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1 IntroductionThe modern society is quite preoccupied with various statistics like the average, median and devi-ation of various attributes (e.g., salary) of it members. On the other hand, individuals often wishto keep their own attributes secret (although they are interested in the above statistics). Further-more, on top of being suspicious of other people, individuals are growing to be suspicious of all(the society's) establishments and are unwilling to trust the latter with their secrets. Under thesecircumstances it is not clear whether there is a way for the members of the society to obtain variousstatistics (regarding all secrets) without revealing their individual secrets to other people.The above question is a special case of a general problem. We are talking about computingsome (predetermined) function of inputs that are scattered among di�erent parties, without havingthese parties reveal their individual inputs. The mutually suspicious parties have to employ somedistributed protocol in order to compute the function value, without leaking any other informationregarding their inputs to one another. Furthermore, in some settings, some of the parties maydeviate from the protocol, and it is desired that such malfunctioning will not be of any advantageto them. At best, we would like to \emulate" a trusted party (which collects the inputs from theparties, computes the corresponding outputs, and hand them to the corresponding parties), anddo so in a distributed setting in which no trusted parties exist. This, in a nutshell, is what securecryptographic protocols are all about.The results presented in this survey describe a variety of reasonable models in which suchan \emulation" is possible. In other words, we survey the main (general) results regarding securecryptographic protocols. But before doing so, we shall discuss more speci�c cryptographic primitivesand tools. This is done for three main reasons: Most importantly, we believe that these primitivesand tools should be of interest to researchers in the area of distributed computing. Secondly, thearea of secure cryptographic protocols is very complex, and we believe that some familiarity withthe rest of cryptography is very helpful when studying cryptographic protocols. Lastly, many ofthe known results regarding secure cryptographic protocols rely on primitives and tools developedin the rest of cryptography.1.1 CryptographyModern cryptography is concerned with the construction of systems that are robust against ma-licious attempts to make these systems deviate from their prescribed functionality. Indeed, thescope of modern cryptography is very broad, and stands in contrast to \classical" cryptography,which has been associated with the single problem of providing secret communication over insecurecommunication media.The design of cryptographic schemes is a very di�cult task. One cannot rely on intuitionsregarding the \typical" state of the environment in which the system operates. For sure, theadversary attacking the system will try to manipulate the environment into \untypical" states.Nor can one be content with counter-measures designed to withstand speci�c attacks, since theadversary (which acts after the design of the system is completed) will try to attack the schemesin ways that are di�erent from the ones the designer had envisioned. The validity of the aboveassertions seems self-evident, still some people hope that in practice ignoring these tautologies willnot result in actual damage. Experience shows that these hopes rarely come true; cryptographicschemes based on make-believe are broken, typically sooner than later.In view of the above, we believe that it makes little sense to make assumptions regarding thespeci�c strategy that the adversary may use. The only assumptions that can be justi�ed refer tothe computational abilities of the adversary. Furthermore, the design of cryptographic systems has1



to be based on �rm foundations; whereas ad-hoc approaches and heuristics are a very dangerousway to go. A heuristic may make sense when the designer has a very good idea regarding theenvironment in which a scheme is to operate, yet a cryptographic scheme has to operate in amaliciously selected environment which typically transcends the designer's view. Consequently, thedesign of good cryptographic systems consists of two main steps:1. A De�nitional Step: The identi�cation, conceptualization and rigorous de�nition of a cryp-tographic task that captures the intuitive security concern at hand; and2. A Constructive Step: The design of cryptographic schemes satisfying the de�nition distilledin Step (1), possibly while relying on widely believed and better understood intractabilityassumptions.We note that most of modern cryptography relies on intractability assumptions, and that relyingon such assumptions is unavoidable (in the sense discussed in Section 3.1). Still there is a hugedi�erence between relying on a simple, explicitly stated assumption and just assuming (or ratherhoping) that an ad-hoc construction satis�es some vaguely speci�ed (or even unspeci�ed) goals.In Sections 3 and 4 we survey the foundations of cryptography. We shall highlight paradigms,approaches and techniques used to conceptualize, de�ne and provide solutions to natural \securityconcerns". Speci�cally, we start our presentation with basic paradigms and tools such as compu-tational di�culty (Section 3.1), pseudorandomness (Section 3.2) and zero-knowledge (Section 3.3).Once these are presented, we turn to encryption (Section 4.1) and signature schemes (Section 4.2).At that point, we will be ready to discuss cryptographic protocols.1.2 Cryptographic ProtocolsCryptography, in the broad sense de�ned above, encompasses also the area of Cryptographic Pro-tocols. Taking the opposite perspective, all of cryptography deals with cryptographic protocols(because any scheme or algorithm can be viewed as a (possibly) degenerated protocol). Still, webelieve that it make sense to di�erentiate between basic primitives (which involve little interaction)like encryption and signature schemes on one hand, and general cryptographic protocols on theother hand.In a nutshell, general results concerning secure (two-party and) multi-party computations assertthat one can construct protocols for securely computing any desirable multi-party functionality.Indeed, what is striking about these results is their generality, and we believe that the wonder isnot diminished by the (various alternative) conditions under which these results hold.In Section 5, we survey the above results. We stress that these results presuppose that, duringthe execution of the (secure) protocol, the parties that participate in the execution do not takepart in any other protocol execution. That is, it is not guaranteed that the above mentionedprotocols maintain their security when executed concurrently with other protocols (or even to otherinstances of the same protocol): conceivably, an adversary that controls parties in several concurrentexecutions, may gain some illegitimate advantage. Thus, it is desirable (and in some settingsimperative) to design protocols that maintain their security also when executed concurrently toother protocols (or to other instances of themselves). We stress that the proper execution ofsuch protocols should not require coordination with other executions, whereas the adversary maycoordinate its attack on the various executions (e.g., determine the actions of parties that it controlsin each execution according to information he has obtained also from other executions). In Section 6,we survey the known results regarding security under concurrent executions. At this point, we wishto make several comments: 2



� The issue of security under concurrent execution arises only if the adversary may initiateand control several concurrent executions. In contrast, concurrent executions that are notcontrolled by the same adversary (or set of coordinating adversaries) do not introduce anynew security issue (beyond stand-alone security).� Preservation of security under concurrent executions seems essential in settings such as the In-ternet, in which many (distributed) processes do take place concurrently and it is unreasonableto require these processes to coordinate their actions. We stress that although inter-processcoordination cannot be required of the legitimate programs, it cannot be assumed that theadversary does not coordinate its attacks on the various processes. (Coordination is possible,but too expensive to be required in normal operation. Still the adversary may be willing toinvest the necessary e�ort if, by coordinating its attack in the various processes, it can obtainsubstantial gain.)� It is hasty to conclude that \stand-alone security" (as surveyed in Section 5) is worthless(i.e., unsatisfactory in all reasonable settings). We believe that \stand-alone security" maybe su�cient in some (small) distributed systems. On one extreme, stand-alone security su�cesin distributed systems in which executions of secure multi-party computations are rare andcan be coordinated such that they do not take place concurrently. On the other extreme, indistributed systems in which executions of secure multi-party computations involving all (ormost) the processors take place all the time, it may be reasonable to \lump together" all thesecomputations into a single (reactive) multi-party computation that supports on-line requestsfor various individual multi-party computations. As another (related) example, consider a(small) distributed system that operates under a single distributed operating system. Thedesired functionality of such an operating system can be casted as a (reactive) multi-partyfunctionality, and as such one can design a secure implementation of it. This means that weobtain a secure distributed operating system that maintains its functionality even if some ofthe processors behave in a malicious way (e.g., are governed by an adversary).1� The current state of knowledge regarding preservation of security under concurrent execu-tions still lags behind what is known regarding the security of protocols as stand-alone. Inparticular, only partial satisfactory positive results are currently known (and are describedin Section 6.3).Historical comment: The �rst general results regarding secure multi-party computations [52,88, 53] were presented at a time in which intensive electronic multi-party interactions seemed aremote possibility. Thus, while generating considerable interest within the Theory of Computationcommunity, these results went almost unnoticed by the Applied Cryptography community. Buttimes have changed: intensive electronic multi-party interactions seems almost a reality, and theentire cryptographic community seems very much interested in a variety of natural problems thatarise from such a reality. This may partially explain the time gap (of more than a decade) betweenthe main results reported in Sections 5 and 6, respectively.The communication model: The choice of the communication model is often neglected in thecryptographic research. Most of cryptographic research is concerned with two-party computations,1We comment that in a secure distributed operating system as suggested above, all (or most) parties will haveto actively participate in each action taken by the system. Actually, if one assumes that at most t parties may becontrolled by the adversary then it su�ces to have O(t) parties participate in each action taken by the system.3



in which case the choice of model is not very important, and typically an (asynchronous) message-passing model is assumed (almost always implicitly). For multi-party cryptographic protocols, thechoice of the communication model is more important. With the exception of a few work (mostnotably [12]), the model of choice for multi-party cryptographic protocols is a synchronous model(with \rushing") consisting of either point-to-point channels or a single \broadcast channel" (orboth [80]). With the exception of a few work (most notably [37]), in case point-to-point channels areassumed, they are assumed to exist between every pair of processors. Indeed, implementing suchresults in an arbitrary communication network will require secure and reliable routing, which maybe achieved (in principle) using encryption and message authentication (or signature) schemes.In general, it should be possible to compile multi-party cryptographic protocols designed for areasonable abstract communication model into equivalent (or similar) protocols for any realisticcommunication model; however, this was rarely done (let alone in the best possible way).21.3 Two commentsThe following introductory comments may as well be read as concluding comments.Cryptography versus Distributed Computing: Arguably, the area of (multi-party) crypto-graphic protocols is a natural meeting place for the Cryptography and the Distributed Computingcommunities. However, it seems that this area is considered part of cryptography (rather thanpart of both cryptography and distributed computing). This may be due to the dominant role ofcryptographic notions and techniques in the current research regarding cryptographic protocols.Anyhow, it seems that the current interaction between the (Cryptography and the DistributedComputing) communities is less extensive than one might have expected (or hoped). One unfor-tunate consequence of this state of a�airs is that much of the research regarding cryptographicprotocols neglects important distributed computing issues (e.g., a careful consideration of the min-imal assumptions required from the underlying communication model). Another natural meetingplace for the two communities is the application of cryptographic notions and techniques to theByzantine Agreement problem (cf., e.g., [42, 67]). In the latter case, one devastating e�ect (of thelow communication between the two communities) seems to be that a fundamental result (of [42])has not been disseminated in either communities.Theory versus practice (or general versus speci�c): This survey is focused on presentinggeneral notions and general feasibility results. Needless to say, practical solutions to speci�c prob-lems (e.g., voting [61], secure payment systems [6], and threshold cryptosystems [43]) are typicallyderived by speci�c constructions (and not by applying general results of the abovementioned type).Still, the (abovementioned) general results are of great importance to practice because they charac-terize a wide class of security problems that are solvable in principle, and provide techniques thatmay be useful also towards constructing speci�c solutions to speci�c problems.2 PreliminariesModern Cryptography, as surveyed here, is concerned with the construction of e�cient schemes forwhich it is infeasible to violate the security feature. Thus, we need a notion of e�cient computations2Indeed, the above sentence re
ects the unfortunate state of a�airs in which the interaction between the cryptogra-phy and the distributed computing communities is insu�cient. It seems that good design of multi-party cryptographicprotocols for realistic communication models may require the collaboration of these two communities.4



