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tThis paper 
on
erns the possibility of developing a 
oherent theory of se
urity when feasibilityis asso
iated with expe
ted probabilisti
 polynomial-time (expe
ted PPT). The sour
e of diÆ
ultyis that the known de�nitions of expe
ted PPT strategies (i.e., expe
ted PPT intera
tive ma
hines)do not support natural results of the type presented below.To over
ome this diÆ
ulty, we suggest new de�nitions of expe
ted PPT strategies, whi
hare more restri
tive than the known de�nitions (but nevertheless extend the notion of expe
tedPPT non-intera
tive algorithms). We advo
ate the 
on
eptual adequa
y of these de�nitions,and point out their te
hni
al advantages. Spe
i�
ally, identifying a natural sub
lass of bla
k-boxsimulators, 
alled normal, we prove the following two results:1. Se
urity proofs that refer to all stri
t PPT adversaries (and are proven via normal bla
k-box simulators) extend to provide se
urity with respe
t to all adversaries that satisfy therestri
ted de�nitions of expe
ted PPT.2. Se
urity 
omposition theorems of the type known for stri
t PPT hold for these restri
tedde�nitions of expe
ted PPT, where se
urity means simulation by normal bla
k-box simu-lators.Spe
i�
ally, a normal bla
k-box simulator is required to make an expe
ted polynomial numberof steps, when given ora
le a

ess to any strategy, where ea
h ora
le 
all is 
ounted as a singlestep. This natural property is satis�es by most known simulators and is easy to verify.
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1 An Opinionated Introdu
tionThe title of this introdu
tion and the use of �rst person singular in its text are meant to indi
atethat this introdu
tion is more opinionated than is 
ustomary in our �eld. Nevertheless, I will tryto distinguish fa
ts from my opinions by using adequate phrases.In my opinion, the �rst question that should be asked when suggesting and/or reviewing ade�nition is what is the purpose of the de�nition. When reviewing an existing de�nition, a goodway to start is to look into the history of the de�nition, sin
e the purpose may be more transparentin the initial works than in follow-up ones.Before turning to the history and beyond, let me state that I assume that the reader is fa-miliar with the notion of zero-knowledge and the underlying simulation paradigm (see, e.g., [G01,Se
. 4.3.1℄). In fa
t, some familiarity with general se
ure multi-party 
omputation (e.g., at theoverview level of [G04, Se
. 7.1℄) is also useful. Indeed, this paper is not intended for the novi
e: itdeals with subtle issues that the novi
e may (or even should) ignore.1.1 The history of related de�nitionsTo the best of my re
all, the �rst appearan
e in 
ryptography of the notion of expe
ted (ratherthan stri
t) probabilisti
 polynomial-time was in the seminal work of Goldwasser, Mi
ali, andRa
ko� [GMR℄. The reason was that the simulators presented in that paper (for the Quadrati
Residuosity and the Quadrati
 Non-Residuosity intera
tive proofs) were only shown to run inexpe
ted probabilisti
 polynomial-time.1 Re
all that these simulators were used in order to simulatethe intera
tion of arbitrary stri
t probabilisti
 polynomial-time (adversarial) veri�ers with thehonest prover.At the time, the dis
repan
y between the expe
ted probabilisti
 polynomial-time allowed to thesimulator and the restri
tion of the adversary to stri
t probabilisti
 polynomial-time did not botheranybody. One reason for this la
k of 
on
ern seems to be that everybody was overwhelmed by thenew fas
inating notion of zero-knowledge proofs, its mere feasibility, and its wide appli
ability(as demonstrated by [GMR, GMW℄). But as time passed, some resear
hers be
ame botheredby this dis
repan
y, whi
h seemed to violate (at least to some extent) the intuition underlyingthe de�nition of zero-knowledge. Spe
i�
ally, relating the 
omplexity of the simulation to the
omplexity of the adversary is the essen
e of the simulation paradigm and the key to the 
on
lusionthat the adversary gains noting by the intera
tion (sin
e it 
an obtain the same, essentially as easily,without any intera
tion). But may we 
onsider expe
ted polynomial-time and stri
t (probabilisti
)polynomial-time as being the same 
omplexity?The original feeling was that the dis
repan
y between stri
t and expe
ted polynomial-time isnot very signi�
ant, and I do hold this view to this very day. It is telling that everybody seemsquite happy with repla
ing one polynomial (bound of the running time) by another, at least as avery �rst approximation of the intuitive notion of similar 
omplexity.2 Still, I 
annot deny that1Note that while a small de�nitional variation (
f. [G01, Se
. 4.3.1.1℄ versus [G01, Se
. 4.3.1.6℄) suÆ
es for obtaininga stri
t probabilisti
 polynomial-time (perfe
t) simulation for the QR proto
ol, this does not seem to be the 
asewhen the QNR proto
ol is 
on
erned. The same di
hotomy is manifested between the Graph Isomorphism andGraph 3-Colorability proto
ols (of [GMW℄) on the one hand and the 
onstant-round zero-knowledge proof of [GK96℄on the other hand. The di
hotomy arises from two di�erent simulation te
hniques; the �rst is tailored for \
hallenge-response" proto
ols, while the se
ond refers to the use of \proofs-of-knowledge" (whi
h may be impli
it and trivial(as in [GK96℄)). Indeed, re
all that the de�nition of proofs-of-knowledge refers expli
itly to expe
ted running-time(
f., e.g., [G01, Se
. 4.7.1℄).2Indeed, my advo
a
y of knowledge tightness [G01, Se
. 4.4.4.2℄, a notion aimed at quantitatively bounding theratio of the running times of the simulator and adversary, has never gain mu
h attention. (And yes, I am aware of2



there is something unpleasing about this dis
repan
y. Following [KL08℄, let me refer to this issueas an aestheti
 
onsideration.Jumping ahead in time, let me mention a more a
ute 
onsideration arti
ulated in [KL08℄: A dif-ferent handling of adversaries and simulations (e.g., the dis
repan
y between expe
ted polynomial-time and stri
t probabilisti
 polynomial-time) raises te
hni
al diÆ
ulties and, in parti
ular, standsin the way of various desired 
omposition theorems (e.g., of the type presented in [GO94, C00℄).But let me get ba
k to the story.Fa
ed with the aforementioned aestheti
 
onsideration, a few resear
hers suggested a simplesolution: extending the treatment of adversaries to ones running in expe
ted polynomial-time. Thissuggestion raised a few problems, the �rst being how to de�ne expe
ted polynomial-time intera
tivema
hines? (In addition, there are other problems, whi
h I will dis
uss later.)Feige's proposal [F90℄ was to 
onsider the running-time of the adversary when it intera
ts withthe honest party that it atta
ks, and require that the adversary runs in expe
ted polynomial-time(in su
h a random intera
tion). My own proposal was to allow only adversaries that run in expe
tedpolynomial-time regardless with whom they intera
t; that is, the adversary is required to run inexpe
ted polynomial-time when intera
ting with any other strategy. Feige obje
ted to my proposalsaying that it unduly restri
ts the adversary, whi
h is designed to atta
k a spe
i�
 strategy andthus should be eÆ
ient only when atta
king this strategy. My own feeling was that it is far moreimportant to maintain a 
oherent theory by using a \stand-alone" notion of expe
ted polynomial-time; that is, a notion that 
ategorizes strategies regardless of their aim (e.g., without referen
e towhether or not these strategies model adversaries (and whi
h strategies these adversaries atta
k)).The rationale underlying this feeling is dis
ussed in Se
tion 1.2. (Another obje
tion to Feige'sde�nition refers to the fa
t that, when applying its underlying prin
iple to the standard de�nitionof stri
t probabilisti
 polynomial-time, the result is a signi�
antly larger 
lass of adversaries, whi
hin
ludes adversaries that may not even halt when intera
ting with strategies other than those theywere designed to atta
k.)In any 
ase, a major problem regarding the suggestion of extending the treatment of adversariesto ones running in expe
ted polynomial-time is whether su
h an extension is at all possible. Onespe
i�
 key question is whether known simulators 
an handle expe
ted polynomial-time adversaries.As pointed out in [KL08℄, in some 
ases (e.g., the simulator of [GK96℄), the answer is negativeeven if one uses the more restri
ted notion of expe
ted polynomial-time adversaries (whi
h refersto intera
tion with any possible strategy). Another important question is whether 
ompositiontheorems that are known to hold for stri
t probabilisti
 polynomial-time (strategies and simulators)
an be extended to the 
ase of expe
ted polynomial-time (strategies and simulators).Indeed, the \question of 
omposition" be
ame a major 
on
ern in the 1990's and motivated are-examination of many aspe
ts of the theory of 
ryptography. Here I refer spe
i�
ally to the Se-quential Composition Theorem of Canetti [C00℄, whi
h supports modular 
onstru
tion of proto
ols,and to the Con
urrent Composition Theorem of Canetti [C01℄, whi
h is aimed at preserving se
urityin settings where numerous exe
utions of arbitrary proto
ols are taking pla
e 
on
urrently. These
omposition results were obtained when modeling adversaries as stri
t probabilisti
 polynomial-time strategies and allowing only stri
t probabilisti
 polynomial-time simulators. One 
onsequen
eof the la
k of analogous results for the 
ase of expe
ted polynomial-time was that the modular
onstru
tion of se
ure proto
ol had to avoid proto
ols that were only known to be simulateable inexpe
ted polynomial-time.3the re
ent work of Mi
ali and Pass [MP06℄ that introdu
es and advo
ates an even more re�ned notion.)3For example, relatively eÆ
ient proofs-of-knowledge (whi
h only guarantee expe
ted polynomial-time extra
tion)were avoided (e.g., in [G04, Se
. 7.4.1.3℄) and strong proofs-of-knowledge (
f. [G01, Se
. 4.7.6℄) were used instead.3



Re
ently, Katz and Lindell [KL08℄ initiated a study of the possibility of simulating expe
tedpolynomial-time adversaries and/or obtaining 
omposition theorems (or suÆ
iently good alterna-tives) for the 
ase of expe
ted polynomial-time. They showed that in some 
ases (e.g., when thesimulator satis�es some additional properties and/or under some super-polynomial intra
tabilityassumptions) su
h partial results 
an be obtained.4 These results do not provide a \free" transfor-mation from the stri
t probabilisti
 polynomial-time model to the expe
ted polynomial-time model,where \free" means without referring to additional assumptions. In my opinion, as long as this isthe state of a�airs, one better look for alternative dire
tions.1.2 Towards new de�nitionsMy starting point (or thesis) is that we should not 
are about expe
ted polynomial-time adversariesper se. As hinted by my histori
al a

ount, resear
hers were perfe
tly happy with stri
t probabilisti
polynomial-time adversaries and would have probably remained so if it were not for the introdu
tionof expe
ted polynomial-time simulators. Indeed, at the end of the day, the user (espe
ially a non-sophisti
ated one) should 
are about what an adversary 
an obtain within a spe
i�
 time (or variouspossible amounts of work), where the term `obtain' in
orporates also a quanti�
ation of the su

essprobability. I 
laim that our goal as resear
hers is to provide su
h statements (or rather te
hniquesfor providing su
h statements), and that expe
ted polynomial-time ma
hines may appear in theanalysis only as intermediate steps (or mental experiments).My thesis is further enfor
ed by the 
onfusing and nonintuitive nature of expe
ted running-time,espe
ially when applied in the 
ontext of 
ryptography, and by numerous annoying phenomenarelated to expe
ted-time 
omplexity.The 
ryptographi
 angle. A typi
al se
urity analysis refers both to the running-time and thesu

ess probability of a possible atta
k. Usually the former is �xed (i.e., to stri
t polynomial-time), and so one may dis
uss the latter separately. However, in my opinion, when therunning-time is a random variable, providing only the expe
ted running-time and the overallsu

ess probability is quite meaningless, be
ause the su

ess is likely to be 
orrelated withthe running-time. Instead, one should keep tra
k of both the running-time and the su

essprobability; that is, provide an estimate of the su

ess probability per ea
h approximate valueof the running-time (i.e., assert that with probability p(t) the atta
k runs for t steps, and
ondition on this event it su

eeds with probability s(t)).The generi
 phenomena. The point is that, unlike stri
t polynomial-time, expe
ted polynomial-time is a highly non-robust notion that is not preserved under 
hanges of 
omputational modeland standard algorithmi
 
ompositions. These \features" are an artifa
t of the \bad intera
-tion" between the expe
tation operator and many non-linear operators: for example, for arandom variable X, we 
annot upper-bound E[X2℄ as a fun
tion of E[X℄. Thus, if X is a ran-dom variable that represents the running-time of some pro
ess � (where the probability spa
e4Roughly speaking, one of their results provides a transformation of some simulators that handle stri
t probabilis-ti
 polynomial-time adversaries into simulators that handle expe
ted polynomial-time adversaries, while assumingthat the original simulator's queries are strongly indistinguishable from the messages of the real proto
ol. Anotherresult provides a 
omposition theorem for expe
ted polynomial-time simulators (whi
h handle stri
t probabilisti
polynomial-time adversaries), while relying on strongly pseudorandom fun
tions. In both 
ases, the term strongrefers to versions of 
omputational indistinguishability that are required to hold with respe
t to super-polynomial-time observers. This means that for obtaining (ordinary) 
omputational se
urity, somewhere along the way, one needsto make a super-polynomial-time intra
tability assumption. Also note that the simulators 
onstru
ted in [KL08℄ usethe 
orresponding adversaries in a \slightly non-bla
k-box" manner in the sense that they terminate exe
utions (ofthese adversaries) that ex
eed a spe
i�
 number of steps.4



is that of the internal 
oin tosses of �), then we 
annot bound the expe
ted running-time ofvarious modest variants of � (e.g., whi
h square its running-time) in terms of the expe
tedrunning-time of �. (See Footnote 26, whi
h refers to a natural 
ase in whi
h this problemarises, and [G97℄ for an analogous dis
ussion of the e�e
t of this problem in the 
ontext ofaverage-
ase 
omplexity.)The foregoing reservations regarding expe
ted polynomial-time are of lesser 
on
ern when expe
tedrunning-time is only used as an intermediate step (rather than as a �nal statement). Taking thisapproa
h to its extreme, I 
laim that for this purpose (of an intermediate step) it is legitimateto use any (reasonable) de�nition of expe
ted polynomial-time strategies, and that among su
hpossibilities we better sele
t a de�nition that supports the desired results (e.g., simulation of 
or-responding adversaries and 
omposition theorems). Thus, we should seek a de�nition of expe
tedpolynomial-time strategies that enjoys the following properties:1. The de�nition should in
lude all stri
t probabilisti
 polynomial-time strategies (but shouldnot extend \mu
h beyond that"; e.g., super-polynomial-time 
omputations may only o

