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1 An Opinionated IntrodutionThe title of this introdution and the use of �rst person singular in its text are meant to indiatethat this introdution is more opinionated than is ustomary in our �eld. Nevertheless, I will tryto distinguish fats from my opinions by using adequate phrases.In my opinion, the �rst question that should be asked when suggesting and/or reviewing ade�nition is what is the purpose of the de�nition. When reviewing an existing de�nition, a goodway to start is to look into the history of the de�nition, sine the purpose may be more transparentin the initial works than in follow-up ones.Before turning to the history and beyond, let me state that I assume that the reader is fa-miliar with the notion of zero-knowledge and the underlying simulation paradigm (see, e.g., [G01,Se. 4.3.1℄). In fat, some familiarity with general seure multi-party omputation (e.g., at theoverview level of [G04, Se. 7.1℄) is also useful. Indeed, this paper is not intended for the novie: itdeals with subtle issues that the novie may (or even should) ignore.1.1 The history of related de�nitionsTo the best of my reall, the �rst appearane in ryptography of the notion of expeted (ratherthan strit) probabilisti polynomial-time was in the seminal work of Goldwasser, Miali, andRako� [GMR℄. The reason was that the simulators presented in that paper (for the QuadratiResiduosity and the Quadrati Non-Residuosity interative proofs) were only shown to run inexpeted probabilisti polynomial-time.1 Reall that these simulators were used in order to simulatethe interation of arbitrary strit probabilisti polynomial-time (adversarial) veri�ers with thehonest prover.At the time, the disrepany between the expeted probabilisti polynomial-time allowed to thesimulator and the restrition of the adversary to strit probabilisti polynomial-time did not botheranybody. One reason for this lak of onern seems to be that everybody was overwhelmed by thenew fasinating notion of zero-knowledge proofs, its mere feasibility, and its wide appliability(as demonstrated by [GMR, GMW℄). But as time passed, some researhers beame botheredby this disrepany, whih seemed to violate (at least to some extent) the intuition underlyingthe de�nition of zero-knowledge. Spei�ally, relating the omplexity of the simulation to theomplexity of the adversary is the essene of the simulation paradigm and the key to the onlusionthat the adversary gains noting by the interation (sine it an obtain the same, essentially as easily,without any interation). But may we onsider expeted polynomial-time and strit (probabilisti)polynomial-time as being the same omplexity?The original feeling was that the disrepany between strit and expeted polynomial-time isnot very signi�ant, and I do hold this view to this very day. It is telling that everybody seemsquite happy with replaing one polynomial (bound of the running time) by another, at least as avery �rst approximation of the intuitive notion of similar omplexity.2 Still, I annot deny that1Note that while a small de�nitional variation (f. [G01, Se. 4.3.1.1℄ versus [G01, Se. 4.3.1.6℄) suÆes for obtaininga strit probabilisti polynomial-time (perfet) simulation for the QR protool, this does not seem to be the asewhen the QNR protool is onerned. The same dihotomy is manifested between the Graph Isomorphism andGraph 3-Colorability protools (of [GMW℄) on the one hand and the onstant-round zero-knowledge proof of [GK96℄on the other hand. The dihotomy arises from two di�erent simulation tehniques; the �rst is tailored for \hallenge-response" protools, while the seond refers to the use of \proofs-of-knowledge" (whih may be impliit and trivial(as in [GK96℄)). Indeed, reall that the de�nition of proofs-of-knowledge refers expliitly to expeted running-time(f., e.g., [G01, Se. 4.7.1℄).2Indeed, my advoay of knowledge tightness [G01, Se. 4.4.4.2℄, a notion aimed at quantitatively bounding theratio of the running times of the simulator and adversary, has never gain muh attention. (And yes, I am aware of2



there is something unpleasing about this disrepany. Following [KL08℄, let me refer to this issueas an aestheti onsideration.Jumping ahead in time, let me mention a more aute onsideration artiulated in [KL08℄: A dif-ferent handling of adversaries and simulations (e.g., the disrepany between expeted polynomial-time and strit probabilisti polynomial-time) raises tehnial diÆulties and, in partiular, standsin the way of various desired omposition theorems (e.g., of the type presented in [GO94, C00℄).But let me get bak to the story.Faed with the aforementioned aestheti onsideration, a few researhers suggested a simplesolution: extending the treatment of adversaries to ones running in expeted polynomial-time. Thissuggestion raised a few problems, the �rst being how to de�ne expeted polynomial-time interativemahines? (In addition, there are other problems, whih I will disuss later.)Feige's proposal [F90℄ was to onsider the running-time of the adversary when it interats withthe honest party that it attaks, and require that the adversary runs in expeted polynomial-time(in suh a random interation). My own proposal was to allow only adversaries that run in expetedpolynomial-time regardless with whom they interat; that is, the adversary is required to run inexpeted polynomial-time when interating with any other strategy. Feige objeted to my proposalsaying that it unduly restrits the adversary, whih is designed to attak a spei� strategy andthus should be eÆient only when attaking this strategy. My own feeling was that it is far moreimportant to maintain a oherent theory by using a \stand-alone" notion of expeted polynomial-time; that is, a notion that ategorizes strategies regardless of their aim (e.g., without referene towhether or not these strategies model adversaries (and whih strategies these adversaries attak)).The rationale underlying this feeling is disussed in Setion 1.2. (Another objetion to Feige'sde�nition refers to the fat that, when applying its underlying priniple to the standard de�nitionof strit probabilisti polynomial-time, the result is a signi�antly larger lass of adversaries, whihinludes adversaries that may not even halt when interating with strategies other than those theywere designed to attak.)In any ase, a major problem regarding the suggestion of extending the treatment of adversariesto ones running in expeted polynomial-time is whether suh an extension is at all possible. Onespei� key question is whether known simulators an handle expeted polynomial-time adversaries.As pointed out in [KL08℄, in some ases (e.g., the simulator of [GK96℄), the answer is negativeeven if one uses the more restrited notion of expeted polynomial-time adversaries (whih refersto interation with any possible strategy). Another important question is whether ompositiontheorems that are known to hold for strit probabilisti polynomial-time (strategies and simulators)an be extended to the ase of expeted polynomial-time (strategies and simulators).Indeed, the \question of omposition" beame a major onern in the 1990's and motivated are-examination of many aspets of the theory of ryptography. Here I refer spei�ally to the Se-quential Composition Theorem of Canetti [C00℄, whih supports modular onstrution of protools,and to the Conurrent Composition Theorem of Canetti [C01℄, whih is aimed at preserving seurityin settings where numerous exeutions of arbitrary protools are taking plae onurrently. Theseomposition results were obtained when modeling adversaries as strit probabilisti polynomial-time strategies and allowing only strit probabilisti polynomial-time simulators. One onsequeneof the lak of analogous results for the ase of expeted polynomial-time was that the modularonstrution of seure protool had to avoid protools that were only known to be simulateable inexpeted polynomial-time.3the reent work of Miali and Pass [MP06℄ that introdues and advoates an even more re�ned notion.)3For example, relatively eÆient proofs-of-knowledge (whih only guarantee expeted polynomial-time extration)were avoided (e.g., in [G04, Se. 7.4.1.3℄) and strong proofs-of-knowledge (f. [G01, Se. 4.7.6℄) were used instead.3



Reently, Katz and Lindell [KL08℄ initiated a study of the possibility of simulating expetedpolynomial-time adversaries and/or obtaining omposition theorems (or suÆiently good alterna-tives) for the ase of expeted polynomial-time. They showed that in some ases (e.g., when thesimulator satis�es some additional properties and/or under some super-polynomial intratabilityassumptions) suh partial results an be obtained.4 These results do not provide a \free" transfor-mation from the strit probabilisti polynomial-time model to the expeted polynomial-time model,where \free" means without referring to additional assumptions. In my opinion, as long as this isthe state of a�airs, one better look for alternative diretions.1.2 Towards new de�nitionsMy starting point (or thesis) is that we should not are about expeted polynomial-time adversariesper se. As hinted by my historial aount, researhers were perfetly happy with strit probabilistipolynomial-time adversaries and would have probably remained so if it were not for the introdutionof expeted polynomial-time simulators. Indeed, at the end of the day, the user (espeially a non-sophistiated one) should are about what an adversary an obtain within a spei� time (or variouspossible amounts of work), where the term `obtain' inorporates also a quanti�ation of the suessprobability. I laim that our goal as researhers is to provide suh statements (or rather tehniquesfor providing suh statements), and that expeted polynomial-time mahines may appear in theanalysis only as intermediate steps (or mental experiments).My thesis is further enfored by the onfusing and nonintuitive nature of expeted running-time,espeially when applied in the ontext of ryptography, and by numerous annoying phenomenarelated to expeted-time omplexity.The ryptographi angle. A typial seurity analysis refers both to the running-time and thesuess probability of a possible attak. Usually the former is �xed (i.e., to strit polynomial-time), and so one may disuss the latter separately. However, in my opinion, when therunning-time is a random variable, providing only the expeted running-time and the overallsuess probability is quite meaningless, beause the suess is likely to be orrelated withthe running-time. Instead, one should keep trak of both the running-time and the suessprobability; that is, provide an estimate of the suess probability per eah approximate valueof the running-time (i.e., assert that with probability p(t) the attak runs for t steps, andondition on this event it sueeds with probability s(t)).The generi phenomena. The point is that, unlike strit polynomial-time, expeted polynomial-time is a highly non-robust notion that is not preserved under hanges of omputational modeland standard algorithmi ompositions. These \features" are an artifat of the \bad intera-tion" between the expetation operator and many non-linear operators: for example, for arandom variable X, we annot upper-bound E[X2℄ as a funtion of E[X℄. Thus, if X is a ran-dom variable that represents the running-time of some proess � (where the probability spae4Roughly speaking, one of their results provides a transformation of some simulators that handle strit probabilis-ti polynomial-time adversaries into simulators that handle expeted polynomial-time adversaries, while assumingthat the original simulator's queries are strongly indistinguishable from the messages of the real protool. Anotherresult provides a omposition theorem for expeted polynomial-time simulators (whih handle strit probabilistipolynomial-time adversaries), while relying on strongly pseudorandom funtions. In both ases, the term strongrefers to versions of omputational indistinguishability that are required to hold with respet to super-polynomial-time observers. This means that for obtaining (ordinary) omputational seurity, somewhere along the way, one needsto make a super-polynomial-time intratability assumption. Also note that the simulators onstruted in [KL08℄ usethe orresponding adversaries in a \slightly non-blak-box" manner in the sense that they terminate exeutions (ofthese adversaries) that exeed a spei� number of steps.4



is that of the internal oin tosses of �), then we annot bound the expeted running-time ofvarious modest variants of � (e.g., whih square its running-time) in terms of the expetedrunning-time of �. (See Footnote 26, whih refers to a natural ase in whih this problemarises, and [G97℄ for an analogous disussion of the e�et of this problem in the ontext ofaverage-ase omplexity.)The foregoing reservations regarding expeted polynomial-time are of lesser onern when expetedrunning-time is only used as an intermediate step (rather than as a �nal statement). Taking thisapproah to its extreme, I laim that for this purpose (of an intermediate step) it is legitimateto use any (reasonable) de�nition of expeted polynomial-time strategies, and that among suhpossibilities we better selet a de�nition that supports the desired results (e.g., simulation of or-responding adversaries and omposition theorems). Thus, we should seek a de�nition of expetedpolynomial-time strategies that enjoys the following properties:1. The de�nition should inlude all strit probabilisti polynomial-time strategies (but shouldnot extend \muh beyond that"; e.g., super-polynomial-time omputations may only ourwith negligible probability).2. When applied to non-interative strategies (i.e., stand-alone algorithms) the de�nition ofexpeted polynomial-time strategies should yield the standard notion of expeted polynomial-time.This property is not only a matter of aestheti onsiderations but is rather important foromposition theorems (as desired in Property 3b). Furthermore, when applied to the ontextof zero-knowledge, the urrent property implies that expeted polynomial-time simulators aredeemed admissible by this de�nition.53. The de�nition should allow to derive the results that we seek:(a) Known simulators that handle strit probabilisti polynomial-time adversaries shouldalso handle adversaries that satisfy the de�nition.6(b) The de�nition should support natural omposition theorems (e.g., of the type proven byCanetti [C00℄).With the foregoing properties in mind, let me suggest a ouple of new de�nitions of expetedpolynomial-time strategies. These de�nitions will be more restritive than the existing de�nitionsof this notion (whih were reviewed in Setion 1.1).1.3 The new de�nitionsLooking at the problem of simulating an \expeted polynomial-time" adversary (f. [KL08℄), itbeomes evident that the soure of trouble is the fat that the bound on the running-time of theadversary (w.r.t any real interation) is no longer guaranteed when the adversary is invoked by asimulator. The point is that the queries made by the simulator may have a di�erent distributionthan the messages sent in any real interation (espeially, sine some of these queries may not5In fat, we should strengthen Property 2 by requiring that also in the ontext of seure multi-party omputation(where the simulators are themselves interative mahines) the known \expeted polynomial-time" simulators (ofstrit probabilisti polynomial-time) are deemed admissible by the seleted de�nition.6Atually, we may relax this ondition by allowing a modi�ation of the simulator but not of the protool and/orthe underlying intratability assumptions. 5



