
On Completeness and Soundness in Interactive Proof SystemsMartin Furer, Computer Science Dept., Pennsylvania state Univ., University Park, PA 16802.Oded Goldreich, Computer Science Dept., Technion, Haifa, Israel.Yishay Mansour, Lab. for Computer Science, MIT, Cambridge, MA 02139.Michael Sipser, Mathematics Dept., MIT, Cambridge, MA 02139.Stathis Zachos, Comp. and Inform. Sci., Brookline College of CUNY, Brookline, NY 11210.ABSTRACT { An interactive proof system with Perfect Completeness (resp. PerfectSoundness) for a language L is an interactive proof (for L) in which for every x 2 L(resp. x 62 L) the veri�er always accepts (resp. always rejects). We show that anylanguage having an interactive proof system has one (of the Arthur-Merlin type) withperfect completeness. On the other hand, only languages in NP have interactiveproofs with perfect soundness.
Work done while third author was working at the IBM-Scienti�c Center, Technion City, Haifa,Israel. Second author was partially supported by the Fund for Basic Research Administered by theIsraeli Academy of Sciences and Humanities. Fifth author was partially supported by PSC-CUNYgrant.Appeared in Advances in Computing Research: A Research Annual, Vol. 5 (Randomness andComputation, S. Micali, ed.), pages 429{442, 1989.Warning: Reproduced almost automatically from an old tro� �le. The resulting text was notproofread.Updated a�liation for Oded Goldreich { Department of Computer Science and Applied Math-ematics Weizmann Institute of Science, Rehovot, Israel. Email: oded@wisdom.weizmann.ac.il

1. INTRODUCTIONThe two basic notions regarding a proof system are completeness and soundness. Completenessmeans that the proof system is powerful enough to generate "proofs" for all the valid statements(in some class). Soundness means that any statement that can be proved is valid (i.e. no "proofs"exist for false statements). Two computational tasks related to a proof system are generatinga proof and verifying the validity of a proof. This naturally suggests the notions of a prover (aparty able of generating proofs) and a veri�er (a party capable of validating proofs). Typically,the veri�er's task is easier than the prover's task. In order to focus on the complexity of theveri�cation task it is convenient to assume that the prover has unlimited power. For manyyears NP was considered the formulation of "whatever can be e�ciently veri�ed". This stemmedfrom the association of deterministic polynomial-time computation with e�cient computation.The growing acceptability of probabilistic polynomial-time computations as re
ecting e�cientcomputations is the basis of more recent formalizations of "whatever can be e�ciently veri�ed".In these formalizations, due to Goldwasser, Micali and Racko� [GMR] and Babai [B], and shownto be equivalent by Goldwasser and Sipser [GS], the (polynomial time) veri�er is allowed totoss coins and arbitrarily interact with the prover, furthermore he can accept or reject based onoverwhelming statistical evidence. Ruling by overwhelming statistical evidence means relaxing thecompleteness and soundness conditions so that any valid statement can be proved with a very highprobability while any false statement has only negligible probability to be proved. For a de�nitionof interactive proof systems we refer the reader to Goldwasser and Sipser's article in this volume[GS]. We denote by IP the class of languages for which there exists an interactive proof system.Clearly, NP � IP � PSPACE. It is believed that the class NP is strictly contained in IP .Evidence for this may perhaps be derived from the fact that, relative to some oracle, interactiveproofs are even not contained in the polynomial-time hierarchy, i.e. 9A s.t. IPA � PHA 6= ;(see [AGH]). It is also interesting to note that natural languages as Graph Non-Isomorphism andMatrix Group Non-Membership, which are not known to be in NP , where shown to be in IP(by [GMW] and [B], respectively). Considering an interactive proof