urwith negligible probability).2. When applied to non-intera
tive strategies (i.e., stand-alone algorithms) the de�nition ofexpe
ted polynomial-time strategies should yield the standard notion of expe
ted polynomial-time.This property is not only a matter of aestheti
 
onsiderations but is rather important for
omposition theorems (as desired in Property 3b). Furthermore, when applied to the 
ontextof zero-knowledge, the 
urrent property implies that expe
ted polynomial-time simulators aredeemed admissible by this de�nition.53. The de�nition should allow to derive the results that we seek:(a) Known simulators that handle stri
t probabilisti
 polynomial-time adversaries shouldalso handle adversaries that satisfy the de�nition.6(b) The de�nition should support natural 
omposition theorems (e.g., of the type proven byCanetti [C00℄).With the foregoing properties in mind, let me suggest a 
ouple of new de�nitions of expe
tedpolynomial-time strategies. These de�nitions will be more restri
tive than the existing de�nitionsof this notion (whi
h were reviewed in Se
tion 1.1).1.3 The new de�nitionsLooking at the problem of simulating an \expe
ted polynomial-time" adversary (
f. [KL08℄), itbe
omes evident that the sour
e of trouble is the fa
t that the bound on the running-time of theadversary (w.r.t any real intera
tion) is no longer guaranteed when the adversary is invoked by asimulator. The point is that the queries made by the simulator may have a di�erent distributionthan the messages sent in any real intera
tion (espe
ially, sin
e some of these queries may not5In fa
t, we should strengthen Property 2 by requiring that also in the 
ontext of se
ure multi-party 
omputation(where the simulators are themselves intera
tive ma
hines) the known \expe
ted polynomial-time" simulators (ofstri
t probabilisti
 polynomial-time) are deemed admissible by the sele
ted de�nition.6A
tually, we may relax this 
ondition by allowing a modi�
ation of the simulator but not of the proto
ol and/orthe underlying intra
tability assumptions. 5



appear in the trans
ript output by the simulator). Furthermore, the simulator is resetting theadversary, whi
h may allow it to �nd queries that are 
orrelated to the adversary's internal 
ointosses in ways that are unlikely to happen in any real intera
tion (see examples in [KL08℄ and inthe proof of Proposition 5). Su
h queries may 
ause the adversary to run for a number of stepsthat is not polynomial on the average. Indeed, this problem does not o

ur in the 
ase of stri
tprobabilisti
 polynomial-time adversaries be
ause in that 
ase we have an absolute bound on thenumber of steps taken by the adversary, regardless of whi
h messages it re
eives.Let me stress that assuming that the adversary runs in expe
ted polynomial-time when inter-a
ting with any other party does not solve the problem, be
ause the distribution of the simulator'squeries may not 
orrespond to the distribution of an intera
tion with any standard intera
tivema
hine. The simulator's queries 
orrespond to a \reset atta
k" on the adversary, where resetatta
k are as de�ned in [CGGM℄ (ex
ept that here they are applied on the adversary's strategyrather than on the honest party's strategy). Spe
i�
ally, in a reset atta
k, the internal 
oin tossesof the strategy are �xed (to a random value) and the atta
ker may intera
t several times with theresulting residual (deterministi
) strategy.The foregoing dis
ussion suggests a simple �x to the problem. Just de�ne expe
ted polynomial-time strategies as ones that run in expe
ted polynomial-time under any reset atta
k that intera
twith them for a polynomial number of times. A
tually, we should allow atta
ks that intera
t withthese strategies for an expe
ted polynomial number of times.7 (See De�nition 3.)It seems that any (bla
k-box) simulator that handles stri
t probabilisti
 polynomial-time ad-versaries 
an also handle adversaries that run in expe
ted polynomial-time under the foregoingde�nition. After all, this de�nition was designed to support su
h a result. However, I was notable to prove this result without further restri
ting the 
lass of simulators (in a natural way). Fordetails, see Se
tion 1.4.But before turning to the results, let me suggest an even more restri
ted notion of expe
tedpolynomial-time strategies. I suggest to 
onsider strategies that run in expe
ted polynomial-timewhen intera
ting with any (\magi
al") ma
hine that re
eives the strategy's internal 
oin tosses asside information. Arguably, this is the most restri
ted (natural) notion of expe
ted polynomial-timestrategies (whi
h, when applied to non-intera
tive ma
hines, 
oin
ides with the standard de�nitionof expe
ted polynomial-time). Needless to say, this de�nition (whi
h is more restri
tive than theaforementioned resetting de�nition) also supports the extension of simulators that handle stri
tprobabilisti
 polynomial-time adversaries to handle adversaries satisfying the 
urrent de�nition.Clearly, both de�nitions satisfy the �rst two desirable properties stated in Se
tion 1.2. As forthe third desirable property, it will be at the fo
us of the next subse
tion.1.4 The main resultsIn a nutshell, the main results establish the third desirable property for both the (new) de�nitions,when assuming that the provided simulators (i.e., the simulators provided by the 
orrespondinghypothesis) belong to a natural sub
lass of bla
k-box simulators. Indeed, one 
ould hope that theseresults would hold for all (universal) simulators or at least for all bla
k-box simulators.8The issue at hand is the de�nition of eÆ
ient bla
k-box simulators. Sin
e bla
k-box simulatorsare typi
ally given ora
le a

ess to an eÆ
ient strategy, some texts only refer to what happens7When measuring the expe
ted number of intera
tions, I refer to a variant of Feige's notion of expe
ted 
omplexitywith respe
t to the designated ma
hine. Indeed, this widens the 
lass of possible (reset) atta
kers, whi
h furtherlimits the 
lass of admissible strategies (i.e., those that are expe
ted polynomial-time under su
h atta
kers).8Re
all that a universal simulator is a universal ma
hine that is given (as input) the 
ode of the adversary that itsimulates. In 
ontrast, a bla
k-box simulator is only given ora
le a

ess to the 
orresponding strategy.6



in su
h a 
ase (and mandate that the overall simulation be eÆ
ient, where one also a

ounts forthe steps of the strategy). A more natural and robust de�nition mandates that the number ofsteps performed by the bla
k-box simulator itself be feasible, when the simulator is given ora
lea

ess to any strategy. Spe
i�
ally, I 
onsider bla
k-box simulators that make an expe
ted numberof steps that is upper-bounded by a �xed polynomial in the length of the input, where ea
h ora
le
all is 
ounted as a single step, and 
all su
h a simulator normal.9 Indeed, the known (bla
k-box) simulations in
luding those that run in expe
ted polynomial-time (e.g., [GK96℄) are normal.Furthermore, in my opinion, the notion of a normal bla
k-box simulator �ts the natural formulationof the notion of an expe
ted probabilisti
 polynomial-time ora
le ma
hine, be
ause it is natural torequire that the 
omplexity of an ora
le ma
hine (unlike its output) be independent of the ora
lethat it a

esses. (For further dis
ussion see the beginning of Se
tion 3 (in
luding Footnote 23).)Turing ba
k to the main results, re
all that the new de�nitions (or a
tually the \resetting-based"one) were devised to support the �rst main result (stated in Theorem 10). This result assertsthat any normal bla
k-box simulator that handles stri
t probabilisti
 polynomial-time adversaries
an also handle adversaries that run in expe
ted polynomial-time under the new de�nition(s). Inparti
ular, it implies that normal bla
k-box zero-knowledge proto
ols remain simulateable whenatta
ked by adversaries that satisfy the new de�nition(s) of expe
ted polynomial-time. This applies,in parti
ular, to the proof system of [GK96℄, for whi
h analogous (\free") results were not knownunder the previous de�nitions of expe
ted polynomial-time.10Note that the fa
t that the aforementioned (normal bla
k-box) simulations run in expe
tedpolynomial-time also when given a

ess to any expe
ted polynomial-time adversary is quite obviousfrom the new de�nition(s). This follows from the fa
t that normal bla
k-box simulators invokethe adversary strategy for an expe
ted polynomial number of times, while the \resetting-basedde�nition" upper-bounds the total expe
ted time 
onsumed by the adversary in su
h invo
ations.What should be shown is that, also in this 
ase, the 
orresponding simulation produ
es goodoutput (i.e., indistinguishable from the real intera
tion). This 
an be shown by using a ratherstraightforward \trun
ation" argument.11Let us now turn to the question of 
omposition, starting with the sequential 
omposition of zero-knowledge proto
ols. The known result (of [GO94℄) refers to stri
t probabilisti
 polynomial-timeadversaries (and holds both with respe
t to stri
t and expe
ted polynomial-time simulation).12However, the known argument does not extend to expe
ted polynomial-time adversaries. Re
allthat the said argument transforms any adversary that atta
ks the 
omposed proto
ol into a resid-ual adversary that atta
ks the basi
 proto
ol. The sour
e of trouble is that the fa
t that the formeradversary is expe
ted polynomial-time (under any de�nition) does not imply that the latter adver-9In 
ontrast, the number of steps made by an ora
le ma
hine that is not normal may not be \uniformly bounded"over all possible ora
les.10As in Se
tion 1.1, by free results we mean positive results that do not rely on additional assumptions. Re
all thatKatz and Lindell [KL08℄ showed that the simulator presented in [GK96℄ fails (w.r.t expe
ted polynomial-time underthe previous de�nitions). Their work implies that, if strongly hiding 
ommitment s
hemes are used in the proto
ol,then an alternative simulator does work. In 
ontrast, my result applies to the simulator presented in [GK96℄ and doesnot require strengthening the 
ommitment s
heme used in the proto
ol. Furthermore, the running-time is preservedalso for no-instan
es (
f., in 
ontrast, [KL08, Se
. 3.3℄).11Indeed, the running-time analysis relies on the hypothesis that the simulator is normal, whereas the analysis ofits output only relies on the hypothesis that the simulator is bla
k-box. In 
ontrast, for the 
laim (of Theorem 10)itself to make sense at all it suÆ
es to have a universal simulator. (Note that in the (hard to 
on
eive) 
ontext of\non-universal" simulation it is not 
lear what we mean by saying that a simulator that handles any A 2 C 
anhandle any A0 2 C0.)12The original proof (of [GO94℄) refers to stri
t polynomial-time simulators, but it extends easily to expe
tedpolynomial-time simulators. 7



sary is expe
ted polynomial-time (under this de�nition). See the proof of Theorem 9 for details.Fortunately, there is an alternative way: just note that the simulator obtained by [GO94℄, whi
hrefers to stri
t probabilisti
 polynomial-time adversaries, 
an handle expe
ted polynomial-time ad-versaries (i.e., by invoking Theorem 10 (or rather its zero-knowledge version { Theorem 8)).The foregoing idea 
an also be applied to the general setting of se
ure multi-party 
omputation,but additional 
are is needed to deal with the extra 
omplexities of this setting (as des
ribed next).Spe
i�
ally, the so-
alled sequential 
omposition theorem of Canetti [C00℄ (see also [G04, Se
. 7.4.2℄)refers to an ora
le-aided (or \hybrid") proto
ol � that uses ora
le 
alls to a fun
tionality13 f , whi
h
an be se
urely 
omputed by a proto
ol �. (Note that the 
orresponding ora
le-aided proto
ol wasnot mentioned in the 
ontext of zero-knowledge, be
ause it is trivial (i.e., it merely invokes thebasi
 proto
ol several times).) The theorem asserts that the se
urity of � (with respe
t to aspe
i�
 fun
tionality unmentioned here) is preserved when � uses subroutine 
alls to � rather thanora
le 
alls to f . This result refers to se
urity with respe
t to stri
t probabilisti
 polynomial-timeadversaries that is demonstrated by stri
t probabilisti
 polynomial-time simulators. One point tonoti
e is that the proof of se
urity of the resulting proto
ol, denoted �0, pro
eeds by in
orporatingthe simulator of � into an adversary for �. Thus, if the simulator of � runs in expe
ted polynomial-time then so does the resulting adversary (for �), and thus the simulator for � has to handle expe
tedpolynomial-time adversaries (even if we only 
are of stri
t polynomial-time adversaries atta
king�0). Indeed, having a simulator for � that handles any expe
ted polynomial-time adversariessuÆ
es for a partial result that refers to stri
t probabilisti
 polynomial-time adversaries for theresulting proto
ol �0 and to expe
ted polynomial-time simulators (for �, �, and �0). The general(sequential) 
omposition theorem for the 
ase of expe
ted polynomial-time (whi
h refers to expe
tedpolynomial-time adversaries and simulators) follows by applying Theorem 10.An important 
orollary to the foregoing extendability and 
omposition theorems (i.e., Theo-rem 10 and 11) asserts that it is possible to 
ompose se
ure proto
ols, when se
urity is demonstratedvia expe
ted polynomial-time simulators but refers only to stri
t probabilisti
 polynomial-time ad-versaries. In su
h a 
ase, the extendability theorem allows to use these simulators with respe
t toexpe
ted polynomial-time adversaries, whereas the 
omposition theorem applies to the latter. Thus,one may freely use expe
ted polynomial-time simulators, and be assured that the 
orresponding se-
ure proto
ols 
an be 
omposed (just as in the 
ase that their se
urity is demonstrated via stri
tpolynomial-time simulators).Turning to the 
on
urrent 
omposition theorem of Canetti [C01℄, re
all that it evolves aroundthe notion of environmental se
urity (a.k.a UC-se
urity [C01℄). Spe
i�
ally, Canetti proved thatany proto
ol that is environmentally se
ure preserves se
urity under arbitrary 
on
urrent exe
u-tions, where the adversaries, simulators, and environments are all modeled as stri
t probabilisti
polynomial-time strategies (with non-uniform auxiliary inputs for the environments). He then sug-gested the methodology of establishing environmental-se
urity as a way of obtaining se
urity under
on
urrent 
omposition. Consequently, an extension of Canetti's methodology to the expe
tedpolynomial-time setting requires (1) verifying that Canetti's proof extends to this setting, and(2) obtaining environmental se
urity for expe
ted polynomial-time adversaries and environments.Using the new de�nitions of expe
ted polynomial-time strategies, the �rst requirement follows anal-ogously to the proof of the sequential 
omposition theorem, while the se
ond requirement followsby generalizing Theorem 10 (whi
h may be viewed as referring to trivial environments).The bottom-line is that, for normal bla
k-box simulators, the new de�nitions of expe
tedpolynomial-time strategies provide a \free" transformation from the stri
t probabilisti
 polynomial-time model to the expe
ted polynomial-time model. In parti
ular, normal bla
k-box simulators that13A fun
tionality is a randomized version of a multi-input multi-output fun
tion (
f. [G04, Se
. 7.2.1℄).8