as well as a notion of infeasible ones. The computations of the legitimate users of the scheme oughtbe e�cient, whereas violating the security features (via an adversary) ought to be infeasible.E�cient computations are commonly modeled by computations that are polynomial-time in thesecurity parameter. The polynomial bounding the running-time of the legitimate user's strategy is�xed and typically explicit (and small). Here (i.e., when referring to the complexity of the legitimateusers) we are in the same situation as in any algorithmic setting. Things are di�erent when referringto our assumptions regarding the computational resources of the adversary. A common approach isto postulate that the latter are polynomial-time too, where the polynomial is not a-priori speci�ed.In other words, the adversary is restricted to the class of e�cient computations and anything beyondthis is considered to be infeasible. Although many de�nitions explicitly refer to this convention,this convention is inessential to any of the results known in the area. In all cases, a more generalstatement can be made by referring to adversaries of running-time bounded by any super-polynomialfunction (or class of functions). Still, for sake of concreteness and clarity, we shall use the formerconvention in our formal de�nitions.Randomized computations play a central role in cryptography. One fundamental reason for thisfact is that randomness is essential for the existence (or rather the generation) of secrets. Thus,we must allow the legitimate users to employ randomized computations, and certainly (since ran-domization is feasible) we must consider also adversaries that employ randomized computations.This brings up the issue of success probability: typically, we require that legitimate users suc-ceed (in ful�lling their legitimate goals) with probability 1 (or negligibly close to this), whereasadversaries succeed (in violating the security features) with negligible probability. Thus, the no-tion of a negligible probability plays an important role in our exposition. One feature required ofthe de�nition of negligible probability is to yield a robust notion of rareness: A rare event shouldoccur rarely even if we repeat the experiment for a feasible number of times. That is, in case weconsider any polynomial-time computation to be feasible, any function � : N ! N that satis�es1� (1��(n))p(n) < 0:01, for every polynomial p and su�ciently big n, is considered negligible (i.e.,� is negligible if for every polynomial p0 the function �(�) is bounded above by 1=p0(�)). However,if we consider the function T (n) to provide our notion of infeasible computation then functionsbounded above by 1=T (n) are considered negligible (in n).3 Basic ToolsIn this section we survey three basic tools used in Modern Cryptography. The most basic tool iscomputational di�culty, which in turn is captured by the notion of one-way functions. Next, wesurvey the notion of computational indistinguishability, which underlies the theory of pseudoran-domness as well as much of the rest of cryptography. In particular, pseudorandom generators andfunctions are important tools that will be used in later sections. Finally, we survey zero-knowledgeproofs, and their use in the design of cryptographic protocols. For more details regarding thecontents of the current section, see our recent textbook [47].3.1 Computational Di�culty and One-Way FunctionsModern Cryptography is concerned with the construction of schemes which are easy to operate(properly) but hard to foil. Thus, a complexity gap (i.e., between the complexity of proper usage andthe complexity of defeating the prescribed functionality) lies in the heart of Modern Cryptography.However, gaps as required for Modern Cryptography are not known to exist; they are only widelybelieved to exist. Indeed, almost all of Modern Cryptography rises or falls with the question of5



whether one-way functions exist. One-way functions are functions that are easy to evaluate buthard (on the average) to invert. That is, a function f :f0; 1g�!f0; 1g� is called one-way if there isan e�cient algorithm that on input x outputs f(x), whereas any feasible algorithm that tries to �nda preimage of f(x) under f may succeed only with negligible probability (where the probabilityis taken uniformly over the choices of x and the algorithm's coin tosses). Associating feasiblecomputations with probabilistic polynomial-time algorithms, we obtain the following de�nition.De�nition 3.1 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the follow-ing two conditions hold:1. easy to evaluate: There exist a polynomial-time algorithm A such that A(x) = f(x) for everyx 2 f0; 1g�.2. hard to invert: For every probabilistic polynomial-time algorithm A0, every polynomial p, andall su�ciently large n, Pr[A0(f(x); 1n) 2 f�1(f(x))] < 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gn and all thepossible outcomes of the internal coin tosses of algorithm A0.(Algorithm A0 is given the auxiliary input 1n so to allow it to run in time polynomial in the lengthof x, which is important in case f drastically shrinks its input (e.g., jf(x)j = O(log jxj)). Typically,f is length preserving, in which case the auxiliary input 1n is redundant.)Some of the most popular candidates for one-way functions are based on the conjectured in-tractability of computational problems in number theory. One such conjecture is that it is infeasibleto factor large integers. Consequently, the function that takes as input two (equal length) primesand outputs their product is widely believed to be a one-way function. Furthermore, factoringsuch composites is infeasible if and only if squaring modulo such composite is a one-way func-tion (see [78]). For certain composites (i.e., products of two primes that are both congruent to3 mod 4), the latter function induces a permutation over the set of quadratic residues modulo thiscomposite. A related permutation, which is widely believed to be one-way, is the RSA function [81]:x 7! xe mod N , where N = P �Q is a composite as above, e is relatively prime to (P � 1) � (Q� 1),and x 2 f0; :::; N � 1g. The latter examples (as well as other popular suggestions) are better cap-tured by the following formulation of a collection of one-way functions (which is indeed related toDe�nition 3.1):De�nition 3.2 (collections of one-way functions and additional properties): A collection of func-tions, ffi : Di ! f0; 1g�gi2I , is called one-way if there exists three probabilistic polynomial-timealgorithms, I, D and F , so that the following two conditions hold1. easy to sample and compute: The output of algorithm I, on input 1n, is distributed over theset I \ f0; 1gn (i.e., is an n-bit long index of some function). The output of algorithm D, oninput (an index of a function) i 2 I, is distributed over the set Di (i.e., over the domain ofthe function). On input i 2 I and x 2 Di, algorithm F always outputs fi(x).2. hard to invert; For every probabilistic polynomial-time algorithm, A0, every positive polynomialp(�), and all su�ciently large n'sPr hA0(i; fi(x))2f�1i (fi(x))i < 1p(n)where i I(1n) and x D(i). 6



The collection is said to be of permutations if each of the fi's is a permutation over the correspondingDi. Such a collection is call a trapdoor permutation if in addition to the above there are twoprobabilistic polynomial-time algorithms I 0 and F�1 such that (1) the distribution I 0(1n) rangesover pairs of strings so that the �rst string is distributed as in I(1n), and (2) for every (i; t) in therange of I 0(1n) it holds that F�1(t; fi(x)) = x. (That is, t is a trapdoor that allows to invert fi.)Note that the hardness-to-invert condition refers to the distributions I(1n) and D(i), which aremerely required to range over I \ f0; 1gn and Di, respectively. (Typically, the distributions I(1n)and D(i) are (almost) uniform over I \ f0; 1gn and Di, respectively.)3.2 PseudorandomnessIn practice \pseudorandom" sequences are often used instead of truly random sequences. Theunderlying belief is that if an (e�cient) application performs well when using a truly randomsequence then it will perform essentially as well when using a \pseudorandom" sequence. However,this belief is not supported by ad-hoc notions of \pseudorandomness" such as passing the statisticaltests in [65] or having large linear-complexity (as in [60]). In contrast, the above belief is an easycorollary of de�ning pseudorandom distributions as ones that are computationally indistinguishablefrom uniform distributions.3.2.1 Computational IndistinguishabilityA central notion in Modern Cryptography is that of \e�ective similarity" (introduced by Gold-wasser, Micali and Yao [57, 87]). The underlying idea is that we do not care whether or not objectsare equal, all we care is whether or not a di�erence between the objects can be observed by afeasible computation. In case the answer is negative, the two objects are equivalent as far as anypractical application is concerned. Indeed, in the sequel we will often interchange such (computa-tionally indistinguishable) objects. Let X = fXngn2N and Y = fYngn2N be probability ensemblessuch that each Xn and Yn is a distribution that ranges over strings of length n (or polynomial inn). We say that X and Y are computationally indistinguishable if for every feasible algorithm A thedi�erence dA(n) def= jPr[A(Xn)=1]� Pr[A(Yn)=1]j is a negligible function in n. That is:De�nition 3.3 (computational indistinguishability [57, 87]): We say that X = fXngn2N and Y =fYngn2N are computationally indistinguishable if for every probabilistic polynomial-time algorithm Devery polynomial p, and all su�ciently large n,jPr[D(Xn)=1] � Pr[D(Yn)=1]j < 1p(n)where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn) and over theinternal coin tosses of algorithm D.That is, think of D as of somebody who wishes to distinguish two distributions (based on a samplegiven to it), and think of 1 as of D's verdict that the sample was drawn according to the �rstdistribution. Saying that the two distributions are computationally indistinguishable means that ifD is an e�cient procedure then its verdict is not really meaningful (because the verdict is almostas often 1 when the input is drawn from the �rst distribution as when the input is drawn from thesecond distribution).We comment that, for \e�ciently constructible" distributions, indistinguishability by a singlesample (as de�ned above) implies indistinguishability by multiple samples (see [47, Sec. 3.2.3]).7



3.2.2 Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an e�cient (deterministic) algorithm that on inputa short random seed outputs a (typically much) longer sequence that is computationally indistin-guishable from a uniformly chosen sequence. Pseudorandom generators were introduced by Blum,Micali and Yao [19, 87], and are formally de�ned as follows.De�nition 3.4 (pseudorandom generator [19, 87]): Let ` :N!N satisfy `(n) > n, for all n 2 N .A pseudorandom generator, with stretch function `, is a (deterministic) polynomial-time algorithmG satisfying the following:1. For every s 2 f0; 1g�, it holds that jG(s)j = `(jsj).2. fG(Un)gn2N and fU`(n)gn2N are computationally indistinguishable, where Um denotes theuniform distribution over f0; 1gm.Thus, pseudorandom sequences can replace truly random sequences not only in \ordinary" compu-tations but also in cryptographic ones. That is, any cryptographic application that is secure whenthe legitimate parties use truly random sequences, is also secure when the legitimate parties usepseudorandom sequences. The bene�t in such a substitution (of random sequences by pseudoran-dom ones) is that the latter sequences can be e�ciently generated using much less true randomness.Furthermore, in an interactive setting, it is possible to eliminate all random steps from the on-lineexecution of a program, by replacing them with the generation of pseudorandom bits based on arandom seed selected and �xed o�-line (or at set-up time).Various cryptographic applications of pseudorandom generators will be presented in the sequel,but �rst let us show a construction of pseudorandom generators based on the simpler notion of aone-way function. We start with the notion of a hard-core predicate of a (one-way) function: Thepredicate b is a hard-core of the function f if b is easy to evaluate but b(x) is hard to predict fromf(x). That is, it is infeasible, given f(x) when x is uniformly chosen, to predict b(x) substantiallybetter than with probability 1=2. We mention that by [51] (see simpler proof in [47, Sec. 2.5.2]), forany one-way function f , the inner-product mod 2 of x and r is a hard-core of f 0(x; r) = (f(x); r).Theorem 3.5 ([19, 87], see [47, Sec. 3.4]): Let f be a 1-1 function that is length-preserving and ef-�ciently computable, and b be a hard-core predicate of f . Then G(s) = b(s)�b(f(s)) � � � b(f `(jsj)�1(s))is a pseudorandom generator (with stretch function `), where f i+1(x) def= f(f i(x)) and f0(x) def= xAs a concrete example, consider the permutation x 7! x2 mod N , where N is the product of twoprimes each congruent to 3 (mod 4), and x is a quadratic residue modulo N . Then, we haveGN (s) = lsb(s) � lsb(s2 mod N) � � � lsb(s2`(jsj)�1 mod N), where lsb(x) is the least signi�cant bit ofx (which is a hard-core of the modular squaring function [1]).We conclude this subsection by mentioning that pseudorandom generators can be constructedfrom any one-way functions (rather than merely from one-way permutations, as above). On theother hand, the existence of one-way functions is a necessary condition to the existence of pseudo-random generators. That is:Theorem 3.6 [62]: Pseudorandom generators exist if and only if one-way functions exist.
8



3.2.3 Pseudorandom FunctionsPseudorandom generators provide a way to e�ciently generate long pseudorandom sequences fromshort random seeds. Pseudorandom functions, introduced and constructed by Goldreich, Gold-wasser and Micali [49], are even more powerful: they provide e�cient direct access to bits of a hugepseudorandom sequence (which is not feasible to scan bit-by-bit). More precisely, a pseudorandomfunction is an e�cient (deterministic) algorithm that given an n-bit seed, s, and an n-bit argument,x, returns an n-bit string, denoted fs(x), so that it is infeasible to distinguish the responses of fs, fora uniformly chosen s 2 f0; 1gn, from the responses of a truly random function F : f0; 1gn ! f0; 1gn.That is, the (feasible) testing procedure is given oracle access to the function (but not its explicitdescription), and cannot distinguish the case it is given oracle access to a pseudorandom functionfrom the case it is given oracle access to a truly random function.One key feature of the above de�nition is that pseudorandom functions can be generated andshared by merely generating and sharing their seed; that is, a \random looking" function fs :f0; 1gn ! f0; 1gn, is determined by its n-bit seed s. Parties wishing to share a \random looking"function fs (determining 2n-many values), merely need to generate and share among themselves then-bit seed s. (For example, one party may randomly select the seed s, and communicate it, via asecure channel, to all other parties.) Sharing a pseudorandom function allows parties to determine(by themselves and without any further communication) random-looking values depending on theircurrent views of the environment (which need not be known a priori). To appreciate the potentialof this tool, one should realize that sharing a pseudorandom function is essentially as good asbeing able to agree, on the 
y, on the association of random values to (on-line) given values, wherethe latter are taken from a huge set of possible values. We stress that this agreement is achievedwithout communication and synchronization: Whenever some party needs to associate a randomvalue to a given value, v 2 f0; 1gn, it will associate v the same random value rv 2 f0; 1gn (bysetting rv = fs(v), where fs is a pseudorandom function agreed upon beforehand).Theorem 3.7 ([49], see [47, Sec. 3.6.2]): Pseudorandom functions can be constructed using anypseudorandom generator.Pseudorandom functions are a very useful cryptographic tool: One may �rst design a cryptographicscheme assuming that the legitimate users have black-box access to a random function, and nextimplement the random function using a pseudorandom function. The usefulness of this tool stemsfrom the fact that having (black-box) access to a random function gives the legitimate parties apotential advantage over the adversary (which does not have free access to this function).33.3 Zero-KnowledgeZero-knowledge proofs, introduced by Goldwasser, Micali and Racko� [58], are a powerful tool inthe design of cryptographic protocols. Loosely speaking, zero-knowledge proofs are proofs thatyield nothing beyond the validity of the assertion. That is, a veri�er obtaining such a proof onlygains conviction in the validity of the assertion. This is formulated by saying that anything thatis feasibly computable from a zero-knowledge proof is also feasibly computable from the (valid)assertion itself. The latter formulation follows the simulation paradigm, which is discussed next.3The above methodology is sound provided that the adversary does not get the description of the pseudorandomfunction in use, but rather only (possibly limited) oracle access to it. This is di�erent from the so-called RandomOracle Methodology formulated in [11] and criticized in [24].9



