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AbstractThis report describes e�cient constructions of small probability spaces that approximate the jointdistribution for general random variables. These results yield e�cient constructions of small setswith low discrepancy in high dimensional space.Chapter 1 contains the text (more or less) as it has appeared in the STOC92 proceedings. Inthat version the problem of approximating the product distribution of general random variables isreduced to the construction of small discrepancy sets, and all constructions are presented in termsof the latter problem.Chapter 2 contains contains an ealier version in which only the �rst construction is presented.The exposition is in terms of the original problem (i.e., of approximating the product distributionof general random variables).In Chapter 3 we provide details for a construction of a small bias sample space over GF (p), forp > 2. References to this construction are made in Section 2.3.3 (and at the end of Section 1.3.1)as well as in subsequent literature, however so far details have only appeared in the �rst author'sM.Sc. Thesis (in Hebrew).
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Chapter 1The STOC92 Version: Approximationand DiscrepanciesAbstractWe describe e�cient constructions of small probability spaces that approximate the jointdistribution for general random variables. Previous work on e�cient constructions concentrateon approximations of the joint distribution for the special case of uniformboolean-valued randomvariables. Our results yield e�cient constructions of small sets with low discrepancy in highdimensional space and have applications to derandomizing randomized algorithms.1.1 IntroductionThe problem of constructing small sample spaces that \approximate" the independent distributionon n random variables has received considerable attention recently (cf. [7, Chor Goldreich] [9, KarpWigderson], [12, Luby], [1, Alon Babai Itai], [15, Naor Naor], [2, Alon Goldreich H�astad Peralta], [3,Azar Motwani Naor]). The primary motivation for this line of research is that random variables thatare \approximately" independent su�ces for the analysis of many interesting randomized algorithmand hence constructing a small probability space that \approximates" the independent distributionyields a way to \derandomize" these algorithms, i.e. convert them to deterministic algorithmsof reasonable complexity by using the deterministically constructed sample space in place of the\internal coin tosses" of the algorithm. The culmination of previous works are constructions of smallsample spaces that approximate a constant amount of independence for general random variables(see for example [12, Luby] or [1, Alon Babai Itai]) or that approximate complete independence foridentically and uniformly distributed boolean-valued random variables [15, Naor Naor], [2, AlonGoldreich H�astad Peralta], [3, Azar Motwani Naor]). Although previous results are su�cient forsome applications to derandomizing algorithms, in many applications what is needed is a smallsample space that approximates more than a constant amount of independence for general randomvariables. In this paper we present constructions of small e�ciently constructible sample spaces forthis more general case.1.1.1 De�nitions of ApproximationThe probability distribution on n general m-valued random variables is described by a n by mprobability matrix Pn;m = fpi;v : i 2 f1; : : : ; ng; v 2 f0; : : : ; m � 1gg, which is a matrix of non-negative entries such that the sum of the entries in each row is equal to 1. The (i; v)-entry pi;vspeci�es the probability that the ith random variable should take on value v. For all values of2



l 2 f1; : : : ; ng, for all I =< i1; : : : ; il >, where 1 � i1 < : : : < il � n, and for all V =< v1; : : : ; vl >2f0; : : : ; m� 1gl, let pI;V = Qlj=1 pij;vj be the probability that the subsequence of random variablesindexed by I should take on value V if the random variables were truly independent.From Pn;m we want to produce a �nite set S that induces a distribution on n random variablesx1; : : : ; xn which approximates the independent distribution for Pn;m. All constructions for S givenin this paper are e�cient in the sense that there is a deterministic algorithm which produces S intime polynomial in the length of the description of Pn;m and in the length of the description of S.The description of each point s 2 S consists of, for each index i, a value xi(s) 2 f0; : : : ; m � 1gfor the ith random variable. We view S as a sample space that induces a distribution on x1; : : : ; xnde�ned by choosing a point randomly and uniformly from S. We let xI be the subsequence ofrandom variables indexed by I , we let xI = V denote the event that the subsequence xI takes onthe value V , and we let PS [xI = V ] be the probability that event xI = V occurs in the distributioninduced by S. We say that S is independent for Pn;m if it induces a distribution on x1; : : : ; xnsuch that, for all l, I =< i1; : : : ; il > and V =< v1; : : : ; vl >, PS [xI = V ] = pI;V . (Hereafter, thequanti�cation \for Pn;m" is omitted for brevity whenever Pn;m is clear from the context.) We sayS is a (k; �)-approximation if for any subsequence I of size l � k and for any set of possible valuesV 2 f0; : : : ; m� 1gl, jPS [xI = V ]� pI;V j � �. S is an �-approximation if this statement is true withno restriction on the size of I and S is a k-wise independent approximation if this statement is truewith � = 0.1.1.2 Previous Work on ApproximationLet Un;m be the probability matrix with all entries equal to 1=m that describes the special case of nidentically and uniformly distributed m-valued random variables. Thus, Un;2 is the important sub-case where all entries are 1=2 that describes n identically and uniformly distributed boolean-valuedrandom variables. It is fairly easy to prove that S has to be of size at least 2n to be independenteven for Un;2. Constructions of sample spaces that are k-wise independent approximations for Un;mof size maxfn;mgk, and that are (k; �)-approximations for general Pn;m with size (maxfn; k=�g)k,are implicit in many works; a brief survey of some of these constructions can be found in either [12,Luby] or [1, Alon Babai Itai]. For constant k and 1=� polynomial in n, this yields a sample spaceof size polynomial in n.It has been recognized that in many other examples, what is needed is a sample space thathas more than a constant amount of independence between the n random variables; typicallylogarithmic in n independence su�ces. On the other hand, it has been shown that the sample spacehas to be of size at least nk=2 in order to be a k-wise independent approximation for Un;2 [6, ChorFreidmann Goldreich H�astad Rudich Smolensky], and for non-constant k this is not polynomial inn. [15, Naor Naor] introduced the idea of allowing the error parameter � and gave an ingeniousconstruction of a sample space that is an �-approximation for Un;2 where the size of the samplespace is O(n log(n)=�4). Simpler constructions with a sample space of size O((n log(n))2=�2) forUn;2 were subsequently presented in [2, Alon Goldreich H�astad Peralta]. These constructions canbe extended to Un;m, basically using the same ideas, but in a slightly more complicated way (cf. [2,Alon Goldreich H�astad Peralta], [3, Azar Motwani Naor], [8, Even]), where the size of the resultingsample space is O((n log(n))2=�2).1.1.3 New Results on ApproximationFor some applications the constructions described in the previous subsection are quite useful. Forexample, in the analysis of some of the randomized algorithms for graph problems presented in [12,3