work in the stri
t model extend to the expe
ted model, and the most famous 
omposition theoremsextend similarly.1.5 Why deal with expe
ted polynomial-time at all?In light of the diÆ
ulties dis
ussed in Se
tion 1.1, one may ask why do we need this heada
he (ofdealing with expe
ted polynomial-time) at all? This question is further motivated by my views(expressed in Se
tion 1.2) by whi
h we should not 
are about expe
ted polynomial-time adversariesper se. The answer, as hinted in Se
tion 1.1, is that we do 
are about expe
ted polynomial-timesimulators.Spe
i�
ally, some natural proto
ols are known to be se
ure (or zero-knowledge) only whenthe de�nition of se
urity allows expe
ted polynomial-time simulators. A notable example, alreadymentioned several times, is the 
onstant-round zero-knowledge proof system of [GK96℄. Further-more, as proved in [BL02℄, 
onstant-round proof system for sets outside BPP do not have stri
tpolynomial-time bla
k-box simulators (although they do have su
h non-bla
k-box simulators [B01℄,whi
h are less preferable for reasons dis
ussed below).In general, expe
ted polynomial-time simulators seem to allow more eÆ
ient proto
ols and/ortighter se
urity analysis. Whereas various notions of proto
ol eÆ
ien
y are well-understood, a fewwords about the tightness of various se
urity analyses are in pla
e. Loosely speaking, se
uritytightness14 is essentially the ratio between the running-time of the adversary and the (expe
ted)running-time of the simulator that handles it: The se
urity tightness of a proto
ol is a lower-boundon the aforementioned ratio that essentially holds for every probabilisti
 polynomial-time adversary;that is, a proto
ol is said to have se
urity tightness � if there exists a polynomial q0 su
h that, forevery polynomial p, every p-time adversary is simulated within time ��1p + q0 + q0. Indeed, inmany 
ases (also when stri
t polynomial-time simulators exist), the expe
ted running-time of thesimulator provides a better bound than the worst-
ase running-time of the simulator.In my opinion, se
urity tightness should serve as a major 
onsideration in the evaluation ofalternative proto
ols, and 
laims about proto
ol eÆ
ien
y are almost meaningless without referringto their se
urity tightness. For example, in many 
ases, modest parallelization 
an be a
hieved atthe 
ost of a deterioration in the se
urity tightness (
f. [G01, Se
. 4.4.4.2℄). Let me stress that, byde�nition, bla
k-box simulators always yield a noti
eable bound on the se
urity tightness (and insome 
ases they o�er a 
onstant bound), whereas non-bla
k-box simulators may fail to have su
hbound (e.g., indeed, that's the 
ase with Barak's simulators [B01℄).15Thus, I suggest the following methodology: When designing your proto
ol and proving itsse
urity, allow yourself expe
ted polynomial-time simulations. To assist the design and analysis, usethe \extendability results" (e.g., Theorem 10) provided in this work as well as relevant 
ompositiontheorems (e.g., Theorem 11). Finally, when obtaining the desired proto
ol with a se
urity analysisthat refers to an expe
ted polynomial-time simulator, you may interpret it as providing a trade-o� between the simulation time and the 
orresponding deviation (from the real intera
tion). Buta
tually, a �nal 
laim that refers to expe
ted simulation time may be as appealing when stated interms of se
urity tightness (e.g., the e�e
t of any stri
t polynomial-time adversary 
an be a
hievedby a simulation that is expe
ted to run three times as long).14In the spe
ial 
ase of zero-knowledge, the 
orresponding notion is 
alled knowledge tightness [G01, Se
. 4.4.4.2℄.Note a minor te
hni
ality: here tightness is de�ne as the re
ipro
al of the ratio in [G01, Se
. 4.4.4.2℄.15As usual, a noti
eable fun
tion is one that de
reases slower than the re
ipro
al of some positive polynomial.Thus, noti
eable se
urity tightness means that there exists a polynomial q su
h that, for every polynomial p, everyp-time adversary is simulated within time q � p. But if the simulation of p-time adversaries requires time p3, then theproto
ol does not have a noti
eable se
urity tightness. 9



Indeed, my opinion is that there is no 
ontradi
tion between not 
aring about expe
ted polynomial-time adversaries and providing se
urity guarantees that refer to the expe
ted simulation time:Whereas (at least potentially) the adversary is a real entity, its simulation is (always) a mentalexperiment. Furthermore, I believe that the foregoing methodology may yield the best trade-o�sbetween the eÆ
ien
y of the proto
ol and the tightness of its se
urity.Finally, let me note that there are alternative ways of handling the problems that motivate theintrodu
tion of expe
ted polynomial-time to Cryptography (i.e., the failure of stri
t polynomial-timesimulation in some 
ases). These alternatives are based on di�erent notions of \typi
al eÆ
ien
y"that are appli
able to \varying" running-time (i.e., running-time that is expressed as a randomvariable). In ea
h 
ase, one should start with a de�nition that refers to standard algorithms, andextend it to a de�nition that refers to intera
tive ma
hines. For details, see Se
tion 5. Indeed,the issues arising in su
h extensions are the same as the ones dis
ussed throughout the rest of thispaper. It is my belief, however, that expe
ted running-time (as treated in the rest of this paper)provides the best trade-o�s between the eÆ
ien
y of the proto
ol and the tightness of its se
urity.1.6 On the treatment of 
on
urrent 
ompositionAs stated at the end of Se
tion 1.4, the new de�nitions of expe
ted probabilisti
 polynomial-timestrategies allow to extend the known sequential and 
on
urrent 
omposition theorems from thestri
t PPT setting to the expe
ted PPT setting. However, in my opinion, there is a signi�
antdi�eren
e between the importan
e of these extensions (whi
h 
orrespond to these two 
ases). Thedi�eren
e is rooted in the di�eren
e between the original theorems (i.e., their stri
t PPT versions).Re
all that the sequential 
omposition theorem holds for every se
ure proto
ol (i.e., \stand-alonese
urity" suÆ
es [C00℄), whereas 
on
urrent 
omposition essentially requires a stronger notion ofse
urity (i.e., environmental se
urity [C01, L09℄). This di�eren
e in the se
urity level seems to bere
e
ted by a di�eren
e in the variety of proof te
hniques (i.e., simulation te
hniques), where morestringent se
urity leaves room for less te
hniques. Indeed, while stand-alone se
urity is sometimesdemonstrated by using expe
ted PPT simulators, all known demonstrations of environmental se-
urity employ stri
t PPT simulators. Furthermore, my feeling is that there is no bene�t in usingexpe
ted PPT simulators towards demonstrating environmental se
urity (with respe
t to stri
tPPT adversaries). Thus, unless my feeling is wrong, I see no real motivation for extending the
on
urrent 
omposition theorem to the expe
ted PPT setting. Nevertheless, I provided su
h anextension in order to show that the new de�nitions of expe
ted PPT strategies are not in
ompatiblewith su
h an extension.1.7 OrganizationSe
tion 2 provides formal statements of the aforementioned (old and new) de�nitions as well as ademonstration of a hierar
hy among them. Sin
e the spe
ial 
ase of zero-knowledge proto
ols pro-vides a good ben
hmark for the general 
ase of se
ure proto
ols, the main results are �rst presentedin that setting (see Se
tion 3). This simpli�es things, be
ause in that spe
ial 
ase the simulatorsare standard algorithms rather than intera
tive strategies (for the so-
alled \ideal-model"; see,e.g., [G04, Se
. 7.2℄). Nevertheless, I believe that the main ideas are already present in the zero-knowledge setting, and that this belief is supported by the treatment of general proto
ols (providedin Se
tion 4). Se
tion 5 demonstrates the appli
ability of the main approa
h to alternatives mea-sures of \varying" running-time. Se
tion 6 
ontains 
on
lusions and open problems.The exposition in Se
tions 4.3 and 5 is signi�
antly less detailed and more sket
hy than therest of the paper. Indeed, these se
tions should be viewed as a demonstration of the feasibility10



of applying the main de�nitional approa
h also to these settings. My 
hoi
e to provide only asket
hy exposition of these appli
ations is related to my reservations regarding their importan
e(see Se
tion 1.6 and the end of Se
tion 1.5, respe
tively).The (se
urity) tightness lens. Paragraphs with this heading are meant to fa
ilitate the method-ology suggested in Se
tion 1.5, but they may be ignored at �rst reading.2 The De�nitionsWe adopt the standard terminology of intera
tive ma
hines, while o

asionally identifying strategies(whi
h spe
ify the next message to be sent by an intera
tive ma
hine given its view so far) with theintera
tive ma
hines that a
tivate them. We use the shorthand PPT for probabilisti
 polynomial-time whenever using the full term is too 
umbersome; typi
ally, we do so when 
ontrasting stri
tPPT and expe
ted PPT. For simpli
ity, we only 
onsider the two-party 
ase. We denote by x the
ommon (part of the) input, and denote by y and z the 
orresponding private inputs of the twoparties. The reader may ignore y and z, whi
h model (possibly non-uniform) auxiliary information.Additional (standard) 
onventions. We state the 
omplexity of intera
tive ma
hines (andstrategies) as a fun
tion of the length of the 
ommon input, x; 
onsequently, some time-boundedma
hines 
annot read their entire private inputs (i.e., y or z, resp.). For sake of brevity, wesometimes say that some quantity (e.g., number of steps) is polynomial (or exponential), ratherthan saying that it is polynomial (or exponential) in the length 
ommon input, but this is alwaysthe intention. In the a
tual te
hni
al treatment we assume that all 
omputations of all ma
hineshalt in �nite time, and furthermore that this time is bounded by a single fun
tion in the length ofthe 
ommon input.16 (Note that, in all reasonable 
ases, this restri
tion 
an be easily enfor
ed bytrun
ating all runs after an exponential number of steps.)2.1 Known de�nitionsWe start by formulating the two known de�nitions that were mentioned in Se
tion 1.1.De�nition 1 (Feige [F90℄): The strategy � is expe
ted PPT w.r.t a spe
i�
 intera
tive ma
hine M0if, for some polynomial p and every x; y; z, the expe
ted number of steps taken by �(x; z) duringan intera
tion with M0(x; y) is upper-bounded by p(jxj), where the expe
tation is taken over theinternal 
oin tosses of both ma
hines.We stress that � may be expe
ted PPT with respe
t to some intera
tive ma
hines but not withrespe
t to others.De�nition 2 (attributed to Goldrei
h, e.g., in [KL08℄): The strategy � is expe
ted PPT w.r.t anyintera
tive ma
hine if, for some polynomial p, every intera
tive ma
hine M , and every x; y; z, theexpe
ted number of steps taken by �(x; z) during an intera
tion with M(x; y) is upper-bounded byp(jxj).Here we may assume, without loss of generality, that M (whi
h is 
omputationally unbounded) isdeterministi
, and thus the expe
tation is only taken over the internal 
oin tosses of �. The same
onvention is applied also in De�nition 4 (but not in De�nition 3; see dis
ussion there).16Hen
e, the probability spa
e of all possible exe
utions (on a �xed input) is �nite, and so the expe
tation is alwayswell-de�ned and �nite. 11



2.2 New de�nitionsIn the �rst new de�nition, we refer to the notion of a reset atta
k as put forward in [CGGM℄. Su
han atta
k pro
eeds as follows. First, we uniformly sele
t and �x a sequen
e of internal 
oin tosses,denoted !, for the atta
ked strategy �, obtaining a residual deterministi
 strategy �!. Next, weallow the atta
ker to intera
t with �! numerous times (rather than a single time). Spe
i�
ally, forea
h possible value of !, the expe
ted number of times that atta
ker intera
ts with �! is upper-bounded by a �xed polynomial.17Note that the atta
ker is not given ! expli
itly, but its ability to (sequentially) intera
t withthe residual strategy �! for several times provides it with additional power (beyond intera
tingwith � itself for several times, where in ea
h intera
tion � uses a fresh sequen
e of 
oin tosses). Asshown in [CGGM℄, su
h an atta
k is equivalent to a single intera
tion in whi
h the atta
ker may(repeatedly) \rewind" � (or rather �!) to any prior point in the intera
tion and ask to resume theintera
tion from that point. Indeed, su
h an atta
k is reminis
ent of the way that a (bla
k-box)simulator uses an adversary strategy.De�nition 3 (tailored for simulation): A q-reset atta
k on � is an atta
k that, for every x; y; z and!, intera
ts with �! for an expe
ted number of times that is upper-bounded by q(jxj).18 The strategy� is expe
ted PPT w.r.t any reset atta
k if, for some polynomial p, every polynomial q, every q-resetatta
k on �, and every x; y; z, the expe
ted total number of steps taken by �(x; z) during this atta
kis upper-bounded by q(jxj) � p(jxj).19We stress that the number of invo
ations of � (like the total number of steps taken by �) is arandom variable de�ned over the probability spa
e 
onsisting of all possible intera
tions of theatta
ker and �. Here (unlike in De�nition 2), allowing the potential atta
ker to be probabilisti
in
reases its power (and thus adds restri
tions on strategies satisfying the de�nition). The reasonis that, for ea
h �xed !, the number of times that a probabilisti
 atta
ker invokes �! may be anarbitrary random variable with a polynomially bounded expe
tation (rather than being stri
tlybounded by a polynomial).In the next (and last) de�nition, we 
onsider a \magi
al" atta
ker that is given the out
ome ofthe strategy's internal 
oin tosses as side information. That is, su
h an atta
k pro
eeds as follows.First, we uniformly sele
t and �x a sequen
e of internal 
oin tosses, denoted !, for the atta
kedstrategy �, obtaining a residual deterministi
 strategy �!. Next, we provide the atta
ker with !(as well as with z) and allow it a single intera
tion with �!. We stress that this atta
ker is merelya mental experiment used for determining whether or not � is expe
ted polynomial-time (underthe following de�nition).17That is, there exists a polynomial p su
h that, for every !, the expe
ted number of times that the atta
kerintera
ts with �!, on 
ommon input x, is at most p(jxj). Note that we are upper-bounding the (expe
ted) numberof intera
tions initiated by the atta
ker (rather than its running-time). More importantly, the formulation of thisrestri
tion on the number of intera
tions is a hybrid of (the spirit of) De�nitions 1 and 2: We are upper-boundingthe (expe
ted) number of intera
tions, not with respe
t to the designated �, but rather with respe
t to ea
h of theresidual �!. Finally, note that a simpli�ed version that refers to the expe
ted number of intera
tions with � (i.e.,the expe
tation is taken also over the 
oins of �) yield a \bad" de�nition. (For example, suppose that �! sends !,and makes 2j!j steps if ! = 1j!j and halt immediately otherwise. Then, intuitively � is expe
ted PPT (and in fa
tit even satis�es De�nition 4), but the reset atta
k that, upon re
eiving ! in the �rst intera
tion, invokes �! for 2j!jadditional times if and only if ! = 1j!j, 
auses � to make an expe
ted exponential number of steps.)18As in De�nitions 1 and 2, su
h an atta
k is given x and y as its input.19The upper-bounded of q(jxj) � p(jxj) seems natural; however, an upper-bounded of p(jxj+ q(jxj)) would work justas well (for all results stated in this work), but would yield weaker quantitative bounds.12