3.3.1 The Simulation ParadigmA key question regarding the modeling of security concerns is how to express the intuitive require-ment that an adversary \gains nothing substantial" by deviating from the prescribed behavior ofan honest user. Our approach is that the adversary gains nothing if whatever it can obtain byunrestricted adversarial behavior can be obtained within essentially the same computational e�ortby a benign behavior. The de�nition of the \benign behavior" captures what we want to achievein terms of security, and is speci�c to the security concern to be addressed. For example, in theprevious paragraph, we said that a proof is zero-knowledge if it yields nothing beyond the validityof the assertion (i.e., the benign behavior is any computation that is based (only) on the assertionitself, while assuming that the latter is valid). Other examples are discussed in Sections 4.1 and 5.1.A notable property of the above simulation paradigm, as well as of the entire approach surveyedhere, is that this approach is overly liberal with respect to its view of the abilities of the adversaryas well as to what might constitute a gain for the adversary. Thus, the approach may be consideredoverly cautious, because it prohibits also \non-harmful" gains of some \far fetched" adversaries.We warn against this impression. Firstly, there is nothing more dangerous in cryptography than toconsider \reasonable" adversaries (a notion which is almost a contradiction in terms): typically, theadversaries will try exactly what the system designer has discarded as \far fetched". Secondly, itseems impossible to come up with de�nitions of security that distinguish \breaking the scheme in aharmful way" from \breaking it in a non-harmful way": what is harmful is application-dependent,whereas a good de�nition of security ought to be application-independent (as otherwise using thescheme in any new application will require a full re-evaluation of its security). Furthermore, evenwith respect to a speci�c application, it is typically very hard to classify the set of \harmfulbreakings".3.3.2 The Actual De�nitionBefore de�ning zero-knowledge proofs, we have to de�ne proofs. The standard notion of static (i.e.,non-interactive) proofs will not do (because static zero-knowledge proofs exist only for sets thatare easy to decide (i.e, are in BPP) [54], whereas we are interested in zero-knowledge proofs forarbitrary NP-sets). Instead, we use the notion of an interactive proof (introduced exactly for thatreason in [58]). That is, here a proof is a (multi-round) randomized protocol for two parties, calledveri�er and prover, in which the prover wishes to convince the veri�er of the validity of a givenassertion. Such an interactive proof should allow the prover to convince the veri�er of the validityof any true assertion, whereas no prover strategy may fool the veri�er to accept false assertions.Both the above completeness and soundness conditions should hold with high probability (i.e., anegligible error probability is allowed). The prescribed veri�er strategy is required to be e�cient.No such requirement is made with respect to the prover strategy; yet we will be interested in\relatively e�cient" prover strategies (see below).Zero-knowledge is a property of some prover-strategies. More generally, we consider interac-tive machines that yield no knowledge while interacting with an arbitrary feasible adversary on acommon input taken from a predetermined set (in our case the set of valid assertions). A strat-egy A is zero-knowledge on (inputs from) the set S if, for every feasible strategy B�, there existsa feasible computation C� so that the following two probability ensembles are computationallyindistinguishable4:4Here we refer to a natural extension of De�nition 3.3: Rather than referring to ensembles indexed by N , we referto ensembles indexed by a set S � f0; 1g�. Typically, for an ensemble fZ�g�2S, it holds that Z� ranges over stringsof length that is polynomially-related to the length of �. We say that fX�g�2S and fY�g�2S are computationally10



1. f(A;B�)(x)gx2S def= the output of B� after interacting with A on common input x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.We stress that the �rst ensemble represents an actual execution of an interactive protocol, whereasthe second ensemble represents the computation of a stand-alone procedure (called the \simulator"),which does not interact with anybody.The above de�nition does not account for auxiliary information that an adversary may haveprior to entering the interaction. Accounting for such auxiliary information is essential for usingzero-knowledge proofs as subprotocols inside larger protocols (see [50, 54]). This is taken care ofby a more strict notion called auxiliary-input zero-knowledge.De�nition 3.8 (zero-knowledge [58], revisited [54]): A strategy A is auxiliary-input zero-knowledgeon inputs from S if for every probabilistic polynomial-time strategy B� and every polynomial p thereexists a probabilistic polynomial-time algorithm C� such that the following two probability ensemblesare computationally indistinguishable:1. f(A;B�(z))(x)gx2S ; z2f0;1gp(jxj) def= the output of B� when having auxiliary-input z and inter-acting with A on common input x 2 S; and2. fC�(x; z)gx2S ; z2f0;1gp(jxj) def= the output of C� on inputs x 2 S and z 2 f0; 1gp(jxj).Almost all known zero-knowledge proofs are in fact auxiliary-input zero-knowledge.3.3.3 Zero-Knowledge Proofs for all NP-assertions and their applicationsAssuming the existence of commitment schemes5, which in turn exist if one-way functions ex-ist [71, 62], there exist (auxiliary-input) zero-knowledge proofs of membership in any NP-set (i.e.,sets having e�ciently veri�able static proofs of membership). These zero-knowledge proofs, �rstconstructed by Goldreich, Micali and Wigderson [52] (and depicted in Figure 1), have the followingimportant property: the prescribed prover strategy is e�cient, provided it is given as auxiliary-input an NP-witness to the assertion (to be proven). This result makes zero-knowledge a verypowerful tool in the design of cryptographic schemes and protocols.A generic application. In a typical cryptographic setting, a user referred to as U , has a secretand is supposed to take some action depending on its secret. The question is how can otherusers verify that U indeed took the correct action (as determined by U 's secret and the publiclyknown information). Indeed, if U discloses its secret then anybody can verify that U took thecorrect action. However, U does not want to reveal its secret. Using zero-knowledge proofs wecan satisfy both con
icting requirements (i.e., having other users verify that U took the correctindistinguishable if for every probabilistic polynomial-time algorithm D every polynomial p, and all su�ciently long� 2 S, jPr[D(�;X�)=1]� Pr[D(�; Y�)=1]j < 1p(j�j)where the probabilities are taken over the relevant distribution (i.e., either X� or Y�) and over the internal coin tossesof algorithm D.5Loosely speaking, commitment schemes are digital analogue of non-transparent sealed envelopes. See furtherdiscussion in Figure 1. 11



Commitment schemes are digital analogues of sealed envelopes (or, better, locked boxes). Send-ing a commitment means sending a string that binds the sender to a unique value withoutrevealing this value to the receiver (as when getting a locked box). Decommitting to the valuemeans sending some auxiliary information that allows to read the unique committed value (aswhen sending the key to the lock).Common Input: A graph G(V; E). Suppose that V � f1; :::; ng for n def= jV j.Auxiliary Input (to the prover): A 3-coloring � : V ! f1; 2; 3g.The following 4 steps are repeated t � jEj many times so to obtain exp(�t) soundness error.Prover's �rst step (P1): Select uniformly a permutation � over f1; 2; 3g. For i = 1 to n,send the veri�er a commitment to �(�(i)).Veri�er's �rst step (V1): Select uniformly an edge e 2 E and send it to the prover.Prover's second step (P2): Upon receiving e = (i; j) 2 E, decommit to the ith and jthvalues sent in Step (P1).Veri�er's second step (V2): Check whether or not the decommitted values are di�erent ele-ments of f1; 2; 3g and whether or not they match the commitments received in Step (P1).Figure 1: The zero-knowledge proof of Graph 3-Colorability (of [52]). Zero-knowledgeproofs for other NP-sets can be obtained using the standard reductions.action without violating U 's interest in not revealing its secrets). That is, U can prove in zero-knowledge that it took the correct action. Note that U 's claim to having taken the correct actionis an NP-assertion (since U 's legal action is determined as a polynomial-time function of its secretand the public information), and that U has an NP-witness to its validity (i.e., the secret is anNP-witness to the claim that the action �ts the public information). Thus, by the above result, itis possible for U to e�ciently prove the correctness of its action without yielding anything aboutits secret. Consequently, it is fair to ask U to prove (in zero-knowledge) that it behaves properly,and so force U to behave properly. Indeed, \forcing proper behavior" is the canonical applicationof zero-knowledge proofs (see also Section 5.3.1).4 Encryption and Signature SchemesEncryption and signature schemes are the most basic applications of Cryptography. Their main util-ity is in providing secret and reliable communication over insecure communication media. Looselyspeaking, encryption schemes are used to ensure the secrecy (or privacy) of the actual informationbeing communicated, whereas signature schemes are used to ensure its reliability (or authenticity).For more details regarding the contents of the current section, see fragments of our forthcomingtextbook [48].4.1 Encryption SchemesThe problem of providing secret communication over insecure media is the traditional and mostbasic problem of cryptography. The setting of this problem consists of two parties communicat-ing through a channel which is possibly tapped by an adversary. The parties wish to exchangeinformation with each other, but keep the \wire-tapper" as ignorant as possible regarding the con-12



tents of this information. The canonical solution to the above problem is obtained by the use ofencryption schemes. Loosely speaking, an encryption scheme is a protocol allowing these partiesto communicate secretly with each other. Typically, the encryption scheme consists of a pair ofalgorithms. One algorithm, called encryption, is applied by the sender (i.e., the party sending amessage), while the other algorithm, called decryption, is applied by the receiver. Hence, in orderto send a message, the sender �rst applies the encryption algorithm to the message, and sends theresult, called the ciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e.,the receiver) applies the decryption algorithm to it, and retrieves the original message (called theplaintext).In order for the above scheme to provide secret communication, the communicating parties (atleast the receiver) must know something that is not known to the wire-tapper. (Otherwise, thewire-tapper can decrypt the ciphertext exactly as done by the receiver.) This extra knowledge maytake the form of the decryption algorithm itself, or some parameters and/or auxiliary inputs usedby the decryption algorithm. We call this extra knowledge the decryption-key. Note that, withoutloss of generality, we may assume that the decryption algorithm is known to the wire-tapper, andthat the decryption algorithm operates on two inputs: a ciphertext and a decryption-key. We stressthat the existence of a secret key, not known to the wire-tapper, is merely a necessary condition forsecret communication. The above description implicitly presupposes the existence of an e�cientalgorithm for generating (random) keys.Evaluating the \security" of an encryption scheme is a very tricky business. A preliminary taskis to understand what is \security" (i.e., to properly de�ne what is meant by this intuitive term).Two approaches to de�ning security are known. The �rst (\classic") approach, introduced byShannon [86], is information theoretic. It is concerned with the \information" about the plaintextthat is \present" in the ciphertext. Loosely speaking, if the ciphertext contains information aboutthe plaintext then the encryption scheme is considered insecure. It has been shown that such high(i.e., \perfect") level of security can be achieved only if the key in use is at least as long as the totalamount of information sent via the encryption scheme [86]. This fact (i.e., that the key has to belonger than the information exchanged using it) is indeed a drastic limitation on the applicabilityof such (perfectly-secure) encryption schemes.The second (\modern") approach, followed in the current text, is based on computational com-plexity. This approach is based on the observation that it does not matter whether the ciphertextcontains information about the plaintext, but rather whether this information can be e�cientlyextracted. In other words, instead of asking whether it is possible for the wire-tapper to extractspeci�c information, we ask whether it is feasible for the wire-tapper to extract this information. Itturns out that the new (i.e., \computational complexity") approach can o�er security even if thekey is much shorter than the total length of the messages sent via the encryption scheme.The computational complexity approach enables the introduction of concepts and primitivesthat cannot exist under the information theoretic approach. A typical example is the concept ofpublic-key encryption schemes, introduced by Di�e and Hellman [35]. Recall that in the abovediscussion we concentrated on the decryption algorithm and its key. It can be shown that theencryption algorithm must get, in addition to the message, an auxiliary input that depends on thedecryption-key. This auxiliary input is called the encryption-key. Traditional encryption schemes,and in particular all the encryption schemes used in the millennia until the 1980's, operate withan encryption-key that equals the decryption-key. Hence, the wire-tapper in this schemes mustbe ignorant of the encryption-key, and consequently the key distribution problem arises; that is,how can two parties wishing to communicate over an insecure channel agree on a secret encryp-tion/decryption key. (The traditional solution is to exchange the key through an alternative channel13