system, it seems that in somesense the prover is "responsible" for the completeness condition, while the veri�er is "responsible"for the soundness condition. If this intuition is correct, and the prover has unrestricted power,why should the completeness condition be relaxed? Namely, can one modify the interactive proofsuch that the prover never fails in demonstrating the validity of true statements, while maintainingsoundness. By perfect completeness we mean that the prover never fails to prove the membershipof inputs that are indeed in the language, while perfect soundness means that the veri�er neveraccepts inputs that are not in the language. Perfect completeness and perfect soundness arenot only theoretically interesting, but are also of practical importance. This is the case, sinceprobabilistic completeness and soundness are de�ned with respect to ideal (unbiased) coin tossesand may not hold when using pseudorandom sequences (even in the sense of Blum and Micali[BM] and Yao [Y]). On the other hand perfect completeness and soundness are independent ofthe quality of the veri�er coin tosses. Our main result is that Interactive Proofs with PerfectCompleteness are as powerful as Interactive Proofs. The proof of the main result is in fact atransformation that given an interactive proof for a language L yield an Arthur-Merlin interactiveproof with perfect completeness for L. This transformation preserves the number of interactions of

the original interactive proof. An alternative proof which uses di�erent ideas, and in particular aprotocol for "random selection" appears in [GMS]. An alternative characterization of complexityclasses de�ne by bounded Arthur-Merlin games was presented in [ZF]. They use polynomiallybounded quanti�ers 9; 8; 9+ (where 9+ means roughly "for most"). For all quanti�er stringsQ1, Q2 of equal length over f9; 8; 9+g the notation (Q1=Q2) represents the classes of languagessatisfying:� x 2 L ! Q1�y P (x; �y)� x 62 L ! Q2�y :P (x; �y)for some poly-time computable predicate P . In this notation (9+9=9+8), (resp. (89=9+8),(9+9=88)) denotes the class of languages that are accepted by a general (resp. perfect com-pleteness, perfect soundness) two-move Arthur-Merlin proof system. 2. MODEL AND DEF-INITIONSWe state and prove our main result for the Arthur Merlin games introduced by Babai [B]. Usingthe result of [GS] our main result applies also to the interactive proof systems of [GMR]. In thissection we provide a precise de�nition of Arthur Merlin games and auxiliary terminology, in orderto facilitate the presentation of our result. Since we are interested only in the complexity theoreticaspects of proof systems, we may assume that the prover (Merlin) uses an optimal strategy andtherefore, with no loss of generality, is deterministic. In the following de�nition we assume that inall interactions of Arthur and Merlin, on inputs of the same length, the same number of messagesare exchanged and that all these messages are of the same length. Clearly, this condition isimmaterial and is only placed in order to facilitate the analysis.De�nition 1 (Arthur Merlin games):An Arthur-Merlin game is a pair of interactive programs A and M and a predicate � such that:� On common input x, exactly 2q(jxj) messages of length m(jxj) each are exchanged, where qand m are �xed polynomials and jxj denotes the length of x.� Arthur (A) goes �rst, and at iteration 1 � i � q(jxj) chooses at random a string ri of lengthm(jxj), with uniform probability distribution.� Merlin's reply in the i-th iteration, denoted yi, is a function of all the previous choices ofArthur and the common input x. More formally, yi =M(x; r1 � � �ri). In other words, M isthe strategy of Merlin.� For every programM0, a conversation betweenA andM0 on input x is a string r1y1 � � �rq(jxj)yq(jxj),where for every 1 � i � q(jxj) yi = M0(x; r1 � � �ri). We denote by CONVM0x the set of allconversations between A and M0 on input x. Note that jCONVM0x j = 2q(jxj)m(jxj).