Luby] and [1, Alon Babai Itai], approximate pairwise independence of the random variables su�ces.Thus, the construction of a sample space of polynomial size that is a pairwise independent approx-imation for general Pn;m can be used to convert these randomized algorithms into deterministicalgorithms. In other applications (see [15, Naor Naor]), approximations of identically and uniformlydistributed boolean-valued random variables su�ce. However, in the more typical application therandom variables are general and more than a constant amount of independence is required in theanalysis, and thus it is of primary importance to develop constructions for these cases.In this paper, we describe three constructions of small sample spaces that are approximationsof the independent distribution for general Pn;m; the �rst two constructions are new and the thirdis a construction based on a theorem in [16, Nisan]. The �rst construction yields a sample spacethat is a (k; �)-approximation, where the size of the sample space is polynomial in log(n), 2k and1=�. Previous results that achieve the same kind of approximation result in a sample space of sizepolynomial in log(n) and (k=�)k. In contrast to previous results, when k = O(log(n)) and 1=� ispolynomial in n the size of the sample space in our construction is polynomial in n. This case isimportant to some applications, and in particular this construction improves the running time ofsome of the algorithms presented in [13, Luby Veli�ckovi�c].The second and third constructions for n general random variables yield samples spaces that are�-approximations for general Pn;m, where the size of the sample space is polynomial in (n=�)log(1=�)for the second construction and polynomial in (n=�)log(n) for the third. In contrast, the previousbound on the sample space size, implicit in the classical work on discrepancy theory (see e.g. [4,Beck Chen] or [17, Niederreiter]), is polynomial in nn=�. For interesting cases of n and �, i.e. when1=� is polynomial in n, the results presented here are dramatic improvements.1.1.4 DiscrepanciesLet [0; 1)n be the n dimensional unit cube, let Rn be the set of all axis parallel rectangles within[0; 1)n, and for each R 2 Rn, let vol(R) be the volume of R. For any �nite set of points S in [0; 1)nand for any R 2 Rn, de�ne the discrepancy of S on R as discS(R) = jvol(R)� jS \ Rj=jSjj. Thisquantity is the absolute value of the di�erence between the probability that a randomly chosen pointfrom [0; 1)n falls in R and the probability that a randomly chosen point from S falls in R. For anyKn � Rn, the discrepancy of S on Kn is de�ned as �S(Kn) = maxR2Kn discS(R). Finding explicitconstructions of sets with small discrepancy have a variety of applications, including applications tonumerical integration. The discrepancy problem can be stated as follows: given n and �, constructa set S in [0; 1)n with �S(Rn) � �.As we describe (and as also has been describe before by others, e.g. [17, Niederreiter]), there isan close connection between discrepancy and approximating independent distributions of n generalrandom variables. Our primary interest in sets with small discrepancy is that they are universal forthe problem of constructing sample spaces that are good approximations for general distributions.For example, a set S in [0; 1)n for which �S(Rn) � � can be viewed as universal in the followingsense: There is a simple e�cient algorithm that given S and any Pn;m computes a sample spacethat is an �-approximation for Pn;m. To be of interest in the problem of approximating randomvariables, it is crucial that the size of S be small in terms of both parameters � and n.Classical work on the discrepancy problem concentrates on minimizing the size of S primarilyas a function of 1=� and then secondarily as a function of n [4, Beck Chen], [17, Niederreiter],i.e. the dimension n is thought of as arbitrary but �xed and the goal is to �nd a set S with sizeas small as possible as a function of 1=�. Although classical work shows that there are explicitconstructions of S with size smaller than that implied by a random construction for �xed n, the4



bounds are exponential in n and say nothing non-trivial for values of n and � interesting for thecase of approximating general distributions. i.e. when n and 1=� are comparable.The constructions presented here give new results for the discrepancy problem. For any constant� < 1 let R[0;�)n � Rn be the set of rectangles R such that in each dimension i the length of Ris either 1 or else it is in the range [0; �). The �rst construction yields, for any constant � < 1,a set S in [0; 1)n of size polynomial in both n and 1=� such that �S(R[0;�)n ) � �. The secondconstruction yields a set S in [0; 1)n of size polynomial in (n=�)log(1=�) such that �S(Rn) � �, andthe third construction yields a set S with the same properties of size (n=�)log(n). In contrast tothese new results, the previous known bounds from classical discrepancy theory on the size of anexplicitly constructible set S in [0; 1)n with small discrepancy are exponential in n [4, Beck Chen],[17, Niederreiter].It is easy to see that a random set of points S in [0; 1)n of size cn log(n=�)=�2 for some constantc > 1 has the property that �S(Rn) � � with high probability. The crucial property missingfrom this proof of existence is e�cient constructibility. We leave this as an open question, i.e. theproblem of �nding an explicit construction of a set S in [0; 1)n with �S(Rn) � � and with jSjpolynomial in both n and 1=�. As stated above, a solution to this problem would yield a universalset S of size polynomial in both n and 1=� that for all Pn;m can be interpreted as a sample spacethat is an �-approximation for Pn;m.1.2 Linking discrepancy and approximationIn this section we provide the (straightforward) link between sets S with small discrepancy andsample spaces that approximate the independent distribution on n random variables.De�nition (classes of rectangles): The n dimensional unit cube is [0; 1)n. Let R = Qi2f1;:::;ng ribe an axis-parallel rectangle in [0; 1)n, where each ri = [ai; bi) is a subinterval of [0; 1). We say R istrivial in dimension i if ri = [0; 1). Without loss of generality, we restrict attention to those rectan-gles for which there is no i 2 f1; : : : ; ng with ai = bi. The volume of R is vol(R) = Qi2f1;:::;ng bi�ai:� De�ne Rn to be the set of all axis parallel rectangles in [0; 1)n.� For constant � < 1, de�ne R[0;�)n to be the subset of Rn consisting of all rectangles R =Qi2f1;:::;ng ri such that for each i either R is trivial in dimension i or else ri = [ai; bi) withbi � ai � �.� For positive integer k, de�ne Rkn to be the subset of Rn consisting of all rectangles R suchthat R is trivial for all but at most k dimensions.� For any Kn � Rn and any positive integer m � 2, de�ne Kn;m as the set of rectanglesR = Qi2f1;:::;ng ri 2 Kn such that each ri is of the form [ai=m; bi=m) for integers ai and bisatisfying 0 � ai < bi � m. For example, Rn;2 is the subset of Rn consisting of all rectanglesR = Qi2f1;:::;ng ri such that for each i 2 f1; : : : ; ng, ri = [0; 1=2) or ri = [1=2; 1) or ri = [0; 1).De�nition (projection sample space): Let S be a �nite subset of points from [0; 1)n and letPn;m be a probability matrix. S can be viewed as the projection sample space for Pn;m, inducinga distribution on random variables x1; : : : ; xn as follows. For all i 2 f1; : : : ; ng let interval ri;0 =[0; pi;0) and for all v 2 f1; : : : ; mg let interval ri;v = [ai;v; bi;v), where ai;v = P0�w<v pi;w andbi;v = ai;v + pi;v. Random variable xi at a point s =< s1; : : : ; sn >2 S takes on the unique value vthat satis�es si 2 ri;v. 5