that is secure though (much) more expensive to use.) The computational complexity approach al-lows the introduction of encryption schemes in which the encryption-key may be given to thewire-tapper without compromising the security of the scheme. Clearly, the decryption-key in suchschemes is di�erent and furthermore infeasible to compute from the encryption-key. Such encryptionschemes, called public-key schemes, have the advantage of trivially resolving the key distributionproblem (because the encryption-key can be publicized). That is, once some Party X generates apair of keys and publicizes the encryption-key, any party can send encrypted messages to Party Xso that Party X can retrieve the actual information (i.e., the plaintext), whereas nobody else canlearn anything about the plaintext.In contrast to public-key schemes, traditional encryption scheme in which the encryption-keyequals the description-key are called private-key schemes, because in these schemes the encryption-key must be kept secret (rather than be public as in public-key encryption schemes). We note that afull speci�cation of either schemes requires the speci�cation of the way in which keys are generated;that is, a (randomized) key-generation algorithm that, given a security parameter, produces a(random) pair of corresponding encryption/decryption keys (which are identical in case of private-key schemes).Thus, both private-key and public-key encryption schemes consists of three e�cient algorithms:a key generation algorithm denoted G, an encryption algorithm denoted E, and an decryptionalgorithm denoted D. For every pair of encryption and decryption keys (e; d) generated by G, andfor every plaintext x, it holds that Dd(Ee(x)) = x, where Ee(x) def= E(e; x) and Dd(y) def= D(d; y).The di�erence between the two types of encryption schemes is re
ected in the de�nition of security:the security of a public-key encryption scheme should hold also when the adversary is given theencryption-key, whereas this is not required for private-key encryption scheme. Below we focus onthe public-key case.4.1.1 De�nitionsFor simplicity we consider only the encryption of a single message (which, for further simplicity, isassumed to be of length n).6 As implied by the above discussion, a public-key encryption schemeis said to be secure if it is infeasible to gain any information about the plaintext by looking atthe ciphertext (and the encryption-key). That is, whatever information about the plaintext onemay compute from the ciphertext and some a-priori information, can be essentially computed ase�ciently from the a-priori information alone. This de�nition (called semantic security) turns outto be equivalent to saying that, for any two messages, it is infeasible to distinguish the encryptionof the �rst message from the encryption of the second message, also when given the encryption-key.Both de�nitions were introduced by Goldwasser and Micali [57]:De�nition 4.1 (semantic security (following [57], revisited [45])): A public-key encryption scheme(G;E;D) is semantically secure if for every probabilistic polynomial-time algorithm, A, there existsa probabilistic polynomial-time algorithm B so that for every two functions f; h : f0; 1g�!f0; 1g�such that jh(x)j = poly(jxj), and all probability ensembles fXngn2N, where Xn is a random variableranging over f0; 1gn, it holds thatPr[A(e;Ee(Xn); h(Xn))=f(Xn)] < Pr[B(1n; h(Xn))=f(Xn)] + �(n)where e is distributed according to G(1n) and � is a negligible function.6In case of public-key schemes no generality is lost by these simplifying assumptions, but in case of private-keyschemes one should consider the encryption of polynomially-many messages.14



Note that no computational restrictions are made regarding the functions h and f , and in particularit may be that h(x) = (zjxj; h0(x)), where the sequence of zn's is possibly non-uniform. We stressthat the above de�nition (as well as the next one) refers to public-key encryption schemes, and incase of private-key schemes algorithm A is not given the encryption-key e.De�nition 4.2 (indistinguishability of encryptions (following [57])): A public-key encryption scheme(G;E;D) has indistinguishable encryptions if for every probabilistic polynomial-time algorithm, A,and all sequences of triples, (xn; yn; zn)n2N, where jxnj = jynj = n and jznj = poly(n),jPr[A(e;Ee(xn); zn)=1]� Pr[A(e;Ee(yn); zn)=1]j = �(n)Again, e is distributed according to G(1n), and � is a negligible function.In particular, zn may equal (xn; yn). Thus, it is infeasible to distinguish the encryptions of any two�xed messages (such as the all-zero message and the all-ones message).Probabilistic Encryption: It is easy to see that a secure public-key encryption scheme mustemploy a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given the encryption-key as (additional) input, it is easy to distinguish the encryption of the all-zero message fromthe encryption of the all-ones message. The same holds for private-key encryption schemes whenconsidering the security of encrypting several messages (rather than a single message as doneabove). (Here, for example, if one uses a deterministic encryption algorithm then the adversarycan distinguish two encryptions of the same message from the encryptions of a pair of di�erentmessages.) This explains the linkage between the above robust security de�nitions and probabilisticencryption.Further discussion: We stress that (the equivalent) De�nitions 4.1 and 4.2 go way beyondsaying that it is infeasible to recover the plaintext from the ciphertext. The latter statement isindeed a minimal requirement from a secure encryption scheme, but is far from being a su�cientrequirement: Typically, encryption schemes are used in applications where even obtaining partialinformation on the plaintext may endanger the security of the application. When designing anapplication-independent encryption scheme, we do not know which partial information endangersthe application and which does not. Furthermore, even if one wants to design an encryption schemetailored to a speci�c application, it is rare (to say the least) that one has a precise characterizationof all possible partial information that endanger this application. Thus, we need to require that itis infeasible to obtain any information about the plaintext from the ciphertext. Furthermore, inmost applications the plaintext may not be uniformly distributed and some a-priori informationregarding it is available to the adversary. We require that the secrecy of all partial information ispreserved also in such a case. That is, even in presence of a-priori information on the plaintext, itis infeasible to obtain any (new) information about the plaintext from the ciphertext (beyond whatis feasible to obtain from the a-priori information on the plaintext). The de�nition of semanticsecurity postulates all of this. The equivalent de�nition of indistinguishability of encryptions isuseful in demonstrating the security of candidate constructions as well as for arguing about theire�ect as part of larger protocols.4.1.2 ConstructionsIt is common practice to use \pseudorandom generators" as a basis for private-key encryptionschemes. We stress that this is a very dangerous practice when the \pseudorandom generator" is15



easy to predict (such as the linear congruential generator or some modi�cations of it that outputa constant fraction of the bits of each resulting number). However, this common practice becomessound provided one uses pseudorandom generators (as de�ned in Section 3.2.2). An alternativeand more 
exible construction follows.Private-Key Encryption Scheme based on Pseudorandom Functions: The key generationalgorithm consists of selecting a seed, denoted s, for a (pseudorandom) function, denoted fs. Toencrypt a message x 2 f0; 1gn (using key s), the encryption algorithm uniformly selects a stringr 2 f0; 1gn and produces the ciphertext (r; x � fs(r)), where � denotes the exclusive-or of bitstrings. To decrypt the ciphertext (r; y) (using key s), the decryption algorithm just computesy � fs(r). The proof of security of this encryption scheme consists of two steps (suggested as ageneral methodology in Section 3.2.3):1. Prove that an idealized version of the scheme, in which one uses a uniformly selected functionF :f0; 1gn!f0; 1gn, rather than the pseudorandom function fs, is secure.2. Conclude that the real scheme (as presented above) is secure (since otherwise one coulddistinguish a pseudorandom function from a truly random one).Note that we could have gotten rid of the randomization (in the encryption process) if we hadallowed the encryption algorithm to be history dependent (e.g., use a counter in the role of r). Thiscan be done provided that either only one party uses the key for encryption or that all parties thatencrypt using the same key coordinate their actions (i.e., maintain a joint state (e.g., counter)).Indeed, when using a private-key encryption scheme, a common situation is that the same key isonly used for communication between two speci�c parties, which update a joint counter during theircommunication. Furthermore, if the encryption scheme is used for fifo communication betweenthe parties and both parties can reliably maintain the counter value, then there is no need (for thesender) to send the counter value.We comment that the use of a counter (or any other state) in the encryption process is notreasonable in case of public-key encryption schemes, because it is incompatible with the canonicalusage of such schemes (i.e., allowing all parties to send encrypted messages to the \owner of theencryption-key" without engaging in any type of further coordination or communication). Thus,probabilistic encryption plays even a more important role in case of public-key encryption schemes(than in case of private-key schemes). Following Goldwasser and Micali [57], we now demonstratethe use of probabilistic encryption in the construction of a public-key encryption scheme.Public-Key Encryption Scheme based on Trapdoor Permutations: We are going to usethe RSA scheme [81] as a trapdoor permutation (rather than using it directly as an encryptionscheme).7 The RSA scheme has an instance-generating algorithm that randomly selects two primes,p and q, computes their product N = p � q, and selects at random a pair of integers (e; d) such thate � d � 1 (mod �(N)), where �(N) def= (p� 1) � (q � 1). (The \plain RSA" operations are raisingto power e or d modulo N .) We construct a public-key encryption scheme as follows: The key-generation algorithm is identical to the instance-generator algorithm of RSA, and the encryption-key is set to (N; e) (resp., the decryption-key is set to (N; d)), just as in \plain RSA". To encrypta single bit � (using the encryption-key (N; e)), the encryption algorithm uniformly selects anelement, r, in the set of residues mod N , and produces the ciphertext (re mod N;�� lsb(r)), where7Recall that RSA itself is not semantically secure, because it employs a deterministic encryption algorithm. Thescheme presented here can be viewed as a \randomized version" of RSA.16



Key-generation on security parameter n:1. Select at random two n-bit primes, P and Q, each congruent to 3 mod 4.2. Compute dP = ((P + 1)=4)`(n) mod P � 1, dQ = ((Q+ 1)=4)`(n) mod Q� 1, cP =Q � (Q�1 mod P ), and cQ = P � (P�1 mod Q).The output key-pair is (N; T ), where T = (P;Q;N; cP ; dP ; cQ; dQ) is the decryption-key.Encryption of message x 2 f0; 1g`(n) using the encryption-key N :1. Uniformly select s0 2 f1; :::; Ng.2. For i = 1; ::; `(n) + 1, compute si  s2i�1 mod N and �i = lsb(si).The ciphertext is (s`(n)+1; y), where y = x� �1�2 � � ��`(n).Decryption of the ciphertext (r; y) using the encryption-key T = (P;Q;N; cP ; dP ; cQ; dQ):1. Let s0  rdP mod P , and s00  rdQ mod Q.2. Let s1  cP � s0 + cQ � s00 mod N .3. For i = 1; ::; `(n), compute �i = lsb(si) and si+1  s2i mod N .The plaintext is y � �1�2 � � ��`(n).Note: for every s, it holds that (s2)(P+1)=4 � s (mod P ), and so (s2`(n) )dP � s (mod P ).Figure 2: The Blum{Goldwasser Public-Key Encryption Scheme [18]. For simplicitywe assume that `, which is polynomially bounded (e.g., `(n) = n), is known at key-generation time.lsb(r) denotes the least signi�cant bit of r. To decrypt the ciphertext (y; �) (using the decryption-key (N; d)), the decryption algorithm just computes � � lsb(yd mod N). The above scheme is quitewasteful in bandwidth; however, the paradigm underlying its construction is valuable in practice.For example, assuming the intractability of factoring large integers one may derive a secure public-key encryption scheme with e�ciency comparable to that of RSA (see [18] and Figure 2). The ideasunderlying both schemes can be applied using any trapdoor permutation (see [48, Sec. 5.3.4]).4.1.3 Beyond eavesdropping securityThe above de�nitions refer only to \passive" attacks in which the adversary merely eavesdrops theline over which ciphertexts are being sent. Stronger types of attacks, culminating in the so-calledChosen Ciphertext Attack, may be possible in various applications. Loosely speaking, in such anattack, the adversary may obtain the decryption of any ciphertexts of its choice, and is deemedsuccessful if it learns something regarding the plaintext that corresponds to some other ciphertext(see [64, 9] and [48, Sec. 5.4.4]). Private-key and public-key encryption schemes secure against suchattacks can be constructed under the same assumptions that su�ce for the construction of thecorresponding passive schemes. Speci�cally:Theorem 4.3 (folklore, see [48, Sec. 5.4.4]): Assuming the existence of one-way functions, thereexist private-key encryption schemes that are secure against chosen ciphertext attack.Theorem 4.4 ([36] and [17, 41], see [84] or [48, Sec. 5.4.4]): Assuming the existence of trapdoorpermutations, there exist public-key encryption schemes that are secure against chosen ciphertextattack. 17