� The predicate � is a polynomial-time computable predicate. This predicate maps the input xand a conversation r1y1 � � �rq(jxj)yq(jxj) to a Boolean value, called the value of the conversation.We associate true with accept and false with reject. The predicate � is called the value-of-the-game predicate.Notation: Let A and M0 be programs and � be a predicate as above.Then ACC�;M0x denotes the setfr1 � � �rq(jxj)j9y1 � � �yq(jxj) s:t: r1y1 � � �rq(jxj)yq(jxj) 2 CONVM0x & �(r1y1 � � � rq(jx j)yq(jx j)) = acceptg.Intuitively, ACC�;M0x is the set of all the random choices leading A to accept x, when interactingwith M0. Note that ACC�;M0x depends only on Merlin (M0) and the predicate �, since we assumethat Arthur follows the protocol. The ratio jACC�;M0x jjCONVM0x j is the probability that Arthur accepts xwhen interacting with M0.De�nition 2 (Arthur Merlin proof systems): An Arthur-Merlin proof system for languageL is an Arthur-Merlin game satisfying the following two conditions:� There exists a strategy for Merlin,M, such that for all x 2 L, jACC�;Mx jjCONVMx j � 23 . (This conditionis hereafter referred to as probabilistic-completeness.)� For every strategy M0 and for any x 62 L, jACC�;M0x jjCONVM0x j � 13 . (This condition is hereafterreferred to as probabilistic-soundness.)An equivalent de�nition is obtained by replacing 1=3 by 2�p(jxj) and 2=3 by 1 � 2�p(jxj), wherep(�) is an arbitrary polynomial satisfying p(n) 1 (8n 1).De�nition 3 (perfect completeness): An Arthur-Merlin proof system with perfect-completenessfor a language L is an Arthur-Merlin proof system for L satisfying:8x 2 L jACC�;Mx j = CONV SIZEPerfect-completeness, of an Arthur-Merlin proof system, means that Merlin always succeeds inconvincing Arthur to accept inputs in the language.De�nition 4 (perfect soundness): An Arthur-Merlin proof system with perfect-soundness fora language L is an Arthur-Merlin proof system for L satisfying:8M08x 62 L ACC�;M0x = ;Perfect-soundness, of an Arthur-Merlin proof system, means that no matter what Merlin doesArthur never accepts an input not in the language.3. ARTHUR MERLIN PROOF SYSTEMS WITH PERFECT COMPLETENESS

In this section we transform an Arthur-Merlin proof system to an Arthur-Merlin proof system withperfect completeness. This transformation preserves the number of interactions in the originalArthur-Merlin proof. The underlying technique is taken from Lautemann's proof that BPP isin the polynomial-time hierarchy [L]. (Lautemann's proof that BPP is in the polynomial-timehierarchy simpli�es the original proof of Sipser [S].) The idea is to show that this technique worksalso for Arthur-Merlin proof systems. We think that this idea seems strange at �rst glance,trivial in second thought, but in fact is quite surprising and important. Lautemann's techniqueis commonly presented as a method of expressing a \random" quanti�er by a universal and anexistential quanti�er. Suppose we are dealing with a subset, W , of f0; 1gk and that this subsethas cardinality either � (1 � �) � 2k or � � � 2k. The statement \most r 2 f0; 1gk are in W"can be substituted by the statement \9s(1); s(2); :::; s(k) 2 f0; 1gk such that 8r 2 f0; 1gk there9i (1 � i � k) such that s(i) � r 2 W", where s � r is the bit-by-bit XOR of the stringss and r. The strings s(1):::s(k) are said to \cover" W . The statement \most r 2 f0; 1gk arenot in W" can be substituted by the statement \8s(1); s(2); :::; s(k) 2 f0; 1gk 9r 2 f0; 1gk 8i(1 � i � k) s(i) � r 62 W". Zachos showed that the above \simulation" can be used to swapquanti�ers in a successive manner (for survey see [Z, Sch]). Zachos and Fuerer [ZF] then usedthis idea to show that bounded Arthur-Merlin proofs equal bounded Arthur-Merlin proofs withperfect completeness, by expressing the former proofs as a �xed quanti�er sequence and applyinga \swapping lemma" iteratively. For example, applying the swapping lemma to (9+9=9+8) andusing the BPP characterization [ZH] one gets (89+9=9+88) = (89=9+8). Each such iteration isthus a straightforward application of the \simulation technique", and blows-up the size of theArthur-Merlin game by an unbounded amount. Thus, this idea does not extend to unboundedArthur-Merlin proofs. For our transformation it is necessary to extend the simulation techniqueto settings in which the witness set W is not predetermined. In fact, in Arthur-Merlin games theset of random choices leading Arthur to accept is not de�ned, unless Merlin is speci�ed. This factis disturbing in the case that the input is not in the language and one has to guarantee that nomatter how Merlin acts he cannot fool Arthur (except for low probability).An overview of the protocol Without loss of generality, we assume that the error probabilityin the original Arthur-Merlin game is su�ciently small (i.e. �(jxj) 13q(jxj)m(jxj)). The transformedArthur-Merlin game will consist of k = q(jxj)m(jxj) original games played concurrently withrelated coin tosses, and Arthur will accept i� he accepts in one of these games. More speci�cally,Merlin starts the game by selecting carefully k strings, s(1); s(2); :::; s(k) 2 f0; 1gk, and sending themto Arthur. These strings are selected to \cover" ACC�;Mx in the case that x is in the language.Arthur and Merlin now start to play k copies of the original game. In round j, Arthur sendsonly one m-bit string rj and his move in the i-th game is de�ned as the bit-by-bit XOR of rjand the j-th segment in s(i) (i.e. Arthur's j-th move in the i-th copy is r(i)j = rj � s(i)j , wheres(i)j is the j-th m-bit block in s(i)). Merlin answers by k strings so that the i-th string equals theanswer the original Merlin would have given in the i-th copy (i.e. the i-th m-bit block in Merlin'sj-th message equals M(x; r(i)1 r(i)2 � � �r(i)j), where M is the original Merlin). Clearly, the perfectcompleteness condition is satis�ed. It is less easy to see that probabilistic soundness is satis�edas well. Note that a cheating Merlin may select his answers for one copy of the game dependingon his prospects in the other copies, and in particular arguing about ACCMx is not su�cient.