appear in the transript output by the simulator). Furthermore, the simulator is resetting theadversary, whih may allow it to �nd queries that are orrelated to the adversary's internal ointosses in ways that are unlikely to happen in any real interation (see examples in [KL08℄ and inthe proof of Proposition 5). Suh queries may ause the adversary to run for a number of stepsthat is not polynomial on the average. Indeed, this problem does not our in the ase of stritprobabilisti polynomial-time adversaries beause in that ase we have an absolute bound on thenumber of steps taken by the adversary, regardless of whih messages it reeives.Let me stress that assuming that the adversary runs in expeted polynomial-time when inter-ating with any other party does not solve the problem, beause the distribution of the simulator'squeries may not orrespond to the distribution of an interation with any standard interativemahine. The simulator's queries orrespond to a \reset attak" on the adversary, where resetattak are as de�ned in [CGGM℄ (exept that here they are applied on the adversary's strategyrather than on the honest party's strategy). Spei�ally, in a reset attak, the internal oin tossesof the strategy are �xed (to a random value) and the attaker may interat several times with theresulting residual (deterministi) strategy.The foregoing disussion suggests a simple �x to the problem. Just de�ne expeted polynomial-time strategies as ones that run in expeted polynomial-time under any reset attak that interatwith them for a polynomial number of times. Atually, we should allow attaks that interat withthese strategies for an expeted polynomial number of times.7 (See De�nition 3.)It seems that any (blak-box) simulator that handles strit probabilisti polynomial-time ad-versaries an also handle adversaries that run in expeted polynomial-time under the foregoingde�nition. After all, this de�nition was designed to support suh a result. However, I was notable to prove this result without further restriting the lass of simulators (in a natural way). Fordetails, see Setion 1.4.But before turning to the results, let me suggest an even more restrited notion of expetedpolynomial-time strategies. I suggest to onsider strategies that run in expeted polynomial-timewhen interating with any (\magial") mahine that reeives the strategy's internal oin tosses asside information. Arguably, this is the most restrited (natural) notion of expeted polynomial-timestrategies (whih, when applied to non-interative mahines, oinides with the standard de�nitionof expeted polynomial-time). Needless to say, this de�nition (whih is more restritive than theaforementioned resetting de�nition) also supports the extension of simulators that handle stritprobabilisti polynomial-time adversaries to handle adversaries satisfying the urrent de�nition.Clearly, both de�nitions satisfy the �rst two desirable properties stated in Setion 1.2. As forthe third desirable property, it will be at the fous of the next subsetion.1.4 The main resultsIn a nutshell, the main results establish the third desirable property for both the (new) de�nitions,when assuming that the provided simulators (i.e., the simulators provided by the orrespondinghypothesis) belong to a natural sublass of blak-box simulators. Indeed, one ould hope that theseresults would hold for all (universal) simulators or at least for all blak-box simulators.8The issue at hand is the de�nition of eÆient blak-box simulators. Sine blak-box simulatorsare typially given orale aess to an eÆient strategy, some texts only refer to what happens7When measuring the expeted number of interations, I refer to a variant of Feige's notion of expeted omplexitywith respet to the designated mahine. Indeed, this widens the lass of possible (reset) attakers, whih furtherlimits the lass of admissible strategies (i.e., those that are expeted polynomial-time under suh attakers).8Reall that a universal simulator is a universal mahine that is given (as input) the ode of the adversary that itsimulates. In ontrast, a blak-box simulator is only given orale aess to the orresponding strategy.6



in suh a ase (and mandate that the overall simulation be eÆient, where one also aounts forthe steps of the strategy). A more natural and robust de�nition mandates that the number ofsteps performed by the blak-box simulator itself be feasible, when the simulator is given oraleaess to any strategy. Spei�ally, I onsider blak-box simulators that make an expeted numberof steps that is upper-bounded by a �xed polynomial in the length of the input, where eah oraleall is ounted as a single step, and all suh a simulator normal.9 Indeed, the known (blak-box) simulations inluding those that run in expeted polynomial-time (e.g., [GK96℄) are normal.Furthermore, in my opinion, the notion of a normal blak-box simulator �ts the natural formulationof the notion of an expeted probabilisti polynomial-time orale mahine, beause it is natural torequire that the omplexity of an orale mahine (unlike its output) be independent of the oralethat it aesses. (For further disussion see the beginning of Setion 3 (inluding Footnote 23).)Turing bak to the main results, reall that the new de�nitions (or atually the \resetting-based"one) were devised to support the �rst main result (stated in Theorem 10). This result assertsthat any normal blak-box simulator that handles strit probabilisti polynomial-time adversariesan also handle adversaries that run in expeted polynomial-time under the new de�nition(s). Inpartiular, it implies that normal blak-box zero-knowledge protools remain simulateable whenattaked by adversaries that satisfy the new de�nition(s) of expeted polynomial-time. This applies,in partiular, to the proof system of [GK96℄, for whih analogous (\free") results were not knownunder the previous de�nitions of expeted polynomial-time.10Note that the fat that the aforementioned (normal blak-box) simulations run in expetedpolynomial-time also when given aess to any expeted polynomial-time adversary is quite obviousfrom the new de�nition(s). This follows from the fat that normal blak-box simulators invokethe adversary strategy for an expeted polynomial number of times, while the \resetting-basedde�nition" upper-bounds the total expeted time onsumed by the adversary in suh invoations.What should be shown is that, also in this ase, the orresponding simulation produes goodoutput (i.e., indistinguishable from the real interation). This an be shown by using a ratherstraightforward \trunation" argument.11Let us now turn to the question of omposition, starting with the sequential omposition of zero-knowledge protools. The known result (of [GO94℄) refers to strit probabilisti polynomial-timeadversaries (and holds both with respet to strit and expeted polynomial-time simulation).12However, the known argument does not extend to expeted polynomial-time adversaries. Reallthat the said argument transforms any adversary that attaks the omposed protool into a resid-ual adversary that attaks the basi protool. The soure of trouble is that the fat that the formeradversary is expeted polynomial-time (under any de�nition) does not imply that the latter adver-9In ontrast, the number of steps made by an orale mahine that is not normal may not be \uniformly bounded"over all possible orales.10As in Setion 1.1, by free results we mean positive results that do not rely on additional assumptions. Reall thatKatz and Lindell [KL08℄ showed that the simulator presented in [GK96℄ fails (w.r.t expeted polynomial-time underthe previous de�nitions). Their work implies that, if strongly hiding ommitment shemes are used in the protool,then an alternative simulator does work. In ontrast, my result applies to the simulator presented in [GK96℄ and doesnot require strengthening the ommitment sheme used in the protool. Furthermore, the running-time is preservedalso for no-instanes (f., in ontrast, [KL08, Se. 3.3℄).11Indeed, the running-time analysis relies on the hypothesis that the simulator is normal, whereas the analysis ofits output only relies on the hypothesis that the simulator is blak-box. In ontrast, for the laim (of Theorem 10)itself to make sense at all it suÆes to have a universal simulator. (Note that in the (hard to oneive) ontext of\non-universal" simulation it is not lear what we mean by saying that a simulator that handles any A 2 C anhandle any A0 2 C0.)12The original proof (of [GO94℄) refers to strit polynomial-time simulators, but it extends easily to expetedpolynomial-time simulators. 7



sary is expeted polynomial-time (under this de�nition). See the proof of Theorem 9 for details.Fortunately, there is an alternative way: just note that the simulator obtained by [GO94℄, whihrefers to strit probabilisti polynomial-time adversaries, an handle expeted polynomial-time ad-versaries (i.e., by invoking Theorem 10 (or rather its zero-knowledge version { Theorem 8)).The foregoing idea an also be applied to the general setting of seure multi-party omputation,but additional are is needed to deal with the extra omplexities of this setting (as desribed next).Spei�ally, the so-alled sequential omposition theorem of Canetti [C00℄ (see also [G04, Se. 7.4.2℄)refers to an orale-aided (or \hybrid") protool � that uses orale alls to a funtionality13 f , whihan be seurely omputed by a protool �. (Note that the orresponding orale-aided protool wasnot mentioned in the ontext of zero-knowledge, beause it is trivial (i.e., it merely invokes thebasi protool several times).) The theorem asserts that the seurity of � (with respet to aspei� funtionality unmentioned here) is preserved when � uses subroutine alls to � rather thanorale alls to f . This result refers to seurity with respet to strit probabilisti polynomial-timeadversaries that is demonstrated by strit probabilisti polynomial-time simulators. One point tonotie is that the proof of seurity of the resulting protool, denoted �0, proeeds by inorporatingthe simulator of � into an adversary for �. Thus, if the simulator of � runs in expeted polynomial-time then so does the resulting adversary (for �), and thus the simulator for � has to handle expetedpolynomial-time adversaries (even if we only are of strit polynomial-time adversaries attaking�0). Indeed, having a simulator for � that handles any expeted polynomial-time adversariessuÆes for a partial result that refers to strit probabilisti polynomial-time adversaries for theresulting protool �0 and to expeted polynomial-time simulators (for �, �, and �0). The general(sequential) omposition theorem for the ase of expeted polynomial-time (whih refers to expetedpolynomial-time adversaries and simulators) follows by applying Theorem 10.An important orollary to the foregoing extendability and omposition theorems (i.e., Theo-rem 10 and 11) asserts that it is possible to ompose seure protools, when seurity is demonstratedvia expeted polynomial-time simulators but refers only to strit probabilisti polynomial-time ad-versaries. In suh a ase, the extendability theorem allows to use these simulators with respet toexpeted polynomial-time adversaries, whereas the omposition theorem applies to the latter. Thus,one may freely use expeted polynomial-time simulators, and be assured that the orresponding se-ure protools an be omposed (just as in the ase that their seurity is demonstrated via stritpolynomial-time simulators).Turning to the onurrent omposition theorem of Canetti [C01℄, reall that it evolves aroundthe notion of environmental seurity (a.k.a UC-seurity [C01℄). Spei�ally, Canetti proved thatany protool that is environmentally seure preserves seurity under arbitrary onurrent exeu-tions, where the adversaries, simulators, and environments are all modeled as strit probabilistipolynomial-time strategies (with non-uniform auxiliary inputs for the environments). He then sug-gested the methodology of establishing environmental-seurity as a way of obtaining seurity underonurrent omposition. Consequently, an extension of Canetti's methodology to the expetedpolynomial-time setting requires (1) verifying that Canetti's proof extends to this setting, and(2) obtaining environmental seurity for expeted polynomial-time adversaries and environments.Using the new de�nitions of expeted polynomial-time strategies, the �rst requirement follows anal-ogously to the proof of the sequential omposition theorem, while the seond requirement followsby generalizing Theorem 10 (whih may be viewed as referring to trivial environments).The bottom-line is that, for normal blak-box simulators, the new de�nitions of expetedpolynomial-time strategies provide a \free" transformation from the strit probabilisti polynomial-time model to the expeted polynomial-time model. In partiular, normal blak-box simulators that13A funtionality is a randomized version of a multi-input multi-output funtion (f. [G04, Se. 7.2.1℄).8