A set S � [0; 1)n as just described is universal in the sense that it can be interpreted in astraightforward way as a sample space for any Pn;m. The interpretation has the property that it iscoordinate independent in the sense that the value given to xi at sample point s 2 S depends onlyon the ith coordinate of s and on the ith row of Pn;m.The crucial links between discrepancies and approximations are the following observations.1. If �S(Rn) � � then for anyPn;m the projection sample space of S forPn;m is an �-approximation.2. If �S(Rkn) � � then for any Pn;m the projection sample space of S for Pn;m is a (k; �)-approximation.3. If �S(Rn;2) � � then the projection sample space of S for Un;2 is an �-approximation.From this discussion it is clear that in order to produce sample spaces which approximate theindependent distribution for n general random variables it su�ces to produce small �nite setsS � [0; 1)n with small discrepancy.De�nition (the natural mapping to [0; 1)n): We can view a sample space S that induces adistribution on x1; : : : ; xn for Un;m in a natural way as a �nite set of points in [0; 1)n, where the ithcoordinate of s 2 S is xi(s)=m.From this the converse of observation 3 follows, i.e. it is not hard to verify that if S is an�-approximation for Un;2 then �S(Rn;2) � � when sample points in S are mapped to [0; 1)n in thenatural way. The converses of observations 1 and 2 are not so obvious. For example, it is true thatif S is a sample space that is a (k; �)-approximation for Un;m then �S(Rkn;m) � �mk when points inS are mapped to [0; 1)n in the natural way, but this is too weak of a bound for most purposes.Some further useful observations are:4. �S(Rn;4n=�) � �=2 implies that �S(Rn) � �. This is because for any rectangle R 2 Rn thereare rectangles R�; R+ 2 Rn;4n=� such that R� � R � R+ and such that vol(R+)� vol(R�) ��=2.5. By similar reasoning to that used in observation 4, �S(Rkn;4k=�) � �=2 implies that �S(Rkn) ��.6. �S(Rkn) � � implies that �S(R[0;�)n ) � � + �k. This follows because vol(R) � �k for anyrectangle R 2 R[0;�)n which is non-trivial in more than k dimensions. This shows for constant� and for k = O(log(1=�)) that �S(Rkn) � �=2 implies that �S(R[0;�)n ) � �.1.3 The ConstructionsAll of the results are stated in terms of constructions of sets with small discrepancy. The con-structions of small sample spaces that approximate the independent distribution follow from theobservations of the previous section.1.3.1 Construction based on reducing from boolean to generalTheorem 1 There is an explicitly constructible �nite set S � [0; 1)n with �S(Rkn) � � such thatjSj is polynomial in log(n), 2k and 1=�. 6



PROOF:Let x11; : : : ; xl1; : : : ; x1n; : : : ; xln be n blocks of l boolean-valued random variables each, where l isa positive integer whose value is determined later. For each i 2 f1; : : : ; ng we let random variablexi = :x1i � � �xli be a binary fraction where xji is the jth most signi�cant bit. We show, the event< x1; : : : ; xn >2 R occurs with probability within � of vol(R) for every rectangle R 2 Rkn whenthese random variables have the properties we develop below.Without loss of generality, �x a rectangle R = Qi2f1;:::;ng[ai; bi) 2 Rkn such that the �rst kdimensions are the non-trivial ones, i.e. for all i = k + 1; : : : ; n, [ai; bi) = [0; 1). For simplicity ofpresentation, for all i = 1; : : : ; k, we restrict the ith interval to be of the special form [0; bi). (Theanalysis for the case when the interval is of the general form [ai; bi) is no more di�cult technically,just not as clean.) To determine if the event < x1; : : : ; xn >2 R occurs, it is enough to determineif the k subevents x1 2 [0; b1); : : : ; xk 2 [0; bk) all occur simultaneously.We think of determining the outcomes of the k subevents starting with subevent x1 2 [0; b1) andending with xk 2 [0; bk). Let bj1 be the jth bit in the binary expansion of b1. We compare the bitsx11; : : : ; xl1 with b11; : : : ; bl1 one at a time, starting with the most signi�cant bit and working down,stopping as soon as x1 2 [0; b1) or x1 62 [0; b1) has been determined. Note that if x11 6= b11 then theoutcome of the �rst subevent is determined one way or the other, i.e. if x11 = 0 and b11 = 1 thenx1 2 [0; b1), whereas if x11 = 1 and b11 = 0 then x1 62 [0; b1). In this case, we move on to determinethe outcome of the second subevent. On the other hand, if x11 = b11 then the outcome of the �rstsubevent hasn't been determined and we next compare x21 with b21, etc.Determining the outcomes of the k subevents can be viewed as a complete binary tree labeledwith the boolean-valued random variables. The root of the tree is labeled with x11, the left edge outof the root corresponds to x11 = b11 and the right edge corresponds to x11 6= b11. At each subsequentnode of the tree, the node is labeled with the boolean-valued random variable that is considerednext; e.g. the left child of the root is labeled x21 and the right child label is x12.Suppose for now that x11; : : : ; xl1; : : : ; x1n; : : : ; xln are independently and uniformly distributed. Arandom setting of the variables de�nes a random path down the tree, and it is easy to see that if arandom path is taken down this tree (and l is in�nite) then the probability that the k subevents allsimultaneously occur is exactly vol(R). Furthermore, on average the values of two boolean-valuedrandom variables are examined to determine the outcome of each subevent, and thus on averagewe examine 2k boolean-valued random variables to determine the outcomes of all k subevents.Consider the probability that the outcomes of all k subevents are not determined by the time the�rst k0 boolean-valued random variables are examined. This probability is exactly the same as theprobability that there are less than k \heads" in k0 tosses of a fair coin. By a standard analysis, whenk0 is set to a value that is O(k+log(1=�)) it can be easily shown that this probability is at most �=2.This shows the probability a random path down the tree to depth k0 doesn't determine the outcomesof all k subevents is at most �=2. Consequently if x11; : : : ; xl1; : : : ; x1n; : : : ; xln are k0-wise independentand uniformly distributed then the probability that all k subevents occur simultaneously is within�=2 of vol(R).There are only 2k0 paths down to depth k0 in the tree. Thus, if, for every path down to depthk0 in the tree, the actual probability of the path is within �=2k0+1 of 1=2k0 then the analysis showsthat the probability all k subevents occur simultaneously is within � of vol(R). From this it followsthat any distribution on x11; : : : ; xl1; : : : ; x1n; : : : ; xln that is a (k0; �0)-approximation for Unl;2 (withk0 = O(k + log(1=�)) and �0 = �=2k0+1 and l = k0) has the property that the probability that all ksubevents occur simultaneously is within � of vol(R) for all R 2 Rkn. For these values of l, k0 and�0 we can use [15, Naor Naor] or [2, Alon Goldreich H�astad Peralta] to construct a sample space Swhich induces a distribution on x11; : : : ; xl1; : : : ; x1n; : : : ; xln that is a (k0; �0)-approximation for Unl;27