Our argument, instead, consists of two claims: 1) the probability of winning the transformedgame is bounded by the sum of the probabilities of winning each copy; and 2) the probability ofwinning a particular copy is bounded by the probability of winning the original game. (Trying toincorporate both claims in one counting argument leads to di�culties which are not encounteredin Lautemann's original proof.)3.1. The Protocol We denote the original Arthur by Â, the original Merlin by M̂, and theoriginal value-of-the-game predicate by �̂. Let � be the error probability, i.e. for x 2 L theProb(Â accepts) > 1 � �(jxj), and for x 62 L the Prob(Â accepts) < �(jxj). On input of size n,q(n) iterations are performed, at each iteration Arthur sends a message of length m(n). Whenclear from the text we use �; q;m for �(n); q(n); m(n), respectively. Let k = qm. Without loss ofgenerality we assume that � < 13k . This can be achieved by performing su�ciently many copies ofthe original Arthur Merlin game in parallel, and ruling by the majority (see [B], [GS] and [BHZ]).Program for an honest Merlin: Merlin's program consists of two stages. First, Merlincomputes k \sampling points" that are favorable to him, and sends them to Arthur. The secondstage is a simulation of k (related) copies of the original Arthur Merlin game.Preprocessing stage Let ACC be the set of random choices leading Arthur to accept in theoriginal ÂM̂ game on input x 2 L (i.e. ACC is a shorthand for ACC �̂;M̂x). Merlin selects k stringss(1); s(2); :::; s(k) 2 f0; 1gk so that for every r 2 f0; 1gk there exists an i such that s(i) � r 2 ACC.The preprocessing is said to have failed, if no such set of s(i)'s exist. If the preprocessing does notfail then Merlin sends the s(i)'s to Arthur. For sake of simplicity, we let Merlin send k (arbitrary)strings (of length k-bit each) in case the preprocessing fails.Simulation stageMerlin plays concurrently k copies of the original game and computes Arthursresponses by XORing them with segments of the s(i)'s. Each s(i) is partitioned into q segments, ofm bits each, corresponding to the q iteration of the original game. Namely, s(i) = s(i)1 s(i)2 � � �s(i)q ,where s(i)j 2 f0; 1gm. Formally, at each iteration j(1 � j � q(n)), Merlin preforms:Receive rj For i = 1 to k do begin r(i)j s(i)j �rj y(i)j M̂(x; r(i)1 � � �r(i)j) End Send y(1)j ; y(2)j ; :::; y(k)jArthur's program: Arthur's program is identical to the original program of Arthur. Formally,for each iteration j (1 � j � q(n)) Arthur performs:Choose rj at random in f0; 1gm. Send rj Receive y(1)j ; y(2)j ; :::; y(k)jThe value of a conversationLet r(i)j = rj � s(i)j , yj = y(1)j y(2)j � � �y(k)j , and �s = s(1)s(2) � � �s(k). We denote by�i(x; �s r1y1 � � �rqyq) = �̂(x; r(i)1 y(i)1 � � �r(i)q y(i)q) the value of the i-th game. The predicate �i maps aconversations to 1 if and only if the conversation induced on the i-th copy of the original gameis an accepting one. The value of a conversation is determined by the following polynomial-time

predicate�(x; �sr1y1 � � �rqyq) = orki=1 �i(x; �sr1y1 � � �rqyq)3.2. The Perfect-Completeness of the protocol We show that if the input x is in L, then anhonest Merlin (Merlin following the strategy outlined in subsection 3.1) always convinces Arthur.The argument is almost identical to the one in Lautemann (since ACC is �xed!), and is givenhere for sake of self-containment (see also [ZH]).Lemma 1: If x 2 L then the preprocessing does not fail.Proof: We have to show that if jACCj = (1� �) � 2k and � � 13k then there exists a sequence,�s = s(1); s(2); :::; s(k) (s(i) 2 f0; 1gk), such that for every string r 2 f0; 1gk at least one of ther � s(i) is in ACC. Furthermore, we will show that the statement holds for most sequences �s.We call a sequence �s = s(1); s(2); :::; s(k) good if for every r 2 f0; 1gk there exists an i (1 � i � k)such that r� s(i) 2 ACC. We consider the probability that a randomly selected sequence �s is notgood. Prob(�s is not good) = Prob(9r 8i : r � s(i) 62 ACC)� Xr2f0;1gk Prob(8i : r � s(i) 62 ACC)= 2k � Prob(8i : s(i) 62 ACC)= 2k � �k< (23k)k< 2�kThe Lemma follows. 