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1 Introdu
tion and PreliminariesIt is possible to build a 
abin with no foundations,but not a lasting building.Eng. Isidor Goldrei
h (1906{1995)1.1 Introdu
tionModern 
ryptography is 
on
erned with the 
onstru
tion of systems that are robust against ma-li
ious attempts to make these systems deviate from their pres
ribed fun
tionality. Indeed, thes
ope of modern 
ryptography is very broad, and stands in 
ontrast to \
lassi
al" 
ryptography,whi
h has been asso
iated with the single problem of providing se
ret 
ommuni
ation over inse
ure
ommuni
ation media.The design of 
ryptographi
 s
hemes is a very diÆ
ult task. One 
annot rely on intuitionsregarding the \typi
al" state of the environment in whi
h the system operates. For sure, theadversary atta
king the system will try to manipulate the environment into \untypi
al" states.Nor 
an one be 
ontent with 
ounter-measures designed to withstand spe
i�
 atta
ks, sin
e theadversary (whi
h a
ts after the design of the system is 
ompleted) will try to atta
k the s
hemesin ways that are di�erent from the ones the designer had envisioned. The validity of the aboveassertions seems self-evident, still some people hope that in pra
ti
e ignoring these tautologies willnot result in a
tual damage. Experien
e shows that these hopes rarely 
ome true; 
ryptographi
s
hemes based on make-believe are broken, typi
ally sooner than later.In view of the foregoing, we believe that it makes little sense to make assumptions regarding thespe
i�
 strategy that the adversary may use. The only assumptions that 
an be justi�ed refer tothe 
omputational abilities of the adversary. Furthermore, the design of 
ryptographi
 systems hasto be based on �rm foundations; whereas ad-ho
 approa
hes and heuristi
s are a very dangerousway to go. A heuristi
 may make sense when the designer has a very good idea regarding theenvironment in whi
h a s
heme is to operate, yet a 
ryptographi
 s
heme has to operate in amali
iously sele
ted environment whi
h typi
ally trans
ends the designer's view.This survey is aimed at presenting the foundations for 
ryptography. The foundations of 
ryp-tography are the paradigms, approa
hes and te
hniques used to 
on
eptualize, de�ne and providesolutions to natural \se
urity 
on
erns". We will present some of these paradigms, approa
hes andte
hniques as well as some of the fundamental results obtained using them. Our emphasis is on the
lari�
ation of fundamental 
on
epts and on demonstrating the feasibility of solving several 
entral
ryptographi
 problems.Solving a 
ryptographi
 problem (or addressing a se
urity 
on
ern) is a two-stage pro
ess 
on-sisting of a de�nitional stage and a 
onstru
tive stage. First, in the de�nitional stage, the fun
tion-ality underlying the natural 
on
ern is to be identi�ed, and an adequate 
ryptographi
 problem hasto be de�ned. Trying to list all undesired situations is infeasible and prone to error. Instead, oneshould de�ne the fun
tionality in terms of operation in an imaginary ideal model, and require a
andidate solution to emulate this operation in the real, 
learly de�ned, model (whi
h spe
i�es theadversary's abilities). On
e the de�nitional stage is 
ompleted, one pro
eeds to 
onstru
t a systemthat satis�es the de�nition. Su
h a 
onstru
tion may use some simpler tools, and its se
urity isproven relying on the features of these tools. In pra
ti
e, of 
ourse, su
h a s
heme may need tosatisfy also some spe
i�
 eÆ
ien
y requirements.This survey fo
uses on several ar
hetypi
al 
ryptographi
 problems (e.g., en
ryption and sig-nature s
hemes) and on several 
entral tools (e.g., 
omputational diÆ
ulty, pseudorandomness,1



and zero-knowledge proofs). For ea
h of these problems (resp., tools), we start by presenting thenatural 
on
ern underlying it (resp., its intuitive obje
tive), then de�ne the problem (resp., tool),and �nally demonstrate that the problem may be solved (resp., the tool 
an be 
onstru
ted). Inthe latter step, our fo
us is on demonstrating the feasibility of solving the problem, not on provid-ing a pra
ti
al solution. As a se
ondary 
on
ern, we typi
ally dis
uss the level of pra
ti
ality (orimpra
ti
ality) of the given (or known) solution.Computational DiÆ
ultyThe spe
i�
 