with jSj polynomial in log(n), 2k and 1=�.It should be noted that this analysis uses components of analysis for \Discrete DistributionGenerating tree" described in [10, Knuth Yao] and also component of an analysis presented in [13,Luby Veli�ckovi�c].Setting k = O(log(1=�)) and using observation 6 from section 1.2 shows that for any constant� < 1 there is a set S of size polynomial in 1=� and log(n) with �S(R[0;�)n ) � �.Alternative construction for special caseFor the special case when p is a small prime (e.g., p = 3) there is a smaller sample space that is a(k; �)-approximation for Un;p; the construction is a generalization of the construction for Un;2, andcan be found in [2, Alon Goldreich H�astad Peralta], [3, Azar Motwani Naor] and [8, Even].1.3.2 Construction based on the inclusion-exclusion formulaLet k = O(log(1=�)) and let S be a sample space that is a k-wise independent approximation forUn;4n=�. In this section, we show this implies �S(Rn) � � when points in S are mapped in thenatural way to [0; 1)n. Using standard constructions (see for example [12, Luby] or [1, Alon BabaiItai]), there is a constructible set S with these properties of size polynomial in (n=�)log(1=�).The �rst easy observation is that �S(Rkn;4n=�) = 0 when points in S are mapped in the naturalway to [0; 1)n. Then, we use the theorem described below to show that �S(Rkn;4n=�) = 0 andk = O(log(1=�)) implies that �S(Rn;4n=�) � �=2. Finally, observation 4 from section 1.2 shows that�S(Rn) � �:Theorem 2 Let Pn;2 be a general probability matrix for n boolean-valued random variables x1; : : : ; xn.Then, jPD[ ^i2f1;:::;ngxi = 0]� Yi2f1;:::;ng pi;0j � 2�
(k)for any probability space D that induces a distribution on x1; : : : ; xn that is a k-wise independentapproximation for Pn;2. (Note that if x1; : : : ; xn are independently distributed for Pn;2, then theevent Vi2f1;:::;ng xi = 0 has probability exactly Qi2f1;:::;ng pi;0.)PROOF: The idea is to use the inclusion-exclusion formula. Fix D to be any space that inducesa distribution on x1; : : : ; xn that is a k-wise independent approximation for Pn;2. De�ne T0 = 1and for all j = 1; : : : ; k de�ne Tj = XI=<i1;:::;ij> Yl=1;:::;j pij ;1;i.e. Tj is the jth term of the inclusion-exclusion formula. Then, for all even values of j,Pl=0;:::;j(�1)jTjis an upper bound on PD[Vi2f1;:::;ng xi = 0], this quantity is a lower bound for all odd values of jand Tk is an upper bound on jPD[Vi2f1;:::;ng xi = 0]�Qi2f1;:::;ng pi;0j.De�ne � = Pi2f1;:::;ng pi;1. There are two cases to the proof, depending on whether � � k2eor � > k2e . (Where e = 2:718 : : :.) Suppose that � � k2e . We show this implies Tk � 2�k, which�nishes the proof for the �rst case. This inequality holds because, subject to the restriction thatPi2f1;:::;ng pi;1 = �, Tk is maximized when, for all i 2 f1; : : : ; ng, pi;1 = �=n. Thus, Tk � ( �ek)k �2�k. Now suppose that � > k2e . Consider the �rst n0 < n random variables such that k2e � 1 <Pi2f1;:::;n0g pi;1 � k2e and let �0 = Pi2f1;:::;n0g pi;1 � k2e . We �rst show this implies Qi2f1;:::;n0g pi;0 �2�
(k) and then we show how to �nish the proof from this for the second case. Subject to therestriction that Pi2f1;:::;ng pi;1 = �0, Qi2f1;:::;n0g pi;0 is maximized when, for all i 2 f1; : : : ; n0g,8



pi;1 = �0=n0. Thus, because �0 � k2e , Qi2f1;:::;n0g pi;0 � (1� �0=n0)n0 = 2�
(k). From the same proofas used in the �rst case, noting that �0 � k2e , PD[Vi2f1;:::;n0g xi = 0] � Qi2f1;:::;n0g pi;0+2�k. BecauseQi2f1;:::;n0g pi;0 � 2�
(k) and because PD[Vi2f1;:::;ng xi = 0] � PD[Vi2f1;:::;n0g xi = 0], this impliesthat 0 � PD[Vi2f1;:::;ng xi = 0] � 2�
(k). This and 0 � Qi2f1;:::;ng pi;0 � Qi2f1;:::;n0g pi;0 �nishes theproof of the second case.The obvious corollary to this theorem we use to prove the result stated at the beginning of thissection is that �S(Rkn;m) = 0 implies that �S(Rn;m) � 2�
(k).This theorem should be contrasted with the main theorem of [11, Linial Nisan]. Loosely stated,the above theorem says that if the leading O(log(1=�)) terms of the inclusion-exclusion formula areexactly the same as they are for the independent distribution then the probability of the union ofn events is completely determined to within an error �. Loosely stated, one direction of the maintheorem in [11, Linial Nisan] says that an arbitrary speci�cation of less than pn of the leadingterms doesn't even determine the probability of the union of the n events to within a constantamount.One application of the result is to deterministic approximation of the number of satisfyingtruth assignments to a disjunctive normal form boolean formula [13, Luby Veli�ckovi�c]. A morephilosophical application is that the result says that the probability of unions of events that aresomewhat independent and the probability of unions of events that are totally independent arenot very di�erent. This gives some partial justi�cation for modeling \real world" events, whichare somewhat independent but not totally so, by events that are totally independent, withoutdrastically a�ecting the probability of their union.1.3.3 Construction based on hashingThe third construction uses the results given in section 5 of [16, Nisan] and observation 4 ofsection 1.2. The result is that there is an e�ciently constructible set S of size polynomial in(n=�)log(n) such that �S(Rn) � �.1.4 Open ProblemsOne open problem motivated by this work can be found at the end of subsection 1.1.4. An evenharder problem, which was motivation for this work, is the following generalization of that problem:Find an e�ciently constructible set S of size polynomial in n, m and 1=� such that for any union ofat most m rectangles in n dimensional space, the fraction of points in S that fall in their union iswithin � of the volume of their union. A positive solution to this problem would provide an e�cientdeterministic approximation algorithm for the DNF counting problem.1.5 AcknowledgmentsWe thank Emo Welzl for discussions which led to the understanding of the connections between ap-proximations of distributions and discrepancy theory. We thank Nati Linial and Avi Wigderson fora number of helpful technical discussions. We thank Josef Beck for sharing with us his enthusiasmfor this work and his knowledge about discrepancies.9