work in the strit model extend to the expeted model, and the most famous omposition theoremsextend similarly.1.5 Why deal with expeted polynomial-time at all?In light of the diÆulties disussed in Setion 1.1, one may ask why do we need this headahe (ofdealing with expeted polynomial-time) at all? This question is further motivated by my views(expressed in Setion 1.2) by whih we should not are about expeted polynomial-time adversariesper se. The answer, as hinted in Setion 1.1, is that we do are about expeted polynomial-timesimulators.Spei�ally, some natural protools are known to be seure (or zero-knowledge) only whenthe de�nition of seurity allows expeted polynomial-time simulators. A notable example, alreadymentioned several times, is the onstant-round zero-knowledge proof system of [GK96℄. Further-more, as proved in [BL02℄, onstant-round proof system for sets outside BPP do not have stritpolynomial-time blak-box simulators (although they do have suh non-blak-box simulators [B01℄,whih are less preferable for reasons disussed below).In general, expeted polynomial-time simulators seem to allow more eÆient protools and/ortighter seurity analysis. Whereas various notions of protool eÆieny are well-understood, a fewwords about the tightness of various seurity analyses are in plae. Loosely speaking, seuritytightness14 is essentially the ratio between the running-time of the adversary and the (expeted)running-time of the simulator that handles it: The seurity tightness of a protool is a lower-boundon the aforementioned ratio that essentially holds for every probabilisti polynomial-time adversary;that is, a protool is said to have seurity tightness � if there exists a polynomial q0 suh that, forevery polynomial p, every p-time adversary is simulated within time ��1p + q0 + q0. Indeed, inmany ases (also when strit polynomial-time simulators exist), the expeted running-time of thesimulator provides a better bound than the worst-ase running-time of the simulator.In my opinion, seurity tightness should serve as a major onsideration in the evaluation ofalternative protools, and laims about protool eÆieny are almost meaningless without referringto their seurity tightness. For example, in many ases, modest parallelization an be ahieved atthe ost of a deterioration in the seurity tightness (f. [G01, Se. 4.4.4.2℄). Let me stress that, byde�nition, blak-box simulators always yield a notieable bound on the seurity tightness (and insome ases they o�er a onstant bound), whereas non-blak-box simulators may fail to have suhbound (e.g., indeed, that's the ase with Barak's simulators [B01℄).15Thus, I suggest the following methodology: When designing your protool and proving itsseurity, allow yourself expeted polynomial-time simulations. To assist the design and analysis, usethe \extendability results" (e.g., Theorem 10) provided in this work as well as relevant ompositiontheorems (e.g., Theorem 11). Finally, when obtaining the desired protool with a seurity analysisthat refers to an expeted polynomial-time simulator, you may interpret it as providing a trade-o� between the simulation time and the orresponding deviation (from the real interation). Butatually, a �nal laim that refers to expeted simulation time may be as appealing when stated interms of seurity tightness (e.g., the e�et of any strit polynomial-time adversary an be ahievedby a simulation that is expeted to run three times as long).14In the speial ase of zero-knowledge, the orresponding notion is alled knowledge tightness [G01, Se. 4.4.4.2℄.Note a minor tehniality: here tightness is de�ne as the reiproal of the ratio in [G01, Se. 4.4.4.2℄.15As usual, a notieable funtion is one that dereases slower than the reiproal of some positive polynomial.Thus, notieable seurity tightness means that there exists a polynomial q suh that, for every polynomial p, everyp-time adversary is simulated within time q � p. But if the simulation of p-time adversaries requires time p3, then theprotool does not have a notieable seurity tightness. 9



Indeed, my opinion is that there is no ontradition between not aring about expeted polynomial-time adversaries and providing seurity guarantees that refer to the expeted simulation time:Whereas (at least potentially) the adversary is a real entity, its simulation is (always) a mentalexperiment. Furthermore, I believe that the foregoing methodology may yield the best trade-o�sbetween the eÆieny of the protool and the tightness of its seurity.Finally, let me note that there are alternative ways of handling the problems that motivate theintrodution of expeted polynomial-time to Cryptography (i.e., the failure of strit polynomial-timesimulation in some ases). These alternatives are based on di�erent notions of \typial eÆieny"that are appliable to \varying" running-time (i.e., running-time that is expressed as a randomvariable). In eah ase, one should start with a de�nition that refers to standard algorithms, andextend it to a de�nition that refers to interative mahines. For details, see Setion 5. Indeed,the issues arising in suh extensions are the same as the ones disussed throughout the rest of thispaper. It is my belief, however, that expeted running-time (as treated in the rest of this paper)provides the best trade-o�s between the eÆieny of the protool and the tightness of its seurity.1.6 On the treatment of onurrent ompositionAs stated at the end of Setion 1.4, the new de�nitions of expeted probabilisti polynomial-timestrategies allow to extend the known sequential and onurrent omposition theorems from thestrit PPT setting to the expeted PPT setting. However, in my opinion, there is a signi�antdi�erene between the importane of these extensions (whih orrespond to these two ases). Thedi�erene is rooted in the di�erene between the original theorems (i.e., their strit PPT versions).Reall that the sequential omposition theorem holds for every seure protool (i.e., \stand-aloneseurity" suÆes [C00℄), whereas onurrent omposition essentially requires a stronger notion ofseurity (i.e., environmental seurity [C01, L09℄). This di�erene in the seurity level seems to bereeted by a di�erene in the variety of proof tehniques (i.e., simulation tehniques), where morestringent seurity leaves room for less tehniques. Indeed, while stand-alone seurity is sometimesdemonstrated by using expeted PPT simulators, all known demonstrations of environmental se-urity employ strit PPT simulators. Furthermore, my feeling is that there is no bene�t in usingexpeted PPT simulators towards demonstrating environmental seurity (with respet to stritPPT adversaries). Thus, unless my feeling is wrong, I see no real motivation for extending theonurrent omposition theorem to the expeted PPT setting. Nevertheless, I provided suh anextension in order to show that the new de�nitions of expeted PPT strategies are not inompatiblewith suh an extension.1.7 OrganizationSetion 2 provides formal statements of the aforementioned (old and new) de�nitions as well as ademonstration of a hierarhy among them. Sine the speial ase of zero-knowledge protools pro-vides a good benhmark for the general ase of seure protools, the main results are �rst presentedin that setting (see Setion 3). This simpli�es things, beause in that speial ase the simulatorsare standard algorithms rather than interative strategies (for the so-alled \ideal-model"; see,e.g., [G04, Se. 7.2℄). Nevertheless, I believe that the main ideas are already present in the zero-knowledge setting, and that this belief is supported by the treatment of general protools (providedin Setion 4). Setion 5 demonstrates the appliability of the main approah to alternatives mea-sures of \varying" running-time. Setion 6 ontains onlusions and open problems.The exposition in Setions 4.3 and 5 is signi�antly less detailed and more skethy than therest of the paper. Indeed, these setions should be viewed as a demonstration of the feasibility10



of applying the main de�nitional approah also to these settings. My hoie to provide only askethy exposition of these appliations is related to my reservations regarding their importane(see Setion 1.6 and the end of Setion 1.5, respetively).The (seurity) tightness lens. Paragraphs with this heading are meant to failitate the method-ology suggested in Setion 1.5, but they may be ignored at �rst reading.2 The De�nitionsWe adopt the standard terminology of interative mahines, while oasionally identifying strategies(whih speify the next message to be sent by an interative mahine given its view so far) with theinterative mahines that ativate them. We use the shorthand PPT for probabilisti polynomial-time whenever using the full term is too umbersome; typially, we do so when ontrasting stritPPT and expeted PPT. For simpliity, we only onsider the two-party ase. We denote by x theommon (part of the) input, and denote by y and z the orresponding private inputs of the twoparties. The reader may ignore y and z, whih model (possibly non-uniform) auxiliary information.Additional (standard) onventions. We state the omplexity of interative mahines (andstrategies) as a funtion of the length of the ommon input, x; onsequently, some time-boundedmahines annot read their entire private inputs (i.e., y or z, resp.). For sake of brevity, wesometimes say that some quantity (e.g., number of steps) is polynomial (or exponential), ratherthan saying that it is polynomial (or exponential) in the length ommon input, but this is alwaysthe intention. In the atual tehnial treatment we assume that all omputations of all mahineshalt in �nite time, and furthermore that this time is bounded by a single funtion in the length ofthe ommon input.16 (Note that, in all reasonable ases, this restrition an be easily enfored bytrunating all runs after an exponential number of steps.)2.1 Known de�nitionsWe start by formulating the two known de�nitions that were mentioned in Setion 1.1.De�nition 1 (Feige [F90℄): The strategy � is expeted PPT w.r.t a spei� interative mahine M0if, for some polynomial p and every x; y; z, the expeted number of steps taken by �(x; z) duringan interation with M0(x; y) is upper-bounded by p(jxj), where the expetation is taken over theinternal oin tosses of both mahines.We stress that � may be expeted PPT with respet to some interative mahines but not withrespet to others.De�nition 2 (attributed to Goldreih, e.g., in [KL08℄): The strategy � is expeted PPT w.r.t anyinterative mahine if, for some polynomial p, every interative mahine M , and every x; y; z, theexpeted number of steps taken by �(x; z) during an interation with M(x; y) is upper-bounded byp(jxj).Here we may assume, without loss of generality, that M (whih is omputationally unbounded) isdeterministi, and thus the expetation is only taken over the internal oin tosses of �. The sameonvention is applied also in De�nition 4 (but not in De�nition 3; see disussion there).16Hene, the probability spae of all possible exeutions (on a �xed input) is �nite, and so the expetation is alwayswell-de�ned and �nite. 11



2.2 New de�nitionsIn the �rst new de�nition, we refer to the notion of a reset attak as put forward in [CGGM℄. Suhan attak proeeds as follows. First, we uniformly selet and �x a sequene of internal oin tosses,denoted !, for the attaked strategy �, obtaining a residual deterministi strategy �!. Next, weallow the attaker to interat with �! numerous times (rather than a single time). Spei�ally, foreah possible value of !, the expeted number of times that attaker interats with �! is upper-bounded by a �xed polynomial.17Note that the attaker is not given ! expliitly, but its ability to (sequentially) interat withthe residual strategy �! for several times provides it with additional power (beyond interatingwith � itself for several times, where in eah interation � uses a fresh sequene of oin tosses). Asshown in [CGGM℄, suh an attak is equivalent to a single interation in whih the attaker may(repeatedly) \rewind" � (or rather �!) to any prior point in the interation and ask to resume theinteration from that point. Indeed, suh an attak is reminisent of the way that a (blak-box)simulator uses an adversary strategy.De�nition 3 (tailored for simulation): A q-reset attak on � is an attak that, for every x; y; z and!, interats with �! for an expeted number of times that is upper-bounded by q(jxj).18 The strategy� is expeted PPT w.r.t any reset attak if, for some polynomial p, every polynomial q, every q-resetattak on �, and every x; y; z, the expeted total number of steps taken by �(x; z) during this attakis upper-bounded by q(jxj) � p(jxj).19We stress that the number of invoations of � (like the total number of steps taken by �) is arandom variable de�ned over the probability spae onsisting of all possible interations of theattaker and �. Here (unlike in De�nition 2), allowing the potential attaker to be probabilistiinreases its power (and thus adds restritions on strategies satisfying the de�nition). The reasonis that, for eah �xed !, the number of times that a probabilisti attaker invokes �! may be anarbitrary random variable with a polynomially bounded expetation (rather than being stritlybounded by a polynomial).In the next (and last) de�nition, we onsider a \magial" attaker that is given the outome ofthe strategy's internal oin tosses as side information. That is, suh an attak proeeds as follows.First, we uniformly selet and �x a sequene of internal oin tosses, denoted !, for the attakedstrategy �, obtaining a residual deterministi strategy �!. Next, we provide the attaker with !(as well as with z) and allow it a single interation with �!. We stress that this attaker is merelya mental experiment used for determining whether or not � is expeted polynomial-time (underthe following de�nition).17That is, there exists a polynomial p suh that, for every !, the expeted number of times that the attakerinterats with �!, on ommon input x, is at most p(jxj). Note that we are upper-bounding the (expeted) numberof interations initiated by the attaker (rather than its running-time). More importantly, the formulation of thisrestrition on the number of interations is a hybrid of (the spirit of) De�nitions 1 and 2: We are upper-boundingthe (expeted) number of interations, not with respet to the designated �, but rather with respet to eah of theresidual �!. Finally, note that a simpli�ed version that refers to the expeted number of interations with � (i.e.,the expetation is taken also over the oins of �) yield a \bad" de�nition. (For example, suppose that �! sends !,and makes 2j!j steps if ! = 1j!j and halt immediately otherwise. Then, intuitively � is expeted PPT (and in fatit even satis�es De�nition 4), but the reset attak that, upon reeiving ! in the �rst interation, invokes �! for 2j!jadditional times if and only if ! = 1j!j, auses � to make an expeted exponential number of steps.)18As in De�nitions 1 and 2, suh an attak is given x and y as its input.19The upper-bounded of q(jxj) � p(jxj) seems natural; however, an upper-bounded of p(jxj+ q(jxj)) would work justas well (for all results stated in this work), but would yield weaker quantitative bounds.12



