leaéd (S —U,m,)|

Note that (S — U, 7;) = 0, for the identity I € G (since w;(g) = 1, for every g € GG). Morover,
(U,my) =0, for g € G — I. Therefore,

Newol§ = U) = ——= - max | Fjs[r, ()]

V]G] s€c-1
For G' = GF(p)", the latter coincides with Eq. (3.1), divided by /|G].
2. The probability space § is an e-approximation iff
Ngoo(§S=U)<ce
This follows from Nk (5 — U) = maxyeq |S(g) — U(g)|.
3. The probability space S is an e-L1-approximation iff
Ng1(S—-U)< 2

This follows from Nk (S —U) =" o |5(9) = Ulg)l-

Relations between approximations. The previous paragraph shows that one may view dif-
ferent types of approximations of the uniform probability space as bounding the norms over the
approperiate basis. We now bound the norms when bases are changed.

Claim 3 Let B, and By denote any two orthonormal bases. Then,

Np,,00(f)
Ng,1(f)

|G- Np, oo (f) (3.3)

<
< |Gl Np, oo(f) (3.4)

Let By = K and By = C. Then Eq. (3.3) implies that an e-biased space is also an e-approximation.
Eq. (3.4) implies that an e-biased space is also an ¢ - (1/|G]/2)-L1-approximation.

Proof: The first part is proved by the following transitions. The first and third transitions are
trivial, and the second trasition follows from Parseval’s formula.

Np,oo(f) < Np,o(f)
= NB2,2(f)
>~ |G|'NBQ,00(f)

A
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For the second part we use the following three equations, justified by Cauchy-Schwartz inequality,
Parsevals’ formula, and a trivial substitution, respectively.

Np, 1(f) |G|+ Np, 2(f)
NBl,z(f) = NBQ,z(f)

Np,o(f) < |Gl Np,eof)

IN

The second part follows. a

21



Bibliography

[1] Alon, N., Babai, L., Itai, A., “A Fast and Simple Randomized Parallel Algorithm for the
Maximal Independent Set Problem”, Journal of Algorithms, 7, pp. 567-583, 1986.

[2] Alon, N., Goldreich, O., Hastad, J., Peralta, R., “Simple Constructions of Almost k-wise
Independent Random Variables”, Proc. 31st FOCS, 1990.

[3] Azar, Y., Motwani, R., Naor, J., “An efficient construction of a multiple value small bias
probability space”, to appear.

[4] Beck, J., Chen, W., “Irregularities of distribution”, Cambridge University Press, 1987.

[5] Ben-Natan, R., “On Dependent Random Variables Over Small Sample Spaces”, M.Sc. Thesis,
Computer Science Dept., Hebrew University, Jerusalem, Israel, Feb. 1990.

[6] B. Chor, J. Freidmann, O. Goldreich, J. Hastad, S. Rudich, and R. Smolensky, “The bit
extraction problem and t-resilient functions”, Proc. 26th FOCS, 1985, pp. 396—407

[7] Chor, B., Goldreich, O., “On the Power of Two—Point Based Sampling,” Jour. of Complezity,
Vol 5, 1989, pp. 96-106.

[8] Even, G., “Construction of Small Probabilistic Spaces for Deterministic Simulation”, M. Sc.
(in Computer Science) thesis, submitted to the Senate of the Technion (Israel Institute of
Technology) in Aug. 1991. (In Hebrew, abstract in English).

[9] Karp, R., Wigderson, A., “A Fast Parallel Algorithm for the Maximal Independent Set Prob-
lem”, proceedings of 16" ACM Symposium on Theory of Computing, 1984.

[10] Knuth, D., Yao, A., “The complexity of non uniform random number generation”, in Algo-
rithms and Complexity, Ed. J. Traub, AC Press, New York, pp. 357-428, 1976.

[11] Linial, N., Nisan, N., “Approximate Inclusion-Exclusion”, 22"¢ STOC, 1990.

[12] Luby, M., “A Simple Parallel Algorithm for the Maximal Independent Set Problem,” 17"
STOC, May 6-8 1985, pp. 1-10, SIAM J. on Computing, November 1986, Volume 15, No. 4,
pp. 1036-1053

[13] Luby, M., Velickovi¢, B., “On Deterministic Approximation of DNF”, Proc. 23rd STOC, 1991,
pp. 430-438.

[14] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland,
Amsterdam, 1977.

22



[15] Naor, J., Naor, M., “Small-bias Probability Spaces: Efficient Constructions and Applications”,
22nd STOC, 1990, pp. 213-223.

[16] Nisan, N., “Pseudo-random Generators for Space-Bounded Computation”, 22"¢ STOC, May
14-16 1990, pp. 204-212.

[17] Niederreiter, H., “Constructions of Low-Discrepancy Point Sets and Sequences”, get the correct
reference here, probably several.

23