onstru
ts mentioned above (as well as most 
onstru
ts in this area) 
an exist onlyif some sort of 
omputational hardness exists. Spe
i�
ally, all these problems and tools require(either expli
itly or impli
itly) the ability to generate instan
es of hard problems. Su
h ability is
aptured in the de�nition of one-way fun
tions. Thus, one-way fun
tions are the very minimumneeded for doing most sorts of 
ryptography. As we shall see, one-way fun
tions a
tually suÆ
efor doing mu
h of 
ryptography (and the rest 
an be done by augmentations and extensions of theassumption that one-way fun
tions exist).Our 
urrent state of understanding of eÆ
ient 
omputation does not allow us to prove thatone-way fun
tions exist. In parti
ular, the existen
e of one-way fun
tions implies that NP is not
ontained in BPP � P (not even \on the average"), whi
h would resolve the most famous openproblem of 
omputer s
ien
e. Thus, we have no 
hoi
e (at this stage of history) but to assume thatone-way fun
tions exist. As justi�
ation to this assumption we may only o�er the 
ombined believesof hundreds (or thousands) of resear
hers. Furthermore, these believes 
on
ern a simply statedassumption, and their validity follows from several widely believed 
onje
tures whi
h are 
entralto various �elds (e.g., the 
onje
ture that fa
toring integers is hard is 
entral to 
omputationalnumber theory).Sin
e we need assumptions anyhow, why not just assume what we want (i.e., the existen
e ofa solution to some natural 
ryptographi
 problem)? Well, �rst we need to know what we want:as stated above, we must �rst 
larify what exa
tly we want; that is, go through the typi
ally
omplex de�nitional stage. But on
e this stage is 
ompleted, 
an we just assume that the de�nitionderived 
an be met? Not really: on
e a de�nition is derived, how 
an we know that it 
an at allbe met? The way to demonstrate that a de�nition is viable (and so the intuitive se
urity 
on
ern
an be satis�ed at all) is to 
onstru
t a solution based on a better understood assumption (i.e.,one that is more 
ommon and widely believed). For example, looking at the de�nition of zero-knowledge proofs, it is not a-priori 
lear that su
h proofs exist at all (in a non-trivial sense). Thenon-triviality of the notion was �rst demonstrated by presenting a zero-knowledge proof system forstatements, regarding Quadrati
 Residuosity, whi
h are believed to be hard to verify (without extrainformation). Furthermore, in 
ontrary to prior beliefs, it was later shown in that the existen
e ofone-way fun
tions implies that any NP-statement 
an be proven in zero-knowledge. Thus, fa
ts thatwere not known at all to hold (and even believed to be false), where shown to hold by redu
tion towidely believed assumptions (without whi
h most of modern 
ryptography 
ollapses anyhow). Tosummarize, not all assumptions are equal, and so redu
ing a 
omplex, new and doubtful assumptionto a widely-believed simple (or even merely simpler) assumption is of great value. Furthermore,redu
ing the solution of a new task to the assumed se
urity of a well-known primitive typi
allymeans providing a 
onstru
tion that, using the known primitive, solves the new task. This meansthat we do not only know (or assume) that the new task is solvable but rather have a solutionbased on a primitive that, being well-known, typi
ally has several 
andidate implementations.2



Prerequisites and Stru
tureOur aim is to present the basi
 
on
epts, te
hniques and results in 
ryptography. As stated above,our emphasis is on the 
lari�
ation of fundamental 
on
epts and the relationship among them. Thisis done in a way independent of the parti
ularities of some popular number theoreti
 examples.These parti
ular examples played a 
entral role in the development of the �eld and still o�erthe most pra
ti
al implementations of all 
ryptographi
 primitives, but this does not mean thatthe presentation has to be linked to them. On the 
ontrary, we believe that 
on
epts are best
lari�ed when presented at an abstra
t level, de
oupled from spe
i�
 implementations. Thus, themost relevant ba
kground for this survey is provided by basi
 knowledge of algorithms (in
ludingrandomized ones), 
omputability and elementary probability theory.The survey is organized in two main parts 
orresponding to Basi
 Tools and Basi
 Appli
ations,whi
h are pre
eeded by preliminaries (regarding eÆ
ient 
omputation). The Basi
 Tools 
onsist of
omputational diÆ
ulty (one-way fun
tions), pseudorandomness and zero-knowledge proofs. Thesebasi
 tools are used for the Basi
 Appli
ations, whi
h in turn 
onsist of En
ryption S
hemes,Signature S
hemes, and General Cryptographi
 Proto
ols.Suggestions for Further ReadingThis survey is a brief summary of the author's two-volume work on the subje
t [67, 68℄. Further-more, Part I 
orresponds to [67℄, whereas Part II 
orresponds to [68℄. Needless to say, the readeris referred to these textbooks for further detail.Current resear
h on the foundations of 
ryptography appears in general 
omputer s
ien
e 
on-feren
es (e.g., FOCS and STOC), in 
ryptography 
onferen
es (e.g., Crypto and EuroCrypt) aswell as in the newly established Theory of Cryptography Conferen
e (TCC).The aim of this survey is to introdu
e the reader to the theoreti
al foundations of 
ryptography.As argued above, su
h foundations are ne
essary for sound pra
ti
e of 
ryptography. Indeed,pra
ti
e requires more than theoreti
al foundations, whereas the 
urrent work makes no attempt toprovide anything beyond the latter. However, given a sound foundation, one 
an learn and evaluatevarious pra
ti
al suggestions that appear elsewhere (e.g., in [98℄). On the other hand, la
k of soundfoundations results in inability to 
riti
ally evaluate pra
ti
al suggestions, whi
h in turn leads tounsound de
isions. Nothing 
ould be more harmful to the design of s
hemes that need to withstandadversarial atta
ks than mis
on
eptions about su
h atta
ks.Among other things, this survey reviews zero-knowledge proofs (whi
h are probabilisti
) andpseudorandom generators (and fun
tions). A wider perspe
tive on probabilisti
 proof systems andpseudorandomness is provided in [66℄.Non-
ryptographi
 referen
es: Some \non-
ryptographi
" works were referen
ed for sake ofwider perspe
tive. Examples in
lude [3, 4, 5, 6, 57, 71, 79, 97, 121℄.1.2 PreliminariesModern Cryptography, as surveyed here, is 
on
erned with the 
onstru
tion of eÆ
ient s
hemes forwhi
h it is infeasible to violate the se
urity feature. Thus, we need a notion of eÆ
ient 
omputationsas well as a notion of infeasible ones. The 
omputations of the legitimate users of the s
heme oughtbe eÆ
ient, whereas violating the se
urity features (by an adversary) ought to be infeasible.EÆ
ient 
omputations are 
ommonly modeled by 
omputations that are polynomial-time in these
urity parameter. The polynomial bounding the running-time of the legitimate user's strategy is3