De�nition 4 (seemingly most restritive): The strategy � is expeted PPT w.r.t any magial ma-hine if, for some polynomial p, every interative mahine M 0 that is provided with the internaloin tosses of � as side information, and every x; y; z, the expeted number of steps taken by �(x; z)during an interation with M 0 is upper-bounded by p(jxj). That is, for a randomly seleted !, theexpeted number of steps taken by �!(x; z) during its interation with M 0(x; y; z; !) is upper-boundedby p(jxj).20Here as in De�nition 2, we may assume, without loss of generality, that M 0 (whih is omputa-tionally unbounded) is deterministi, and thus the expetation is only taken over the internal ointosses of �. Thus, De�nition 4 refers to the expetation, taken uniformly over all possible hoiesof !, of the number of steps taken by (the residual deterministi strategy) �!(x; z) during an inter-ation with (the deterministi strategy) M 0(x; y; z; !). Indeed, a strategy � satis�es De�nition 4 ifand only if it runs in expeted polynomial-time even if eah of the inoming messages is seleted tomaximize its running-time, when this seletion may depend on the internal oin tosses of � (andits auxiliary-input z). This formulation is losest in spirit to the standard de�nition of strit PPTstrategies.2.3 Relating the de�nitionsIt is easy to see that, for i = 1; 2; 3, De�nition i+1 implies De�nition i. In fat, it is not hard to seethat the onverses do not hold. That is:Proposition 5 For i = 1; 2; 3, the set of strategies that satisfy De�nition i+1 is stritly ontainedin the set of the strategies that satisfy De�nition i.Proof: The �rst two ontainments (i.e., for i = 1; 2) are plainly syntati. Intuitively, the thirdontainment (i.e., the fat that De�nition 4 implies De�nition 3) follows by noting that a resetattak does not add power to a omputationally unbounded mahine that gets �'s internal ointosses. A rigorous proof of this fat follows.Fixing an arbitrary q-reset attak A, denote by TA(r)(!) the total time spent by �! when at-taked by A, whih in turn uses oins r. Likewise, denote by nA(r)(!) the number of interations ofA with �!, when A uses oins r. By the hypothesis that A is a q-reset attak, for every value of !, itholds that Er[nA(r)(!)℄ is upper-bounded by q(). On the other hand, tA(r)(!) def= TA(r)(!)=nA(r)(!)orresponds to the (average) time spend by �! in a single iteration with A(r). Thus, if � satis-�es De�nition 4, then E![maxrftA(r)(!)g℄ is upper-bounded by some polynomial p(), beause theattak of A(r) on a single iteration of �! an be emulated in the model of De�nition 4. Indeed,the last assertion is the ore of the entire argument. Now, observing (see details below) thatEr;![TA(r)(!)℄ = Er;![nA(r)(!) � tA(r)(!)℄ is upper-bounded by the produt of max!fEr[nA(r)(!)℄gand E![maxrftA(r)(!)g℄, and using the foregoing upper-bounds, it follows that � satis�es De�ni-tion 3. Details follows.Let us �rst prove that Ei;j[ai;jbi;j ℄ is upper-bounded by maxjfEi[ai;j ℄g � Ej [maxifbi;jg℄. Thisfat an be proved by noting that Ej [Ei[ai;jbi;j℄℄ � Ej[maxifbi;jg � Ei[ai;j℄℄, letting Bj = maxifbi;jgand Aj = Ei[ai;j℄, and using Ej [BjAj℄ � maxjfAjg �Ej[Bj ℄. We now apply this fat to the analysisof Er;![TA(r)(!)℄, obtainingEr;! hTA(r)(!)i = Er;! hnA(r)(!) � tA(r)(!)i20Note that, unlike in De�nitions 1-3, the attaker is given �'s auxiliary input (i.e., z). This is most natural in theontext of the urrent attak, whih is also given �'s internal oin tosses (i.e., !).13



� max! nEr hnA(r)(!)io � E! hmaxr ntA(r)(!)oiwhih is in turn upper-bounded by q() � p().To show that the foregoing ontainments are strit we present orresponding strategies thatwitness the separations. The following examples are rather minimal, but they an be augmentedinto strategies that seem natural (even for natural protools). For example, a strategy that haltsimmediately upon reeiving the message 0 and runs for exponential time upon reeiving the mes-sage 1 witnesses the separation between De�nition 1 and De�nition 2, when assuming that thedesignated mahine M0 (of De�nition 1) always sends the message 0. Note that this example hasnothing to do with the issue of expeted polynomial-time (although an example that does relate tothe latter issue an be onstruted similarly).To separate De�nition 3 from De�nition 4 onsider a strategy that uniformly selets an n-bitlong string r, and upon reeiving a message s halts immediately if s 6= r and halts after making 2nsteps otherwise. Clearly, this strategy does not satisfy De�nition 4, but it does satisfy De�nition 3.A small twist on the foregoing example an be used to separate De�nition 2 from De�nition 3:Suppose that upon reeiving s, the strategy �rst sends r, and then halts immediately if s 6= r andhalts after making 2n steps otherwise. In this ase a 2-reset attak an ause this strategy to alwaysrun for 2n steps, while no ordinary interative mahine an do so.Disussion: De�nitions 2{4 versus De�nition 1. We believe that there is a fundamentaldi�erene between De�nitions 2{4 on the one hand and De�nition 1 on the other hand. This anbe demonstrated by onsidering strit PPT versions of all four de�nitions; that is, versions of thesede�nition in whih eah bound on an expetation is replaed by a orresponding strit bound (i.e.,a bound that holds with probability 1). Then, the resulting (strit) versions of De�nitions 2{4oinide,21 but remain separated from the (strit) version of De�nition 1 (as atually shown inthe proof above). Note that the (strit) version of De�nition 1 is extremely sensitive to minusulevariations in the probabilisti behavior of the designated mahine M0 (i.e., variations that hangethe support). We believe that the ombination of these fats speaks against De�nition 1.3 Results for Zero-KnowledgeThe setting of zero-knowledge provides a good warm-up for the general study of seure protools.Reall that, in the ontext of zero-knowledge, simulators are used to establish the seurity ofpredetermined prover strategies with respet to attaks by adversarial veri�ers. We start by showingthat (normal blak-box) simulators that handle strit PPT adversaries also handle adversaries thatare expeted PPT (under De�nitions 3 and 4). We next turn to an expeted PPT version of thestandard sequential omposition theorem. (In Setion 4, analogous results are proved for generalseure protools.)Sine the notion of normal blak-box simulators is pivotal to our results, let us start by brieyrealling the standard de�nition of blak-box simulators (see, e.g., [G01, Def. 4.5.10℄). Looselyspeaking, a blak-box simulator is a universal mahine that is given orale aess to a determinististrategy and provides a simulation of the interation of this strategy with the party attaked by this21Consider a (standard) interative mahine that guesses at random the internal oin tosses of �. Then, the stritversion of De�nition 2 guarantees that even in the rare ase that this guess is orret, the strategy � makes only apolynomial number of steps. But this onditional probability spae is exatly the probability spae that ours inDe�nition 4, whih implies that � satis�es the (strit) version of De�nition 4.14



strategy.22 In extending this notion to randomized strategies, we refer to providing the simulatorwith orale aess to a residual (deterministi) strategy obtained by �xing random oin tosses tothe given randomized strategy.Typially, one onsiders the exeution of blak-box simulator when given orale aess to any(strit or expeted) PPT adversary. In that ase, one sometimes states both the omplexity andthe quality of the simulation when referring only to the ase that the orale is a PPT strategy.23While the restrition of the quality requirement to the said ase is often essential, this is typiallynot the ase with respet to the omplexity requirement (whih refers only to the number of stepstaken by the blak-box mahine itself). Indeed, it is more natural to formulate the omplexityrequirement when referring to any possible orale. We adopt this onvention below, but in orderto avoid possible onfusion (with di�erent views) we refer to simulators that satisfy this onventionas normal.De�nition 6 (normal blak-box simulators): A blak-box simulator is alled normal if, on anyinput and when given orale aess to any strategy, it makes an expeted number of steps that isupper-bounded by a �xed polynomial in the length of the input, where eah orale all is ounted asa single step. That is, there exists a polynomial q suh that the expeted number of steps made bythe simulator itself, on any input x and orale aess to any strategy �, is at most q(jxj).Although it is possible to onstrut blak-box simulators that are not normal (e.g., they run forexponential time if the blak-box manages to solve a hard problem), the standard blak-box simu-lators (e.g., the ones of [GMR, GMW, GK96℄) are all normal. Furthermore, normality seems a verynatural property and it is easy to verify. For example, if the running-time analysis of a simulator(unlike the analysis of the quality of its output) does not rely on any intratability assumptions,then it is probably the ase that the simulator is normal.24The total simulation time. We will often refer to the (total) simulation time of the ombinedsimulator SV � , whih onsists of a (normal) blak-box simulator S that is given orale aess to an22In typial use of a blak-box simulator one also refers to the quality of this simulation. Spei�ally, it is require thatif the former strategy is eÆient (in some adequate sense), then the simulation is omputationally indistinguishablefrom the real orresponding interation. Sine the notion of eÆieny will vary (i.e., from strit PPT to expetedPPT), we shall separate the operational aspet of the blak-box simulator from the quality of the output that itprodues; that is, we shall disuss eah aspet separately (rather than oupling them together).23Even in the ase that the omplexity requirement is on�ned to the ase that the simulator aesses an arbitrary(strit or expeted) PPT adversary, one may distinguish between two requirements regarding the omplexity of thesimulation. The more liberal requirement, whih is rarely used, only mandates that for any suh adversary the totalsimulation time (see below) must be feasible. This means that the total simulation time may be bounded by anarbitrary polynomial that is not neessarily linearly related to the (polynomial) running-time of the adversary. Amore restrited and natural formulation, whih is typially used, either refers (only) to the number of steps taken bythe simulator itself or views orale alls as single steps (i.e., ounting them at unit ost). Spei�ally, the number ofsteps of the blak-box simulator itself is bounded by a �xed polynomial, regardless of the (polynomial) omplexity ofthe strategy to whih it is given orale aess. (Indeed, in suh a ase, the total simulation time is linearly related tothe running-time of the adversary.) De�nition 6 takes this approah to its logial onlusion by requiring that, givenorale aess to any strategy (regardless of its omplexity), the (expeted) number of steps taken by the blak-boxsimulator itself is bounded by a �xed polynomial. Indeed, De�nition 6 reets the intuition that the operationalaspets of a blak-box simulator (unlike the quality of its output) should not be a�eted by the spei�s of its orale.Note that the gap between the foregoing restrited formulation (whih only refers to PPT strategies) and De�nition 6(whih refers to all strategies) an be easily bridged if the number of steps taken by the blak-box simulator itself isstritly polynomial (rather than having expetation that is bounded by a polynomial).24The word \probably" indiates that the said impliation is not laimed as a fat but is rather suggested as a ruleof thumb and/or as a onjeture regarding any natural ase.15



adversarial veri�er V �. Needless to say, for any normal simulator S, if V � is strit PPT then theexpeted (total) simulation time of SV � is polynomial. As observed by Katz and Lindell [KL08℄,this is not neessarily the ase if V � is expeted PPT w.r.t De�nition 2. The key observation, whihmotivates De�nition 3, is that the desired bound on the expeted (total) simulation time of SV �does hold if V � is expeted PPT w.r.t any reset attak.Observation 7 If S is a normal blak-box simulator and V � is expeted polynomial-time w.r.tDe�nition 3, then the expeted total simulation time of SV � is polynomial.Proof: Sine S is a normal blak-box simulator, there exists a polynomial q suh that, for everysetting of oins ! for V �, it holds that the expeted number of times that S invokes the residualstrategy V �! is upper-bound by q(). Thus, S is a q-reset attak on V �. Sine V � satis�es De�nition 3,it follows that the expeted (total) number of steps taken by V � during the entire simulation isupper-bound by a polynomial. The laim follows.The (knowledge) tightness lens. The foregoing proof lari�es that the (polynomial) upper-bound q guaranteed for a normal simulator (in De�nition 6) provides a bound on the knowledgetightness established by this simulator. Indeed, the polynomial p in De�nition 3 should be viewedas an upper bound on the expeted running-time of the relevant strategy (as per De�nition 3).25Thus, the foregoing proof shows that the interation of any expeted p-time (w.r.t De�nition 3)veri�er V � is simulated in total expeted time q() � p(), whih implies that this normal simulatorhas tightness 1=q. We mention that better tightness bounds may be obtained when using a morere�ned de�nition of normality in whih both the (expeted) number of simulator steps and the(expeted) number of orale alls are bounded. Denoting the �rst polynomial bound by q0 and theseond polynomial bound by q, the proof of Observation 7 yields a bound of q() � p() + q0() on thetotal (expeted) simulation time, and a knowledge tightness bound of 1=q follows.3.1 Simulating expeted PPT adversariesBearing in mind that (in the ontext of zero-knowledge) the simulator is a standard algorithm, itsuÆes to state the following result with respet to De�nition 3, and its appliability to De�nition 4follows as a speial ase.Theorem 8 (extendability of normal blak-box simulators, the zero-knowledge ase): Let (P; V )be an interative proof (or argument) system for a set L, and hP; V �i(x) denote the output of theadversarial veri�er strategy V � on input x after interating with the presribed prover P . Let M bea normal blak-box simulator that, on input in L and when given aess to any strit PPT strategyV �, produes output that is omputational indistinguishable from hP; V �i. Then, when M is givenorale aess to any strategy V � that is expeted PPT w.r.t any reset attak, the expeted simulationtime of MV � is polynomial and the output is omputational indistinguishable from hP; V �i.Note that the hypothesis allows the simulator to run in expeted PPT while simulating a stritPPT adversary. This makes the hypothesis weaker and the theorem stronger; that is, the theoreman be applied to a wider lass of protools (inluding protools that are not known to have stritPPT simulators suh as, e.g., the onstant-round zero-knowledge proof of [GK96℄).25Indeed, it is telling to note that if a strategy is expeted p-time w.r.t De�nition 4, then p an be used as a boundin De�nition 3 (see the proof of Proposition 5). 16