Chapter 2Eariler Version: Approximation per seAbstractRecently, the problem of contructing small sample spaces, inducing k-wise independent andalmost k-wise independent random variables, has received considerable attention. However, thepositive results obtained so far refer to the special case of identically distributed random variableseach uniformly distributed over the same �nite set (typically f0; 1g).In this paper, we deal with the general problem: given a speci�cation of n independentdistributions, we show how to construct a small sample space de�ning a sequence of n ran-dom variables such that the joint distribution of every k variables is statistically close to thecorresponding joint distribution speci�ed.Our construction reduces the general problem of (k-wise) approximatingan arbitrary productdistribution to the extensively studied special case of (k-wise) approximating uniform distribu-tion over f0; 1gn.2.1 IntroductionIn recent years, much research e�ort has been invested in constructing small sample spaces for k-wiseindependent and almost k-wise independent random variables (cf. [7, 1, 15, 2, 3]). The motivationfor this line of research has been the belief that limited stochastic independence su�ces for theanalysis of many interesting randomized algorithm and hence constructing small probability spacesimplementing limited independence yields a way to \derandomize" these algorithms (i.e., convertthem to deterministic algorithms of reasonable complexity) 1. A typical example of the use of thismethodology has been provided by Luby in his work on the maximal indepedent set problem [12].Surprisingly, it is often ignored that the random variables used in that work are neither identicallydistributed nor uniformly distributed over some sets, and furthermore that this is likely to be the casein many applications. In contrast, all constructions (for limited independence), presented so far,apply to random variables uniformly distributed over the same set (in most cases the two-elementset f0; 1g). Hence, it is of primary importance to investigate the extent to which these constructionscan be generalized to deal with the \k-wise approximation" of arbitrarly stochastically indepedentevents.1By enumerating determinstically all elements in the sample space, and running the algorithm using each of themas the \outcome of the internal coin tosses" of the algorithm.10



2.1.1 What are k-wise �-approximationsThroughout the paper we consider the approximation of product distributions; namely, distributionswhich are the product of many (say n) independent distributions. In other words, we considerrandom variables of the form X = X1 � � �Xn, where the Xi's are indepedent random variables.These Xi's are not necessarily identically distributed or uniformly distributed over some �nitesets. The support of the product variable X , provided none of the Xi is trivial, has cardinalityexponential in n. Our aim is to approximate such an X by a random variable Y = Y1 � � �Yn whichhas much smaller support. It follows that the Yi's cannot be indepedent of each other. Hence, ouraim is to approximate product distributions by distributions of smaller support (which necessarilyare not product distributions themselves).By a k-wise �-approximation of a product (random variable) X = X1 � � �Xn, we mean a randomvariable Y = Y1 � � �Yn (where the Yi are not necessarily independent) so that every k-subproductof the Xi's is \approximated with error �" by joint distribution of the corresponding Yi's. In thesequel, the phrase \approximated with error �" means that the variation distance2, between theresulting random variables, is bounded by �.2.1.2 Known and new results about k-wise �-approximationsAll previous works deal with the approximation of identical random variables which are uniformlydistributed over a �nite set. In particaulr, Naor and Naor [15] presented an e�cient k-wise �-approximation of identical random variables each uniformly distributed over f0; 1g. The supportof their approximation has cardinality O((k logn) � 22k � 1�4 ). Simpler constructions using a supportof size O((k logn)2 � 2k � 1�2 ), were presented in [2]. These constructions can be easily extended toapproximate identical random variables, each uniformly distributed over a �nite �eld (cf. [2, 3, 8]).The size of the support, for a �nite �eld of cardinality q, is O((k logn)2 � qk � 1�2 ). Hence, the supportsize is polynomial in qk� .The obvious way to get k-wise �-approximation of arbitrary (n-fold product) distributions fromthe above is to use a k � log2(2=�)-wise �=2-approximation of product of n � log2(2=�) independentand uniformly distributed 0-1 random variables3. This yields a support size which is polynomial in(2� )k.In this paper we present a simple method for constructing k-wise �-approximations, of arbitrary(n-fold product) distributions, using a much smaller support. Let s be a bound on the numberof elements in the support of a single distribution in the n-fold product distribution, and suppose� < 1=s (which is the natural case). Then, loosely speaking, the k-wise �-approximation presentedin this paper has support of size polynomial in sk� . Hence, whenever s � 1� , our improvement ismeaningful. Let us consider two typical examples:Example 1 Suppose we wish to approximate a product of n indepedently distributed 0-1 randomvariables, each assigned 1 with probability 12+� and 0 otherwise. Using previously known techniques,a k-wise �2 -approximation of this n-fold random variable would have required using a sample space2The variation distance between the random variables U and V isX� jP(U=�)� P(V =�)j. 3These n � log2(2=�) 0-1 variables are partitioned into blocks of length log2(2=�), each encoding elements of thecorresponding set in the obvious manner. 11



of size ��(k), whereas an n-fold of uniformly and indentically distributed 0-1 random variables couldbe k-wise �2 -approximated using a sample space of size poly(1� ; 2k; logn). Using our results the �rst(i.e., \non-uniform") n-fold can be k-wise �-approximated at essentially the same \cost" as the\uniform" one (i.e., using a sample space of size poly(1� ; 2k; logn)).Example 2 Suppose we wish to approximate an n-fold product of indepedently distributed ran-dom variables, where the ith random variable is uniformly distributed over the set f1; 2; :::; sig.Let s def= maxifsig and L def= lcmfsi : i � ng. Using previously known techniques a k-wise�-approximation of this n-fold random variable would have required using a sample space ofsize minfL�(k)� ; 1��(k) g, whereas the n-fold consisting of indepedent random variables each uni-formly distributed over f1; 2; :::; sg could be k-wise �-approximated using a sample space of sizepoly(1� ; sk; logn). Using our results the �rst n-fold (in which variables are not identical) can bek-wise �-approximated at essentially the same \cost" as the indentical case (i.e., using a samplespace of size poly(1� ; sk; logn)).2.1.3 An overview of our constructionOur construction is quite simple and is described below. For simplicity, we consider here thespecial case of approximating n-folds of 0-1 distributions. Namely, each random variable Xi satis�esXi 2 f0; 1g. Let pi = P(Xi=0). To construct a k-wise �-approximation of X = X1 � � �Xn, we usea O(k + log(2=�))-wise poly(�=2k)-approximation of the uniform distribution over f0; 1gnl, wherel def= O(log(2=�). The approximation to X , denoted Y = Y1 � � �Yn, is determined by letting Yi = 0 ifthe Bi < pi �2l, where Bi is the integer encoded in the ith (l-bit long) block of the nl-bit long samplestring. The crucial point is that we are using a O(k + log(2=�))-wise poly(�=2k)-approximation ofthe uniform distribution over f0; 1gnl, rather than using a (k � log(2=�))-wise (�=2)-approximationof it. This requires a more careful analysis.The analysis of the approximation Y uses in an essential way the fact that each Yi is determinedby speci�c �xed locations in the binary string produced by the approximation to the uniformdistribution.We end the introduction by presenting an alternative construction of unknown quality. Theproblem of constructing k-wise approximations to arbitrary product distributions, is remenisence ofthe classic problem of generating arbitrary probability distributions by using a uniform probabilitydistribution over binary strings (or in other words by using an unbiased coin). In particular, Knuthand Yao have extensively analyzed the expected number of coin tosses required in such schemes[10]. A natural suggestion is to use one of these schemes (termed \Discrete Distribution Generatingtree") to produce an a k-wise approximation to the n-fold distribution by using as input a O(k)-wise approximation to the uniform binary distribution. We do not know whether this alternativeapproach works and our conjecture is that it does not.2.2 Formal Setting2.2.1 PreliminariesConvention: Throughout the rest of this paper we consider only random variables ranging over�nite sets. Without loss of generality, each �nite set, say of cardinality s, is associated with the setof the �rst s non-negative integers.We recall two standard de�nitions. The �rst de�nition will be used in the de�nition of approx-imation, whereas the second de�nition is given merely for methodological purposes.12