�xed and typi
ally expli
it (and small). Here (i.e., when referring to the 
omplexity of the legitimateusers) we are in the same situation as in any algorithmi
 setting. Things are di�erent when referringto our assumptions regarding the 
omputational resour
es of the adversary. A 
ommon approa
h isto postulate that the latter are polynomial-time too, where the polynomial is not a-priori spe
i�ed.In other words, the adversary is restri
ted to the 
lass of eÆ
ient 
omputations and anything beyondthis is 
onsidered to be infeasible. Although many de�nitions expli
itly refer to this 
onvention,this 
onvention is inessential to any of the results known in the area. In all 
ases, a more generalstatement 
an be made by referring to adversaries of running-time bounded by any super-polynomialfun
tion (or 
lass of fun
tions). Still, for sake of 
on
reteness and 
larity, we shall use the former
onvention in our formal de�nitions.Randomized 
omputations play a 
entral role in 
ryptography. One fundamental reason for thisfa
t is that randomness is essential for the existen
e (or rather the generation) of se
rets. Thus,we must allow the legitimate users to employ randomized 
omputations, and 
ertainly (sin
e ran-domization is feasible) we must 
onsider also adversaries that employ randomized 
omputations.This brings up the issue of su

ess probability: typi
ally, we require that legitimate users su
-
eed (in ful�lling their legitimate goals) with probability 1 (or negligibly 
lose to this), whereasadversaries su

eed (in violating the se
urity features) with negligible probability. Thus, the no-tion of a negligible probability plays an important role in our exposition. One requirement of thede�nition of negligible probability is to provide a robust notion of rareness: A rare event shouldo

ur rarely even if we repeat the experiment for a feasible number of times. That is, in 
ase we
onsider any polynomial-time 
omputation to be feasible, any fun
tion � : N ! N that satis�es1� (1��(n))p(n) < 0:01, for every polynomial p and suÆ
iently big n, is 
onsidered negligible (i.e.,� is negligible if for every positive polynomial p0 the fun
tion �(�) is upper-bounded by 1=p0(�)).However, if we 
onsider the fun
tion T (n) to provide our notion of infeasible 
omputation thenfun
tions bounded above by 1=T (n) are 
onsidered negligible (in n).We will also refer to the notion of noti
eable probability. Here the requirement is that events thato

ur with noti
eable probability, will o

ur almost surely (i.e., ex
ept with negligible probability)if we repeat the experiment for a polynomial number of times. Thus, a fun
tion � :N!N is 
allednoti
eable if for some positive polynomial p0 the fun
tion �(�) is lower-bounded by 1=p0(�).
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Part IBasi
 ToolsIn this part we survey three basi
 tools used in Modern Cryptography. The most basi
 tool is 
om-putational diÆ
ulty, whi
h in turn is 
aptured by the notion of one-way fun
tions. Next, we surveythe notion of 
omputational indistinguishability, whi
h underlies the theory of pseudorandomnessas well as mu
h of the rest of 
ryptography. In parti
ular, pseudorandom generators and fun
tionsare important tools that will be used in later se
tions. Finally, we survey zero-knowledge proofs,and their use in the design of 
ryptographi
 proto
ols. For more details regarding the 
ontents ofthe 
urrent part, see our textbook [67℄.2 Computational DiÆ
ulty and One-Way Fun
tionsModern Cryptography is 
on
erned with the 
onstru
tion of s
hemes that are easy to operate(properly) but hard to foil. Thus, a 
omplexity gap (i.e., between the 
omplexity of proper usage andthe 
omplexity of defeating the pres
ribed fun
tionality) lies in the heart of Modern Cryptography.However, gaps as required for Modern Cryptography are not known to exist; they are only widelybelieved to exist. Indeed, almost all of Modern Cryptography rises or falls with the question ofwhether one-way fun
tions exist. We note that the existen
e of one-way fun
tions implies that NP
ontains sear
h problems that are hard to solve on the average, whi
h in turn implies that NP isnot 
ontained in BPP (i.e., a worst-
ase 
omplexity 
onje
ture).
x f(x)

easy

HARDFigure 1: One way fun
tions { an illustration.2.1 One-Way Fun
tionsOne-way fun
tions are fun
tions that are easy to evaluate but hard (on the average) to invert.That is, a fun
tion f : f0; 1g�!f0; 1g� is 
alled one-way if there is an eÆ
ient algorithm that oninput x outputs f(x), whereas any feasible algorithm that tries to �nd a preimage of f(x) under5