Proof: Fixing any expeted PPT w.r.t De�nition 3 strategy V �, we �rst note that (by Ob-servation 7) the expeted simulation time of MV � is polynomial. To analyze the quality of thissimulation, suppose towards the ontradition that D distinguishes between the simulation and thereal interation, and let p be a polynomial suh that the distinguishing gap of D for in�nitely manyx 2 L is at least �(jxj) def= 1=p(jxj). Let t�(x) denote the total (over all invoations) expeted num-ber of steps taken by V � when invoked by M . Note that t�(x) is upper-bounded by a polynomialin jxj, and assume (without loss of generality) that t�(x) also upper-bounds the expeted runningtime of V � in the real interation (with P ). Now, onsider a strit PPT V �� that emulates V �,while trunating the emulation as soon as 3t�=� steps are emulated. Then, the variation distane(a.k.a statistial di�erene) between MV �(x) and MV ��(x) is at most �(jxj)=3, beause �=3 upper-bounds the probability that the total number of steps taken by V � during all invoations by Mexeeds 3t�=� (and otherwise V �� perfetly emulates all these invoations, sine none exeeds 3t�=�steps). Similarly, the variation distane between hP; V �i(x) and hP; V ��i(x) is upper-bounded by�(jxj)=3. It follows that D distinguishes the simulation MV �� from the real interation hP; V ��iwith a gap that exeeds �=3, on in�nitely many inputs in L, in ontradition to the hypothesis thatM simulates all strit PPT veri�ers.Digest. We believe that the fat that the proof of Theorem 8 is rather straightforward should notbe ounted against De�nition 3, but rather the other way around. That is, we believe that the laimthat the simulation of strit PPT adversaries extends (without modi�ations) to expeted PPTadversaries is natural, and as suh a good de�nition of expeted PPT adversaries should supportit. It may be that Theorem 8 an be generalized also to arbitrary blak-box simulators and even toarbitrary universal simulators, but the urrent proof fails to show this: the running-time analysisrelies on the hypothesis that the simulator is normal, whereas the output-quality analysis relieson the hypothesis that the simulator is blak-box.26 While this possibility is ertainly interesting,we onsider it seondary to the main message arried by Theorem 8 (i.e., that a good de�nitionof expeted PPT strategies (suh as De�nition 3) supports the \extendability of simulators" fromhandling strit PPT veri�ers to handling expeted PPT veri�ers).27Note that the ombined simulator resulting from Theorem 8 is trivially expeted PPT underreset attaks (and also under De�nition 4), beause it is a non-interative mahine (whih runsin expeted polynomial-time). Things are not as simple when we move to the setting of seureprotools, where the simulator is an interative strategy (whih operates in a so-alled ideal-model).See Setion 4.1.The (knowledge) tightness lens. Note that the knowledge tightness (as provided by Theo-rem 8) does not hange when moving from strit PPT veri�ers to expeted PPT veri�ers.26Reall that a universal simulator obtains the ode of the adversary's strategy rather than a blak-box aess toit. Thus, it may be the ase that suh a simulator an distinguish the ode of V � from the ode of V �� (i.e., thetimed version of V �), and produe bad output in the latter ase. Indeed, a \natural" simulator will not do so, butwe annot rely on this. Turning to a more natural example, we note that the known non-blak-box simulator ofBarak [B01℄ (as well as its modi�ation [BG08℄) may fail to simulate expeted PPT veri�ers, beause the randomvariable representing its simulation time is polynomially related (rather than linearly related) to the running-timeof the veri�er. Reall that it may be the ase that t(x) has expetation that is upper-bounded by a polynomial injxj while t(x)2 has expetation that is lower-bounded by exp(jxj); for example, onsider t : f0; 1g� ! N suh thatPr[t(x) = 2jxj℄ = 2�jxj and Pr[t(x) = jxj2℄ = 1� 2�jxj.27One of the reviewers asked us to state an opposite opinion by whih Theorem 8 is mainly due to the normalityhypothesis. We strongly disagree with this opinion. In partiular, we mention that the simulator in [GK96℄ is normal,but (as shown in [KL08℄) it fails to handle some veri�er strategies that are expeted PPT w.r.t De�nition 2.17



3.2 Sequential ompositionThe following theorem (i.e., Theorem 9) is an expeted PPT version of the standard result (of [GO94℄)that refers to strit PPT adversaries and simulators (see also [G01, Lem. 4.3.11℄). Note that thestandard result does not require the simulator to be blak-box (let alone normal). The reason forthe extra requirement in Theorem 9 will beome lear in the proof.Theorem 9 (expeted PPT version of sequential omposition for zero-knowledge:) In this theoremzero-knowledge means the existene of a normal blak-box simulator that handles any expeted PPTw.r.t De�nition 3 (resp., w.r.t De�nition 4) adversarial veri�er, where handling means that the or-responding ombined simulator runs in expeted PPT and produes output that is omputationallyindistinguishable from the real interation. Suppose that (P; V ) is a zero-knowledge protool. Then,sequentially invoking (P; V ) for a polynomial number of times yields a protool, denoted (P 0; V 0),that is zero-knowledge.We stress that Theorem 9 di�ers from the standard result (of [GO94℄) in two ways. Theorem 9 refersto expeted PPT adversarial veri�ers (rather than to strit PPT ones), and it refers to expetedPPT simulators (rather than to strit PPT ones).Proof: The proof of the strit PPT version (see [G01, Se. 4.3.4℄) proeeds in two steps: First,any veri�er V � that attaks the omposed protool (or rather the prover P 0) is transformed into averi�er V �� that attaks the basi protool (or atually the prover P ). This transformation is quitestraightforward; that is, V �� handles a single interation with P (while reeiving the transriptof previous interations as auxiliary input). Let M denote a simulator for (P; V ��). Then (inthe seond step), a simulator for the omposed protool (or rather for the attak of V � on P 0)is obtained by invoking M for an adequate number of times (using a orrespondingly adequateauxiliary input in eah invoation).Wishing to pursue the foregoing route, we merely need to hek that any veri�er V � thatis expeted PPT w.r.t De�nition 3 (resp., De�nition 4) is transformed into a veri�er V �� that isexpeted PPT w.r.t De�nition 3 (resp., De�nition 4). Unfortunately, this is not neessarily the ase.Indeed, the expeted running-time of V �� when given a random auxiliary input (i.e., one produedat random by prior interations) is polynomial, but this does not mean that the expeted running-time of V �� on eah possible value of the auxiliary input is polynomial. For example, it may bethe ase that, with probability 2�jxj over the history of prior interations, the urrent interationof V � (i.e., V �� with the orresponding auxiliary input) runs for 2jxj steps. The bottom-line isthat V �� may not be expeted PPT w.r.t any reasonable de�nition (let alone w.r.t De�nition 3 orDe�nition 4).In view of the foregoing, we take an alternative route. We only use the hypothesis that somenormal blak-box simulator M an handle all strit PPT veri�ers that attak the basi prover P .Still, the hypothesis provides us with expeted PPT simulators (rather than with strit PPT ones).Nevertheless, we observe that the proof of [G01, Lem. 4.3.11℄ (i.e., the strit PPT version) an beextended to the ase that the simulation of the basi protool (w.r.t strit PPT adversaries) runsin expeted PPT. The key observation is that in this ase V �� is strit PPT, although it will be fedwith auxiliary inputs that are produed in expeted PPT (by the simulation of prior interationsof V �� with P ). Thus, following the onstrution in the proof of [G01, Lem. 4.3.11℄, we obtain anexpeted PPT simulation that handles any strit PPT attak on P 0. Furthermore, the simulationamounts to invoking M for a polynomial number of times (while providing it with blak-box aessto V ��, whih in turn is implemented by a blak-box aess to V �). It follows that the simulationof (P 0; V �) is performed by a normal blak-box simulator (beause M is normal). Hene, we have18



obtained a normal blak-box simulator that an handle any strit PPT attak on the omposedprotool (or rather on the prover P 0). The urrent theorem follows by applying Theorem 8 to thelatter simulator.Digest. The proof of Theorem 9 is somewhat disappointing beause it does not use the hypothesisthat P is zero-knowledge w.r.t expeted PPT veri�ers. Instead, Theorem 8 is used to bridge the gapbetween strit and expeted PPT veri�ers. A similar (but not idential) phenomenon will our inthe sequential omposition theorem for general protools, presented in Setion 4.2.The (knowledge) tightness lens. The normal simulator onstruted for (P 0; V 0) in the proofof Theorem 9 preserves the knowledge tightness of the original simulator (i.e., the normal simulatorprovided for (P; V )).4 Results for General Seure ProtoolsIn this setion we extend the treatment of zero-knowledge (provided in Setion 3) to a treatmentof arbitrary seure protools. The extension is quite straightforward, one the key notions areproperly extended. The main issue that deserves attention is that, in the ontext of arbitraryseure protools, simulators are not standard algorithms but rather interative strategies (for aorresponding ideal-model { to be disussed next). Consequently, notions suh as expeted PPTsimulation and normal (blak-box) simulators will have to be lari�ed. For simpliity, we fous onthe two-party ase.Reall that the standard (\simulation-based") de�nitions of seure protools all for omparingthe real exeution of the protool (when ertain parties are ontrolled by an adversary) to thea�et of a orresponding adversary in an ideal model (see, e.g., [G04, Se. 7.2℄). The ideal modelonsists of the parties sending their inputs to a trusted party that provides eah party with its or-responding output, where the trusted party omputes these outputs aording to the predeterminedfuntionality that the protool is supposed to seurely ompute. Thus, the ations of the adversaryin the ideal model are on�ned to seleting the messages sent to the trusted party (by the partiesontrolled by the adversary) and omputing its �nal output based on the messages it reeived fromthe trusted party (i.e., the messages reeived by the parties ontrolled by the adversary). In thetwo-party ase, this adversary sends a single message to the trusted party and reeives a singlemessage in return. Note that this adversary is an interative mahine, although its interation isvery minimal, and thus the various de�nitions of expeted PPT strategies should and an be appliedto it.Another point to note is that the ideal-model adversary is viewed as a simulator of the real-model adversary, and that (as in the ase of zero-knowledge) the simulator is typially desribedas a universal mahine that is given blak-box aess to the real-model adversary that it simulates.For simpliity, we shall refer to the ideal-model adversary as the simulator and to the real-modeladversary as the adversary.Turning to the notion of normal blak-box simulators, let us �rst restate De�nition 6 (whihrefers to non-interative simulators). For any blak-box simulator S and any adversary A, weonsider an imaginary mahine I that emulates SA suh that eah orale all to A is emulated inunit time. Then, De�nition 6 mandates that, for every adversary A, the orresponding I is expetedPPT.28 In our ontext, the simulator itself is an interative mahine, and thus the imaginary28Thus, we have restated the ondition that refers to the number of steps performed by S itself (when using orale19