De�nition 4 (seemingly most restri
tive): The strategy � is expe
ted PPT w.r.t any magi
al ma-
hine if, for some polynomial p, every intera
tive ma
hine M 0 that is provided with the internal
oin tosses of � as side information, and every x; y; z, the expe
ted number of steps taken by �(x; z)during an intera
tion with M 0 is upper-bounded by p(jxj). That is, for a randomly sele
ted !, theexpe
ted number of steps taken by �!(x; z) during its intera
tion with M 0(x; y; z; !) is upper-boundedby p(jxj).20Here as in De�nition 2, we may assume, without loss of generality, that M 0 (whi
h is 
omputa-tionally unbounded) is deterministi
, and thus the expe
tation is only taken over the internal 
ointosses of �. Thus, De�nition 4 refers to the expe
tation, taken uniformly over all possible 
hoi
esof !, of the number of steps taken by (the residual deterministi
 strategy) �!(x; z) during an inter-a
tion with (the deterministi
 strategy) M 0(x; y; z; !). Indeed, a strategy � satis�es De�nition 4 ifand only if it runs in expe
ted polynomial-time even if ea
h of the in
oming messages is sele
ted tomaximize its running-time, when this sele
tion may depend on the internal 
oin tosses of � (andits auxiliary-input z). This formulation is 
losest in spirit to the standard de�nition of stri
t PPTstrategies.2.3 Relating the de�nitionsIt is easy to see that, for i = 1; 2; 3, De�nition i+1 implies De�nition i. In fa
t, it is not hard to seethat the 
onverses do not hold. That is:Proposition 5 For i = 1; 2; 3, the set of strategies that satisfy De�nition i+1 is stri
tly 
ontainedin the set of the strategies that satisfy De�nition i.Proof: The �rst two 
ontainments (i.e., for i = 1; 2) are plainly synta
ti
. Intuitively, the third
ontainment (i.e., the fa
t that De�nition 4 implies De�nition 3) follows by noting that a resetatta
k does not add power to a 
omputationally unbounded ma
hine that gets �'s internal 
ointosses. A rigorous proof of this fa
t follows.Fixing an arbitrary q-reset atta
k A, denote by TA(r)(!) the total time spent by �! when at-ta
ked by A, whi
h in turn uses 
oins r. Likewise, denote by nA(r)(!) the number of intera
tions ofA with �!, when A uses 
oins r. By the hypothesis that A is a q-reset atta
k, for every value of !, itholds that Er[nA(r)(!)℄ is upper-bounded by q(). On the other hand, tA(r)(!) def= TA(r)(!)=nA(r)(!)
orresponds to the (average) time spend by �! in a single iteration with A(r). Thus, if � satis-�es De�nition 4, then E![maxrftA(r)(!)g℄ is upper-bounded by some polynomial p(), be
ause theatta
k of A(r) on a single iteration of �! 
an be emulated in the model of De�nition 4. Indeed,the last assertion is the 
ore of the entire argument. Now, observing (see details below) thatEr;![TA(r)(!)℄ = Er;![nA(r)(!) � tA(r)(!)℄ is upper-bounded by the produ
t of max!fEr[nA(r)(!)℄gand E![maxrftA(r)(!)g℄, and using the foregoing upper-bounds, it follows that � satis�es De�ni-tion 3. Details follows.Let us �rst prove that Ei;j[ai;jbi;j ℄ is upper-bounded by maxjfEi[ai;j ℄g � Ej [maxifbi;jg℄. Thisfa
t 
an be proved by noting that Ej [Ei[ai;jbi;j℄℄ � Ej[maxifbi;jg � Ei[ai;j℄℄, letting Bj = maxifbi;jgand Aj = Ei[ai;j℄, and using Ej [BjAj℄ � maxjfAjg �Ej[Bj ℄. We now apply this fa
t to the analysisof Er;![TA(r)(!)℄, obtainingEr;! hTA(r)(!)i = Er;! hnA(r)(!) � tA(r)(!)i20Note that, unlike in De�nitions 1-3, the atta
ker is given �'s auxiliary input (i.e., z). This is most natural in the
ontext of the 
urrent atta
k, whi
h is also given �'s internal 
oin tosses (i.e., !).13



� max! nEr hnA(r)(!)io � E! hmaxr ntA(r)(!)oiwhi
h is in turn upper-bounded by q() � p().To show that the foregoing 
ontainments are stri
t we present 
orresponding strategies thatwitness the separations. The following examples are rather minimal, but they 
an be augmentedinto strategies that seem natural (even for natural proto
ols). For example, a strategy that haltsimmediately upon re
eiving the message 0 and runs for exponential time upon re
eiving the mes-sage 1 witnesses the separation between De�nition 1 and De�nition 2, when assuming that thedesignated ma
hine M0 (of De�nition 1) always sends the message 0. Note that this example hasnothing to do with the issue of expe
ted polynomial-time (although an example that does relate tothe latter issue 
an be 
onstru
ted similarly).To separate De�nition 3 from De�nition 4 
onsider a strategy that uniformly sele
ts an n-bitlong string r, and upon re
eiving a message s halts immediately if s 6= r and halts after making 2nsteps otherwise. Clearly, this strategy does not satisfy De�nition 4, but it does satisfy De�nition 3.A small twist on the foregoing example 
an be used to separate De�nition 2 from De�nition 3:Suppose that upon re
eiving s, the strategy �rst sends r, and then halts immediately if s 6= r andhalts after making 2n steps otherwise. In this 
ase a 2-reset atta
k 
an 
ause this strategy to alwaysrun for 2n steps, while no ordinary intera
tive ma
hine 
an do so.Dis
ussion: De�nitions 2{4 versus De�nition 1. We believe that there is a fundamentaldi�eren
e between De�nitions 2{4 on the one hand and De�nition 1 on the other hand. This 
anbe demonstrated by 
onsidering stri
t PPT versions of all four de�nitions; that is, versions of thesede�nition in whi
h ea
h bound on an expe
tation is repla
ed by a 
orresponding stri
t bound (i.e.,a bound that holds with probability 1). Then, the resulting (stri
t) versions of De�nitions 2{4
oin
ide,21 but remain separated from the (stri
t) version of De�nition 1 (as a
tually shown inthe proof above). Note that the (stri
t) version of De�nition 1 is extremely sensitive to minus
ulevariations in the probabilisti
 behavior of the designated ma
hine M0 (i.e., variations that 
hangethe support). We believe that the 
ombination of these fa
ts speaks against De�nition 1.3 Results for Zero-KnowledgeThe setting of zero-knowledge provides a good warm-up for the general study of se
ure proto
ols.Re
all that, in the 
ontext of zero-knowledge, simulators are used to establish the se
urity ofpredetermined prover strategies with respe
t to atta
ks by adversarial veri�ers. We start by showingthat (normal bla
k-box) simulators that handle stri
t PPT adversaries also handle adversaries thatare expe
ted PPT (under De�nitions 3 and 4). We next turn to an expe
ted PPT version of thestandard sequential 
omposition theorem. (In Se
tion 4, analogous results are proved for generalse
ure proto
ols.)Sin
e the notion of normal bla
k-box simulators is pivotal to our results, let us start by brie
yre
alling the standard de�nition of bla
k-box simulators (see, e.g., [G01, Def. 4.5.10℄). Looselyspeaking, a bla
k-box simulator is a universal ma
hine that is given ora
le a

ess to a deterministi
strategy and provides a simulation of the intera
tion of this strategy with the party atta
ked by this21Consider a (standard) intera
tive ma
hine that guesses at random the internal 
oin tosses of �. Then, the stri
tversion of De�nition 2 guarantees that even in the rare 
ase that this guess is 
orre
t, the strategy � makes only apolynomial number of steps. But this 
onditional probability spa
e is exa
tly the probability spa
e that o

urs inDe�nition 4, whi
h implies that � satis�es the (stri
t) version of De�nition 4.14



strategy.22 In extending this notion to randomized strategies, we refer to providing the simulatorwith ora
le a

ess to a residual (deterministi
) strategy obtained by �xing random 
oin tosses tothe given randomized strategy.Typi
ally, one 
onsiders the exe
ution of bla
k-box simulator when given ora
le a

ess to any(stri
t or expe
ted) PPT adversary. In that 
ase, one sometimes states both the 
omplexity andthe quality of the simulation when referring only to the 
ase that the ora
le is a PPT strategy.23While the restri
tion of the quality requirement to the said 
ase is often essential, this is typi
allynot the 
ase with respe
t to the 
omplexity requirement (whi
h refers only to the number of stepstaken by the bla
k-box ma
hine itself). Indeed, it is more natural to formulate the 
omplexityrequirement when referring to any possible ora
le. We adopt this 
onvention below, but in orderto avoid possible 
onfusion (with di�erent views) we refer to simulators that satisfy this 
onventionas normal.De�nition 6 (normal bla
k-box simulators): A bla
k-box simulator is 
alled normal if, on anyinput and when given ora
le a

ess to any strategy, it makes an expe
ted number of steps that isupper-bounded by a �xed polynomial in the length of the input, where ea
h ora
le 
all is 
ounted asa single step. That is, there exists a polynomial q su
h that the expe
ted number of steps made bythe simulator itself, on any input x and ora
le a

ess to any strategy �, is at most q(jxj).Although it is possible to 
onstru
t bla
k-box simulators that are not normal (e.g., they run forexponential time if the bla
k-box manages to solve a hard problem), the standard bla
k-box simu-lators (e.g., the ones of [GMR, GMW, GK96℄) are all normal. Furthermore, normality seems a verynatural property and it is easy to verify. For example, if the running-time analysis of a simulator(unlike the analysis of the quality of its output) does not rely on any intra
tability assumptions,then it is probably the 
ase that the simulator is normal.24The total simulation time. We will often refer to the (total) simulation time of the 
ombinedsimulator SV � , whi
h 
onsists of a (normal) bla
k-box simulator S that is given ora
le a

ess to an22In typi
al use of a bla
k-box simulator one also refers to the quality of this simulation. Spe
i�
ally, it is require thatif the former strategy is eÆ
ient (in some adequate sense), then the simulation is 
omputationally indistinguishablefrom the real 
orresponding intera
tion. Sin
e the notion of eÆ
ien
y will vary (i.e., from stri
t PPT to expe
tedPPT), we shall separate the operational aspe
t of the bla
k-box simulator from the quality of the output that itprodu
es; that is, we shall dis
uss ea
h aspe
t separately (rather than 
oupling them together).23Even in the 
ase that the 
omplexity requirement is 
on�ned to the 
ase that the simulator a

esses an arbitrary(stri
t or expe
ted) PPT adversary, one may distinguish between two requirements regarding the 
omplexity of thesimulation. The more liberal requirement, whi
h is rarely used, only mandates that for any su
h adversary the totalsimulation time (see below) must be feasible. This means that the total simulation time may be bounded by anarbitrary polynomial that is not ne
essarily linearly related to the (polynomial) running-time of the adversary. Amore restri
ted formulation, whi
h is typi
ally used, refers (only) to the number of steps taken by the simulator itselfand/or 
onsidering ora
le 
alls as single steps (i.e., 
ounting them at unit 
ost). Spe
i�
ally, the number of stepsof the bla
k-box simulator itself is bounded by a �xed polynomial, regardless of the (polynomial) 
omplexity of thestrategy to whi
h it is given ora
le a

ess. (Indeed, in su
h a 
ase, the total simulation time is linearly related tothe running-time of the adversary.) De�nition 6 takes this approa
h to its logi
al 
on
lusion by requiring that, givenora
le a

ess to any strategy (regardless of its 
omplexity), the (expe
ted) number of steps taken by the bla
k-boxsimulator itself is bounded by a �xed polynomial. Indeed, De�nition 6 re
e
ts the intuition that the operationalaspe
ts of a bla
k-box simulator (unlike the quality of its output) should not be a�e
ted by the spe
i�
s of its ora
le.Note that the gap between the foregoing restri
ted formulation (whi
h only refers to PPT strategies) and De�nition 6(whi
h refers to all strategies) 
an be easily bridged if the number of steps taken by the bla
k-box simulator itself isstri
tly polynomial (rather than having expe
tation that is bounded by a polynomial).24The word \probably" indi
ates that the said impli
ation is not 
laimed as a fa
t but is rather suggested as a ruleof thumb and/or as a 
onje
ture regarding any natural 
ase.15



adversarial veri�er V �. Needless to say, for any normal simulator S, if V � is stri
t PPT then theexpe
ted (total) simulation time of SV � is polynomial. As observed by Katz and Lindell [KL08℄,this is not ne
essarily the 
ase if V � is expe
ted PPT w.r.t De�nition 2. The key observation, whi
hmotivates De�nition 3, is that the desired bound on the expe
ted (total) simulation time of SV �does hold if V � is expe
ted PPT w.r.t any reset atta
k.Observation 7 If S is a normal bla
k-box simulator and V � is expe
ted polynomial-time w.r.tDe�nition 3, then the expe
ted total simulation time of SV � is polynomial.Proof: Sin
e S is a normal bla
k-box simulator, there exists a polynomial q su
h that, for everysetting of 
oins ! for V �, it holds that the expe
ted number of times that S invokes the residualstrategy V �! is upper-bound by q(). Thus, S is a q-reset atta
k on V �. Sin
e V � satis�es De�nition 3,it follows that the expe
ted (total) number of steps taken by V � during the entire simulation isupper-bound by a polynomial. The 
laim follows.The (knowledge) tightness lens. The foregoing proof 
lari�es that the (polynomial) upper-bound q guaranteed for a normal simulator (in De�nition 6) provides a bound on the knowledgetightness established by this simulator. Indeed, the polynomial p in De�nition 3 should be viewedas an upper bound on the expe
ted running-time of the relevant strategy (as per De�nition 3).25Thus, the foregoing proof shows that the intera
tion of any expe
ted p-time (w.r.t De�nition 3)veri�er V � is simulated in total expe
ted time q() �p(), whi
h implies that this normal simulator hastightness 1=q. We note that better tightness bounds may be obtained when using a more re�nedde�nition of normality in whi
h both the (expe
ted) number of simulator steps and the (expe
ted)number of ora
le 
alls are bounded. Denoting the �rst polynomial bound by q0 and the se
ondpolynomial bound by q, the proof of Observation 7 yields a bound of q() � p() + q0() on the total(expe
ted) simulation time, and a knowledge tightness bound of 1=q follows.3.1 Simulating expe
ted PPT adversariesBearing in mind that (in the 
ontext of zero-knowledge) the simulator is a standard algorithm, itsuÆ
es to state the following result with respe
t to De�nition 3, and its appli
ability to De�nition 4follows as a spe
ial 
ase.Theorem 8 (extendability of normal bla
k-box simulators, the zero-knowledge 
ase): Let (P; V )be an intera
tive proof (or argument) system for a set L, and hP; V �i(x) denote the output of theadversarial veri�er strategy V � on input x after intera
ting with the pres
ribed prover P . Let M bea normal bla
k-box simulator that, on input in L and when given a