Security against chosen ciphertext attack is related to the notion of non-malleability of the encryp-tion scheme (cf. [36]). Loosely speaking, in a non-malleable encryption scheme it is infeasible foran adversary, given a ciphertext, to produce a valid ciphertext for a related plaintext (e.g., givena ciphertext of a plaintext of the form 1x, it is infeasible to produce a ciphertext to the plaintext0x). For further discussion see [36, 9, 64].4.2 Signature and Message Authentication SchemesBoth signature schemes and message authentication schemes are methods for \validating" data; thatis, verifying that the data was approved by a certain party (or set of parties). The di�erence betweensignature schemes and message authentication schemes is that signatures should be \universallyveri�able", whereas authentication tags are only required to be veri�able by parties that are alsoable to generate them.Signature Schemes: The need to discuss \digital signatures" [35, 77] has arise with the intro-duction of computer communication to the business environment (in which parties need to committhemselves to proposals and/or declarations that they make). Discussions of \unforgeable signa-tures" did take place also in previous centuries, but the objects of discussion were handwrittensignatures (and not digital ones), and the discussion was not perceived as related to \cryptogra-phy". Loosely speaking, a scheme for unforgeable signatures should satisfy the following:� each user can e�ciently produce his own signature on documents of his choice;� every user can e�ciently verify whether a given string is a signature of another (speci�c) useron a speci�c document; but� it is infeasible to produce signatures of other users to documents they did not sign.We note that the formulation of unforgeable digital signatures provides also a clear statement ofthe essential ingredients of handwritten signatures. The ingredients are each person's ability tosign for himself, a universally agreed veri�cation procedure, and the belief (or assertion) that it isinfeasible (or at least hard) to forge signatures in a manner that pass the veri�cation procedure.It is not clear to what extent do handwritten signatures meet these requirements. In contrast, ourdiscussion of digital signatures provides precise statements concerning the extend by which digitalsignatures meet the above requirements. Furthermore, unforgeable digital signature schemes canbe constructed based on some reasonable computational assumptions (i.e., the existence of one-wayfunctions).Message authentication schemes: Message authentication is a task related to the settingconsidered for encryption schemes; that is, communication over an insecure channel. This time, weconsider an active adversary that is monitoring the channel and may alter the messages sent on it.The parties communicating through this insecure channel wish to authenticate the messages theysend so that their counterpart can tell an original message (sent by the sender) from a modi�ed one(i.e., modi�ed by the adversary). Loosely speaking, a scheme for message authentication shouldsatisfy the following:� each of the communicating parties can e�ciently produce an authentication tag to any messageof his choice; 18



� each of the communicating parties can e�ciently verify whether a given string is an authen-tication tag of a given message; but� it is infeasible for an external adversary (i.e., a party other than the communicating parties)to produce authentication tags to messages not sent by the communicating parties.Note that in contrast to the speci�cation of signature schemes we do not require universal ver-i�cation: only the designated receiver is required to be able to verify the authentication tags.Furthermore, we do not require that the receiver can not produce authentication tags by itself (i.e.,we only require that external parties can not do so). Thus, message authentication schemes cannotconvince a third party that the sender has indeed sent the information (rather than the receiverhaving generated it by itself). In contrast, signatures can be used to convince third parties: in fact,a signature to a document is typically sent to a second party so that in the future this party may(by merely presenting the signed document) convince third parties that the document was indeedgenerated (or sent or approved) by the signer.4.2.1 De�nitionsFormally speaking, both signature schemes and message authentication schemes consist of threee�cient algorithms: key generation, signing and veri�cation. As in case of encryption schemes, thekey-generation algorithm is used to generate a pair of corresponding keys, one is used for signingand the other is used for veri�cation. The di�erence between the two types of schemes is re
ectedin the de�nition of security. In case of signature scheme, the adversary is given the veri�cation-key, whereas in case of message authentication scheme the veri�cation-key (which may equal thesigning-key) is not given to the adversary. Thus, schemes for message authentication can be viewedas a private-key version of signature schemes. This di�erence yields di�erent functionality (evenmore than in the case of encryption): In typical use of a signature scheme, each user generates apair of signing and veri�cation keys, publicizes the veri�cation-key and keeps the signing-key secret.Subsequently, each user may sign documents using its own signing-key, and these signatures areuniversally veri�able with respect to its public veri�cation-key. In contrast, message authenticationschemes are typically used to authenticate information sent among a set of mutually trusting partiesthat agree on a secret key, which is being used both to produce and verify authentication-tags.(Indeed, it is assumed that the mutually trusting parties have generated the key together or haveexchanged the key in a secure way, prior to the communication of information that needs to beauthenticated.)We focus on the de�nition of secure signature schemes. Following Goldwasser, Micali andRivest [59], we consider very powerful attacks on the signature scheme as well as a very liberalnotion of breaking it. Speci�cally, the attacker is allowed to obtain signatures to any message ofits choice. One may argue that in many applications such a general attack is not possible (becausemessages to be signed must have a speci�c format). Yet, our view is that it is impossible to de�nea general (i.e., application-independent) notion of admissible messages, and thus a general/robustde�nition of an attack seems to have to be formulated as suggested here. (Note that at worst, ourapproach is overly cautious.) Likewise, the adversary is said to be successful if it can produce avalid signature to any message for which it has not asked for a signature during its attack. Again,this refers to the ability to form signatures to possibly \nonsensical" messages as a breaking ofthe scheme. Yet, again, we see no way to have a general (i.e., application-independent) notion of\meaningful" messages (so that only forging signatures to them will be consider a breaking of thescheme). 19



De�nition 4.5 (secure signature schemes { a sketch): A chosen message attack is a process that,on input a veri�cation-key, can obtain signatures (relative to the corresponding signing-key) tomessages of its choice. Such an attack is said to succeeds (in existential forgery) if it outputsa valid signature to a message for which it has not requested a signature during the attack. Asignature scheme is secure (or unforgeable) if every feasible chosen message attack succeeds with atmost negligible probability, where the probability is taken over the initial choice of the key-pair aswell as over the adversary's actions.We stress that plain RSA (alike plain versions of Rabin's scheme [78] and the DSS [75]) is notsecure under the above de�nition. However, it may be secure if the message is \randomized" beforeRSA (or the other schemes) is applied.4.2.2 ConstructionsSecure message authentication schemes can be constructed using pseudorandom functions [49].Speci�cally, the key-generation algorithm consists of selecting a seed s 2 f0; 1gn for such a func-tion, denoted fs, and the (only valid) tag of message x with respect to the key s is fs(x). Wecomment that an extensive usage of pseudorandom functions seem an overkill for achieving mes-sage authentication, and more e�cient schemes may be obtained based on other cryptographicprimitives (cf., e.g., [7]).Constructing secure signature schemes seems more di�cult than constructing message authen-tication schemes. Three central paradigms in the construction of signature schemes are the \re-freshing" of the \e�ective" signing-key, the usage of an \authentication tree" and the \hashingparadigm". The �rst paradigm is aimed at limiting the potential dangers of a chosen messageattack by signing the actual document using a newly (randomly) generated instance of the signa-ture scheme, and authenticating (the veri�cation-key of) this random instance relative to the �xedpublic-key. A natural way of carrying-on the authentication of the many newly generated keys is byusing an \authentication tree" [69]. Finally, the hashing paradigm refers to the common practiceof signing documents via a two stage process: First the actual document is hashed to a (relatively)short bit string, and next the basic signature scheme is applied to the resulting string. This prac-tice (as well as other usages of the hashing paradigm) is sound provided that the hashing functionbelongs to a family of Universal One-Way Hash Functions (cf. [74]). We conclude by mentioningthat secure signature schemes can be constructed based on any one-way function. Furthermore:Theorem 4.6 ([74, 83], see [48, Sec. 6.4]): The following three conditions are equivalent.1. One-way functions exist.2. Secure signature schemes exist.3. Secure message authentication schemes exist.4.3 Public-Key InfrastructureThe standard use of public-key encryption schemes (resp., signature schemes) in real-life communi-cation requires a mechanism for providing the sender (resp., signature veri�er) with the receiver'sauthentic encryption-key (resp., signer's authentic veri�cation-key). Speci�cally, this problem arisesin large-scale systems, where typically the sender (resp., veri�er) does not have a local record ofthe receiver's encryption-key (resp., signer's veri�cation-key), and so must obtain this key in a\reliable" way (i.e., typically, certi�ed by some trusted authority). In most theoretical work, oneassumes that the keys are posted on and can be retrieved from a public-�le that is maintained by20



a trusted party (which makes sure that each user can post only keys bearing its own identity). Inpractice, maintaining such a public-�le is a major problem, and mechanisms that implement thisabstraction are typically referred to by the generic term \public-key infrastructure (PKI)". For adiscussion of the practical problems regarding PKI deployment see, e.g., [68, Chap. 13].5 Cryptographic Protocols (as stand-alone)A general framework for casting (m-party) cryptographic (protocol) problems consists of specifyinga random process that maps m inputs to m outputs.8 The inputs to the process are to be thoughtof as local inputs of m parties, and the m outputs are their corresponding (desired) local outputs.The random process describes the desired functionality. That is, if the m parties were to trust eachother (or trust some external party), then they could each send their local input to the trusted party,who would compute the outcome of the process and send to each party the corresponding output.A pivotal question in the area of cryptographic protocols is to what extent can this (imaginary)trusted party be \emulated" by the mutually distrustful parties themselves.The results mentioned in the introduction and surveyed below describe a variety of models inwhich such an \emulation" is possible. The models vary by the underlying assumptions regardingthe communication channels, numerous parameters relating to the extent of adversarial behavior,and the desired level of emulation of the trusted party (i.e., level of \security").5.1 The De�nitional Approach and Some ModelsBefore describing these results, we further discuss the notion of \emulating a trusted party", whichunderlies the de�nitional approach to secure multi-party computation (as initiated and developedin [56, 70, 3, 4, 20, 21])9. The approach can be traced back to the de�nition of zero-knowledge(cf. [58]), and even to the de�nition of secure encryption (cf. [45], rephrasing [57]). The underlyingparadigm (called the simulation paradigm (cf. x3.3.1)) is that a scheme is secure if whatever afeasible adversary can obtain after attacking it, is also feasibly attainable \from scratch". Incase of zero-knowledge this amounts to saying that whatever a (feasible) veri�er can obtain afterinteracting with the prover on a prescribed valid assertion, can be (feasibly) computed from theassertion itself. In case of multi-party computation we compare the e�ect of adversaries thatparticipate in the execution of the actual protocol to the e�ect of adversaries that participate in animaginary execution of a trivial (ideal) protocol for computing the desired functionality with thehelp of a trusted party. If whatever adversaries can feasibly obtain in the former real setting canalso be feasibly obtained in the latter ideal setting then the protocol \emulates the ideal setting"(i.e., \emulates a trusted party"), and so is deemed secure. This basic approach can be applied in8That is, we consider the secure evaluation of randomized functionalities, rather than \only" the secure evaluationof functions. Speci�cally, we consider an arbitrary (randomized) process F that on input (x1; :::; xm), �rst selectsat random (depending only on ` def= Pmi=1 jxij) an m-ary function f , and then outputs the m-tuple f(x1; :::; xm) =(f1(x1; :::; xm); :::; fm(x1; :::; xm)). In other words, F (x1; :::; xm) = F 0(r; x1; :::; xm), where r is uniformly selected inf0; 1g`0 (with `0 depending on `), and F 0 is a function mapping (m+ 1)-long sequences to m-long sequences.9We refer the reader to Canetti's work [21], which provides a relatively simple, 
exible and comprehensive treatmentof the de�nitions of secure multi-party computation. Canetti's work may be viewed as a minimalistic instantiationof the de�nitional approach of Micali and Rogaway [70], where minimality refers to possible augmentations of thehigh-level approach as presented there. Beaver's papers [3, 4] have a similar approach. The approach of Goldwasserand Levin [56] is more general: it avoids the de�nition of security (w.r.t a given functionality) and instead de�nes anotion of protocol robustness. 21