mahines will also be interative. For i = 1; 2; 3; 4, we say that a blak-box simulator S is normal w.r.tDe�nition i if, for every adversary A, the orresponding I = SA is expeted PPT w.r.t De�nition i.We note that natural simulators used in seurity proofs are normal. This holds for simulators ofsimple protools (f., e.g., [G04, Se. 7.4.3.1-7.4.3.3℄) as well as for simulators of omplex protoolsobtained by omposition (f., e.g., [G04, Se. 7.4.4℄).Clari�ation. As usual, we shall only onsider the seure omputation of funtionalities thatan be (inseurely) omputed in strit PPT. Similarly, we shall only onsider protools in whih allpresribed strategies are implementable in strit PPT; that is, the proper exeution of all protools(by honest users) only requires strit PPT. Indeed, the notion of expeted PPT is only applied toadversaries (and to simulators, whih are themselves ideal-model adversaries). Needless to say, thisattitude is in perfet agreement with the views expressed in the introdution.4.1 Simulating expeted PPT adversariesIn ontinuation to Setion 3.1, we prove that normal blak-box simulation of strit PPT adversariesan be extended to expeted PPT adversaries. Unlike in Theorem 8, here the result (i.e., Theo-rem 10) is stated for both the new de�nitions, beause the ombined simulator is an interativemahine (and thus De�nitions 3 and 4 do not neessarily oinide when applied to it).Theorem 10 (extendability of normal blak-box simulators, the ase of general two-party proto-ols): Let � be a two-party protool and realA(x) denote the output of its exeution, on inputtuple x, under an attak of the adversary A. Let S be a normal w.r.t De�nition 3 (resp., De�ni-tion 4) simulator and idealAF (x) denote the output of its exeution, on input tuple x, orale aessto the strategy A, and when the trusted party answers aording to the funtionality F . Supposethat for every strit PPT strategy A, it holds that idealAF is omputational indistinguishable fromrealA. Then, for every strategy A that is expeted PPT w.r.t De�nition 3 (resp., De�nition 4),the total simulation time of the ombined simulator SA is expeted PPT w.r.t De�nition 3 (resp.,De�nition 4) and idealAF is omputational indistinguishable from realA.As in ase of zero-knowledge, Theorem 10 asserts that known simulators that handle strit PPTadversaries an also handle adversaries that run in expeted polynomial-time under the new de�-nition(s). (Again, this holds even if the former simulators run in expeted PPT.)Proof: The urrent proof is analogous to the proof of Theorem 8, exept that the veri�ation ofthe expeted total running-time of the ombined simulation is slightly less evident. The key pointis that a de�nitional attak (i.e., as in De�nitions 3 and 4) on the ombined simulator SA yields aorresponding attak on A, whereas A satis�es De�nition 3 (resp. De�nition 4) by the hypothesis.Details follow.We an fous on the total time spent by A in all its invoations by S, sine the number of stepsof S itself is upper-bounded by the normality hypothesis. Let us �rst onsider the version thatrefers to De�nition 4, denoting by n!A(!S) the maximum number of invoations of A by S, when A(resp., S) uses oins !A (resp., !S) and the maximization is over all possible messages (supposedlyby the trusted party) that an be provided to the simulator (maximized for these hoies of !Aand !S). By the normality hypothesis (applied to the residual adversaries A!A), it follows thatmax!AfE!S [n!A(!S)℄g is upper-bounded by a polynomial, denoted q. Turning to a setting in whihA interats with a \magi" mahine as in De�nition 4, we denote by t(!A) the maximum runningalls to A) as a ondition that refers to the total number of steps performed by the imaginary mahine I.20



time of A (in suh an interation) when the maximization is over all possible messages sent toA (again maximized for this hoie of !A). It follows that E!A [t(!A)℄ is upper-bounded by apolynomial, denoted p (sine A is PPT w.r.t De�nition 4). Finally, we onsider the total timespent by A when SA interats with a magial mahine (as in De�nition 4), and upper-bound it byE!S ;!A [n!A(!S) � t(!A)℄ = E!A [E!S [n!A(!S)℄ � t(!A)℄� E!A [max! fE!S [n!(!S)℄g � t(!A)℄= max! fE!S [n!(!S)℄g � E!A [t(!A)℄whih equals q() � p(). This establishes the laim for De�nition 4.Turning to the version that refers to De�nition 3, we apply an analogous analysis. Spei�ally,�xing any reset attak on the simulator SA, we let nr(!S ; !A) denotes the number of invoations ofA(!A) by S(!S) when SA(!A)(!S) is invoked by the reset attak that uses oins r. The admissibilityof this reset attak on SA means that, for any !A and !S, the expeted number of invoations ofSA(!A)(!S) by this attak is upper-bounded by a polynomial (where the expetation is taken overall possible hoies of r). Fixing any !A, we may view the foregoing reset attak (on SA) asa reset attak on SA(!A), and note that it is an admissible reset attak (sine, for every !S, theexpeted number of invoations of SA(!A)(!S) is upper-bounded by the aforementioned polynomial).Hene, the normality ondition of S (w.r.t De�nition 3) implies that the expeted number of timesthat S invokes A(!A) during this attak is upper-bounded by a polynomial, denoted q; that is,max!AfEr;!S [nr(!S; !A)℄g is upper-bounded by q. Now, ombining the reset attak on SA with Sitself, we obtain an admissible reset attak on A (i.e., a q-reset attak on A). Thus, by De�nition 3(applied to A), it follows that the expeted total amount of time spent by A in these interationsis upper-bounded by a polynomial.4.2 Sequential ompositionIn ontinuation to Setion 3.2, we turn to disuss the preservation of the seurity of general protoolsunder sequential omposition. The formulation is more omplex in the urrent setting, beause se-quential omposition of general protools refers to a model of orale-aided protools (a.k.a \hybrid"model). Thus, we need to extend our de�nitional treatment of expeted PPT to that model.Reall that an orale-aided protool � that uses orale alls to a funtionality f , is a protoolaugmented by speial instrutions by whih the (two) parties may invoke the funtionality f (severaltimes). Eah invoation is performed by sending inputs to f , via speial (imaginary) hannels, andreeiving orresponding outputs (again via speial hannels).29 Thus, in the various de�nitionsof expeted PPT we need to refer also to the distribution of the messages obtained through theaforementioned speial hannels. Spei�ally, when onsidering a strategy in the orale-aided model,the (de�nitional) attak30 on this strategy ontrols both the ordinary hannels (on whih thestrategy expets to get messages from other parties) and the speial hannels (on whih the strategyexpets to get outputs from the funtionality). We stress that only under (the natural extensionof) De�nition 1, it is the ase that the messages delivered over the speial hannels must �t thedesignated funtionality f .29We stress that eah invoation of f is performed instantaneously and no other protool ativity (i.e., neitheran ordinary ommuniation nor another invoation of f) is performed onurrently. As usual, towards the timeomplexity, eah invoation is onsidered a single step.30Note that here we refer to the attaks used (as a mental experiment) in the various de�nitions of expeted PPTstrategies (espeially in De�nitions 3 and 4). 21



A sequential omposition theorem refers to an orale-aided protool that uses orale alls tosome funtionality, and to the e�et of replaing these orale alls by invoations of a seure protoolfor the said funtionality. In the standard results of this type (f. [C00℄), it is assumed that theproof of seurity of the sub-protool (whih replaes the orale alls to the funtionality) is via astrit PPT simulator. The diÆulty addressed here is that allowing an expeted PPT simulator forthis sub-protool requires onsidering expeted PPT adversaries for the orale-aided protool (evenif we only are about strit PPT adversaries for the omposed protool). But if the orale-aidedprotool is seure also with respet to expeted PPT adversaries then we are �ne (as far as stritPPT adversaries for the omposed protool are onerned). As in the proof of Theorem 9, if allthe simulators guaranteed by the hypothesis are normal, then we an extend the result to expetedPPT adversaries.Theorem 11 (expeted PPT version of the standard sequential omposition theorem31:) In thistheorem seurity means the existene of normal blak-box simulators that an handle32 any ex-peted PPT adversary, where normality and expeted PPT are de�ned as in either De�nition 3 orDe�nition 4. Suppose that F an be seurely omputed by an orale-aided protool � that is givenorale aess to the funtionality f , whih an be seurely omputed by a standard protool �. Then,F an be seurely omputed by a standard protool �0, whih is omposed of � and �.Note that, by Theorem 10, it suÆes to have in the hypothesis expeted PPT (or rather normalblak-box) simulators that an simulate any strit PPT adversary. Atually, the following proofinvokes Theorem 10 anyhow, whih in turn is the reason that the de�nition of seurity refers tosimulators that operate in a blak-box and normal fashion.Proof: As in the proof of Theorem 9, the �rst idea that omes to mind is adapting the standardproof of the orresponding result (i.e., [G04, Thm. 7.4.3℄) that refers to strit PPT. Spei�ally,the standard proof (as presented, say, in [G04, Se. 7.4.2℄) proeeds as follows: First, any adversarythat attaks the standard protool �0 is transformed into an adversary that attaks the standardprotool �. Next, the former adversary (i.e., of �0) as well as a simulator for the latter adversary(i.e., of �) are ombined and transformed into an adversary that attaks the orale-aided protool� (whih uses orale alls to f). A simulator of this adversary of � yields the desired simulation.However, as in the proof of Theorem 9, it is not neessarily the ase that if the adversaryattaking �0 is expeted PPT then the adversary obtained for � is also expeted PPT. Thus, again,we take an alternative route, starting by establishing the urrent theorem for strit PPT adversariesattaking �0 and next applying Theorem 10 to extend the result to adversaries that are expetedPPT w.r.t De�nition 3 (resp., De�nition 4). Now there is no problem with the �rst transformation(whih transforms any strit PPT adversary attaking �0 into a strit PPT adversary attaking�). Hene, we obtain a simulator for �, whih runs in expeted PPT w.r.t De�nition 3 (resp.,De�nition 4). Combining this simulator with the former adversary (for �0), we obtain an adversaryattaking � that runs in expeted PPT aording to De�nition 3 (resp., De�nition 4).The key point is that (by the hypothesis) we do have a (normal blak-box) simulator thatan handle any expeted PPT adversary attaking �. Thus, proeeding as in the proof of [G04,31This is an expeted PPT version of the Sequential Composition Theorem of [C00℄ (see also [G04, Thm. 7.4.3℄),whih refers to seurity as the existene of strit PPT simulators that handle any strit PPT adversary. As inTheorem 9, our expeted PPT version requires that the simulators in the hypothesis operate in a blak-box (andnormal) manner.32As in Theorem 9, handling means that the orresponding ombined simulator runs in expeted PPT under therelevant de�nition and produes output that is omputationally indistinguishable from the real interation.22



Thm. 7.4.3℄, we obtain a simulator for �0, whih is expeted PPT w.r.t De�nition 3 (resp., De�-nition 4). Using the fat that both simulators we used are normal blak-box simulators (and so isthe onstrution presented in the proof of [G04, Thm. 7.4.3℄), we infer that the simulator obtainedfor �0 is a normal blak-box simulator. This allows invoking Theorem 10, and thus extendingthe simulation to adversaries that are expeted PPT w.r.t De�nition 3 (resp., De�nition 4). Thetheorem follows.Digest. Note that the partial result by whih �0 is seure w.r.t strit PPT adversaries (via anexpeted PPT simulator) was established using the following two hypotheses: (1) the simulator for� an handle expeted PPT adversaries, and (2) the (expeted PPT) simulator for � an handlestrit PPT adversaries. That is, this partial result neither uses the hypothesis that the simulatorfor � an handle expeted PPT adversaries nor the hypothesis that both simulators operate ina blak-box (and normal) fashion. The latter hypothesis is used in order to guarantee that thesimulator onstruted for �0 is a normal blak-box simulator, whih in turn is used for extendingthe partial result to the general result stated in Theorem 11. The hypothesis that the simulatorfor � an handle expeted PPT adversaries is never used.Reall that, as a diret orollary to Theorems 10 and 11, we may obtain the following result,whih suÆes in many (if not all)33 appliations. This result refers to the omposition of protoolsthat are proved seure with respet to strit PPT adversaries by using expeted PPT simulators.Corollary 12 (sequential omposition for the mixed strit/expeted model:) Here seurity meansthe existene of normal blak-box simulators that an handle any strit PPT adversary, wherenormality is de�ned as in either De�nition 3 or De�nition 4 (and, in partiular, allows expetedPPT simulators). Suppose that F an be seurely omputed by an orale-aided protool � that isgiven orale aess to the funtionality f , whih an be seurely omputed by a standard protool �.Then, F an be seurely omputed by a standard protool �0, whih is omposed of � and �.Atually, the simulator for � need not be blak-box, beause Corollary 12 an be derived as anonsequene of the aforementioned partial result, whih only requires the simulator of � to handleexpeted PPT adversaries. The latter ondition is guaranteed by applying Theorem 10 to thenormal blak-box simulator that an handle any strit PPT adversary for �.The (seurity) tightness lens. The proof of Theorem 11 preserves the seurity tightness of thestrit PPT result (i.e., [G04, Thm. 7.4.3℄), whih in turn is the multiple of the seurity tightness ofthe two underlying protools (i.e., � and �). The same holds with respet to Corollary 12.4.3 Conurrent ompositionTurning to onurrent omposition theorems, we reall the pivotal role of environmental seurity(a.k.a UC-seurity [C01℄) in that ontext. Spei�ally, Canetti [C01℄ put forward a robust notion ofseurity (i.e., environmental seurity), and proved that any protool that satis�es this notion alsopreserves seurity under arbitrary onurrent exeutions. Sine environmental seurity refers to asingle exeution, an appealing methodology for providing protools that are seure under arbitraryonurrent exeutions emerged: design your protool to be environmentally seure and obtain (forfree) seurity under onurrent exeutions. Our goal is to extend this methodology, whih wasdeveloped for the strit PPT setting, to the expeted PPT setting. This requires (1) showing that33The stronger statement relies on the opinions expressed in Setion 1.5.23