De�nition 1 (distance between distributions): Let X and Y be two random variables ranging oversome �nite set S.� (max-norm): The distance in max-norm (L1 norm) betweenX and Y is de�ned asmaxe2S jP(X=e)� P(Y =e)j.� (variation distance): The variation distance (L1 norm distance) between X and Y is de�nedas Pe2S jP(X=e)� P(Y =e)j.De�nition 2 (k-wise independence): A sequence of random variables Z = Z1; :::; Zn is k-wiseindependent if for any k positions i1 < i2 < � � � < ik, the random variables Zi1 ; Zi2; : : : ; Zik aretotally independent. Namely, for every k-long sequence of integers, � = �1; �2; :::; �k, we havePr[Zi1Zi2 � � �Zik = �] = Pr[Zi1 = �1] � Pr[Zi2 = �2] � � �Pr[Zik = �k]2.2.2 De�nition of k-wise approximationThe following de�nition is central to the current paper.De�nition 3 (k-wise approximation): Let X = X1 � � �Xn be a product of independent randomvariables, and Y = Y1 � � �Yn be an arbitrary sequence of (not necessarily independent) randomvariables.� (max-norm approximation): We say that Y is a k-wise �-approximation of X in max-norm iffor any l �k positions, i1 < i2 < � � � < il, the max-norm distance between Xi1Xi2 � � �Xil andYi1Yi2 � � �Yil is bounded above by �.� (L1 approximation): We say that Y is a k-wise �-approximation of X in norm L1 if for anyk positions, i1 < i2 < � � � < ik, the L1-norm distance between Xi1Xi2 � � �Xik and Yi1Yi2 � � �Yikis bounded above by �.The above two measures of approximation seem to be most useful in applications. Other notionsof approximation are discussed in [5].When constructing a k-wise approximation to a product variable X , we get as input a \speci�-cation" of X . A speci�cation of X is an n-by-s matrix, P = fpi;jg, satisfying P(Xi=a) = pi;a (forevery pair i; a) and Ps�1a=0 pi;a = 1 (for every i). (We stress that we consider k-wise approximationsonly to products of independent random variables.)De�nition 4 (k-wise approximators): Let A be an algorithm that on input a speci�cation of aproduct variable spec(X), an integer k a rational �, and integers i �n, and j, outputs an element(in the support of Xi). Algorithm A is called a k-wise L1 (resp. L1) �-approximator of X if,for M = A(spec(X); k; �), the random variable Y = Y1; :::; Yn de�ned by selecting j uniformly inf1; :::;Mg and setting Yi = A(spec(X); k; �; i; j), for each i �n, constitues a k-wise �-approximationof X in max norm (resp. L1 norm). (M = A(spec(X); k; �) is called the size of A's sample space.)Algorithm A is called a product approximator if for every X; k; � as above, A constitutes a k-wise�-approxmator of X. 13



2.2.3 Our ResultTheorem 1 (e�cient product approximator): There exists a polynomial-time product approxima-tor in L1 norm (resp., L1 norm) satisfying, for every X; k; �, the size of A's sample space is boundedabove by (O(s))k � (1� )10 � F 2(resp:; 216k(1� )10 � F 2 )where s is a bound on the support of individual Xi, and F def= O((k+log(1=�))�(logn+log log(k=�))).In fact, the algorithm can be implemented in NC.A better result is possible for the special case of s = 2.2.3 ConstructionsWe �rst present our construction for the special (yet interesting) case of approximating Boolean-valued random variables. We later generalize the construction to handle random variables rangingover arbitrary sets.2.3.1 Special Case: Boolean-valued random variablesAssume we are give a speci�cation of a random variable X = X1; :::; Xn, consisting of a sequence ofn independent Boolean random variables. Clearly, it su�ces to specify the probability that each ofthese variables is assigned 0. Let pi def= P(Xi=0), for every i �n, and denote by pi(1); pi(2); ::: thebits in the binary expansion of pi (i.e., pi =Pj�1 pi(j)�2�j). We construct a k-wise �-approximationof X as follows.Let l and t be integers to be determined latter (l = 2 + log2(k=�) and t = 5(k + log(1=�)) willdo). In our construction we use an arbitrary t-wise (�=2t+1)-approximation in max-norm of theuniform distribution over f0; 1gln. Let us denote the 0-1 random variable in this approximation byZ1(1); :::; Z1(l); :::; Zn(1); :::; Zn(l).Construction 1 Let Z1(1); :::; Z1(l); :::; Zn(1); :::; Zn(l) be a t-wise (�=2t+1)-approximation in L1norm of the uniform distribution over f0; 1gln. For every i, if the string Zi(1) � � �Zi(l) is smallerthan (in lexicographic order) the string pi(1) � � �pi(l) then set Yi = 0 otherwise set Yi = 1.Our analysis of the above construction is somewhat analogous to the proof of Theorem 3 in [13].We �x k variables in Y , without loss of generality Y1; :::; Yk, and a k-bit string, �, and evaluate thedi�erence P(X1 � � �Xk=�)� P(Y1 � � �Yk=�).Consider a mental experiment in which the Yi's are determined by a random walk on an in�nitelabelled binary tree as follows. The edges in the tree are labelled by f0; 1g, so that each nodehas one 0-child and one 1-child. Pictorially, one may visualize the 0-child as the left-child and the1-child as the right-child. The nodes in the tree are labelled by pairs of the form (i; �), wherei 2 f1; ::; kg and � 2 f0; 1; �g. The root is labelled (1; �). There is a unique path going down fromthe root with all nodes on it labelled (1; �). This is the path corresponding to the binary expansionof p1. All the nodes reached by following this path upto some node and then leaving it to the left(assuming the path continues to the right) are labelled (1; 0). Intuitively, reaching such a node viaa random walk down the tree results in setting Y1 to 0. Likewise, the nodes reached by following14