f may su

eed only with negligible probability (where the probability is taken uniformly over the
hoi
es of x and the algorithm's 
oin tosses). Asso
iating feasible 
omputations with probabilisti
polynomial-time algorithms, we obtain the following de�nition.De�nition 2.1 (one-way fun
tions): A fun
tion f :f0; 1g�!f0; 1g� is 
alled one-way if the follow-ing two 
onditions hold:1. easy to evaluate: There exist a polynomial-time algorithm A su
h that A(x) = f(x) for everyx 2 f0; 1g�.2. hard to invert: For every probabilisti
 polynomial-time algorithm A0, every polynomial p, andall suÆ
iently large n, Pr[A0(f(x); 1n) 2 f�1(f(x))℄ < 1p(n)where the probability is taken uniformly over all the possible 
hoi
es of x 2 f0; 1gn and all thepossible out
omes of the internal 
oin tosses of algorithm A0.Algorithm A0 is given the auxiliary input 1n so to allow it to run in time polynomial in the length ofx, whi
h is important in 
ase f drasti
ally shrinks its input (e.g., jf(x)j = O(log jxj)). Typi
ally, fis length preserving, in whi
h 
ase the auxiliary input 1n is redundant. Note that A0 is not requiredto output a spe
i�
 preimage of f(x); any preimage (i.e., element in the set f�1(f(x))) will do.(Indeed, in 
ase f is 1-1, the string x is the only preimage of f(x) under f ; but in general there maybe other preimages.) It is required that algorithm A0 fails (to �nd a preimage) with overwhelmingprobability, when the probability is also taken over the input distribution. That is, f is \typi
ally"hard to invert, not merely hard to invert in some (\rare") 
ases.Some of the most popular 
andidates for one-way fun
tions are based on the 
onje
tured in-tra
tability of 
omputational problems in number theory. One su
h 
onje
ture is that it is infeasibleto fa
tor large integers. Consequently, the fun
tion that takes as input two (equal length) primesand outputs their produ
t is widely believed to be a one-way fun
tion. Furthermore, fa
toringsu
h 
omposites is infeasible if and only if squaring modulo su
h 
omposite is a one-way fun
tion(see [111℄). For 
ertain 
omposites (i.e., produ
ts of two primes that are both 
ongruent to 3 mod 4),the latter fun
tion indu
es a permutation over the set of quadrati
 residues modulo this 
ompos-ite. A related permutation, whi
h is widely believed to be one-way, is the RSA fun
tion [115℄:x 7! xe mod N , where N = P �Q is a 
omposite as above, e is relatively prime to (P � 1) � (Q� 1),and x 2 f0; :::; N � 1g. The latter examples (as well as other popular suggestions) are better 
ap-tured by the following formulation of a 
olle
tion of one-way fun
tions (whi
h is indeed related toDe�nition 2.1):De�nition 2.2 (
olle
tions of one-way fun
tions and additional properties): A 
olle
tion of fun
-tions, ffi : Di ! f0; 1g�gi2I , is 
alled one-way if there exists three probabilisti
 polynomial-timealgorithms, I, D and F , so that the following two 
onditions hold1. easy to sample and 
ompute: The output of algorithm I, on input 1n, is distributed over theset I \ f0; 1gn (i.e., is an n-bit long index of some fun
tion). The output of algorithm D, oninput (an index of a fun
tion) i 2 I, is distributed over the set Di (i.e., over the domain ofthe fun
tion). On input i 2 I and x 2 Di, algorithm F always outputs fi(x).
6



2. hard to invert:1 For every probabilisti
 polynomial-time algorithm, A0, every positive polyno-mial p(�), and all suÆ
iently large n'sPr hA0(i; fi(x))2f�1i (fi(x))i < 1p(n)where i I(1n) and x D(i).The 
olle
tion is said to be of permutations if ea
h of the fi's is a permutation over the 
orrespondingDi and D(i) is almost uniformly distributed in Di. Su
h a 
olle
tion is 
all a trapdoor permutationif in addition to the above there are two probabilisti
 polynomial-time algorithms I 0 and F�1 su
hthat (1) the distribution I 0(1n) ranges over pairs of strings so that the �rst string is distributed asin I(1n), and (2) for every (i; t) in the range of I 0(1n) it holds that F�1(t; fi(x)) = x. (That is, tis a trapdoor that allows to invert fi.)Strong versus weak one-way funm
tions. Re
all that the above de�nitions require that anyfeasible algorithm su

eeds in inverting the fun
tion with negligible probability. A weaker notiononly requires that any feasible algorithm fails to invert the fun
tion with noti
eable probability. Itturns out that the existen
e of su
h weak one-way fun
tions implies the existen
e of strong one-wayfun
tions (as de�ned above). The 
onstru
tion itself is straightfoward: one just parses the argu-ment to the new fun
tion into suÆ
iently many blo
ks, and applies the weak one-way fun
tion onthe individual blo
ks. We warn that the hardness of the resulting fun
tion is not established bymere \
ombinatori
s" (i.e., one may not assume that the potential inverting algorithm works inde-pendently on ea
h blo
k).2 Instead, a \redu
ibility argument" is used, showing that an intertingalgorithm for the resulting fun
tion 
an be used to 
onstru
t an inverting algorithm for the originalfun
tion. The proof, presented in [67, Se
. 2.3℄, demonstrates that ampli�
ation of 
omputationaldiÆ
ulty is mu
h more involved than ampli�
ation of an analogous probabilisti
 event. An alter-native demonstration of the diÆ
ulty of reasoning about 
omputational diÆ
ulty (in 
omparisonto an analogous purely probabilisti
 situation) as well as a dis
ussion of redu
ibility arguments isprovided in the proof of Theorem 2.4.2.2 Hard-Core Predi
atesLoosely speaking, saying that a fun
tion f is one-way implies that given y (in the range of f) itis infeasible to �nd a preimage of y under f . This does not mean that it is infeasible to �nd outpartial information about the preimage(s) of y under f . Spe
i�
ally it may be easy to retrievehalf of the bits of the preimage (e.g., given a one-way fun
tion f 
onsider the fun
tion g de�nedby g(x; r) def= (f(x); r), for every jxj = jrj). The fa
t that one-way fun
tions do not ne
essarilyhide partial information about their preimage limits their \dire
t appli
ability" to tasks as se
ureen
ryption. Fortunately, assuming the existen
e of one-way fun
tions, it is possible to 
onstru
tone-way fun
tions that hide spe
i�
 partial information about their preimage (whi
h is easy to
ompute from the preimage itself). This partial information 
an be 
onsidered as a \hard 
ore" ofthe diÆ
ulty of inverting f . Loosely speaking, a polynomial-time predi
ate b, is 
alled a hard-
ore1Note that this 
ondition refers to the distributions I(1n) and D(i), whi
h are merely required to range overI \ f0; 1gn and Di, respe
tively. (Typi
ally, the distributions I(1n) and D(i) are (almost) uniform over I \ f0; 1gnand Di, respe
tively.)2Indeed this assumption seems reasonable, but we should not assume that the adversary behaves in a reasonableway (unless we 
an a
tually prove that it gains nothing by behaving in ways that seem unreasonable to us).7