a variety of models, and is used to de�ne the goals of security in these models.10 We �rst discusssome of the parameters used in de�ning various models, and next demonstrate the application ofthis approach in one (speci�c) important model. For further details, see [21].5.1.1 Some parameters used in de�ning security modelsThe following parameters are described in terms of the actual (or real) computation. In some cases,the corresponding de�nition of security is obtained by some restrictions or provisions applied tothe ideal model. In all cases, the desired notion of security is de�ned by requiring that for anyadequate adversary in the real model, there exist a corresponding adversary in the correspondingideal model that obtains essentially the same impact (as the real-model adversary).� The communication channels: The standard assumption in cryptography is that the adversarymay tap all communication channels (between honest parties). In contrast, one may postulatethat the adversary cannot obtain messages sent between a pair of honest parties, yielding theso-called private-channel model (cf. [13, 28]). In addition, one may postulate the existenceof a broadcast channel (cf. [80]). Each of these postulates may be justi�ed in some settings.Furthermore, each postulate may be viewed as a useful abstraction that provide a clean modelfor study and development of secure protocols. In this respect, it is important to mentionthat, in a variety of settings of the other parameters, both types of channels can be easilyemulated by ordinary \tapped channels".The standard assumption in the area is that the adversary cannot modify, duplicate, orgenerate messages sent over the communication channels (between honest parties). Again,this assumption can be justi�ed in some settings and emulated in others (cf., [8, 22]).As mentioned in the introduction, most work in the area assume that communication issynchronous and that point-to-point channels exist between every pair of processors. However,one may also consider asynchronous communication (cf. [12]) and arbitrary networks of point-to-point channels (cf. [37]).� Set-up assumptions: Unless di�erently stated, we make no set-up assumptions (except for theobvious assumption that all parties have identical copies of the protocol's program). However,in some cases it is assumed that each party knows the veri�cation-key corresponding to eachof the other parties (or that a public-key infrastructure is available). Another assumption,made more rarely, is that all parties have access to some common (trusted) random string.� Computational limitations: Typically, we consider computationally-bounded adversaries (e.g.,probabilistic polynomial-time adversaries). However, the private-channel model allows us alsoto (meaningfully) consider computationally-unbounded adversaries.We stress that, also in the latter case, security should be de�ned by saying that for everyreal adversary, whatever the adversary can compute after participating in the execution of the10A few technical comments are in place. Firstly, we assume that the inputs of all parties are of the same length.We comment that as long as the lengths of the inputs are polynomially related, the above convention can be enforcedby padding. On the other hand, some length restriction is essential for the security results, because in general it isimpossible to hide all information regarding the length of the inputs to a protocol. Secondly, we assume that thedesired functionality is computable in probabilistic polynomial-time, because we wish the secure protocol to run inprobabilistic polynomial-time (and a protocol cannot be more e�cient than the corresponding centralized algorithm).Clearly, the results can be extended to functionality that are computable within any given (time-constructible) timebound, using adequate padding. 22



actual protocol is computable within comparable time by an imaginary adversary participatingin an imaginary execution of the trivial ideal protocol (for computing the desired functionalitywith the help of a trusted party). Thus, results in the computationally-unbounded adversarymodel trivially imply results for computationally-bounded adversaries.� Restricted adversarial behavior: The most general type of an adversary considered in theliterature is one that may corrupt parties to the protocol while the execution goes on, and doso based on partial information it has gathered so far (cf., [23]). A somewhat more restrictedmodel, which seems adequate in many setting, postulates that the set of dishonest partiesis �xed (arbitrarily) before the execution starts (but this set is, of course, not known to thehonest parties). The latter model is called non-adaptive as opposed to the adaptive adversarydiscussed �rst.An orthogonal parameter of restriction refers to whether a dishonest party takes active stepsto disrupt the execution of the protocol (i.e., sends messages that di�er from those speci�edby the protocol), or merely gathers information (which it may latter share with the otherdishonest parties). The latter adversary has been given a variety of names such as semi-honest,passive, and honest-but-curious. This restricted model may be justi�ed in certain settings,and certainly provides a useful methodological locus (cf., [52, 53, 46] and Section 5.3). Belowwe refer to the adversary of the unrestricted model as to active; another commonly used nameis malicious.� Restricted notions of security: One example is the willingness to tolerate \unfair" protocols inwhich the execution can be suspended (at any time) by a dishonest party, provided that it isdetected doing so. We stress that in case the execution is suspended, the dishonest party doesnot obtain more information than it could have obtained when not suspending the execution.(What may happen is that the honest parties will not obtain their desired outputs, but ratherwill detect that the execution was suspended.)� Upper bounds on the number of dishonest parties: In some models, secure multi-party compu-tation is possible only if a majority of the parties are honest (cf., [13, 30]). Sometimes even aspecial majority (e.g., 2/3) is required. General \(resilient) adversarial-structures" have beenconsidered too (cf. [63]).� Mobile adversary: In most works, once a party is said to be dishonest it remains so throughoutthe execution. More generally, one may consider transient adversarial behavior (e.g., anadversary seizes control of some site and later withdraws from it). This model, introducedin [76], allows to construct protocols that remain secure even in case the adversary may seizecontrol of all sites during the execution (but never control concurrently, say, more than 10%of the sites). We comment that schemes secure in this model were later termed \proactive"(cf., [25]).5.1.2 Example: Multi-party protocols with honest majorityHere we consider a non-adaptive, active, computationally-bounded adversary, and do not assumethe existence of private channels. Our aim is to de�ne multi-party protocols that remain secureprovided that the honest parties are in majority. (The reason for requiring a honest majority willbe discussed at the end of this subsection.)Consider any multi-party protocol. We �rst observe that each party may change its local inputbefore even entering the execution of the protocol. However, this is unavoidable also when the23



parties utilize a trusted party. Consequently, such an e�ect of the adversary on the real execution(i.e., modi�cation of its own input prior to entering the actual execution) is not considered a breachof security. In general, whatever cannot be avoided when the parties utilize a trusted party, is notconsidered a breach of security. We wish secure protocols (in the real model) to su�er only fromwhatever is unavoidable also when the parties utilize a trusted party. Thus, the basic paradigmunderlying the de�nitions of secure multi-party computations amounts to saying that the onlysituations that may occur in the real execution of a secure protocol, are those that can also occurin a corresponding ideal model (where the parties may employ a trusted party). In other words,the \e�ective malfunctioning" of parties in secure protocols is restricted to what is postulated inthe corresponding ideal model.When de�ning secure multi-party protocols with honest majority, we need to pin-point whatcannot be avoided in the ideal model (i.e., when the parties utilize a trusted party). This is easy,because the ideal model is very simple. Since we are interested in executions in which the majorityof parties are honest, we consider an ideal model in which any minority group (of the parties) maycollude as follows:1. Firstly this dishonest minority shares its original inputs and decided together on replacedinputs to be sent to the trusted party. (The other parties send their respective original inputsto the trusted party.)2. Upon receiving inputs from all parties, the trusted party determines the corresponding outputsand sends them to the corresponding parties. (We stress that the information sent betweenthe honest parties and the trusted party is not seen by the dishonest colluding minority.)3. Upon receiving the output-message from the trusted party, each honest party outputs itlocally, whereas the dishonest colluding minority may determine their outputs based on allthey know (i.e., their initial inputs and their received outputs).Note that the above behavior of the minority group is unavoidable in any execution of any protocol(even in presence of trusted parties). This is the reason that the ideal model was de�ned as above.Now, a secure multi-party computation with honest majority is required to emulate this ideal model.That is, the e�ect of any feasible adversary that controls a minority of the parties in a real executionof the actual protocol, can be essentially simulated by a (di�erent) feasible adversary that controlsthe corresponding parties in the ideal model. That is:De�nition 5.1 (secure protocols { a sketch): Let f be an m-ary functionality and � be an m-partyprotocol operating in the real model.� For a real-model adversary A, controlling some minority of the parties (and tapping all com-munication channels), and an m-sequence x, we denote by real�;A(x) the sequence of moutputs resulting from the execution of � on input x under attack of the adversary A.� For an ideal-model adversary A0, controlling some minority of the parties, and an m-sequencex, we denote by idealf;A0(x) the sequence of m outputs resulting from the ideal process de-scribed above, on input x under attack of the adversary A0.We say that � securely implements f with honest majority if for every feasible real-model adversaryA, controlling some minority of the parties, there exists a feasible ideal-model adversary A0, con-trolling the same parties, so that the probability ensembles freal�;A(x)gx and fidealf;A0(x)gx arecomputationally indistinguishable (as in Footnote 4).24



Thus, security means that the e�ect of each minority group in a real execution of a secure protocolis \essentially restricted" to replacing its own local inputs (independently of the local inputs of themajority parties) before the protocol starts, and replacing its own local outputs (depending onlyon its local inputs and outputs) after the protocol terminates. (We stress that in the real executionthe minority parties do obtain additional pieces of information; yet in a secure protocol they gainnothing from these additional pieces of information, since they can actually reproduce those bythemselves.)The fact that De�nition 5.1 refers to a model without private channels is due to the fact thatour (sketchy) de�nition of the real-model adversary allowed it to tap the channels, which in turne�ects the set of possible ensembles freal�;A(x)gx. When de�ning security in the private-channelmodel, the real-model adversary is not allowed to tap channels between honest parties, and thisagain e�ects the possible ensembles freal�;A(x)gx. On the other hand, when we wish to de�nesecurity with respect to passive adversaries, both the scope of the real-model adversaries and thescope of the ideal-model adversaries changes. In the real-model execution, all parties follow theprotocol but the adversary may alter the output of the dishonest parties arbitrarily depending onall their intermediate internal stated (during the execution). In the corresponding ideal-model, theadversary is not allowed to modify the inputs of dishonest parties (in Step 1), but is allowed tomodify their outputs (in Step 3).We comment that a de�nition analogous to De�nition 5.1 can be presented also in case thedishonest parties are not in minority. In fact, such a de�nition seems more natural, but the problemis that such a de�nition cannot be satis�ed. That is, most natural functionalities do not have aprotocol for computing them securely in case at least half of the parties are dishonest and employan adequate adversarial strategy. This follows from an impossibility result regarding two-partycomputation, which essentially asserts that there is no way to prevent a party from prematurelysuspending the execution [32]. Indeed, secure multi-party computation with dishonest majority ispossible if premature suspension of the execution is not considered a breach of security (which isformulated by allowing the ideal-model adversary to suspend the execution after the trusted partyhas handed local outputs to some (but not all) of the parties).5.2 Some Known ResultsWe next list some of the models for which general secure multi-party computation is known to beattainable (i.e., models in which one can construct secure multi-party protocols for computing anydesired functionality). We mention that the �rst results of this type were obtained by Goldreich,Micali, Wigderson and Yao [52, 88, 53].� Assuming the existence of trapdoor permutations, secure multi-party computation is possiblein the following models (cf. [52, 88, 53] and details in [46]):1. Passive adversary, for any number of dishonest parties (cf. [46, Sec. 3.2]).2. Active adversary that may control only a minority of the parties (cf. [46, Sec. 3.3.3]).3. Active adversary, for any number of bad parties, provided that suspension of executionis not considered a violation of security (i.e., see restricted notion of security above).(Cf. [46, Sec. 3.3.2].)In all these cases, the adversary is computationally-bounded and non-adaptive. On the otherhand, the adversary may tap the communication lines between honest parties (i.e., we donot assume \private channels" here). The results for active adversaries assume a broadcast25