the \p1-expansion path" upto some node and then leaving it to the right are labelled (1; 1). Fromeach node labelled (i; �), i < k and � 2 f0; 1g, there is a unique path going down labelled (i+1; �).This is the path corresponding to the binary expansion of pi+1. The nodes reached from a nodelabelled (i; �) by following the \pi+1-expansion path" upto some node and then leaving it to theleft are labelled (i+1; 0), and reaching them via a random walk results in setting Yi+1 to 0. Finaly,both children of nodes labelled (k; �), with � 2 f0; 1g, are labelled (k; �) too. These nodes arecalled complete. Intuitively, reaching them via a random path from the root means that all Yi'swere given values.The following claims are easily veri�edClaim 1 Consider a random in�nite path going down the tree and set Yi = �i if and only if thepath goes through a node labelled (i; �i). Then X1 � � �Xk and Y1 � � �Yk are identically distrubted.Claim 2 The number of nodes at level t which are not complete is Pk�1i=0 �ti�� 2 34 t+k.Claim 3 Consider a random path of length t going down the tree and set Yi = �i if the pathgoes through a node labelled (i; �i). In case the path does not go through any node labelled (i; �)(with � 2 f0; 1g), set Yi arbitrarily. Then the variation distance between X1 � � �Xk and Y1 � � �Yk isbounded by 2�( t4�k).Clearly, the mental experiment described in Claim 3 corresponds to the setting of the Yi inConstruction 1, provided that the Zi(j)'s are t-wise independent and that l � k. Waiving theserequirements (namely, allowing the Zi(j)'s to constitute a t-wise (�=2t+1)-approximation in max-norm of the uniform 0-1 distribution and l be arbitrary) adds error terms bounded by �2 and k �2�l,respectively. Hence, we getProposition 1 Let t = 4(k + log2(4=�)) and l = log2(4k=�). Then Yi's presented in Construction1 constitute a k-wise �-approximation (in L1 norm) of the n-fold X.2.3.2 The General CaseThe construction for the general case extends Construction 1 in the obvious manner. Let X =X1 � � �Xn be an n-fold random variable, s a bound on the support of each Xi, and P = fpi;j : 1�i�n; 0�j�s� 1g be a speci�cation of the n-fold X . For every i; j, let qi;j def= Pjh=1 pi;h. Denote byqi;j(1); qi;j(2); ::: the bits in the binary expansion of qi;j. Let l and t be integers to be determinedlatter (l = 2+ log2(k=�) and t = 9(k + log(1=�)) will do).Construction 2 Let Z1(1); :::; Z1(l); :::; Zn(1); :::; Zn(l) be a t-wise (�=2t+1)-approximation in L1norm of the uniform distribution over f0; 1gln. For every i, if the string Zi(1) � � �Zi(l) is between(in lexicographic order) the string qi;j(1) � � �qi;j(l) and the string qi;j+1(1) � � �qi;j+1(l) then set Yi = j.Extending the argument used in the previous subsection we can easily evaluate the quality ofConstruction 2 as a max-norm approximator. The statement and proof of Claim 2 are slightlychanged: the number of nodes at level t which are not complete is now bounded by Pk�1i=0 �ti�2i �2 34 t+2k. We getProposition 2 Let t = 4 � (2k+log2(4=�)) and l = 3+log2(k=�). Then Yi's presented in Construc-tion 2 constitute a k-wise �-approximation in L1 norm of the n-fold X.15



Approximation in L1 norm follows immediately by bounding the L1 approximation error by sktimes the L1 approximation error. Using the known results on t-wise approximation of the uniformdistribution over f0; 1gln, Theorem 1 follows4.2.3.3 Alternative construction for special caseIn the special case where the speci�cation of the n-fold variable X can be expressed by a matrixin which all entries are rationals of the form ip , for some small prime p (e.g., p = 3), much betterk-wise approximation schemes can be constructed. In this case, a k-wise �-approximation of X isconstructed using a k-wise �-approximation of the uniform distribution over GF (p)n, in the obviousmanner5.The construction can be extended to the case that where the speci�cation of the n-fold variableX can be well approximated by a matrix in which all entries are rationals of the form ip , for somesmall prime p (e.g., p = 3). By well approximation we mean that the absolute di�erence betweenan entry in the speci�cation matrix of X and the corresponding entry in the approximation matrixshould not exceed the approximation error in the desired construction (i.e., the parameter �). Hence,this approach is applicable only if the speci�cation matrix has good approximation by a rationalmatrix with relatively small common denominator.

4Recall that we need a t-wise 2�(t+1)�-approximation in max-norm of the uniform distribution over f0; 1gln.By results of [2], such approximations can be e�ciently constructed having sample space of size ( t�log2(ln)2�t�1� )2 =(2t log2(ln))2 � ( 2t� )2. Substituting the values of t and l, we get F 2 � ( 216k�10 ), where F = O((k + log(1=�)) � (log2 n +log log(k=�))).5Recall that k-wise �-approximation (in max norm) of the uniform distribution over GF (p)n can be constructedusing support of the same cardinality as in the construction of such approximations for the uniform binary distribution[2, 3, 8]. 16



Chapter 3Some Probablity Spaces over GF (p)In the �rst section we de�ne what we mean by a small-bias probability space over GF (p)n, for primep � 2, and provide a construction. Our de�nition generalizes the one commonly used for p = 2,and our constructions of �-biased spaces over GF (p)n maintain the size of known constructions forGF (2)n, independent of p. In the second section we relate such small-bias spaces to more standardnotions of approximation, which refer to the pointwise di�erence between probability spaces.3.1 Small Bias Spaces over GF (p), for p > 2In this section we present a construction of small biased probability spaces over the prime �eldGF (p). Such spaces consists of n-long sequences over GF (p), where n and � are parameters so thatfor every t-long sequence (c1; :::; ct) of elements in GF (p), so that not all ci's are zero, and everyv 2 GF (p) jP( nXi=1 ciri = v)� 1p j < �where the probability is taken uniformly over all possible sequences, (r1; :::; rt), in the sample space.The sample space we construct has size O(n=�)2. It generalizes the �rst construction (i.e., theLFSR Construction) of [2] (which was presented there for p = 2). We point out that other twoconstructions are known, generalizing the second and third constructions of [2] (cf., [3] and [2],respectively).A point in the sample space is speci�ed by two sequences of length m def= logp(n=�) over GF (p),denoted f0 � � �fm�1 and s0 � � �sm�1, where f0 = 1 and tm+Pm�1i=0 fi � ti is an irreducible polynomial.The n-bit sample string, denoted r0 � � �rn�1 is determined by ri = si for i < m and ri =Pm�1j=0 fj �ri�m+j for i � m.3.1.1 Formal SettingThe following de�nition of small-bias sample spaces implies the informal de�nition presented above.Both de�nitions are legitimate generalizations of the de�nition of small-biased sample spaces forthe binary case (and indeed they are equivalent for p = 2).De�nition 5 Let n be an integer, p be a prime and ! be a pth root of unity (in the complex �eld).A set S � GF (p)n is said to have �-bias (sample space for GF (p)n) if, for every n-long sequence17



(a1; :::; an) of elements in GF (p), so that not all ai's are zero, the expectation of (the magnitude of)!Pni=1 airi , taken over all (r1; :::; rn) 2 S with uniform distribution, is bounded above by �. That is,