environmental seurity in the strit PPT setting implies environmental seurity in the expetedPPT setting, and (2) verifying that Canetti's proof extends to the expeted PPT setting. But letus start by realling Canetti's notion of environmental seurity [C01℄ (see also [G04, Se. 7.7.2℄),while on�ning ourselves to standard (non-reative) funtionalities.34A brief introdution to environmental seurity. Loosely speaking, environmental seurity35is aimed at representing the preservation of the protool's seurity when exeuted within any(feasible) environment. The notion of an environment is a generalization of the notion of anauxiliary-input; that is, the environment is an auxiliary orale (or rather a state-dependent orale)that the adversary may aess. In partiular, the environment may represent other exeutions ofvarious protools that are taking plae onurrently (with the exeution that we onsider). Westress that the environment is not supposed to assist the proper exeution of the protool (and, infat, honest parties merely obtain their inputs from it and return their outputs to it). In ontrast,the environment may assist the adversary in attaking the protool. Following the simulationparadigm, we say that a protool (for omputing a funtionality F ) is environmentally-seure if anyfeasible real-model adversary attaking the protool, with the assistane of any feasible environment,an be simulated by a orresponding ideal-model adversary that uses the same environment (andommuniates with a trusted party that represents F ). We stress that both adversaries interatwith an environment that is seleted after they are �xed (i.e., they \use" the environment in ablak-box manner). For sake of simpliity, the environment is also responsible for providing theparties with inputs and for trying to distinguish the real-model exeution from the ideal-modelexeution. In the standard formulation (see [G04, Se. 7.7.2℄), the environment is implemented bya (non-uniform) family of polynomial-size iruits (or, equivalently, by strit PPT with arbitraryauxiliary inputs). As usual, the real-model and ideal-model adversaries are modeled as strit PPTinterative mahines.The expeted PPT version. Firstly, we apply our de�nitions of expeted PPT (i.e., De�ni-tions 3 and 4) to the real-model and ideal-model adversaries, hereafter referred to as adversariesand simulators respetively. Note that the (de�nitional) attaks on these strategies ontrol boththe ordinary hannels (on whih suh a strategy expets to get messages from other parties) andthe hannels used for ommuniation with the environment. Seondly, we apply our de�nitionsof expeted PPT (i.e., De�nitions 3 and 4) to the environment itself, whih after all is merely astrategy.36 Lastly, we extend the notion of normal blak-box simulators suh that its \net" timebound (i.e., ounting only its own steps) refers to interation with any environment.Theorem 13 (extendability of simulators, the ase of environmental seurity): In this theorem,an expeted PPT strategy is one that satis�es De�nition 3 (resp., De�nition 4). Suppose that � is34Reall that a (non-reative) funtionality is a randomized version of a multi-input multi-output funtion (f. [G04,Se. 7.2.1℄). In ontrast to our approah, Canetti's exposition of environmental seurity [C01℄ is dominated byreative funtionalities, whih are of natural (seondary) interest also when the basi notion of (stand-alone) seurityis onerned (f. [G04, Se. 7.7.1.3℄). We see no reason to ouple the treatment of environmental seurity with reativefuntionalities.35The term used by Canetti [C01℄ is Universally Composable, abbreviated UC-seure, but we believe that a reason-able sense of \universal omposability" is merely a orollary of the suggested de�nition. Furthermore, as indiated bysubsequent researh (e.g., [L09℄), it is bene�ial to distinguish the desired \universal omposability" property fromthe spei� way it is formulated.36In fat, sine the simulator annot \rewind" the environment, we may allow the environment to be expeted PPTaording to De�nition 2. However, in the main appliation (i.e., Theorem 14) we shall only use environments thatare expeted PPT aording to De�nition 3 (resp. De�nition 4).24



environmentally seure in the sense that for every strit PPT adversary there exists an expetedPPT simulator suh that, for every strit PPT environment, the orresponding real-model andideal-model exeutions are omputationally indistinguishable. Further suppose that the simulatorruns in expeted PPT even when interating with an arbitrary environment. Then, there exists anormal blak-box simulator suh that, for every expeted PPT adversary and every expeted PPTenvironment, the following holds:1. The expeted total simulation time is polynomial, where the total simulation time inludes thesteps taken by the simulator itself, the steps taken by the blak-box adversary in all invoations,and all steps taken by the environment.2. The orresponding real-model and ideal-model exeutions are omputationally indistinguish-able.Note that the hypothesis allows the simulator to run in expeted PPT while simulating a stritPPT adversary and that the simulation is guaranteed to be omputationally indistinguishable withrespet to strit PPT environments. Unlike in the previous extendability theorems (i.e., Theorems 8and 10), here we did not require the simulator to use the adversary in a blak-box manner, beausewithout loss of generality (in the environmental setting) it suÆes to onsider a �xed (and rathertrivial) adversary (f. [C01℄). We did require, however, that the simulator of that adversary runsin expeted PPT when interating with any environment (whih means that it is \normal w.r.t theenvironment").Proof: By the last omment, the hypothesis atually yields a normal blak-box simulator thathandles any strit PPT adversary and any strit PPT environment. Proeeding as in the proofof Theorem 10, whih in turn builds on the proof of Theorem 8, we note that the same simulatoran handle any expeted PPT adversary and any expeted PPT environment. The urrent theoremfollows.Seurity under onurrent exeutions. For any protool �, we wish to onsider numerousexeutions of � that take plae onurrently, where the sheduling of messages in the variousexeutions is up to the adversary.37 In addition, other numerous exeutions of other protools(sometimes referred to as \arbitrary network ativity") an take plae onurrently, but our onernis with the seurity of the opies of �. Loosely speaking, this should mean that these atualexeutions of � an be simulated in a orresponding ideal-model (where a trusted party answersaording to the desired funtionality). Needless to say, the simulator ontrol the same partiesthat are ontrolled by the adversary in the real-model. For simpliity, onsider the ase that allexeutions of the (two-party) protool � are played by the same pair of parties (and that theadversary ontrols a single party).Canetti [C01℄ proved that if � is environmentally seure then the onurrent exeution ofmultiple opies of � is seure, where seurity refers to strit PPT adversaries and simulators (as wellas suh environments when relevant). Loosely speaking, Canetti's proof onsists of simultaneouslyreplaing all the (real-model) onurrent exeutions by opies of the simulator (of the environmentalseurity hypothesis) while emulating the adversary's attak on the onurrent system by using thehannels of the orresponding environments. (A hybrid argument that refers to partial replaements37Note that this di�ers from sequential omposition (treated in Setion 4.2) in that these exeutions take plaeonurrently rather than sequentially. Furthermore, additional ativity (whih is referred to next) takes plae on-urrently rather than before and/or after these exeutions.25



of real exeutions by simulations is used for showing that the behavior is maintained.) Here welaim an expeted PPT version of Canetti's result.Theorem 14 (environmental seurity implies onurrent omposability, an expeted PPT version(roughly stated)): Suppose that � is environmentally seure with respet to adversaries, simulatorsand environments that are expeted PPT w.r.t De�nition 3 (resp., De�nition 4). Further supposethat the simulator runs in expeted PPT even when interating with an arbitrary environment.Then the onurrent exeution of polynomially many opies of � is seure with respet to adversariesand simulators that are expeted PPT w.r.t De�nition 3 (resp., De�nition 4).The proof is analogous to the proof of Theorem 11. For larity, we start by de�ning an imaginaryprotool �0 that onsists of polynomially many onurrent opies of �, eah initiated by any partyat any time and proeeding at arbitrary pae (i.e., at eah time, eah party deides whether toinitiate a new opy or advane an ative opy by sending a orresponding message). Next, adaptingthe proof of Canetti [C01℄, we �rst prove a partial result in whih we only onsider an arbitrarystrit PPT adversary that attaks �0 (i.e., polynomially many opies of �). We note that thesimulator onstruted by Canetti (for �0) uses the simulator for environmental seurity of � in ablak-box and normal manner. Thus, the former simulator runs in expeted PPT provided thatthe latter simulator runs in expeted PPT, whih is de�nitely the ase when simulating residualadversaries and environments that are derived from the strit PPT adversary that attaks �0.Finally, proeeding as in the proof of Theorem 11, we extend the result to any expeted PPTadversary that attaks �0. Theorem 14 follows.5 Alternatives to expeted PPTIn standard algorithmi settings, strit PPT aptures the intuitive notion of eÆient probabilistiomputations. However, as explained in Setion 1.5, in some ases strit PPT is slightly too rigidand one may seek a more exible alternative. Expeted PPT provides suh a exible alternative,and in fat it is the �rst suh alternative that omes to mind. Throughout this work, we ignoredthe question of what is a good exible de�nition of \eÆient probabilisti" algorithms. We merelyassumed that it is provided by expeted PPT, and foused on extending this notion to interativemahines. In this setion we disuss several alternatives to the assoiation of eÆient probabilistialgorithms with expeted PPT.Reall that expeted PPT refers to the expeted running-time and requires that this expeta-tion be upper-bounded by a polynomial (in the length of the input). However, as advoated byLevin [L86℄ in a somewhat di�erent ontext (see [G97℄), a better de�nition of \exible probabilistieÆieny" is obtained by requiring that the running-time itself, as a random variable, be upper-bounded by a polynomial in a random variable that has expetation that is at most linear (in thelength of the input). In partiular, Levin's de�nitional approah eliminates the tehnial diÆultiesexempli�ed at the end of Footnote 26, and provides a robust de�nition of probabilisti eÆieny;that is, if a probabilisti algorithm is deemed \eÆient" then also a modi�ation that squares itsrunning time will yield an \eÆient" algorithm.38 In Setion 5.1 we extend Levin's de�nitionalapproah to interative strategies, pursuing the same alternatives as those presented in Setion 2,and establishing analogous extendability and omposition results.38Indeed, this guarantees that Barak's non-blak-box simulator [B01℄ (when applied to \eÆient" veri�ers) remains\eÆient" and an extension of Barak's result to \eÆient" strategies follows as in the proof of Theorem 8 (whilenoting that this spei� simulator is not a�eted by replaing of the ode of V � with the ode of V ��). For details,see Setion 5.1. 26