channel. Indeed, the latter can be implemented (while tolerating any number of bad parties)using a signature scheme and assuming a public-key infrastructure (or that each party knowsthe veri�cation-key corresponding to each of the other parties).� Making no computational assumptions and allowing computationally-unbounded adversaries,but assuming private channels, secure multi-party computation is possible in the followingmodels (cf. [13, 28]):1. Passive adversary that may control only a minority of the parties.2. Active adversary that may control only less than one third of the parties.11In both cases the adversary may be adaptive (cf. [13, 23]).� Secure multi-party computation is possible against an active, adaptive and mobile adversarythat may control a small constant fraction of the parties at any point in time [76]. Thisresult makes no computational assumptions, allows computationally-unbounded adversaries,but assumes private channels.� Assuming the existence of trapdoor permutations, secure multi-party computation is possiblein a model allowing an adaptive and active computationally-bounded adversary that maycontrol only less than one third of the parties [23, 33]. We stress that this result does notassume \private channels".Results for asynchronous communication and arbitrary networks of point-to-point channels werepresented in [12, 14] and [37], respectively.Note that the implementation of a broadcast channel can be casted as a cryptographic protocolproblem (i.e., for the functionality (v; �; :::; �) 7! (v; v; :::; v)). Thus, it is not surprising that theresults regarding active adversaries either assume the existence of such a channel or require a settingin which the latter can be implemented.Secure reactive computation: All the above results (easily) extend to a reactive model of com-putation in which each party interacts with a high-level process (or application). The high-levelprocess supplies each party with a sequence of inputs, one at a time, and expect to receive corre-sponding outputs from the parties. That is, a reactive system goes through (a possibly unboundednumber of) iterations of the following type:� Parties are given inputs for the current iteration.� Depending on the current inputs, the parties are supposed to compute outputs for the currentiteration. That is, the outputs in iteration j are determined by the inputs of the jth iteration.A more general formulation allows the outputs of each iteration to depend also on a global state,which is possibly updated in each iteration. The global state may include all inputs and outputsof previous iterations, and may only be partially known to individual parties. (In a secure reactivecomputation such a global state may be maintained by all parties in a \secret sharing" manner.)For further discussion, see [46, Sec. 4.1].11Fault-tolerance can be increased to a regular minority if broadcast channels exists [80].
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E�ciency considerations: One important e�ciency measure regarding protocols is the numberof communication rounds in their execution. The results mentioned above were originally obtainedusing protocols that use an unbounded number of rounds. In some cases, subsequent works obtainedsecure constant-round protocols: for example, in case of multi-party computations with honestmajority (cf. [5]) and in case of two-party computations allowing abort (cf. [66]). Other importante�ciency considerations include the total number of bits sent in the execution of a protocol, andthe local computation time. The (communication and computation) complexities of the protocolsestablishing the above results are related to the computational complexity of the computation, butalternative relations (e.g., referring to the (insecure) communication complexity of the computation)may be possible (cf. [72]).5.3 Construction ParadigmsWe brie
y sketch three paradigms used in the construction of secure multi-party protocols. Wefocus on the construction of secure protocols for the model of computationally-bounded and non-adaptive adversaries [52, 88, 53]. These constructions proceed in two steps (see details in [46]). Firsta secure protocol is presented for the model of passive adversaries (for any number of dishonestparties), and next such a protocol is \compiled" into a protocol that is secure in one of the twomodels of active adversaries (i.e., either in a model allowing the adversary to control only a minorityof the parties or in a model in which premature suspension of the execution is not considered aviolation of security).Recall that in the model of passive adversaries, all parties follow the prescribed protocol, butat termination the adversary may alter the outputs of the dishonest parties depending on all theirintermediate internal states (during the execution). Below, we refer to protocols that are securein the model of passive (resp., general or active) adversaries by the term passively-secure (resp.,actively-secure).5.3.1 Compilation of passively-secure protocols into actively-secure onesWe show how to transform any passively-secure protocol into a corresponding actively-secure pro-tocol. The communication model in both protocols consists of a single broadcast channel. Notethat the messages of the original protocol may be assumed to be sent over a broadcast channel,because the adversary may see them anyhow (by tapping the point-to-point channels), and becausea broadcast channel is trivially implementable in case of passive adversaries. As for the resultingactively-secure protocol, the broadcast channel it uses can be implemented via an (authenticated)Byzantine Agreement protocol [38], thus providing an emulation of this model on the standardpoint-to-point model (in which a broadcast channel does not exist). Recall that authenticatedByzantine Agreement is typically implemented using a signature scheme (and assuming that eachparty knows the veri�cation-key corresponding to each of the other parties).Turning to the transformation itself, the main idea is to use zero-knowledge proofs (as describedin Section 3.3.3) in order to force parties to behave in a way that is consistent with the (passively-secure) protocol. Actually, we need to con�ne each party to a unique consistent behavior (i.e.,according to some �xed local input and a sequence of coin tosses), and to guarantee that a partycannot �x its input (and/or its coins) in a way that depends on the inputs of honest parties. Thus,some preliminary steps have to be taken before the step-by-step emulation of the original protocolmay start. Speci�cally, the compiled protocol (which like the original protocol is executed over abroadcast channel) proceeds as follows: 27



1. Prior to the emulation of the original protocol, each party commits to its input (using acommitment scheme [71]). In addition, using a zero-knowledge proof-of-knowledge [58, 10, 52],each party also proves that it knows its own input; that is, that it can decommit to thecommitment it sent. (These zero-knowledge proof-of-knowledge are conducted sequentiallyto prevent dishonest parties from setting their inputs in a way that depends on inputs ofhonest parties; a more round-e�cient method was presented in [31].)2. Next, all parties jointly generate a sequence of random bits for each party such that onlythis party knows the outcome of the random sequence generated for it, but everybody getsa commitment to this outcome. These sequences will be used as the random-inputs (i.e.,sequence of coin tosses) for the original protocol. Each bit in the random-sequence generatedfor Party X is determined as the exclusive-or of the outcomes of instances of an (augmented)coin-tossing protocol (cf. [15] and [46, Sec. 2.3.2.1]) that Party X plays with each of the otherparties.3. In addition, when compiling (the passively-secure protocol to an actively-secure protocol) forthe model that allows the adversary to control only a minority of the parties, each party sharesits input and random-input with all other parties using a Veri�able Secret Sharing protocol(cf. [29] and [46, Sec. 3.3.3.1]). This will guarantee that if some party prematurely suspendsthe execution, then all the parties can together reconstruct all its secrets and carry-on theexecution while playing its role.4. After all the above steps were completed, we turn to the main step in which the new protocolemulates the original one. In each step, each party augments the message determined by theoriginal protocol with a zero-knowledge that asserts that the message was indeed computedcorrectly. Recall that the next message (as determined by the original protocol) is a functionof the sender's own input, its random-input, and the messages it has received so far (where thelatter are known to everybody because they were sent over a broadcast channel). Furthermore,the sender's input is determined by its commitment (as sent in Step 1), and its random-input is similarly determined (in Step 2). Thus, the next message (as determined by theoriginal protocol) is a function of publicly known strings (i.e., the said commitments as wellas the other messages sent over the broadcast channel). Moreover, the assertion that thenext message was indeed computed correctly is an NP-assertion, and the sender knows acorresponding NP-witness (i.e., its own input and random-input as well as the correspondingdecommitment information). Thus, the sender can prove in zero-knowledge (to each of theother parties) that the message it is sending was indeed computed according to the originalprotocol.The above compilation was �rst outlined in [52, 53]. A detailed description and full proofs appearin [46].5.3.2 Passively-secure computation with \scrambled circuits"This technique refers mainly to two-party computation. Suppose that two parties, each havinga private input, wish to obtain the value of a predetermined two-argument function evaluated attheir corresponding inputs. Further suppose that the two parties hold a circuit that computes thevalue of the function on inputs of the adequate length. The idea is to have one party construct an\scrambled" form of the circuit so that the other party can propagate encrypted values throughthe \scrambled gates" and obtain the output in the clear (while all intermediate values remain28



secret). Note that the roles of the two parties are not symmetric, and recall that we are describinga protocol that is secure (only) with respect to passive adversaries. An implementation of this ideaproceeds as follows:� The the �rst party constructs a \scrambled" form of the original circuit. The \scrambled"circuit consists of pairs of encrypted secrets that correspond to the wires of the original circuitand gadgets that correspond to the gates of the original circuit. The secrets associated withthe wires entering a gate are used (in the gadget that corresponds to this gate) as keys inthe encryption of the secrets associated with the wire exiting this gate. Furthermore, thereis a random correspondence between each pair of secrets and the Boolean values (of thecorresponding wire). That is, wire w is assigned a pair of secrets, denoted (s0w; s00w), and thereis a random 1-1 mapping, denoted �w, between this pair and the pair of Boolean values (i.e.,f�w(s0w); �w(s00w)g = f0; 1g).Each gadget is constructed such that knowledge of a secret that correspond to each wireentering the corresponding gate (in the circuit) yields a secret corresponding to the wire thatexits this gate. Furthermore, the reconstruction of secrets using each gadget respects thefunctionality of the corresponding gate. For example, if one knows the secret that correspondsto the 1-value of one entry-wire and the secret that corresponds to the 0-value of the otherentry-wire, and the gate is an or-gate, then one obtains the secret that corresponds to the1-value of exit-wire.Speci�cally, each gadget consists of 4 templets that are presented at a random order, whereeach templet corresponds to one of the 4 possible values of the two entry-wires. A templetmay be merely a double encryption of the secret that corresponds to the appropriate outputvalue, where the double encryption uses as keys the two secrets that correspond to the inputvalues. That is, suppose a gate computing f : f0; 1g2 ! f0; 1g has input wires w1 and w2, andoutput wire w3. Then, each of the four templets of this gate has the form Esw1 (Esw2 (sw3)),where f(�w1(sw1); �w2(sw2)) = �w3(sw3).� In addition to the \scrambled" circuit, the �rst party sends to the second party the secretsthat correspond to its own (i.e., the �rst party's) input bits (but not the values of these bits).The �rst party also reveals the correspondence between the pair of secrets associated witheach output (i.e., circuit-output wire) and the Boolean values.12 We stress that the randomcorrespondence between the pair of secrets associated with each other wire and the Booleanvalues is kept secret (by the �rst party).� Finally, the �rst party uses a (1-out-of-2) Oblivious Transfer protocol (cf. [79, 40, 52] and [46,Sec. 2.2.2]) in order to hand the second party the secrets corresponding to the second party'sinput bits (without the �rst party learning anything about these bits).Loosely speaking, a 1-out-of-k Oblivious Transfer is a protocol enabling one party to obtainone of k secrets held by another party, without the second party learning which secret wasobtained by the �rst party. That is, we refer to the two-party functionality(i; (s1; :::; sk)) 7! (si; �) (1)� Finally, the second party \evaluates" the \scrambled" circuit gate-by-gate, starting from thetop (circuit-input) gates (for which it knows one secret per each wire) and ending at the12This can be done by providing, for each output wire, a succinct 2-partition (of all strings) that separates the twosecrets associated with this wire. 29



bottom (circuit-output) gates (for which, by construction, the correspondence of secrets tovalues is known). Thus, the second party obtains the output value of the circuit (but nothingelse), and sends it to the �rst party.The above description is based on oral presentations of Yao's work [88]. More detailed descriptionsappeared in several subsequent papers (e.g., [5, 73]).5.3.3 Passively-secure computation with sharesFor any m � 2, suppose that m parties, each having a private input, wish to obtain the valueof a predetermined m-argument function evaluated at their sequence of inputs. Further supposethat the parties hold a circuit that computes the value of the function on inputs of the adequatelength, and that the circuit contains only and and not gates. Again, the idea is to propagateinformation from the top (circuit-input) gates to the bottom (circuit-output) gates, but this timethe information is di�erent, and the propagation is done simultaneously by all parties. The idea isto share the value of each wire in the circuit so that all shares yield the value, whereas lacking evenone of the shares keeps the value totally undetermined. That is, we use a simple secret sharingscheme (cf. [85]) such that a bit b is shared by a random sequence of m bits that sum-up to b mod 2.First, each party shares each of its input bits with all parties (by secretly sending each party arandom value and setting its own share accordingly). Next, all parties jointly scan the circuit fromits input wires to the output wires, processing each gate as follows:� When encountering a gate, the parties already hold shares of the values of the wires enteringthe gate, and their aim is to obtain shares of the value of the wire exiting the gate.� For a not-gate this is easy: the �rst party just 
ips the value of its share, and all otherparties maintain their shares.� Since an and-gate corresponds to multiplication modulo 2, the parties need to securely com-pute the following randomized functionality (in which the xi's denote shares of one entry-wire,the yi's denote shares of the second entry-wire, the zi's denote shares of the exit-wire, andthe shares indexed by i belongs to Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; z2) (2)where Pmi=1 zi = (Pmi=1 xi) � (Pmi=1 yi). (3)That is, the zi's are random subject to Eq. (3).Thus, securely evaluating the entire (arbitrary) circuit \reduces" to securely conducting a speci�c(very simple) multi-party computation. But things get even simpler: the key observation is that mXi=1 xi! �  mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) (4)Thus, the m-ary functionality of Eq. (2)& (3) can be computed as follows (where all arithmeticoperations are mod 2):1. Each Party i locally computes zi;i def= xiyi.30