ess to any stri
t PPT strategyV �, produ
es output that is 
omputational indistinguishable from hP; V �i. Then, when M is givenora
le a

ess to any strategy V � that is expe
ted PPT w.r.t any reset atta
k, the expe
ted simulationtime of MV � is polynomial and the output is 
omputational indistinguishable from hP; V �i.Note that the hypothesis allows the simulator to run in expe
ted PPT while simulating a stri
tPPT adversary. This makes the hypothesis weaker and the theorem stronger; that is, the theorem
an be applied to a wider 
lass of proto
ols (in
luding proto
ols that are not known to have stri
tPPT simulators su
h as, e.g., the 
onstant-round zero-knowledge proof of [GK96℄).25Indeed, it is telling to note that if a strategy is expe
ted p-time w.r.t De�nition 4, then p 
an be used as a boundin De�nition 3 (see the proof of Proposition 5). 16



Proof: Fixing any expe
ted PPT w.r.t De�nition 3 strategy V �, we �rst note that (by Ob-servation 7) the expe
ted simulation time of MV � is polynomial. To analyze the quality of thissimulation, suppose towards the 
ontradi
tion that D distinguishes between the simulation and thereal intera
tion, and let p be a polynomial su
h that the distinguishing gap of D for in�nitely manyx 2 L is at least �(jxj) def= 1=p(jxj). Let t�(x) denote the total (over all invo
ations) expe
ted num-ber of steps taken by V � when invoked by M . Note that t�(x) is upper-bounded by a polynomialin jxj, and assume (without loss of generality) that t�(x) also upper-bounds the expe
ted runningtime of V � in the real intera
tion (with P ). Now, 
onsider a stri
t PPT V �� that emulates V �,while trun
ating the emulation as soon as 3t�=� steps are emulated. Then, the variation distan
e(a.k.a statisti
al di�eren
e) between MV �(x) and MV ��(x) is at most �(jxj)=3, be
ause �=3 upper-bounds the probability that the total number of steps taken by V � during all invo
ations by Mex
eeds 3t�=� (and otherwise V �� perfe
tly emulates all these invo
ations, sin
e none ex
eeds 3t�=�steps). Similarly, the variation distan
e between hP; V �i(x) and hP; V ��i(x) is upper-bounded by�(jxj)=3. It follows that D distinguishes the simulation MV �� from the real intera
tion hP; V ��iwith a gap that ex
eeds �=3, on in�nitely many inputs in L, in 
ontradi
tion to the hypothesis thatM simulates all stri
t PPT veri�ers.Digest. We believe that the fa
t that the proof of Theorem 8 is rather straightforward should notbe 
ounted against De�nition 3, but rather the other way around. That is, we believe that the 
laimthat the simulation of stri
t PPT adversaries extends (without modi�
ations) to expe
ted PPTadversaries is natural, and as su
h a good de�nition of expe
ted PPT adversaries should supportit. It may be that Theorem 8 
an be generalized also to arbitrary bla
k-box simulators and even toarbitrary universal simulators, but the 
urrent proof fails to show this: the running-time analysisrelies on the hypothesis that the simulator is normal, whereas the output-quality analysis relieson the hypothesis that the simulator is bla
k-box.26 While this possibility is 
ertainly interesting,we 
onsider it se
ondary to the main message 
arried by Theorem 8 (i.e., that a good de�nitionof expe
ted PPT strategies (su
h as De�nition 3) supports the \extendability of simulators" fromhandling stri
t PPT veri�ers to handling expe
ted PPT veri�ers).27Note that the 
ombined simulator resulting from Theorem 8 is trivially expe
ted PPT underreset atta
ks (and also under De�nition 4), be
ause it is a non-intera
tive ma
hine (whi
h runsin expe
ted polynomial-time). Things are not as simple when we move to the setting of se
ureproto
ols, where the simulator is an intera
tive strategy (whi
h operates in a so-
alled ideal-model).See Se
tion 4.1.The (knowledge) tightness lens. Note that the knowledge tightness (as provided by Theo-rem 8) does not 
hange when moving from stri
t PPT veri�ers to expe
ted PPT veri�ers.26Re
all that a universal simulator obtains the 
ode of the adversary's strategy rather than a bla
k-box a

ess toit. Thus, it may be the 
ase that su
h a simulator 
an distinguish the 
ode of V � from the 
ode of V �� (i.e., thetimed version of V �), and produ
e bad output in the latter 
ase. Indeed, a \natural" simulator will not do so, butwe 
annot rely on this. Turning to a more natural example, we note that the known non-bla
k-box simulator ofBarak [B01℄ (as well as its modi�
ation [BG08℄) may fail to simulate expe
ted PPT veri�ers, be
ause the randomvariable representing its simulation time is polynomially related (rather than linearly related) to the running-timeof the veri�er. Re
all that it may be the 
ase that t(x) has expe
tation that is upper-bounded by a polynomial injxj while t(x)2 has expe
tation that is lower-bounded by exp(jxj); for example, 
onsider t : f0; 1g� ! N su
h thatPr[t(x) = 2jxj℄ = 2�jxj and Pr[t(x) = jxj2℄ = 1� 2�jxj.27One of the reviewers asked us to state an opposite opinion by whi
h Theorem 8 is mainly due to the normalityhypothesis. We strongly disagree with this opinion. In parti
ular, we mention that the simulator in [GK96℄ is normal,but (as shown in [KL08℄) it fails to handle some veri�er strategies that are expe
ted PPT w.r.t De�nition 2.17



3.2 Sequential 
ompositionThe following theorem (i.e., Theorem 9) is an expe
ted PPT version of the standard result (of [GO94℄)that refers to stri
t PPT adversaries and simulators (see also [G01, Lem. 4.3.11℄). Note that thestandard result does not require the simulator to be bla
k-box (let alone normal). The reason forthe extra requirement in Theorem 9 will be
ome 
lear in the proof.Theorem 9 (expe
ted PPT version of sequential 
omposition for zero-knowledge:) In this theoremzero-knowledge means the existen
e of a normal bla
k-box simulator that handles any expe
ted PPTw.r.t De�nition 3 (resp., w.r.t De�nition 4) adversarial veri�er, where handling means that the 
or-responding 
ombined simulator runs in expe
ted PPT and produ
es output that is 
omputationallyindistinguishable from the real intera
tion. Suppose that (P; V ) is a zero-knowledge proto
ol. Then,sequentially invoking (P; V ) for a polynomial number of times yields a proto
ol, denoted (P 0; V 0),that is zero-knowledge.We stress that Theorem 9 di�ers from the standard result (of [GO94℄) in two ways. Theorem 9 refersto expe
ted PPT adversarial veri�ers (rather than to stri
t PPT ones), and it refers to expe
tedPPT simulators (rather than to stri
t PPT ones).Proof: The proof of the stri
t PPT version (see [G01, Se
. 4.3.4℄) pro
eeds in two steps: First,any veri�er V � that atta
ks the 
omposed proto
ol (or rather the prover P 0) is transformed into averi�er V �� that atta
ks the basi
 proto
ol (or a
tually the prover P ). This transformation is quitestraightforward; that is, V �� handles a single intera
tion with P (while re
eiving the trans
riptof previous intera
tions as auxiliary input). Let M denote a simulator for (P; V ��). Then (inthe se
ond step), a simulator for the 
omposed proto
ol (or rather for the atta
k of V � on P 0)is obtained by invoking M for an adequate number of times (using a 
orrespondingly adequateauxiliary input in ea
h invo
ation).Wishing to pursue the foregoing route, we merely need to 
he
k that any veri�er V � thatis expe
ted PPT w.r.t De�nition 3 (resp., De�nition 4) is transformed into a veri�er V �� that isexpe
ted PPT w.r.t De�nition 3 (resp., De�nition 4). Unfortunately, this is not ne
essarily the 
ase.Indeed, the expe
ted running-time of V �� when given a random auxiliary input (i.e., one produ
edat random by prior intera
tions) is polynomial, but this does not mean that the expe
ted running-time of V �� on ea
h possible value of the auxiliary input is polynomial. For example, it may bethe 
ase that, with probability 2�jxj over the history of prior intera
tions, the 
urrent intera
tionof V � (i.e., V �� with the 
orresponding auxiliary input) runs for 2jxj steps. The bottom-line isthat V �� may not be expe
ted PPT w.r.t any reasonable de�nition (let alone w.r.t De�nition 3 orDe�nition 4).In view of the foregoing, we take an alternative route. We only use the hypothesis that somenormal bla
k-box simulator M 
an handle all stri
t PPT veri�ers that atta
k the basi
 prover P .Still, the hypothesis provides us with expe
ted PPT simulators (rather than with stri
t PPT ones).Nevertheless, we observe that the proof of [G01, Lem. 4.3.11℄ (i.e., the stri
t PPT version) 
an beextended to the 
ase that the simulation of the basi
 proto
ol (w.r.t stri
t PPT adversaries) runsin expe
ted PPT. The key observation is that in this 
ase V �� is stri
t PPT, although it will be fedwith auxiliary inputs that are produ
ed in expe
ted PPT (by the simulation of prior intera
tionsof V �� with P ). Thus, following the 
onstru
tion in the proof of [G01, Lem. 4.3.11℄, we obtain anexpe
ted PPT simulation that handles any stri
t PPT atta
k on P 0. Furthermore, the simulationamounts to invoking M for a polynomial number of times (while providing it with bla
k-box a

essto V ��, whi
h in turn is implemented by a bla
k-box a

ess to V �). It follows that the simulationof (P 0; V �) is performed by a normal bla
k-box simulator (be
ause M is normal). Hen
e, we have18



obtained a normal bla
k-box simulator that 
an handle any stri
t PPT atta
k on the 
omposedproto
ol (or rather on the prover P 0). The 
urrent theorem follows by applying Theorem 8 to thelatter simulator.Digest. The proof of Theorem 9 is somewhat disappointing be
ause it does not use the hypothesisthat P is zero-knowledge w.r.t expe
ted PPT veri�ers. Instead, Theorem 8 is used to bridge the gapbetween stri
t and expe
ted PPT veri�ers. A similar (but not identi
al) phenomenon will o

ur inthe sequential 
omposition theorem for general proto
ols, presented in Se
tion 4.2.The (knowledge) tightness lens. The normal simulator 
onstru
ted for (P 0; V 0) in the proofof Theorem 9 preserves the knowledge tightness of the original simulator (i.e., the normal simulatorprovided for (P; V )).4 Results for General Se
ure Proto
olsIn this se
tion we extend the treatment of zero-knowledge (provided in Se
tion 3) to a treatmentof arbitrary se
ure proto
ols. The extension is quite straightforward, on
e the key notions areproperly extended. The main issue that deserves attention is that, in the 
ontext of arbitraryse
ure proto
ols, simulators are not standard algorithms but rather intera
tive strategies (for a
orresponding ideal-model { to be dis
ussed next). Consequently, notions su
h as expe
ted PPTsimulation and normal (bla
k-box) simulators will have to be 
lari�ed. For simpli
ity, we fo
us onthe two-party 
ase.Re
all that the standard (\simulation-based") de�nitions of se
ure proto
ols 
all for 
omparingthe real exe
ution of the proto
ol (when 
ertain parties are 
ontrolled by an adversary) to thea�e
t of a 
orresponding adversary in an ideal model (see, e.g., [G04, Se
. 7.2℄). The ideal model
onsists of the parties sending their inputs to a trusted party that provides ea
h party with its 
or-responding output, where the trusted party 
omputes these outputs a

ording to the predeterminedfun
tionality that the proto
ol is supposed to se
urely 
ompute. Thus, the a
tions of the adversaryin the ideal model are 
on�ned to sele
ting the messages sent to the trusted party (by the parties
ontrolled by the adversary) and 
omputing its �nal output based on the messages it re
eived fromthe trusted party (i.e., the messages re
eived by the parties 
ontrolled by the adversary). In thetwo-party 
ase, this adversary sends a single message to the trusted party and re
eives a singlemessage in return. Note that this adversary is an intera
tive ma
hine, although its intera
tion isvery minimal, and thus the various de�nitions of expe
ted PPT strategies should and 
an be appliedto it.Another point to note is that the ideal-model adversary is viewed as a simulator of the real-model adversary, and that (as in the 
ase of zero-knowledge) the simulator is typi
ally des
ribedas a universal ma
hine that is given bla
k-box a

ess to the real-model adversary that it simulates.For simpli
ity, we shall refer to the ideal-model adversary as the simulator and to the real-modeladversary as the adversary.Turning to the notion of normal bla
k-box simulators, let us �rst restate De�nition 6 (whi
hrefers to non-intera
tive simulators). For any bla
k-box simulator S and any adversary A, we
onsider an imaginary ma
hine I that emulates SA su
h that ea
h ora
le 
all to A is emulated inunit time. Then, De�nition 6 mandates that, for every adversary A, the 
orresponding I is expe
tedPPT.28 In our 
ontext, the simulator itself is an intera
tive ma
hine, and thus the imaginary28Thus, we have restated the 
ondition that refers to the number of steps performed by S itself (when using ora
le19