2Lemma 2: If x 2 L then Arthur always accepts.Proof: By Lemma 1, Merlin can �nd s(i)'s so that (when Merlin follows his program!) anysequence of choices made by Arthur leads to acceptance in at least one of the copies of theoriginal game. The Lemma follows. 23.3. The Probabilistic Soundness of the protocol We now show that for every input xnot in L, no matter what Merlin does, the probability that he convinces Arthur is less then1=3. We consider the probabilities that Merlin M0 leads Arthur to accept in the i-th copy ofthe original game. We �rst bound by � the probability that M0 leads Arthur to accept in thei-th copy of the original game (see Lemma 3). Hence, the probability that Merlin fools Arthuris bounded by k � � (Lemma 4). Let M0 be any arbitrary program for Merlin. Recall thatACC �̂;M0x denotes the set of random choices leading Arthur (Â) to accept in the original game(with game value predicate �̂). We denote the set of random choices leading Arthur to accept in

the i-th game of the transformed game by ACC�i;M0x . Namely, r1r2 � � �rq 2 ACC�i;M0x if and onlyif �i(x; r1M0(x; r1) � � �rqM0(x; r1 � � �rq)). Note that both ACC�i;M0x and ACC �̂;M0x are subsets off0; 1gk.Lemma 3: Suppose that x 62 L. Then for every Merlin M0 and for every i (1 � i � k)jACC�i;M0x j � � � 2kProof: The idea of the proof is that a Merlin which does well on a particular copy of the originalgame can be easily transformed into a Merlin which does (at least) as well in the original game.The transformed Merlin (which plays the original game) simulates the actions of the Merlinwhich plays k games concurrently, using the real game as the i-th copy. A detailed proof follows.Assume, on the contrary to the statement of the lemma, that there exists an M0 and an i, suchthat jACC�i;M0x j � � 2k. We reach a contradiction by constructing a Merlin M00, which does as wellin the original game. First, M00 runs M0 on input x to get the k sample points s(1); s(2); :::; s(k)and saves s(i). Let r1; r2; :::; rj be the �rst j messages thatM00 has received. To compute the j-thmessage, M00 computes r0t = rt� s(i)t (for 1 � t � j) and runs M0 on input x and r01r02 � � �r0j (i.e.M00(x; r1 � � �rj) is the i-th m-bit block of M0(x; r01 � � �r0j)). We now claim thatClaim: r 2 ACC�i;M0x if and only if r� s(i) 2 ACC �̂;M00x .Proof: Suppose that r1 � � �rq 2 ACC�i;M0 . Then �i(x; �sr1y1 � � �rqyq) is true, where �s =s(1) � � �s(k) = M0(x) and yj = M0(x; r1 � � �rj) (8j). It follows that �̂(x; r(i)1 y(i)1 � � �r(i)q y(i)q) =1, where y(i)j is the i-th m-bit block in yj , s(i)j is the j-th m-bit block in s(i), and r(i)j =rj � s(i)j . Note that y(i)j = M00(x; r(i)1 � � �r(i)j). Thus, r(i)1 � � �r(i)q 2 ACC �̂;M00x . Noting thatr(i)1 � � �r(i)q = r� s(i) one direction follows. The proof of the second direction is similar andthe claim follows. 2By the above Claim, jACC �̂;M00x j = jACC�i;M0x j � � 2k, which contradicts the hypothesis that theoriginal game has error probability � �. The lemma follows. 2Remark: A statement analogue to Lemma 3 is trivial in Lautemann's setting.Lemma 4: Suppose that x 62 L. Then for every Merlin M0 the probability that Arthur acceptsis at most k � �.Proof: Clearly, for every Merlin M0,jACC�;M0x j = j [ki=1 ACC�i;M0x j � kXi=1 jACC�i;M0x jUsing Lemma 3, the statement follows. 2