of a fun
tion f if no feasible algorithm, given f(x), 
an guess b(x) with su

ess probability that isnon-negligibly better than one half.De�nition 2.3 (hard-
ore predi
ates [32℄): A polynomial-time 
omputable predi
ate b : f0; 1g� !f0; 1g is 
alled a hard-
ore of a fun
tion f if for every probabilisti
 polynomial-time algorithm A0,every positive polynomial p(�), and all suÆ
iently large n'sPr �A0(f(x))=b(x)� < 12 + 1p(n)where the probability is taken uniformly over all the possible 
hoi
es of x 2 f0; 1gn and all thepossible out
omes of the internal 
oin tosses of algorithm A0.Note that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obvious algorithms thatguess b(x) from f(x) with su

ess probability at least one half (e.g., the algorithm that, obliviously ofits input, outputs a uniformly 
hosen bit). Also, if b is a hard-
ore predi
ate (for any fun
tion) thenb must be almost unbiased (i.e., for a uniformly 
hosen x, the di�eren
e jPr[b(x)=0℄�Pr[b(x)=1℄jmust be a negligible fun
tion in n). Finally, if b is a hard-
ore of a 1-1 fun
tion f that is polynomial-time 
omputable then f is a one-way fun
tion.Theorem 2.4 ([74℄, see simpler proof in [67, Se
. 2.5.2℄): For any one-way fun
tion f , the inner-produ
t mod 2 of x and r is a hard-
ore of f 0(x; r) = (f(x); r).The proof is by a so-
alled \redu
ibility argument" (whi
h is used to prove all 
onditional resultsin the area). Spe
i�
ally, we redu
e the task of inverting f to the task of predi
ting the hard-
oreof f 0, while making sure that the redu
tion generates a distribution as in the a
tual de�nition ofthe 
on
lusion (when applied to input distributed as in the hypothesis). Thus, a 
ontradi
tionto the 
on
lusion yields a 
ontradi
tion to the hypothesis. Note that this argument is far more
omplex than analyzing the probabilisti
 behavior of b(X;Un) given Un, where Un denotes theuniform distribution over f0; 1gn, b(u; v) denotes the inner-produ
t mod 2 of u and v, and X is arandom variable with super-logarithmi
 min-entropy.3Proof sket
h: The a
tual proof refers to an arbitrary algorithm B that, when given (f(x); r),tries to guess b(x; r). Suppose that this algorithm su

eeds with probability 12 + �, when theprobability is taken over the random 
hoi
es of x and r (as well as the internal 
oin tosses of B).By an averaging argument, we �rst identify a fra
tion �=2 of the possible 
oin tosses of B su
h thatusing any of these 
oin sequen
es B su

eeds with probability at least 12 + �=2. Similarly, we 
anidentify a �=4 fra
tion of the x's su
h that B su

eeds (in guessing b(x; r)) with probability at least12 + �=4, where now the probability is taken only over the r's. We will show how to use B in orderto invert f , on input f(x), provided that x is in the good set (whi
h has density �=4).As a warm-up, suppose for a moment that, for the aforementioned x's, algorithm B su

eedswith probability p > 34 + 1=poly(jxj) (rather than at least 12 + �=4). In this 
ase, retrieving x fromf(x) is quite easy: To retrieve the ith bit of x, denoted xi, we randomly sele
t r 2 f0; 1gjxj, andobtain B(f(x); r) and B(f(x); r � ei), where ei = 0i�110jxj�i and v � u denotes the addition mod2 of the binary ve
tors v and u. (The pro
ess is a
tually repeated polynomially-many times, usingindependent random 
hoi
es of su
h r's, and xi is determined by a majority vote.) Note that if both3The min-entropy of X is de�ned as minvflog2(1=Pr[X = v℄)g; that is, if X has min-entropym then maxvfPr[X =v℄g = 2�m. The Leftover Hashing Lemma [123, 23, 89℄ implies that, in this 
ase, Pr[b(X;Un) = 1jUn℄ = 12 � 2�
(m).8