2. Next, each pair of parties (i.e., Parties i and j) securely compute random shares of xiyj +yixj. That is, Parties i and j (holding (xi; yi) and (xj ; yj), respectively), need to securelycompute the randomized two-party functionality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z'sare random subject to zi;j + zj;i = xiyj + yixj . The latter simple two-party computation canbe securely implemented using (a 1-out-of-4) Oblivious Transfer (cf. [55] and [46, Sec. 2.2.3]).3. Finally, for every i = 1; :::;m, summing-up all the zi;j's yields the desired share of Party i.The above construction is analogous to a construction that was brie
y described in [53]. A detaileddescription and full proofs appear in [46].We mention that an analogous construction has been subsequently used in the private channelmodel and withstands computationally unbounded active (resp., passive) adversaries that controlless than one third (resp., a minority) of the parties [13]. The basic idea is to use a more sophisti-cated secret sharing scheme; speci�cally, via a low degree polynomials [85]. That is, the Booleancircuit is viewed as an arithmetic circuit over a �nite �eld having more than m elements, and asecret element s of the �eld is shared by selecting uniformly a polynomial of degree d = b(m� 1)=3c(resp., degree d = b(m� 1)=2c) having a free-term equal to s, and handing each party the value ofthis polynomial evaluated at a di�erent (�xed) point (e.g., party i is given the value at point i).Addition is emulated by (local) point-wise addition of the (secret sharing) polynomials represent-ing the two inputs (using the fact that for polynomials p and q, and any �eld element e (and inparticular e = 0; 1; :::;m), it holds that p(e) + q(e) = (p + q)(e)). The emulation of multiplicationis more involved and requires interaction (because the product of polynomials yields a polynomialof higher degree, and thus the polynomial representing the output cannot be the product of thepolynomials representing the two inputs). Indeed, the aim of the interaction is to turn the sharesof the product polynomial into shares of a degree d polynomial that has the same free-term as theproduct polynomial (which is of degree 2d). This can be done using the fact that the coe�cients ofa polynomial are a linear combination of its values at su�ciently many arguments (and the otherway around), and the fact that one can privately-compute any linear combination (of secret values).For details see [13, 44].6 Cryptographic Protocols (under concurrent execution)The de�nitions and results surveyed in Section 5 refer to a setting in which, at each time, only asingle execution of a cryptographic protocol takes place (or only one execution may be controlledby the adversary). In contrast, in many distributed settings (e.g., the Internet), many executionsare taking place concurrently (and several of them may be controlled by the same adversary).Furthermore, it is undesirable (and sometimes even impossible) to coordinate these executions (soto e�ectively enforce a single-execution setting). Still, the de�nitions and results obtained in thesingle-execution setting serves as a good starting point for the study of security in the setting ofconcurrent executions.The study of security in the setting of concurrent executions is currently at its early stages.Central issues and di�culties have been identi�ed, and approaches addressing them have beensuggested. On the other hand, there are signi�cant gaps in our current understanding, and so thecurrent time seems inadequate for a conclusive description of this area. We thus con�ne ourselvesto discussing some of the issues and di�culties involved, and to presenting some of the positiveresults that were achieved. We believe (and hope) that in a few years the current discussion willbe only of historical value. 31



6.1 Some issues and some de�nitional approachesAs in case of stand-alone security, the notion of zero-knowledge provides a good test case for thestudy of concurrent security. Indeed, in order to demonstrate the security issues arising fromconcurrent execution of protocols, we consider the concurrent execution of zero-knowledge pro-tocols. Speci�cally, we consider a party P holding a random (or rather pseudorandom) functionf : f0; 1g2n!f0; 1gn, and willing to participate in the following protocol (with respect to securityparameter n).13 The other party, called A for adversary, is supposed to send P a binary valuev 2 f1; 2g specifying which of the following cases to execute:For v = 1: Party P uniformly selects � 2 f0; 1gn, and sends it to A, which is supposed to replywith a pair of n-bit long strings, denoted (�; 
). Party P checks whether or not f(��) = 
.In case equality holds, P sends A some secret information (e.g., the secret-key correspondingto P 's public-key).For v = 2: Party A is supposed to uniformly select � 2 f0; 1gn, and sends it to P , which selectsuniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy is zero-knowledge (even w.r.t auxiliary-inputs as de�ned in De�nition 3.8):Intuitively, if the adversary A chooses the case v = 1, then it is infeasible for A to guess a passingpair (�; 
) with respect to a random � selected by P . Thus, except with negligible probability (whenit may get secret information), A does not obtain anything from the interaction. On the other hand,if the adversary A chooses the case v = 2, then it obtains a pair that is indistinguishable from auniformly selected pair of n-bit long strings (because � is selected uniformly by P , and for any �the value f(��) looks random to A). In contrast, if the adversary A can conduct two concurrentexecutions with P , then it may learn the desired secret information: In one session, A sends v = 1while in the other it sends v = 2. Upon receiving P 's message, denoted �, in the �rst session, Asends it as its own message in the second session, obtaining a pair (�; f(��)) from P 's executionof the second session. Now, A sends the pair (�; f(��)) to the �rst session of P , this pair passesthe check, and so A obtains the desired secret.An attack of the above type is called a relay attack: During such an attack the adversary justinvokes two executions of the protocol and relays messages between them (without any modi�ca-tion). However, in general, the adversary in a concurrent setting is not restricted to relay attacks.For example, consider a minor modi�cation to the above protocol so that in case v = 2 partyP replies with (say) the pair (�; f(��)), where � = � � 1j�j, rather than with (�; f(��)). Themodi�ed strategy P is zero-knowledge and it also withstands a relay attack, but it can be \abused"easily by a more general concurrent attack.The above example is merely the tip of an iceberg, but it su�ces for introducing the mainlesson: an adversary attacking several concurrent executions of the same protocol may be able tocause more damage than by attacking a single execution (or several sequential executions) of thesame protocol. One may say that a protocol is concurrently secure if whatever the adversary mayobtain by invoking and controlling parties in real concurrent executions of the protocol is alsoobtainable by a corresponding adversary that controls corresponding parties making concurrentfunctionality calls to a trusted party (in a corresponding ideal model).14 More generally, one may13In fact, assuming that P shares a pseudorandom function f with his friends (as explained in Section 3.2.3), theabove protocol is an abstraction of a natural \mutual identi�cation" protocol. (The example is adapted from [50].)14One speci�c concern (in such a concurrent setting) is the ability of the adversary to \non-trivially correlatethe outputs" of concurrent executions. This ability, called malleability, was �rst investigated by Dolev, Dwork andNaor [36]. We comment that providing a general de�nition of what \correlated outputs" means seems very challenging(if at all possible). Indeed the focus of [36] is on several important special cases such as encryption and commitmentschemes. 32



consider concurrent executions of many sessions of several protocols, and say that a set of protocolsis concurrently secure if whatever the adversary may obtain by invoking and controlling such realconcurrent executions is also obtainable by a corresponding adversary that invokes and controlsconcurrent calls to a trusted party (in a corresponding ideal model). Consequently, a protocolis said to be secure with respect to concurrent compositions if adding this protocol to any set ofconcurrently secure protocols yields a set of concurrently secure protocols.A much more appealing approach was recently suggested by Canetti [22]. Loosely speaking,Canetti suggests to consider a protocol to be secure (called environmentally-secure (or UniversallyComposable secure [22])) only if it remains secure when executed within any (feasible) environment.Following the simulation paradigm, we get the following de�nition:De�nition 6.1 (environmentally-secure protocols [22] { a rough sketch): Let f be an m-ary func-tionality and � be an m-party protocol, and consider the following real and ideal models.In the real model the adversary controls some of the parties in an execution of � and all partiescan communicate with an arbitrary probabilistic polynomial-time process, which is called anenvironment (and possibly represents other executions of various protocols that are taking placeconcurrently). Honest parties only communicate with the environment before the executionstarts and when it ends; they merely obtain their inputs from the environment and pass theiroutputs to it. In contrast, dishonest parties may communicate freely with the environment,concurrently to the entire execution of �.In the ideal model the (simulating) adversary controls the same parties, which use an ideal (trusted-party) that behaves according to the functionality f (as in Section 5.1.2). All parties can com-municate with the (same) environment (as in the real model). Indeed, the dishonest partiesmay communicate extensively with the environment before and after their single communica-tion with the trusted party.We say that � is an environmentally-secure protocol for computing f if for every probabilistic polynomial-time adversary A in the real model there exists a probabilistic polynomial-time adversary A0 con-trolling the same parties in the ideal model such that no probabilistic polynomial-time environmentcan distinguish the case in which it is accessed by the parties in the real execution from the case itis accessed by parties in the ideal model.As hinted above, the environment accounts for other executions of various protocols that are takingplace concurrently to the main execution being considered. The de�nition requires that such envi-ronments cannot distinguish the real execution from an ideal one. This means that anything thatthe real adversary (i.e., operating in the real model) gains from the execution and any environment,can be also obtained by an adversary operating in the ideal model and having access to the sameenvironment. Indeed, Canetti proves that environmentally-secure protocols are secure with respectto concurrent compositions [22]. We wonder whether the reverse direction holds.Timing assumptions. The above issues (as well as the speci�c example used) remain valid alsoin a synchronous environment, but are indeed ampli�ed in an asynchronous environment. Thus, oneapproach towards providing concurrent security is to rely on some kind of weak timing assumption(as done in [39] (in the context of concurrent zero-knowledge)). However, using timing assumptionsto achieve concurrent (rather than stand-alone) security typically means imposing a signi�cantdelay in each execution (rather than delaying only executions that are actively tampered by anadversary).1515A typical use of a timing assumption in the context of stand-alone security is to delay some operation until eithera speci�c message arrives or some large amount of time (i.e., larger than typical message delays) has elapsed. Clearly,33



6.2 Some di�cultiesAs stated above, the study of zero-knowledge in the concurrent setting provides a good test casefor the study of concurrent security of general protocols. In particular, the results in [50, 26]point out inherent limitations of the \standard proof methods" (used to establish zero-knowledge)when applied to the concurrent setting, where [50] treats the synchronous case and [26] uncoversmuch stronger limitations for the asynchronous case. By \standard proof methods" we refer to theestablishment of zero-knowledge via a single simulator that obtains only oracle (or \black-box")access to the adversary procedure (i.e., the machine C� in Item 2 of De�nition 3.8 is a universaloracle machine that has oracle access to the strategy of B�).Note that since De�nition 3.8 refers to all possible adversaries, it seems that a demonstrationthat it holds must be universal in the sense that it should provide a (general) procedure for con-structing a simulator for each possible adversary (i.e., transforming any B� to a correspondingC�). Furthermore, since this procedure cannot be expected to \reverse engineer" the adversaryB�, it seems natural to assume that the simulator must use B� as an oracle (or, as a \black-box").However, the latter assumption has been refuted recently by Barak, who has shown that the sim-ulator may use the code of B� in a meaningful way [2] (and not just by invoking it on inputs of itschoice). (On the other hand, arguably, the simulator constructed in [2] does not \reverse engineer"B�.) Indeed, Barak [2] presents several results (regarding zero-knowledge) that are impossible toachieve by simulators that only obtain oracle access to the adversary strategy (rather than obtainthe adversary's code). In particular, his results regarding concurrent zero-knowledge go beyond theimpossibility results of [50, 26] (which refers to black-box simulations).In general, simulation via oracle access to the adversary is very problematic in the context ofconcurrent executions (much more than in the context of stand-alone security). Thus, the newlydiscovered (non-\black-box") simulation techniques of Barak [2] carry great promise for obtainingstronger results regarding concurrent security. On the other hand, the recent de�nitional approachof Canetti [22] relies heavily on oracle access (to an environment). In fact, it seems that generalsecure two-party computation is not possible under his de�nitions (except as discussed in the nextsubsection). It remains to be see if this con
ict (between the promise of [2] and the requirementsof [22]) can be reconciled.6.3 Some currently-known positive resultsThe main positive result currently known is that environmentally-secure protocols for any func-tionality can be constructed for settings in which more than two-thirds of the active parties arehonest [22]. This holds unconditionally for the private channel model, and under standard assump-tions (e.g., allowing the construction of public-key encryption schemes) for the standard model (i.e.,without private channel). The immediate consequence of this result is that general environmentally-secure multi-party computation is possible, provided that more than two-thirds of the parties arehonest.In contrast, general environmentally-secure two-party computation is not possible (in the stan-dard sense).16 Still, one can salvage general environmentally-secure two-party computation in thethis e�ects only executions in which non-typical message delays (typically caused by the adversary) occur. However,in the context of concurrent security, the delay is typically used in order to impose a certain scheduling with respectto operations taking place in other sessions. Consequently, the delay has to be imposed on the current executionunconditionally (because the relevant message arrival event belongs to a di�erent session and so cannot be tested inthe current session).16Of course, some speci�c two-party computations do have environmentally-secure protocols. See [22] for several34
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