E(r1 ;:::;rn)2S �!Pni=1 airi�


 � � (3.1)Theorem 2 For every integer n, prime p and � > 0, there exists an e�ciently constructible �-biassample space for GF (p)n of size (2n=�)2.3.1.2 The ConstructionOur construction is based on linear feedback shift register (LFSR) sequences over GF (p). We stressthat the arithmetics in the LFSR is that of GF (p).De�nition 6 (linear feedback shift register sequences): Given two sequences s = s0; s1; : : :sm�1and f = f0; f1; : : :fm�1 over GF (p), the shift register sequence generated by the feedback rule f andthe start sequence s is r0; r1; : : :rn�1 where ri = si for i < m and ri =Pm�1j=0 fj � ri�m+j for i � m.Our sample space will consist of all shift register sequences generated by \non-degenerate" feedbackrules and any starting sequence. A feedback rule f0; f1; : : :fm�1 is called non-degenerate if f(t) def=tm +Pm�1j=0 fj � tj is an irreducible polynomial over GF (p).Construction 1 (Sample Space Smn (p)): The sample space Smn (p) is the set of all shift regis-ter sequences generated by a non-degenerate feedback rule. Namely, Smn (p) contains all sequencesr = r0r1 � � �rn�1 such that there exists a non-degenerate feedback rule, f , and a start sequence, s,generating r.For the rest of this section we consider polynomials over GF (p). The number of irreducible monicpolynomials of degree m is (cf., [14, Chap. 4, Thm. 15])1mXdjm �(m=d) � pdwhere � is the ordinary M�obius function (i.e. �(x) = (�1)s where s is the number of primes thatdivide x if x is squarefree and �(x) = 0 otherwise). Since also �(1) = 1 the above expression is(1+O(p�m=2))pmm . For the rest of this section we will, for notational simplicity, treat the number ofirreducible monic polynomials of degree m as if it is exactly pmm . (The error introduced is absorbedin the error term.) Hence, with this convention we say that the size of Smn (p) is p2mm . Thus, settingm def= logp(1=�) and proving the proposition below, Theorem 2 follows.Proposition 3 : The sample space Smn (p) is n�1pm (1 + O(2�m=2))-biased.Proof: We �x an arbitrary (not all-zero) sequence, � def= (a0; :::; an�1), and consider the value ofthe expression in the l.h.s. of Eq. (3.1). Furthermore, we �x a feedback rule, f , and consider


E(s0;:::;sm�1)2GF (p)m �!Pn�1i=0 airi�


 � � (3.2)where r0; :::; rn�1 is the shift register sequence generated by the feedback rule f and the startsequence s def= (s0; :::; sm�1). 18



Towards evaluating Eq. (3.2), we consider the distribution of (�; r)p def= Pn�1i=0 airi (when we onlyvary the starting vector s). A key observation is that the ri's are a linear combination of the sj's(which are the only indeterminates as the fi's were �xed). It is useful (and standard practice) tonotice that in GF (p), the reduction of tj modulo f(t) (= tm +Pm�1i=0 fi � ti) is a linear combinationof t0; t1; : : : tm�1 and that this linear combination is identical to the coe�cients in the expressionof ri as a linear combination of the sj 's. Hence, a linear combination of the ri's (which is exactlywhat (�; r)p is) corresponds to a linear combination of the corresponding powers of ti. This linearcombination can be either identically zero or not. The �rst case means that the polynomial f(t)divides the polynomial a(t) def= Pn�1i=0 �i � ti; whereas in the second case (�; r)p being a non-constantcombination of the si's is unbiased when the si's are uniformly selected. Thus, Eq. (3.2) is 1 if thepolynomial f(t) divides the polynomial a(t) and is 0 otherwise (since in that case the expectationequals 1pPp�1j=0 !j = 0).Thus, the value of Eq. (3.1) equals the probability that the polynomial f(t) divides the poly-nomial a(t). The latter probability is bounded by the fraction of irreducible monic polynomials ofdegree m which divide a speci�c polynomial of degree n � 1. There are at most n�1m irreduciblemonic polynomials of degree m which divide a polynomial of degree n� 1. Dividing by the numberof irreducible monic polynomials of degree m (i.e., pmm ), the proposition follows.3.2 Notions of approximations versus various normsNotation. One may view probability spaces over a �nite Abelian group G as elements in thevector space HG consisting of functions that map G to the complex numbers.An inner product in the vector space HG is de�ned byhf; gi = Xx2G f(x) � g(x)We are interested in two orthonormal bases: the character functions f�ggg2G and Kroneckerfunctions f�ggg2G. The Character function for a cyclic group G generated by g is de�ned by�gi(gj) = 1pjGj � !ijwhere ! = e2�i=jGj is the complex root of unity of order jGj. For G = GF (p)n, the characters areof the form �f1;f2;:::;fn(x1; x2; : : : ; xn) = p�n=2!Pni=0 fixiwhere ! = e2�i=p. The Kronecker function �g (for g 2 G) is de�ned by�g(g0) = ( 1 if g = g00 otherwiseNorms over the vector space HG are de�ned by considering the Fourier series. Namely, theseries of coe�cients in the representation of functions by orthonormal bases. Given an orthonormalbase B = fb1; b2; : : : ; bjGjg, r � 1, and a function f 2 HG, The norm NB;r(f) is de�ned byNB;r(f) = 0@ jGjXi=1 j hf; bii jr1A1=rWhen r =1, NB;1(f) equals maxjGji=1 j hf; bii j. 19



Relations between de�nitions. Let C denote the orthonormal basis of characters, and let Kdenote the orthonormal basis of Kronecker functions de�ned above. Let S denote a probabilityspace over G, and let U denote the uniform probability space over G. The following relations hold:1. The probability space S is "-biased i�NC;1(S � U) � "pjGjThis follows from the following observation. Since the group of characters of G is isomorphicto G, we denote by �g the character that corresponds by the isomorphism to g 2 G. Byde�nition, NC;1(S � U) = maxg2G j hS � U; �gi jNote that hS � U; �Ii = 0, for the identity I 2 G (since �I(g) = 1, for every g 2 G). Morover,hU; �gi = 0, for g 2 G� I . Therefore,NC;1(S � U) = 1pjGj � maxg2G�I jEj�S[�g(j)]jFor G = GF (p)n, the latter coincides with Eq. (3.1), divided by pjGj.2. The probability space S is an "-approximation i�NK;1(S � U) � "This follows from NK;1(S � U) = maxg2G jS(g)� U(g)j.3. The probability space S is an "-L1-approximation i�NK;1(S � U) � 2"This follows from NK;1(S � U) =Pg2G jS(g)� U(g)j.Relations between approximations. The previous paragraph shows that one may view dif-ferent types of approximations of the uniform probability space as bounding the norms over theapproperiate basis. We now bound the norms when bases are changed.Claim 3 Let B1 and B2 denote any two orthonormal bases. Then,NB1;1(f) � qjGj �NB2;1(f) (3.3)NB1;1(f) � jGj �NB2;1(f) (3.4)Let B1 = K and B2 = C. Then Eq. (3.3) implies that an "-biased space is also an "-approximation.Eq. (3.4) implies that an "-biased space is also an " � (pjGj=2)-L1-approximation.Proof: The �rst part is proved by the following transitions. The �rst and third transitions aretrivial, and the second trasition follows from Parseval's formula.NB1;1(f) � NB1;2(f)= NB2;2(f)� qjGj �NB2;1(f)20



For the second part we use the following three equations, justi�ed by Cauchy-Schwartz inequality,Parsevals' formula, and a trivial substitution, respectively.NB1;1(f) � qjGj �NB1;2(f)NB1;2(f) = NB2;2(f)NB2;2(f) � qjGj �NB2;1(f)The second part follows. 2
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