3.4. Main Result Using the equivalence of interactive proofs and Arthur Merlin proofs [GS],and combining Lemmas 2 and 4 we getMain Theorem (Theorem 5): If a language L has an interactive proof system (with q(�)iterations) then L has an (Arthur Merlin) interactive proof system with perfect completeness (andq(�) + 1 iterations). 24. INTERACTIVE PROOF SYSTEMS WITH PERFECT SOUNDNESSIn the previous section, we showed that interactive proofs can be modi�ed so that the veri�eralways accepts valid statements. What happens if we require that the veri�er never acceptsfalse statements? In this case we show that the set of languages recognized equals NP. Thereader should note that the transformation of Goldwasser and Sipser [GS] does not preserveperfect completeness. Thus it is not clear that proving the above statement with respect toArthur Merlin games yields the same result with respect to general interactive proofs. Thedi�culty can be resolved by modifying the transformation of [GS], using the approximate lowerbound protocol of [GMS] (which has the perfect completeness property). We prefer to givea direct proof. The di�erence between interactive proofs and Arthur Merlin games is that ininteractive proofs the veri�er's i-th message �i is a function of the input x, his random coin tossesr, and the previous messages of the prover (i.e. �i = V (x; r; y1 � � �yi�1). After the last (sayq-th) iteration, the veri�er decides whether to accept or reject by evaluating the polynomial-timepredicate �(x; r; y1 � � �yq) 2 faccept; rejectg.Theorem 6: If a language L has an interactive proof with perfect soundness then L 2 NPProof: Assume that for a language L, there exists an interactive proof with perfect soundness.Since the veri�er is limited to probabilistic polynomial time, then for any input x 2 L there isa conversation that convinces him, and is of polynomial length. The NP machine guesses thisconversation, checks that it is indeed a legitimate one and that it leads the veri�er to accept.Namely, the machine guesses a random tape r and a conversation �1y1 � � ��qyq , and checks that�i = V (x; r; y1 � � �yi�1) (for every i) and that �(x; r; y1 � � �yq) = accept. If x 2 L then, by theprobabilistic completeness condition, there exist (many) accepting conversations. If x 62 L then,by the perfect-soundness condition, there is no such conversation, and any guess of the machinewill fail. 25. CONCLUDING REMARKSAssuming the existence of secure encryption functions (in the sense of [GM]) and using the resultsof [GMW], one can easily demonstrate the existence of zero-knowledge interactive proofs withperfect completeness for every language in IP . Given L 2 IP , �rst present an interactive proofwith perfect completeness for L, and next apply the techniques in [GMW] observing that theypreserve perfect completeness. However, it is not clear whether every language having a perfect