B(f(x); r) = b(x; r) and B(f(x); r� ei) = b(x; r� ei) indeed hold, then B(f(x); r)�B(f(x); r� ei)equals b(x; r) � b(x; r � ei) = b(x; ei) = xi. The probability that both B(f(x); r) = b(x; r) andB(f(x); r � ei) = b(x; r � ei) hold, for a random r, is at least 1 � 2 � (1 � p) > 12 + 1poly(jxj) .Hen
e, repeating the above pro
edure suÆ
iently many times and ruling by majority, we retrievexi with very high probability. Similarly, we 
an retrieve all the bits of x, and hen
e invert f on f(x).However, the entire analysis was 
ondu
ted under (the unjusti�able) assumption that p > 34+ 12p(jxj) ,whereas we only know that p > 12+ �4 (for � > 1=poly(jxj)).The problem with the above pro
edure is that it doubles the original error probability of algo-rithm B on inputs of the form (f(x); �). Under the unrealisti
 assumption, that B's average error onsu
h inputs is non-negligibly smaller than 14 , the \error-doubling" phenomenon raises no problems.However, in general (and even in the spe
ial 
ase where B's error is exa
tly 14 ) the above pro
edureis unlikely to invert f . Note that the average error probability of B (whi
h is averaged over allpossible inputs of the form (f(x); �)) 
an not be de
reased by repeating B several times (e.g., B mayalways answer 
orre
tly on three quarters of the inputs, and always err on the remaining quarter).What is required is an alternative way of using the algorithm B, a way that does not double theoriginal error probability of B. The key idea is to generate the r's in a way that allows to applyalgorithm B only on
e per ea
h r (and i), instead of twi
e. Spe
i�
ally, we will use algorithm Bto obtain a \guess" for b(x; r � ei), and obtain b(x; r) in a di�erent way. The good news is thatthe error probability is no longer doubled, sin
e we only use B to get a \guess" of b(x; r� ei). Thebad news is that we still need to know b(x; r), and it is not 
lear how we 
an know b(x; r) withoutapplying B. The answer is that we 
an guess b(x; r) by ourselves. This is �ne if we only need toguess b(x; r) for one r (or logarithmi
ally in jxj many r's), but the problem is that we need to know(and hen
e guess) the value of b(x; r) for polynomially many r's. An obvious way of guessing theseb(x; r)'s yields an exponentially vanishing su

ess probability. Instead, we generate these polyno-mially many r's su
h that, on one hand they are \suÆ
iently random" whereas, on the other hand,we 
an guess all the b(x; r)'s with noti
eable su

ess probability. Spe
i�
ally, generating the r's ina parti
ular pairwise independent manner will satisfy both (seemingly 
ontradi
tory) requirements.We stress that in 
ase we are su

essful (in our guesses for all the b(x; r)'s), we 
an retrieve x withhigh probability. Hen
e, we retrieve x with noti
eable probability.A word about the way in whi
h the pairwise independent r's are generated (and the 
orrespond-ing b(x; r)'s are guessed) is indeed in pla
e. To generate m = poly(jxj) many r's, we uniformly (andindependently) sele
t ` def= log2(m+ 1) strings in f0; 1gjxj. Let us denote these strings by s1; :::; s`.We then guess b(x; s1) through b(x; s`). Let us denote these guesses, whi
h are uniformly (andindependently) 
hosen in f0; 1g, by �1 through �`. Hen
e, the probability that all our guesses forthe b(x; si)'s are 
orre
t is 2�` = 1poly(jxj) . The di�erent r's 
orrespond to the di�erent non-emptysubsets of f1; 2; :::; `g. Spe
i�
ally, we let rJ def= �j2Jsj. The reader 
an easily verify that the rJ 'sare pairwise independent and ea
h is uniformly distributed in f0; 1gjxj. The key observation is thatb(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj). Hen
e, our guess for b(x; rJ) is �j2J�j, and with noti
eableprobability all our guesses are 
orre
t.3 PseudorandomnessIn pra
ti
e \pseudorandom" sequen
es are often used instead of truly random sequen
es. Theunderlying belief is that if an (eÆ
ient) appli
ation performs well when using a truly randomsequen
e then it will perform essentially as well when using a \pseudorandom" sequen
e. However,this belief is not supported by ad-ho
 notions of \pseudorandomness" su
h as passing the statisti
al9



tests in [94℄ or having large linear-
omplexity (as in [85℄). In 
ontrast, the above belief is an easy
orollary of de�ning pseudorandom distributions as ones that are 
omputationally indistinguishablefrom uniform distributions.3.1 Computational Indistinguishability Indistinguishable things are identi
al(or should be 
onsidered as identi
al).The Prin
iple of Identity of Indis
erniblesG.W. Leibniz (1646{1714)(Leibniz admits that 
ounterexamples to this prin
iple are 
on
eivable but will not o

ur in reallife be
ause God is mu
h too benevolent.)A 
entral notion in Modern Cryptography is that of \e�e
tive similarity" (introdu
ed by Gold-wasser, Mi
ali and Yao [82, 126℄). The underlying thesis is that we do not 
are whether or notobje
ts are equal, all we 
are is whether or not a di�eren
e between the obje
ts 
an be observed bya feasible 
omputation. In 
ase the answer is negative, the two obje
ts are equivalent as far as anypra
ti
al appli
ation is 
on
erned. Indeed, in the sequel we will often inter
hange su
h (
omputa-tionally indistinguishable) obje
ts. Let X = fXngn2N and Y = fYngn2N be probability ensemblessu
h that ea
h Xn and Yn is a distribution that ranges over strings of length n (or polynomial inn). We say that X and Y are 
omputationally indistinguishable if for every feasible algorithm A thedi�eren
e dA(n) def= jPr[A(Xn)=1℄� Pr[A(Yn)=1℄j is a negligible fun
tion in n. That is:De�nition 3.1 (
omputational indistinguishability [82, 126℄): We say that X = fXngn2N and Y =fYngn2N are 
omputationally indistinguishable if for every probabilisti
 polynomial-time algorithm Devery polynomial p, and all suÆ
iently large n,jPr[D(Xn)=1℄ � Pr[D(Yn)=1℄j < 1p(n)where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn) and over theinternal 
oin tosses of algorithm D.That is, think of D as of somebody who wishes to distinguish two distributions (based on a samplegiven to it), and think of 1 as of D's verdi
t that the sample was drawn a