In general, the question of how to de�ne exible probabilisti eÆieny for non-interativealgorithms is quite orthogonal to the issues disussed in the urrent paper (i.e., how to extendsuh a de�nition to interative strategies). Indeed, it seems that any reasonable de�nition foralgorithms an be extended in analogous ways to interative strategies. For example, in the ontextof zero-knowledge, it was suggested (f. [DNS℄) to use simulators that, for every desired notieabledeviation � (from the real interation), run in time that is stritly bounded by a polynomial in1=�. An alternative suggestion (of Vadhan [V06℄) is allowing (standard) simulation with varyingrunning-time suh that the probability that the simulation takes more than t steps is upper-boundedby poly() � t�
(1) + �(), where � is a negligible funtion. Note that, in both ases, the de�nition(stated here for standard algorithms) will have to be extended to interative mahines, and theissues and approahes presented in this paper will apply. For details see Setion 5.2.Before disussing these alternatives in greater detail, we note that all these alternative de�nitionsof \exible probabilisti eÆieny" are (intentionally) more permissive than the standard de�nition(i.e., expeted PPT). We believe that in the urrent ontext, where expeted PPT is relutantlyintrodued to aount for \probabilisti eÆieny" that goes beyond strit PPT, the approah ofrestriting probabilisti eÆieny to expeted PPT is more adequate.5.1 Extending Levin's approahLet us �rst spell out Levin's suggestion (whih was loosely stated above). This suggestion is rootedin the realization that an important aspet of (deterministi and strit probabilisti) polynomial-time as a model of eÆient omputation is the losure of polynomial-time under natural algorithmiompositions. This feature, in turn, boils down to losure properties of the set of polynomials (i.e.,their losure to addition, multipliation, and omposition). The problem is that, in the ase of\exible eÆient probabilisti omputation", diretly upper-bounding the expeted running-time(as underlying the de�nition of expeted PPT) does not provide losure under natural algorithmiompositions. But upper-bounding the expetation of a root of the running-time does deliver thedesired property. Spei�ally, we obtain the following de�nition.De�nition 15 (exible probabilisti eÆieny, following Levin [L86℄): For a probabilisti algorithmA and any string x, let TA(x) denote a random variable representing the running-time of A on inputx. Suh an algorithm is said to be eÆient if there exists a onstant  > 0 suh that for every x itholds that E[TA(x) ℄ = O(jxj).Although this de�nition looks peuliar, note that it is quite similar to the naive de�nition, whih anbe reformulated as asserting E[TA(x)℄ = O(jxj): the di�erent is merely in the order of applying theexpetation and powering operations. De�nition 15 reets a better understanding of the nature ofthe expetation operator (with respet to its interation with other operations), and is preferable forthe purpose of introduing a robust theory of eÆient probabilisti algorithms. Indeed, De�nition 15implies the standard de�nition of expeted PPT, but the fat that De�nition 15 goes beyondexpeted PPT is of some onern in the urrent setting. Furthermore, keeping trak of the atualexpeted running-time (as in the standard notion of expeted PPT) seems better for the purpose ofatually analyzing the running-time of simulators (espeially, beause our aim is omparing these tothe running time of orresponding adversaries). For that reason, we performed our main treatmentin terms of expeted PPT, and only omment here on how it an be adapted to De�nition 15.
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Indeed, let us turn to our own business. For simpliity of exposition, note that De�nition 15remains intat if we require that E[TA(x) ℄ = poly(jxj) (rather than E[TA(x) ℄ = O(jxj)).39 Next,note that the de�nitions presented in Setion 2 an be adapted by merely replaing the randomvariable that represents the running-time (or the number of interations) by its -th power, forsome onstant  > 0. Let us demonstrate this adaptation for the most ompliated ase, where weuse the related formulation of saying that the running-time is polynomial in a quantity that haspolynomial expetation.De�nition 16 (De�nition 3, revisited): A q-reset attak on � is an attak that, for every x; y; zand !, interats with �! for an number of times that is upper-bounded by q(Xx;y;z;!) suh thatE[Xx;y;z;!℄ � poly(jxj). The strategy � is eÆient w.r.t any reset attak if, for some polynomial p,every polynomial q, every q-reset attak on �, and every x; y; z, the total number of steps taken by�(x; z) during this attak is upper-bounded by q(Yx;y;z) � p(Yx;y;z) suh that E[Yx;y;z℄ � poly(jxj).The analogues of De�nitions 1, 2, and 4 are easier to obtain. We similarly adapt the de�nitionof normal (blak-box) simulator (i.e., De�nition 6). It is left to verify that the analogous resultsremain valid.Proposition 5, revisited. With the exeption of the proof that De�nition 4 implies De�nition 3,all the laims are highly insensitive to the spei� notion of eÆient probabilisti omputation.When proving the remaining analogue (and referring to notations as in the said proof), note thatEr;![TA(r)(!) ℄ is upper-bounded by the produt of max!fEr[nA(r)(!) ℄g and E![maxrftA(r)(!)g℄.Thus, upper-bounds on the latter fators40 yield the desired upper-bound, whih implies that anystrategy that satis�es the analogue of De�nition 4 also satis�es the analogue of De�nition 3.Theorem 8, revisited. Noting that Observation 7 extends to the urrent setting, we infer thatso does the running-time analysis of the simulator. Thus, it remains to onsider the analysis of thequality of the simulator's output. Let T �(x) be a random variable representing the total number ofsteps taken by V � during all its invoations by M . (Reall that in the proof of Theorem 8 we onlyonsidered the expetation of this number, whih was denoted t�(x) and indeed equals E[T �(x)℄.)Then, for some  > 0, it holds that � def= E[(T �(x)) ℄ = poly(jxj). Thus, Pr[(T �(x)) > 3�=�(jxj)℄ <�(jxj)=3 and Pr[T �(x) > (3�=�)1= ℄ < �=3 follows. Trunating runs of V � one (poly(jxj)=�)1= stepsare ompleted, we obtain a strit PPT V �� and ontinue as in the original analysis.On the extendability of Barak's non-blak-box simulation. We laim that Barak's simu-lator [B01℄ (as well as its modi�ation [BG08℄) an handle adversaries that satisfy De�nition 16 (oratually even a orresponding version of De�nition 2). This laim an be proved by noting that thissimulator an be applied to any deterministi adversary, while running in time that is polynomialin the running-time of the adversary. Thus, we may apply this simulator to a residual deterministiadversary obtained by �xing (at random) the oins of the given probabilisti adversary. It followsthat the simulator makes a number of steps that satis�es De�nition 15 (beause its running-timeis polynomial in a quantity that satis�es De�nition 15). As for the quality of this simulation, it39This follows by observing that, for every  � 1 and X � 0, it holds that E[X℄ � E[X℄. Hene, E[TA(x) ℄ =O(jxj) implies E[TA(x)=℄ = O(jxj).40Note that we may need to use the fat that E[X ℄ � E[X0 ℄ for every  � 0.28



an be analyzed as the foregoing version of Theorem 8, while noting that the e�et (on this spe-i� simulator) of replaing of the ode of V � by the ode of V �� is limited to the e�et that thisreplaement has on a blak-box simulator.41Note that Theorem 9 as well as the other omposition theorems are highly insensitive to the spe-i� notion of eÆient probabilisti omputation in use. Their proof merely invokes the orrespond-ing omposition theorem for strit PPT and the relevant extendability theorem (e.g., Theorem 8).We thus onlude this setion by onsidering the extendability theorem for general protools.Theorem 10, revisited. The issue again is the analysis of the running-time of the ombinedsimulator (whih in this ontext is an interative mahine). For the analogue of De�nition 4, itsuÆes to relate to powers of the quantities appearing in the proof of Theorem 10 (rather thanto the quantities themselves), indeed as done in the proof of the revisited Proposition 5. For theanalogue of De�nition 3 the modi�ation is even more transparent.5.2 Extending other approahesWe onsider a relaxation of De�nition 15 suggested by Vadhan [V06℄ as well as a generalization ofthe notion of epsilon-knowledge (used in, e.g., [DNS℄).5.2.1 Extending Vadhan's relaxation of Levin's approahLet us start by noting that an equivalent formulation of De�nition 15 asserts that, for some onstant > 0, it holds that Pr[TA(x) > t℄ = O(jxj=t) for every x and t. Clearly, E[TA(x) ℄ = O(jxj)implies Pr[TA(x) > t ℄ = O(jxj)=t (for every t). On the other hand, if for some onstant  > 0it holds that Pr[TA(x) > t ℄ = O(jxj)=t (for every t), then, for every 0 < , it holds thatE[TA(x)0 ℄ = O(jxj).The foregoing equivalent form of De�nition 15 is the starting point for further relaxation,suggested by Vadhan [V06℄. Aording to this relaxation it is only required that for some negligiblefuntion � : f0; 1g� ! [0; 1℄ it holds that Pr[TA(x) > t℄ = O(jxj=t) + �(jxj). This relaxation isoneptually appealing, beause a negligible deviation of various probabilities is allowed throughoutthe theory of ryptography.Extending Vadhan's approah. Again, the de�nitional treatment provided in Setion 2 andDe�nition 6 is easily adapted to the urrent notion of probabilisti eÆieny. As for the analogousresults, they all hold. This an be proved by noting that, for eah relevant probabilisti proess,all but a negligible measure of the probability spae behaves analogously to De�nition 15. Thus,the analysis used in Setion 5.1 an be applied to the non-exeptional part of the probability spae,and the negligible part an be ignored (or rather aounted for by the negligible error probabilityallowed in the �nal result). We stress that this deomposition of the probability spae is only amental experiment performed in the analysis, while the various strategies and algorithms remainexatly as desribed in Setion 5.1.5.2.2 Extending the epsilon-knowledge approahOur starting point is an approah that was used in the ontext of zero-knowledge, where it isalled epsilon-knowledge. In this approah the simulator is provided with a non-negligible deviation41This is the ase sine this spei� simulator only uses the ode in order to generate a proof that the orrespondingveri�er behaves in a ertain way. 29



parameter, denoted �. The simulator is required to run in (strit) poly(jxj=�)-time and should outputa transript that is �-indistinguishable from the real interation (i.e., the probability gap observedby any PPT distinguisher is at most � (rather than negligible)). We stress that the running-time ofthe simulator may depend on �. Intuitively, when the simulator is required to produed an outputof higher quality (i.e., orresponding to a smaller �), it is allowed more time.From epsilon-knowledge to epsilon-seurity. Although (to the best of our knowledge) thisapproah has only been applied in the ontext of zero-knowledge, it an be applied to general seureprotool yielding a orresponding notion of epsilon-seurity.42 That is, we onsider arbitrary (non-interative (and later interative)) probabilisti mahines that are given a parameter �, and alwaysrun for at most poly(jxj=�) steps; both the adversary and its simulator will be modeled as suhmahines, but they may use di�erent values of the deviation parameter (e.g., when given theparameter �, the simulator may invoke the adversary with parameter �0). Hene, epsilon-seuritymeans that for every suh adversary there exists a orresponding simulator that, when given theparameter �, yields an ideal exeution that is �-indistinguishable from the real one.Note that in the foregoing paragraph we postulated that the relevant interative (probabilisti)mahine always run for at most poly(jxj=�) steps. That is, this formulation refers to strit running-time (and orresponds to strit PPT). We note that onsidering expeted running-time (whihorresponds to expeted PPT) buys us nothing in the setting of epsilon-seurity, beause one analways trunate runs that exeed the expeted value by a fator of 1=�0 (while inurring only adeviation of �0 in performane). Thus, the notion of epsilon-seurity is atually unrelated to theissues disussed in this paper.On the omposition of epsilon-seure protools. We seize the opportunity to pointing outan important detail regarding the omposition of epsilon-seure protools. Suppose that we areomposing an orale-aided protool � with a protool �, obtaining a protool �0. Reall that whenonstruting a simulator for �0, we use a simulator for � that refers to an adversary A, whereA itself inorporates a simulator for �, whih is being invoked t(jxj) times. Thus, the deviationof the ombined simulator (for �0) is upper-bounded by � + n�(jxj) � t(jxj) � ��, where � (resp., ��)is the deviation of the simulator of � (resp., of �), and n� is an upper-bound on the number ofinvoations of A (by the simulator for �). Note that n� is upper-bounded by the running-time ofthe simulator of �, whih in turn may depend on its own deviation parameter (i.e., �); that is,we may have n�(jxj) = poly(jxj=�). Thus, the total deviation of the ombined simulator (for �0)may take the form �+ poly(jxj=�) � ��. This means that, when given a deviation parameter �0, theombined simulator should invoke the two simulators with suÆiently small deviation parameters(e.g., setting � = �0=2 and �� = poly(�=jxj) will do).6 Conlusions and Open ProblemsWe believe that the new de�nitions of expeted PPT (i.e., De�nitions 3 and 4) are satisfatory.Indeed, our belief is supported by the results presented in this paper; that is, by the fat that normalblak-box simulators that handle strit PPT adversaries also handle adversaries that satisfy ourde�nitions, and that these de�nitions support various natural omposition theorems.42In fat, a related notion of seurity has appeared in the ontext of password-based seurity (f. [GL06℄), but there� is not a free parameter but rather represents the notieable a priori probability of guessing the orret password,and the running-time of the simulator is independent of �.30



We note that both de�nitions arise naturally. As we saw, De�nition 3 arises as the naturalanswer to the problem aused by dealing with adversaries that are expeted PPT under De�nition 2.As for De�nition 4 it is simplest to state, and, ontrary to our initial feeling, it works just as well.A natural question that arises is whih de�nition is preferable: De�nition 3 or De�nition 4? Atthis point we feel no urge to address this question. In our opinion, a hoie will have to be madeonly one we reah appliations that work with one de�nition but not with the other.We note that normal blak-box simulators are pivotal to our main results. It may be thatthe same results (or equally satisfatory modi�ations of them) hold also for arbitrary blak-boxsimulators and even for any universal simulators, but the urrent proofs fail to show this (seeFootnote 26). We leave the resolution of this issue as an open problem. A good plae to start maybe getting rid of the normality ondition.AknowledgmentsI am grateful to Salil Vadhan for a disussion that inspired this work (and in partiular De�nition 3).I should be equally grateful to Yehuda Lindell for a disussion that inspired De�nition 4, but I onlyunderstood this in retrospet. In addition, I wish to thank Salil and Yehuda for many insightfuldisussions and helpful omments on earlier drafts of this write-up. Finally, I wish to thank thereviewers of TCC'07 and the Journal of Cryptology for their omments. Although I disagree withsome of their oneptual omments, I found these omments interesting and hallenging.
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