ma
hines will also be intera
tive. For i = 1; 2; 3; 4, we say that a bla
k-box simulator S is normal w.r.tDe�nition i if, for every adversary A, the 
orresponding I = SA is expe
ted PPT w.r.t De�nition i.We note that natural simulators used in se
urity proofs are normal. This holds for simulators ofsimple proto
ols (
f., e.g., [G04, Se
. 7.4.3.1-7.4.3.3℄) as well as for simulators of 
omplex proto
olsobtained by 
omposition (
f., e.g., [G04, Se
. 7.4.4℄).Clari�
ation. As usual, we shall only 
onsider the se
ure 
omputation of fun
tionalities that
an be (inse
urely) 
omputed in stri
t PPT. Similarly, we shall only 
onsider proto
ols in whi
h allpres
ribed strategies are implementable in stri
t PPT; that is, the proper exe
ution of all proto
ols(by honest users) only requires stri
t PPT. Indeed, the notion of expe
ted PPT is only applied toadversaries (and to simulators, whi
h are themselves ideal-model adversaries). Needless to say, thisattitude is in perfe
t agreement with the views expressed in the introdu
tion.4.1 Simulating expe
ted PPT adversariesIn 
ontinuation to Se
tion 3.1, we prove that normal bla
k-box simulation of stri
t PPT adversaries
an be extended to expe
ted PPT adversaries. Unlike in Theorem 8, here the result (i.e., Theo-rem 10) is stated for both the new de�nitions, be
ause the 
ombined simulator is an intera
tivema
hine (and thus De�nitions 3 and 4 do not ne
essarily 
oin
ide when applied to it).Theorem 10 (extendability of normal bla
k-box simulators, the 
ase of general two-party proto-
ols): Let � be a two-party proto
ol and realA(x) denote the output of its exe
ution, on inputtuple x, under an atta
k of the adversary A. Let S be a normal w.r.t De�nition 3 (resp., De�ni-tion 4) simulator and idealAF (x) denote the output of its exe
ution, on input tuple x, ora
le a

essto the strategy A, and when the trusted party answers a

ording to the fun
tionality F . Supposethat for every stri
t PPT strategy A, it holds that idealAF is 
omputational indistinguishable fromrealA. Then, for every strategy A that is expe
ted PPT w.r.t De�nition 3 (resp., De�nition 4),the total simulation time of the 
ombined simulator SA is expe
ted PPT w.r.t De�nition 3 (resp.,De�nition 4) and idealAF is 
omputational indistinguishable from realA.As in 
ase of zero-knowledge, Theorem 10 asserts that known simulators that handle stri
t PPTadversaries 
an also handle adversaries that run in expe
ted polynomial-time under the new de�-nition(s). (Again, this holds even if the former simulators run in expe
ted PPT.)Proof: The 
urrent proof is analogous to the proof of Theorem 8, ex
ept that the veri�
ation ofthe expe
ted total running-time of the 
ombined simulation is slightly less evident. The key pointis that a de�nitional atta
k (i.e., as in De�nitions 3 and 4) on the 
ombined simulator SA yields a
orresponding atta
k on A, whereas A satis�es De�nition 3 (resp. De�nition 4) by the hypothesis.Details follow.We 
an fo
us on the total time spent by A in all its invo
ations by S, sin
e the number of stepsof S itself is upper-bounded by the normality hypothesis. Let us �rst 
onsider the version thatrefers to De�nition 4, denoting by n!A(!S) the maximum number of invo
ations of A by S, when A(resp., S) uses 
oins !A (resp., !S) and the maximization is over all possible messages (supposedlyby the trusted party) that 
an be provided to the simulator (maximized for these 
hoi
es of !Aand !S). By the normality hypothesis (applied to the residual adversaries A!A), it follows thatmax!AfE!S [n!A(!S)℄g is upper-bounded by a polynomial, denoted q. Turning to a setting in whi
hA intera
ts with a \magi
" ma
hine as in De�nition 4, we denote by t(!A) the maximum running
alls to A) as a 
ondition that refers to the total number of steps performed by the imaginary ma
hine I.20



time of A (in su
h an intera
tion) when the maximization is over all possible messages sent toA (again maximized for this 
hoi
e of !A). It follows that E!A [t(!A)℄ is upper-bounded by apolynomial, denoted p (sin
e A is PPT w.r.t De�nition 4). Finally, we 
onsider the total timespent by A when SA intera
ts with a magi
al ma
hine (as in De�nition 4), and upper-bound it byE!S ;!A [n!A(!S) � t(!A)℄ = E!A [E!S [n!A(!S)℄ � t(!A)℄� E!A [max! fE!S [n!(!S)℄g � t(!A)℄= max! fE!S [n!(!S)℄g � E!A [t(!A)℄whi
h equals q() � p(). This establishes the 
laim for De�nition 4.Turning to the version that refers to De�nition 3, we apply an analogous analysis. Spe
i�
ally,�xing any reset atta
k on the simulator SA, we let nr(!S ; !A) denotes the number of invo
ations ofA(!A) by S(!S) when SA(!A)(!S) is invoked by the reset atta
k that uses 
oins r. The admissibilityof this reset atta
k on SA means that, for any !A and !S, the expe
ted number of invo
ations ofSA(!A)(!S) by this atta
k is upper-bounded by a polynomial (where the expe
tation is taken overall possible 
hoi
es of r). Fixing any !A, we may view the foregoing reset atta
k (on SA) asa reset atta
k on SA(!A), and note that it is an admissible reset atta
k (sin
e, for every !S, theexpe
ted number of invo
ations of SA(!A)(!S) is upper-bounded by the aforementioned polynomial).Hen
e, the normality 
ondition of S (w.r.t De�nition 3) implies that the expe
ted number of timesthat S invokes A(!A) during this atta
k is upper-bounded by a polynomial, denoted q; that is,max!AfEr;!S [nr(!S; !A)℄g is upper-bounded by q. Now, 
ombining the reset atta
k on SA with Sitself, we obtain an admissible reset atta
k on A (i.e., a q-reset atta
k on A). Thus, by De�nition 3(applied to A), it follows that the expe
ted total amount of time spent by A in these intera
tionsis upper-bounded by a polynomial.4.2 Sequential 
ompositionIn 
ontinuation to Se
tion 3.2, we turn to dis
uss the preservation of the se
urity of general proto
olsunder sequential 
omposition. The formulation is more 
omplex in the 
urrent setting, be
ause se-quential 
omposition of general proto
ols refers to a model of ora
le-aided proto
ols (a.k.a \hybrid"model). Thus, we need to extend our de�nitional treatment of expe
ted PPT to that model.Re
all that an ora
le-aided proto
ol � that uses ora
le 
alls to a fun
tionality f , is a proto
olaugmented by spe
ial instru
tions by whi
h the (two) parties may invoke the fun
tionality f (severaltimes). Ea
h invo
ation is performed by sending inputs to f , via spe
ial (imaginary) 
hannels, andre
eiving 
orresponding outputs (again via spe
ial 
hannels).29 Thus, in the various de�nitionsof expe
ted PPT we need to refer also to the distribution of the messages obtained through theaforementioned spe
ial 
hannels. Spe
i�
ally, when 
onsidering a strategy in the ora
le-aided model,the (de�nitional) atta
k30 on this strategy 
ontrols both the ordinary 
hannels (on whi
h thestrategy expe
ts to get messages from other parties) and the spe
ial 
hannels (on whi
h the strategyexpe
ts to get outputs from the fun
tionality). We stress that only under (the natural extensionof) De�nition 1, it is the 
ase that the messages delivered over the spe
ial 
hannels must �t thedesignated fun
tionality f .29We stress that ea
h invo
ation of f is performed instantaneously and no other proto
ol a
tivity (i.e., neitheran ordinary 
ommuni
ation nor another invo
ation of f) is performed 
on
urrently. As usual, towards the time
omplexity, ea
h invo
ation is 
onsidered a single step.30Note that here we refer to the atta
ks used (as a mental experiment) in the various de�nitions of expe
ted PPTstrategies (espe
ially in De�nitions 3 and 4). 21



A sequential 
omposition theorem refers to an ora
le-aided proto
ol that uses ora
le 
alls tosome fun
tionality, and to the e�e
t of repla
ing these ora
le 
alls by invo
ations of a se
ure proto
olfor the said fun
tionality. In the standard results of this type (
f. [C00℄), it is assumed that theproof of se
urity of the sub-proto
ol (whi
h repla
es the ora
le 
alls to the fun
tionality) is via astri
t PPT simulator. The diÆ
ulty addressed here is that allowing an expe
ted PPT simulator forthis sub-proto
ol requires 
onsidering expe
ted PPT adversaries for the ora
le-aided proto
ol (evenif we only 
are about stri
t PPT adversaries for the 
omposed proto
ol). But if the ora
le-aidedproto
ol is se
ure also with respe
t to expe
ted PPT adversaries then we are �ne (as far as stri
tPPT adversaries for the 
omposed proto
ol are 
on
erned). As in the proof of Theorem 9, if allthe simulators guaranteed by the hypothesis are normal, then we 
an extend the result to expe
tedPPT adversaries.Theorem 11 (expe
ted PPT version of the standard sequential 
omposition theorem31:) In thistheorem se
urity means the existen
e of normal bla
k-box simulators that 
an handle32 any ex-pe
ted PPT adversary, where normality and expe
ted PPT are de�ned as in either De�nition 3 orDe�nition 4. Suppose that F 
an be se
urely 
omputed by an ora
le-aided proto
ol � that is givenora
le a

ess to the fun
tionality f , whi
h 
an be se
urely 
omputed by a standard proto
ol �. Then,F 
an be se
urely 
omputed by a standard proto
ol �0, whi
h is 
omposed of � and �.Note that, by Theorem 10, it suÆ
es to have in the hypothesis expe
ted PPT (or rather normalbla
k-box) simulators that 
an simulate any stri
t PPT adversary. A
tually, the following proofinvokes Theorem 10 anyhow, whi
h in turn is the reason that the de�nition of se
urity refers tosimulators that operate in a bla
k-box and normal fashion.Proof: As in the proof of Theorem 9, the �rst idea that 
omes to mind is adapting the standardproof of the 
orresponding result (i.e., [G04, Thm. 7.4.3℄) that refers to stri
t PPT. Spe
i�
ally,the standard proof (as presented, say, in [G04, Se
. 7.4.2℄) pro
eeds as follows: First, any adversarythat atta
ks the standard proto
ol �0 is transformed into an adversary that atta
ks the standardproto
ol �. Next, the former adversary (i.e., of �0) as well as a simulator for the latter adversary(i.e., of �) are 
ombined and transformed into an adversary that atta
ks the ora
le-aided proto
ol� (whi
h uses ora
le 
alls to f). A simulator of this adversary of � yields the desired simulation.However, as in the proof of Theorem 9, it is not ne
essarily the 
ase that if the adversaryatta
king �0 is expe
ted PPT then the adversary obtained for � is also expe
ted PPT. Thus, again,we take an alternative route, starting by establishing the 
urrent theorem for stri
t PPT adversariesatta
king �0 and next applying Theorem 10 to extend the result to adversaries that are expe
tedPPT w.r.t De�nition 3 (resp., De�nition 4). Now there is no problem with the �rst transformation(whi
h transforms any stri
t PPT adversary atta
king �0 into a stri
t PPT adversary atta
king�). Hen
e, we obtain a simulator for �, whi
h runs in expe
ted PPT w.r.t De�nition 3 (resp.,De�nition 4). Combining this simulator with the former adversary (for �0), we obtain an adversaryatta
king � that runs in expe
ted PPT a

ording to De�nition 3 (resp., De�nition 4).The key point is that (by the hypothesis) we do have a (normal bla
k-box) simulator that
an handle any expe
ted PPT adversary atta
king �. Thus, pro
eeding as in the proof of [G04,31This is an expe
ted PPT version of the Sequential Composition Theorem of [C00℄ (see also [G04, Thm. 7.4.3℄),whi
h refers to se
urity as the existen
e of stri
t PPT simulators that handle any stri
t PPT adversary. As inTheorem 9, our expe
ted PPT version requires that the simulators in the hypothesis operate in a bla
k-box (andnormal) manner.32As in Theorem 9, handling means that the 
orresponding 
ombined simulator runs in expe
ted PPT under therelevant de�nition and produ
es output that is 
omputationally indistinguishable from the real intera
tion.22



Thm. 7.4.3℄, we obtain a simulator for �0, whi
h is expe
ted PPT w.r.t De�nition 3 (resp., De�-nition 4). Using the fa
t that both simulators we used are normal bla
k-box simulators (and so isthe 
onstru
tion presented in the proof of [G04, Thm. 7.4.3℄), we infer that the simulator obtainedfor �0 is a normal bla
k-box simulator. This allows invoking Theorem 10, and thus extendingthe simulation to adversaries that are expe
ted PPT w.r.t De�nition 3 (resp., De�nition 4). Thetheorem follows.Digest. Note that the partial result by whi
h �0 is se
ure w.r.t stri
t PPT adversaries (via anexpe
ted PPT simulator) was established using the following two hypotheses: (1) the simulator for� 
an handle expe
ted PPT adversaries, and (2) the (expe
ted PPT) simulator for � 
an handlestri
t PPT adversaries. That is, this partial result neither uses the hypothesis that the simulatorfor � 
an handle expe
ted PPT adversaries nor the hypothesis that both simulators operate ina bla
k-box (and normal) fashion. The latter hypothesis is used in order to guarantee that thesimulator 
onstru
ted for �0 is a normal bla
k-box simulator, whi
h in turn is used for extendingthe partial result to the general result stated in Theorem 11. The hypothesis that the simulatorfor � 
an handle expe
ted PPT adversaries is never used.Re
all that, as a dire
t 
orollary to Theorems 10 and 11, we may obtain the following result,whi
h suÆ
es in many (if not all)33 appli
ations. This result refers to the 
omposition of proto
olsthat are proved se
ure with respe
t to stri
t PPT adversaries by using expe
ted PPT simulators.Corollary 12 (sequential 
omposition for the mixed stri
t/expe
ted model:) Here se
urity meansthe existen
e of normal bla
k-box simulators that 
an handle any stri
t PPT adversary, wherenormality is de�ned as in either De�nition 3 or De�nition 4 (and, in parti
ular, allows expe
tedPPT simulators). Suppose that F 
an be se
urely 
omputed by an ora
le-aided proto
ol � that isgiven ora
le a