ording to the �rstdistribution. Saying that the two distributions are 
omputationally indistinguishable means that ifD is an eÆ
ient pro
edure then its verdi
t is not really meaningful (be
ause the verdi
t is almostas often 1 when the input is drawn from the �rst distribution as when the input is drawn from these
ond distribution).We 
omment that, for \eÆ
iently 
onstru
tible" distributions, indistinguishability by a singlesample (as de�ned above) implies indistinguishability by multiple samples (see [67, Se
. 3.2.3℄).The proof of this fa
t provides a simple demonstration of a 
entral proof te
hnique, known as ahybrid argument, whi
h we brie
y present next. To prove that two sequen
es of independentlydrawn samples are indistinguishable, we 
onsider hybrid sequen
es su
h that the ith hybrid 
onsistsof i samples taken from the �rst distribution and the rest taken from the se
ond distribution.The \homogeneous" sequen
es (whi
h we wish to prove to be 
omputational indistinguishable)are the extreme hybrids (i.e., the �rst and last hybrids 
onsidered above). Thus, distinguishing10



them (towards the 
ontradi
tion hypothesis) yields a pro
edure for distinguishing the ith hybridfrom the i + 1st hybrid, for a randomly sele
ted i. The latter distinguisher yields a distinguisherof single samples (i.e., given a single sample, sele
t i at random, generate i samples from the �rstdistribution and the rest from the se
ond, and feed the original distinguisher with the 
orrespondingsequen
e, while pla
ing the input sample in lo
ation i + 1 in the sequen
e). We stress that theoriginal distinguisher (arising from the 
ontradi
tion hypothesis) was only supposed to work forthe extreme hybrids, still we 
an 
onsider its performan
e on any distribution that we please anddraw adequate 
on
lusions (as we have done).
Gen

seed output  sequence

a  truly random  sequence

?

Figure 2: Pseudorandom generators { an illustration.3.2 Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an eÆ
ient (deterministi
) algorithm that on inputa short random seed outputs a (typi
ally mu
h) longer sequen
e that is 
omputationally indistin-guishable from a uniformly 
hosen sequen
e. Pseudorandom generators were introdu
ed by Blum,Mi
ali and Yao [32, 126℄, and are formally de�ned as follows.De�nition 3.2 (pseudorandom generator [32, 126℄): Let ` :N!N satisfy `(n) > n, for all n 2 N .A pseudorandom generator, with stret
h fun
tion `, is a (deterministi
) polynomial-time algorithmG satisfying the following:1. For every s 2 f0; 1g�, it holds that jG(s)j = `(jsj).2. fG(Un)gn2N and fU`(n)gn2N are 
omputationally indistinguishable, where Um denotes theuniform distribution over f0; 1gm.Thus, pseudorandom sequen
es 
an repla
e truly random sequen
es not only in \ordinary" 
ompu-tations but also in 
ryptographi
 ones. That is, any 
ryptographi
 appli
ation that is se
ure whenthe legitimate parties use truly random sequen
es, is also se
ure when the legitimate parties usepseudorandom sequen
es. The bene�t in su
h a substitution (of random sequen
es by pseudoran-dom ones) is that the latter sequen
es 
an be eÆ
iently generated using mu
h less true randomness.Furthermore, in an intera
tive setting, it is possible to eliminate all random steps from the on-lineexe
ution of a program, by repla
ing them with the generation of pseudorandom bits based on arandom seed sele
ted and �xed o�-line (or at set-up time).Various 
ryptographi
 appli
ations of pseudorandom generators will be presented in the sequel,but �rst let us show a 
onstru
tion of pseudorandom generators based on the simpler notion of a one-way fun
tion. Using Theorem 2.4, we may a
tually assume that su
h a fun
tion is a

ompaniedby a hard-
ore predi
ate. We start with a simple 
onstru
tion that suÆ
es for the 
ase of 1-1fun
tions. 11



Theorem 3.3 ([32, 126℄, see [67, Se
. 3.4℄): Let f be a 1-1 fun
tion that is length-preserving and ef-�
iently 
omputable, and b be a hard-
ore predi
ate of f . Then G(s) = b(s)�b(f(s)) � � � b(f `(jsj)�1(s))is a pseudorandom generator (with stret
h fun
tion `), where f i+1(x) def= f(f i(x)) and f0(x) def= xAs a 
on
rete example, 
onsider the permutation x 7! x2 mod N , where N is the produ
t of twoprimes ea
h 
ongruent to 3 (mod 4), and x is a quadrati
 residue modulo N . Then, we haveGN (s) = lsb(s) � lsb(s2 mod N) � � � lsb(s2`(jsj)�1 mod N), where lsb(x) is the least signi�
ant bit ofx (whi
h is a hard-
ore of the modular squaring fun
tion [2℄).Proof sket
h of Theorem 3.3: We use the fundamental fa
t that asserts that the following two
onditions are equivalent:1. The distribution X (in our 
ase fG(Un)gn2N) is pseudorandom (i.e., is 
omputationally in-distinguishable from a uniform distribution (on fU`(n)gn2N)).2. The distribution X is unpredi
table in polynomial-time; that is, no feasible algorithm, givena pre�x of the sequen
e, 
an guess its next bit with a non-negligible advantage over one half.Clearly, pseudorandomness implies polynomial-time unpredi
tability (i.e., polynomial-time pre-di
tability violates pseudorandomness). The 
onverse is shown using a hybrid argument, whi
hrefers to hybrids 
onsisting of a pre�x of X followed by truly random bits (i.e., a suÆx of the uni-form distribution). Thus, we fo
us on proving that G0(Un) is polynomial-time unpredi
table, whereG0(s) = b(f `(jsj)�1(s)) � � � b(f(s)) � b(s) is the reverse of G(s). Suppose towards the 
ontradi
tionthat, for some j < ` def= `(n), given the j-bit long pre�x of G0(Un) an algorithm A0 
an predi
t thej + 1st bit of G0(Un). That is, given b(f `�1(s)) � � � b(f `�j(s)), algorithm A0 predi
ts b(f t�(j+1)(s)),where s is uniformly distributed in f0; 1gn. Then, for x uniformly distributed in f0; 1gn, giveny = f(x) one 
an predi
t b(x) by invoking A0 on input b(f j�1(y)) � � � b(y) = b(f j(x)) � � � b(f(x)),whi
h in turn is polynomial-time 
omputable from y = f(x). In the analysis, we use the hypothesisthat f indu
es a permutation over f0; 1gn, and asso
iate x with f `�(j+1)(s).We 
on
lude this se
tion by mentioning that pseudorandom generators 
an be 
onstru
ted fromany one-way fun
tions (rather than merely from one-way permutations, as above). On the otherhand, the existen
e of one-way fun
tions is a ne
essary 
ondition to the existen
e of pseudorandomgenerators. That is:Theorem 3.4 [87℄: Pseudorandom generators exist if and only if one-way fun
tions exist.3.3 Pseudorandom Fun
tionsPseudorandom generators provide a way to eÆ
iently generate long pseudorandom sequen
es fromshort random seeds. Pseudorandom fun
tions, introdu
ed and 
onstru
ted by Goldrei
h, Gold-wasser and Mi
ali [70℄, are even more powerful: they provide eÆ
ient dire
t a