(resp. almost perfect) zero-knowledge interactive proof (see [F] for de�nition) has a perfect (resp.almost perfect) zero-knowledge interactive proof with perfect completeness. Weaker statementcan nevertheless be proven:1) Every language having an interactive proof which is almost perfect zero-knowledge withrespect to the speci�ed veri�er has an interactive proof with perfect completeness which isalmost perfect zero-knowledge with respect to the speci�ed veri�er (again see [F] for de�ni-tion).2) Every language having an interactive proof which is almost perfect zero-knowledge andremains so under parallel composition (see [O] for de�nition) has an almost perfect zero-knowledge proof with perfect completeness.The key observation in proving both statements is that almost all sequences �s can serve as samplingpoints (see proof of Lemma 1), and thus having the prover randomly select and send a good �s doesnot yield any knowledge. (In the simulation we use a randomly selected �s, which is most likelybut not necessarily good.) Babai [B] showed that any Arthur Merlin game with a �xed numberof interactions can be simulated by a game with two interactions. A similar proof applies to thehierarchy of interactive proofs with perfect completeness. Goldwasser and Sipser showed thatthe power of interactive proofs is not decreased when restricting the veri�er to use only "publiccoins" [GS]. We have showed that the power of interactive proofs is not decreased when furtherrestricting the system to have perfect completeness. How else can interactive proofs be restrictedwithout decreasing their power?REFERENCES[A] Adleman, L., "Two Theorems on Random Polynomial Time", Proc. 19th FOCS, 1978, pp.75-83.[AGH] Aiello, W., S. Goldwasser, and J. Hastad, "On the Power of Interaction", Proc. 27th FOCS,1986, pp. 368-379.[B] Babai, L., "Trading Group Theory for Randomness", Proc. 17th STOC, 1985, pp. 421-429.[BM] Blum, M., and Micali, S., "How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits", SIAM Jour. on Computing, Vol. 13, 1984, pp. 850-864.[BHZ] Boppana, R., J. Hastad, and S. Zachos, "Does Co-NP Have Short Interactive Proofs?", IPL,25, May 1987, pp. 127-132.[F] Fortnow, L., "The Complexity of Perfect Zero-Knowledge", this volume.[G] Gill, J., "Complexity of Probabilistic Turing Machines", SIAM J. on Comp., Vol. 6, No. 4,1977, pp. 675-695.

[GMS] Goldreich, O, Y. Mansour, and M. Sipser "Interactive Proof Systems: Provers that neverFail and Random Selection", Proc. 28th FOCS, 1987, pp.449-461.[GMW] Goldreich O., S. Micali and A. Wigderson, "Proofs that yield Nothing But the Validity ofthe assertion and the a Methodology of Cryptographic Protocol Design", Proc. 27th FOCS,1986, pp. 174-187.[GM] Goldwasser, S., and S. Micali, "Probabilistic Encryption", JCSS, Vol. 28, No. 2, 1984, pp.270-299.[GMR] Goldwasser, S., S. Micali and C. Racko�, "The knowledge Complexity of Interactive ProofSystems", Proc. 17th STOC, 1985, pp. 291-304.[GS] Goldwasser, S. and M. Sipser, "Private coins versus Public coins", this volume.[L] Lautemann, C., "BPP and the Polynomial-time Hierarchy", IPL, 14, 1983, pp. 215-217.[O] Oren, Y., "On the Cunning Power of Cheating Veri�ers: Some Observations about Zero-Knowledge Proofs", Proc. 28th FOCS, 1987, pp. 462-471.[Sch] Schoening, U., "Probabilistic Complexity Classes and Lowness", Proc. 2nd Structure inComplexity Theory Conf., IEEE 1987, pp. 2-8.[S] Sipser, M., "A Complexity Theoretic Approach to Randomness", Proc. 15th STOC, 1983,pp. 330-335.[Z] Zachos, S., "Probabilistic Quanti�ers, Adversaries, and Complexity Classes", Proc. 1stStructure in Complexity Theory Conf., LNCS 223, Springer Verlag, 1986, pp. 383-400.[ZF] Zachos, S., and M. Fuerer, "Probabilistic Quanti�ers vs. Distrustful Adversaries", unpub-lished manuscript, August 1985. (see also FCT-TCS 1987.)[ZH] Zachos, S. and H. Heller, "A Decisive Characterization of BPP", Information and Control,69, 1986, pp.125-135.[Y] Yao, A.C., "Theory and Applications of Trapdoor Functions", Proc. of the 23rd IEEESymp. on FOCS, 1982, pp. 80-91.