ess to the fun
tionality f , whi
h 
an be se
urely 
omputed by a standard proto
ol �.Then, F 
an be se
urely 
omputed by a standard proto
ol �0, whi
h is 
omposed of � and �.A
tually, the simulator for � need not be bla
k-box, be
ause Corollary 12 
an be derived as an
onsequen
e of the aforementioned partial result, whi
h only requires the simulator of � to handleexpe
ted PPT adversaries. The latter 
ondition is guaranteed by applying Theorem 10 to thenormal bla
k-box simulator that 
an handle any stri
t PPT adversary for �.The (se
urity) tightness lens. The proof of Theorem 11 preserves the se
urity tightness of thestri
t PPT result (i.e., [G04, Thm. 7.4.3℄), whi
h in turn is the multiple of the se
urity tightness ofthe two underlying proto
ols (i.e., � and �). The same holds with respe
t to Corollary 12.4.3 Con
urrent 
ompositionTurning to 
on
urrent 
omposition theorems, we re
all the pivotal role of environmental se
urity(a.k.a UC-se
urity [C01℄) in that 
ontext. Spe
i�
ally, Canetti [C01℄ put forward a robust notion ofse
urity (i.e., environmental se
urity), and proved that any proto
ol that satis�es this notion alsopreserves se
urity under arbitrary 
on
urrent exe
utions. Sin
e environmental se
urity refers to asingle exe
ution, an appealing methodology for providing proto
ols that are se
ure under arbitrary
on
urrent exe
utions emerged: design your proto
ol to be environmentally se
ure and obtain (forfree) se
urity under 
on
urrent exe
utions. Our goal is to extend this methodology, whi
h wasdeveloped for the stri
t PPT setting, to the expe
ted PPT setting. This requires (1) showing that33The stronger statement relies on the opinions expressed in Se
tion 1.5.23



environmental se
urity in the stri
t PPT setting implies environmental se
urity in the expe
tedPPT setting, and (2) verifying that Canetti's proof extends to the expe
ted PPT setting. But letus start by re
alling Canetti's notion of environmental se
urity [C01℄ (see also [G04, Se
. 7.7.2℄),while 
on�ning ourselves to standard (non-rea
tive) fun
tionalities.34A brief introdu
tion to environmental se
urity. Loosely speaking, environmental se
urity35is aimed at representing the preservation of the proto
ol's se
urity when exe
uted within any(feasible) environment. The notion of an environment is a generalization of the notion of anauxiliary-input; that is, the environment is an auxiliary ora
le (or rather a state-dependent ora
le)that the adversary may a

ess. In parti
ular, the environment may represent other exe
utions ofvarious proto
ols that are taking pla
e 
on
urrently (with the exe
ution that we 
onsider). Westress that the environment is not supposed to assist the proper exe
ution of the proto
ol (and, infa
t, honest parties merely obtain their inputs from it and return their outputs to it). In 
ontrast,the environment may assist the adversary in atta
king the proto
ol. Following the simulationparadigm, we say that a proto
ol (for 
omputing a fun
tionality F ) is environmentally-se
ure if anyfeasible real-model adversary atta
king the proto
ol, with the assistan
e of any feasible environment,
an be simulated by a 
orresponding ideal-model adversary that uses the same environment (and
ommuni
ates with a trusted party that represents F ). We stress that both adversaries intera
twith an environment that is sele
ted after they are �xed (i.e., they \use" the environment in abla
k-box manner). For sake of simpli
ity, the environment is also responsible for providing theparties with inputs and for trying to distinguish the real-model exe
ution from the ideal-modelexe
ution. In the standard formulation (see [G04, Se
. 7.7.2℄), the environment is implemented bya (non-uniform) family of polynomial-size 
ir
uits (or, equivalently, by stri
t PPT with arbitraryauxiliary inputs). As usual, the real-model and ideal-model adversaries are modeled as stri
t PPTintera
tive ma
hines.The expe
ted PPT version. Firstly, we apply our de�nitions of expe
ted PPT (i.e., De�ni-tions 3 and 4) to the real-model and ideal-model adversaries, hereafter referred to as adversariesand simulators respe
tively. Note that the (de�nitional) atta
ks on these strategies 
ontrol boththe ordinary 
hannels (on whi
h su
h a strategy expe
ts to get messages from other parties) andthe 
hannels used for 
ommuni
ation with the environment. Se
ondly, we apply our de�nitionsof expe
ted PPT (i.e., De�nitions 3 and 4) to the environment itself, whi
h after all is merely astrategy.36 Lastly, we extend the notion of normal bla
k-box simulators su
h that its \net" timebound (i.e., 
ounting only its own steps) refers to intera
tion with any environment.Theorem 13 (extendability of simulators, the 
ase of environmental se
urity): In this theorem,an expe
ted PPT strategy is one that satis�es De�nition 3 (resp., De�nition 4). Suppose that � is34Re
all that a (non-rea
tive) fun
tionality is a randomized version of a multi-input multi-output fun
tion (
f. [G04,Se
. 7.2.1℄). In 
ontrast to our approa
h, Canetti's exposition of environmental se
urity [C01℄ is dominated byrea
tive fun
tionalities, whi
h are of natural (se
ondary) interest also when the basi
 notion of (stand-alone) se
urityis 
on
erned (
f. [G04, Se
. 7.7.1.3℄). We see no reason to 
ouple the treatment of environmental se
urity with rea
tivefun
tionalities.35The term used by Canetti [C01℄ is Universally Composable, abbreviated UC-se
ure, but we believe that a reason-able sense of \universal 
omposability" is merely a 
orollary of the suggested de�nition. Furthermore, as indi
ated bysubsequent resear
h (e.g., [L09℄), it is bene�
ial to distinguish the desired \universal 
omposability" property fromthe spe
i�
 way it is formulated.36In fa
t, sin
e the simulator 
annot \rewind" the environment, we may allow the environment to be expe
ted PPTa

ording to De�nition 2. However, in the main appli
ation (i.e., Theorem 14) we shall only use environments thatare expe
ted PPT a

ording to De�nition 3 (resp. De�nition 4).24



environmentally se
ure in the sense that for every stri
t PPT adversary there exists an expe
tedPPT simulator su
h that, for every stri
t PPT environment, the 
orresponding real-model andideal-model exe
utions are 
omputationally indistinguishable. Further suppose that the simulatorruns in expe
ted PPT even when intera
ting with an arbitrary environment. Then, there exists anormal bla
k-box simulator su
h that, for every expe
ted PPT adversary and every expe
ted PPTenvironment, the following holds:1. The expe
ted total simulation time is polynomial, where the total simulation time in
ludes thesteps taken by the simulator itself, the steps taken by the bla
k-box adversary in all invo
ations,and all steps taken by the environment.2. The 
orresponding real-model and ideal-model exe
utions are 
omputationally indistinguish-able.Note that the hypothesis allows the simulator to run in expe
ted PPT while simulating a stri
tPPT adversary and that the simulation is guaranteed to be 
omputationally indistinguishable withrespe
t to stri
t PPT environments. Unlike in the previous extendability theorems (i.e., Theorems 8and 10), here we did not require the simulator to use the adversary in a bla
k-box manner, be
ausewithout loss of generality (in the environmental setting) it suÆ
es to 
onsider a �xed (and rathertrivial) adversary (
f. [C01℄). We did require, however, that the simulator of that adversary runsin expe
ted PPT when intera
ting with any environment (whi
h means that it is \normal w.r.t theenvironment").Proof: By the last 
omment, the hypothesis a
tually yields a normal bla
k-box simulator thathandles any stri
t PPT adversary and any stri
t PPT environment. Pro
eeding as in the proofof Theorem 10, whi
h in turn builds on the proof of Theorem 8, we note that the same simulator
an handle any expe
ted PPT adversary and any expe
ted PPT environment. The 
urrent theoremfollows.Se
urity under 
on
urrent exe
utions. For any proto
ol �, we wish to 
onsider numerousexe
utions of � that take pla
e 
on
urrently, where the s
heduling of messages in the variousexe
utions is up to the adversary.37 In addition, other numerous exe
utions of other proto
ols(sometimes referred to as \arbitrary network a
tivity") 
an take pla
e 
on
urrently, but our 
on
ernis with the se
urity of the 
opies of �. Loosely speaking, this should mean that these a
tualexe
utions of � 
an be simulated in a 
orresponding ideal-model (where a trusted party answersa

ording to the desired fun
tionality). Needless to say, the simulator 
ontrol the same partiesthat are 
ontrolled by the adversary in the real-model. For simpli
ity, 
onsider the 
ase that allexe
utions of the (two-party) proto
ol � are played by the same pair of parties (and that theadversary 
ontrols a single party).Canetti [C01℄ proved that if � is environmentally se
ure then the 
on
urrent exe
ution ofmultiple 
opies of � is se
ure, where se
urity refers to stri
t PPT adversaries and simulators (as wellas su
h environments when relevant). Loosely speaking, Canetti's proof 
onsists of simultaneouslyrepla
ing all the (real-model) 
on
urrent exe
utions by 
opies of the simulator (of the environmentalse
urity hypothesis) while emulating the adversary's atta
k on the 
on
urrent system by using the
hannels of the 
orresponding environments. (A hybrid argument that refers to partial repla
ements37Note that this di�ers from sequential 
omposition (treated in Se
tion 4.2) in that these exe
utions take pla
e
on
urrently rather than sequentially. Furthermore, additional a
tivity (whi
h is referred to next) takes pla
e 
on-
urrently rather than before and/or after these exe
utions.25



of real exe
utions by simulations is used for showing that the behavior is maintained.) Here we
laim an expe
ted PPT version of Canetti's result.Theorem 14 (environmental se
urity implies 
on
urrent 
omposability, an expe
ted PPT version(roughly stated)): Suppose that � is environmentally se
ure with respe
t to adversaries, simulatorsand environments that are expe
ted PPT w.r.t De�nition 3 (resp., De�nition 4). Further supposethat the simulator runs in expe
ted PPT even when intera
ting with an arbitrary environment.Then the 
on
urrent exe
ution of polynomially many 
opies of � is se
ure with respe
t to adversariesand simulators that are expe
ted PPT w.r.t De�nition 3 (resp., De�nition 4).The proof is analogous to the proof of Theorem 11. For 
larity, we start by de�ning an imaginaryproto
ol �0 that 
onsists of polynomially many 
on
urrent 
opies of �, ea
h initiated by any partyat any time and pro
eeding at arbitrary pa
e (i.e., at ea
h time, ea
h party de
ides whether toinitiate a new 
opy or advan
e an a
tive 
opy by sending a 
orresponding message). Next, adaptingthe proof of Canetti [C01℄, we �rst prove a partial result in whi
h we only 
onsider an arbitrarystri
t PPT adversary that atta
ks �0 (i.e., polynomially many 
opies of �). We note that thesimulator 
onstru
ted by Canetti (for �0) uses the simulator for environmental se
urity of � in abla
k-box and normal manner. Thus, the former simulator runs in expe
ted PPT provided thatthe latter simulator runs in expe
ted PPT, whi
h is de�nitely the 
ase when simulating residualadversaries and environments that are derived from the stri
t PPT adversary that atta
ks �0.Finally, pro
eeding as in the proof of Theorem 11, we extend the result to any expe
ted PPTadversary that atta
ks �0. Theorem 14 follows.5 Alternatives to expe
ted PPTIn standard algorithmi
 settings, stri
t PPT 
aptures the intuitive notion of eÆ
ient probabilisti

omputations. However, as explained in Se
tion 1.5, in some 
ases stri
t PPT is slightly too rigidand one may seek a more 
exible alternative. Expe
ted PPT provides su
h a 
exible alternative,and in fa
t it is the �rst su
h alternative that 
omes to mind. Throughout this work, we ignoredthe question of what is a good 
exible de�nition of \eÆ
ient probabilisti
" algorithms. We merelyassumed that it is provided by expe
ted PPT, and fo
used on extending this notion to intera
tivema
hines. In this se
tion we dis
uss several alternatives to the asso
iation of eÆ
ient probabilisti
algorithms with expe
ted PPT.Re
all that expe
ted PPT refers to the expe
ted running-time and requires that this expe
ta-tion be upper-bounded by a polynomial (in the length of the input). However, as advo
ated byLevin [L86℄ in a somewhat di�erent 
ontext (see [G97℄), a better de�nition of \
exible probabilisti
eÆ
ien
y" is obtained by requiring that the running-time itself, as a random variable, be upper-bounded by a polynomial in a random variable that has expe
tation that is at most linear (in thelength of the input). In parti
ular, Levin's de�nitional approa
h eliminates the te
hni
al diÆ
ultiesexempli�ed at the end of Footnote 26, and provides a robust de�nition of probabilisti
 eÆ
ien
y;that is, if a probabilisti
 algorithm is deemed \eÆ
ient" then also a modi�
ation that squares itsrunning time will yield an \eÆ
ient" algorithm.38 In Se
tion 5.1 we extend Levin's de�nitionalapproa
h to intera
tive strategies, pursuing the same alternatives as those presented in Se
tion 2,and establishing analogous extendability and 
omposition results.38Indeed, this guarantees that Barak's non-bla
k-box simulator [B01℄ (when applied to \eÆ
ient" veri�ers) remains\eÆ
ient" and an extension of Barak's result to \eÆ
ient" strategies follows as in the proof of Theorem 8 (whilenoting that this spe
i�
 simulator is not a�e
ted by repla
ing of the 
ode of V � with the 
ode of V ��). For details,see Se
tion 5.1. 26



In general, the question of how to de�ne 
exible probabilisti
 eÆ
ien
y for non-intera
tivealgorithms is quite orthogonal to the issues dis
ussed in the 
urrent paper (i.e., how to extendsu
h a de�nition to intera
tive strategies). Indeed, it seems that any reasonable de�nition foralgorithms 
an be extended in analogous ways to intera
tive strategies. For example, in the 
ontextof zero-knowledge, it was suggested (
f. [DNS℄) to use simulators that, for every desired noti
eabledeviation � (from the real intera
tion), run in time that is stri
tly bounded by a polynomial in1=�. An alternative suggestion (of Vadhan [V06℄) is allowing (standard) simulation with varyingrunning-time su
h that the probability that the simulation takes more than t steps is upper-boundedby poly() � t�
(1) + �(), where � is a negligible fun
tion. Note that, in both 
ases, the de�nition(stated here for standard algorithms) will have to be extended to intera
tive ma
hines, and theissues and approa
hes presented in this paper will apply. For details see Se
tion 5.2.Before dis
ussing these alternatives in greater detail, we note that all these alternative de�nitionsof \
exible probabilisti
 eÆ
ien
y" are (intentionally) more permissive than the standard de�nition(i.e., expe
ted PPT). We believe that in the 
urrent 
ontext, where expe
ted PPT is relu
tantlyintrodu
ed to a

ount for \probabilisti
 eÆ
ien
y" that goes beyond stri
t PPT, the approa
h ofrestri
ting probabilisti
 eÆ
ien
y to expe
ted PPT is more adequate.5.1 Extending Levin's approa
hLet us �rst spell out Levin's suggestion (whi
h was loosely stated above). This suggestion is rootedin the realization that an important aspe
t of (deterministi
 and stri
t probabilisti
) polynomial-time as a model of eÆ
ient 
omputation is the 
losure of polynomial-time under natural algorithmi

ompositions. This feature, in turn, boils down to 
losure properties of the set of polynomials (i.e.,their 
losure to addition, multipli
ation, and 
omposition). The problem is that, in the 
ase of\
exible eÆ
ient probabilisti
 
omputation", dire
tly upper-bounding the expe
ted running-time(as underlying the de�nition of expe
ted PPT) does not provide 
losure under natural algorithmi

ompositions. But upper-bounding the expe
tation of a root of the running-time does deliver thedesired property. Spe
i�
ally, we obtain the following de�nition.De�nition 15 (
exible probabilisti
 eÆ
ien
y, following Levin [L86℄): For a probabilisti
 algorithmA and any string x, let TA(x) denote a random variable representing the running-time of A on inputx. Su
h an algorithm is said to be eÆ
ient if there exists a 
onstant 
 > 0 su
h that for every x itholds that E[TA(x)
 ℄ = O(jxj).Although this de�nition looks pe
uliar, note that it is quite similar to the naive de�nition, whi
h 
anbe reformulated as asserting E[TA(x)℄
 = O(jxj): the di�erent is merely in the order of applying theexpe
tation and powering operations. De�nition 15 re
e
ts a better understanding of the nature ofthe expe
tation operator (with respe
t to its intera
tion with other operations), and is preferable forthe purpose of introdu
ing a robust theory of eÆ
ient probabilisti
 algorithms. Indeed, De�nition 15implies the standard de�nition of expe
ted PPT, but the fa
t that De�nition 15 goes beyondexpe
ted PPT is of some 
on
ern in the 
urrent setting. Furthermore, keeping tra
k of the a
tualexpe
ted running-time (as in the standard notion of expe
ted PPT) seems better for the purpose ofa
tually analyzing the running-time of simulators (espe
ially, be
ause our aim is 
omparing these tothe running time of 
orresponding adversaries). For that reason, we performed our main treatmentin terms of expe
ted PPT, and only 
omment here on how it 
an be adapted to De�nition 15.
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Indeed, let us turn to our own business. For simpli
ity of exposition, note that De�nition 15remains inta
t if we require that E[TA(x)
 ℄ = poly(jxj) (rather than E[TA(x)
 ℄ = O(jxj)).39 Next,note that the de�nitions presented in Se
tion 2 
an be adapted by merely repla
ing the randomvariable that represents the running-time (or the number of intera
tions) by its 
-th power, forsome 
onstant 
 > 0. Let us demonstrate this adaptation for the most 
ompli
ated 
ase, where weuse the related formulation of saying that the running-time is polynomial in a quantity that haspolynomial expe
tation.De�nition 16 (De�nition 3, revisited): A q-reset atta
k on � is an atta
k that, for every x; y; zand !, intera
ts with �! for an number of times that is upper-bounded by q(Xx;y;z;!) su
h thatE[Xx;y;z;!℄ � poly(jxj). The strategy � is eÆ
ient w.r.t any reset atta
k if, for some polynomial p,every polynomial q, every q-reset atta
k on �, and every x; y; z, the total number of steps taken by�(x; z) during this atta
k is upper-bounded by q(Yx;y;z) � p(Yx;y;z) su
h that E[Yx;y;z℄ � poly(jxj).The analogues of De�nitions 1, 2, and 4 are easier to obtain. We similarly adapt the de�nitionof normal (bla
k-box) simulator (i.e., De�nition 6). It is left to verify that the analogous resultsremain valid.Proposition 5, revisited. With the ex
eption of the proof that De�nition 4 implies De�nition 3,all the 
laims are highly insensitive to the spe
i�
 notion of eÆ
ient probabilisti
 
omputation.When proving the remaining analogue (and referring to notations as in the said proof), note thatEr;![TA(r)(!)
 ℄ is upper-bounded by the produ
t of max!fEr[nA(r)(!)
 ℄g and E![maxrftA(r)(!)
g℄.Thus, upper-bounds on the latter fa
tors40 yield the desired upper-bound, whi
h implies that anystrategy that satis�es the analogue of De�nition 4 also satis�es the analogue of De�nition 3.Theorem 8, revisited. Noting that Observation 7 extends to the 
urrent setting, we infer thatso does the running-time analysis of the simulator. Thus, it remains to 
onsider the analysis of thequality of the simulator's output. Let T �(x) be a random variable representing the total number ofsteps taken by V � during all its invo
ations by M . (Re
all that in the proof of Theorem 8 we only
onsidered the expe
tation of this number, whi
h was denoted t�(x) and indeed equals E[T �(x)℄.)Then, for some 
 > 0, it holds that � def= E[(T �(x))
 ℄ = poly(jxj). Thus, Pr[(T �(x))
 > 3�=�(jxj)℄ <�(jxj)=3 and Pr[T �(x) > (3�=�)1=
 ℄ < �=3 follows. Trun
ating runs of V � on
e (poly(jxj)=�)1=
 stepsare 
ompleted, we obtain a stri
t PPT V �� and 
ontinue as in the original analysis.On the extendability of Barak's non-bla
k-box simulation. We 
laim that Barak's simu-lator [B01℄ (as well as its modi�
ation [BG08℄) 
an handle adversaries that satisfy De�nition 16 (ora
tually even a 
orresponding version of De�nition 2). This 
laim 
an be proved by noting that thissimulator 
an be applied to any deterministi
 adversary, while running in time that is polynomialin the running-time of the adversary. Thus, we may apply this simulator to a residual deterministi
adversary obtained by �xing (at random) the 
oins of the given probabilisti
 adversary. It followsthat the simulator makes a number of steps that satis�es De�nition 15 (be
ause its running-timeis polynomial in a quantity that satis�es De�nition 15). As for the quality of this simulation, it39This follows by observing that, for every 
 � 1 and X � 0, it holds that E[X
℄ � E[X℄
. Hen
e, E[TA(x)
 ℄ =O(jxj)
 implies E[TA(x)
=
℄ = O(jxj).40Note that we may need to use the fa
t that E[X
 ℄ � E[X
0 ℄ for every 
 � 
0.28




an be analyzed as the foregoing version of Theorem 8, while noting that the e�e
t (on this spe-
i�
 simulator) of repla
ing of the 
ode of V � by the 
ode of V �� is limited to the e�e
t that thisrepla
ement has on a bla
k-box simulator.41Note that Theorem 9 as well as the other 
omposition theorems are highly insensitive to the spe-
i�
 notion of eÆ
ient probabilisti
 
omputation in use. Their proof merely invokes the 
orrespond-ing 
omposition theorem for stri
t PPT and the relevant extendability theorem (e.g., Theorem 8).We thus 
on
lude this se
tion by 
onsidering the extendability theorem for general proto
ols.Theorem 10, revisited. The issue again is the analysis of the running-time of the 
ombinedsimulator (whi
h in this 
ontext is an intera
tive ma
hine). For the analogue of De�nition 4, itsuÆ
es to relate to powers of the quantities appearing in the proof of Theorem 10 (rather thanto the quantities themselves), indeed as done in the proof of the revisited Proposition 5. For theanalogue of De�nition 3 the modi�
ation is even more transparent.5.2 Extending other approa
hesWe 
onsider a relaxation of De�nition 15 suggested by Vadhan [V06℄ as well as a generalization ofthe notion of epsilon-knowledge (used in, e.g., [DNS℄).5.2.1 Extending Vadhan's relaxation of Levin's approa
hLet us start by noting that an equivalent formulation of De�nition 15 asserts that, for some 
onstant
 > 0, it holds that Pr[TA(x) > t℄ = O(jxj=t
) for every x and t. Clearly, E[TA(x)
 ℄ = O(jxj)implies Pr[TA(x)
 > t
 ℄ = O(jxj)=t
 (for every t). On the other hand, if for some 
onstant 
 > 0it holds that Pr[TA(x)
 > t
 ℄ = O(jxj)=t
 (for every t), then, for every 
0 < 
, it holds thatE[TA(x)
0 ℄ = O(jxj).The foregoing equivalent form of De�nition 15 is the starting point for further relaxation,suggested by Vadhan [V06℄. A

ording to this relaxation it is only required that for some negligiblefun
tion � : f0; 1g� ! [0; 1℄ it holds that Pr[TA(x) > t℄ = O(jxj=t
) + �(jxj). This relaxation is
on
eptually appealing, be
ause a negligible deviation of various probabilities is allowed throughoutthe theory of 
ryptography.Extending Vadhan's approa
h. Again, the de�nitional treatment provided in Se
tion 2 andDe�nition 6 is easily adapted to the 
urrent notion of probabilisti
 eÆ
ien
y. As for the analogousresults, they all hold. This 
an be proved by noting that, for ea
h relevant probabilisti
 pro
ess,all but a negligible measure of the probability spa
e behaves analogously to De�nition 15. Thus,the analysis used in Se
tion 5.1 
an be applied to the non-ex
eptional part of the probability spa
e,and the negligible part 
an be ignored (or rather a

ounted for by the negligible error probabilityallowed in the �nal result). We stress that this de
omposition of the probability spa
e is only amental experiment performed in the analysis, while the various strategies and algorithms remainexa
tly as des
ribed in Se
tion 5.1.5.2.2 Extending the epsilon-knowledge approa
hOur starting point is an approa
h that was used in the 
ontext of zero-knowledge, where it is
alled epsilon-knowledge. In this approa
h the simulator is provided with a non-negligible deviation41This is the 
ase sin
e this spe
i�
 simulator only uses the 
ode in order to generate a proof that the 
orrespondingveri�er behaves in a 
ertain way. 29



parameter, denoted �. The simulator is required to run in (stri
t) poly(jxj=�)-time and should outputa trans
ript that is �-indistinguishable from the real intera
tion (i.e., the probability gap observedby any PPT distinguisher is at most � (rather than negligible)). We stress that the running-time ofthe simulator may depend on �. Intuitively, when the simulator is required to produ
ed an outputof higher quality (i.e., 
orresponding to a smaller �), it is allowed more time.From epsilon-knowledge to epsilon-se
urity. Although (to the best of our knowledge) thisapproa
h has only been applied in the 
ontext of zero-knowledge, it 
an be applied to general se
ureproto
ol yielding a 
orresponding notion of epsilon-se
urity.42 That is, we 
onsider arbitrary (non-intera
tive (and later intera
tive)) probabilisti
 ma
hines that are given a parameter �, and alwaysrun for at most poly(jxj=�) steps; both the adversary and its simulator will be modeled as su
hma
hines, but they may use di�erent values of the deviation parameter (e.g., when given theparameter �, the simulator may invoke the adversary with parameter �0). Hen
e, epsilon-se
uritymeans that for every su
h adversary there exists a 
orresponding simulator that, when given theparameter �, yields an ideal exe
ution that is �-indistinguishable from the real one.Note that in the foregoing paragraph we postulated that the relevant intera
tive (probabilisti
)ma
hine always run for at most poly(jxj=�) steps. That is, this formulation refers to stri
t running-time (and 
orresponds to stri
t PPT). We note that 
onsidering expe
ted running-time (whi
h
orresponds to expe
ted PPT) buys us nothing in the setting of epsilon-se
urity, be
ause one 
analways trun
ate runs that ex
eed the expe
ted value by a fa
tor of 1=�0 (while in
urring only adeviation of �0 in performan
e). Thus, the notion of epsilon-se
urity is a
tually unrelated to theissues dis
ussed in this paper.On the 
omposition of epsilon-se
ure proto
ols. We seize the opportunity to pointing outan important detail regarding the 
omposition of epsilon-se
ure proto
ols. Suppose that we are
omposing an ora
le-aided proto
ol � with a proto
ol �, obtaining a proto
ol �0. Re
all that when
onstru
ting a simulator for �0, we use a simulator for � that refers to an adversary A, whereA itself in
orporates a simulator for �, whi
h is being invoked t(jxj) times. Thus, the deviationof the 
ombined simulator (for �0) is upper-bounded by � + n�(jxj) � t(jxj) � ��, where � (resp., ��)is the deviation of the simulator of � (resp., of �), and n� is an upper-bound on the number ofinvo
ations of A (by the simulator for �). Note that n� is upper-bounded by the running-time ofthe simulator of �, whi
h in turn may depend on its own deviation parameter (i.e., �); that is,we may have n�(jxj) = poly(jxj=�). Thus, the total deviation of the 
ombined simulator (for �0)may take the form �+ poly(jxj=�) � ��. This means that, when given a deviation parameter �0, the
ombined simulator should invoke the two simulators with suÆ
iently small deviation parameters(e.g., setting � = �0=2 and �� = poly(�=jxj) will do).6 Con
lusions and Open ProblemsWe believe that the new de�nitions of expe
ted PPT (i.e., De�nitions 3 and 4) are satisfa
tory.Indeed, our belief is supported by the results presented in this paper; that is, by the fa
t that normalbla
k-box simulators that handle stri
t PPT adversaries also handle adversaries that satisfy ourde�nitions, and that these de�nitions support various natural 
omposition theorems.42In fa
t, a related notion of se
urity has appeared in the 
ontext of password-based se
urity (
f. [GL06℄), but there� is not a free parameter but rather represents the noti
eable a priori probability of guessing the 
orre
t password,and the running-time of the simulator is independent of �.30



We note that both de�nitions arise naturally. As we saw, De�nition 3 arises as the naturalanswer to the problem 
aused by dealing with adversaries that are expe
ted PPT under De�nition 2.As for De�nition 4 it is simplest to state, and, 
ontrary to our initial feeling, it works just as well.A natural question that arises is whi
h de�nition is preferable: De�nition 3 or De�nition 4? Atthis point we feel no urge to address this question. In our opinion, a 
hoi
e will have to be madeonly on
e we rea
h appli
ations that work with one de�nition but not with the other.We note that normal bla
k-box simulators are pivotal to our main results. It may be thatthe same results (or equally satisfa
tory modi�
ations of them) hold also for arbitrary bla
k-boxsimulators and even for any universal simulators, but the 
urrent proofs fail to show this (seeFootnote 26). We leave the resolution of this issue as an open problem. A good pla
e to start maybe getting rid of the normality 
ondition.A
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