ess to bits of a hugepseudorandom sequen
e (whi
h is not feasible to s
an bit-by-bit). More pre
isely, a pseudorandomfun
tion is an eÆ
ient (deterministi
) algorithm that given an n-bit seed, s, and an n-bit argument,x, returns an n-bit string, denoted fs(x), so that it is infeasible to distinguish the responses of fs, fora uniformly 
hosen s 2 f0; 1gn, from the responses of a truly random fun
tion F : f0; 1gn ! f0; 1gn.That is, the (feasible) testing pro
edure is given ora
le a

ess to the fun
tion (but not its expli
itdes
ription), and 
annot distinguish the 
ase it is given ora
le a

ess to a pseudorandom fun
tionfrom the 
ase it is given ora
le a

ess to a truly random fun
tion.12



One key feature of the above de�nition is that pseudorandom fun
tions 
an be generated andshared by merely generating and sharing their seed; that is, a \random looking" fun
tion fs :f0; 1gn ! f0; 1gn, is determined by its n-bit seed s. Parties wishing to share a \random looking"fun
tion fs (determining 2n-many values), merely need to generate and share among themselves then-bit seed s. (For example, one party may randomly sele
t the seed s, and 
ommuni
ate it, via ase
ure 
hannel, to all other parties.) Sharing a pseudorandom fun
tion allows parties to determine(by themselves and without any further 
ommuni
ation) random-looking values depending on their
urrent views of the environment (whi
h need not be known a priori). To appre
iate the potentialof this tool, one should realize that sharing a pseudorandom fun
tion is essentially as good asbeing able to agree, on the 
y, on the asso
iation of random values to (on-line) given values, wherethe latter are taken from a huge set of possible values. We stress that this agreement is a
hievedwithout 
ommuni
ation and syn
hronization: Whenever some party needs to asso
iate a randomvalue to a given value, v 2 f0; 1gn, it will asso
iate v the same random value rv 2 f0; 1gn (bysetting rv = fs(v), where fs is a pseudorandom fun
tion agreed upon beforehand).Theorem 3.5 ([70℄, see [67, Se
. 3.6.2℄): Pseudorandom fun
tions 
an be 
onstru
ted using anypseudorandom generator.Proof sket
h: Let G be a pseudorandom generator that stret
hes its seed by a fa
tor of two (i.e.,`(n) = 2n), and let G0(s) (resp., G1(s)) denote the �rst (resp., last) jsj bits in G(s). De�neG�jsj����2�1(s) def= G�jsj(� � �G�2(G�1(s)) � � �)We 
laim that the fun
tion ensemble ffs : f0; 1gjsj ! f0; 1gjsjgs2f0;1g� , where fs(x) def= Gx(s), ispseudorandom. The proof uses the hybrid te
hnique: The ith hybrid, Hin, is a fun
tion ensemble
onsisting of 22i�n fun
tions f0; 1gn ! f0; 1gn, ea
h de�ned by 2i random n-bit strings, denotedhs�i�2f0;1gi . The value of su
h fun
tion at x = ��, with j�j = i, is G�(s�). The extreme hybrids
orrespond to our indistinguishability 
laim (i.e., H0n � fUn and Hnn is a truly random fun
tion),and neighboring hybrids 
orrespond to our indistinguishability hypothesis (spe
i�
ally, to the in-distinguishability of G(Un) and U2n under multiple samples).Appli
ations and a generi
 methodology. Pseudorandom fun
tions are a very useful 
ryp-tographi
 tool: One may �rst design a 
ryptographi
 s
heme assuming that the legitimate usershave bla
k-box a

ess to a random fun
tion, and next implement the random fun
tion using apseudorandom fun
tion. The usefulness of this tool stems from the fa
t that having (bla
k-box)a

ess to a random fun
tion gives the legitimate parties a potential advantage over the adversary(whi
h does not have free a

ess to this fun
tion).4 The se
urity of the resulting implementation(whi
h uses a pseudorandom fun
tion) is established in two steps: First one proves the se
urity ofan idealized s
heme that uses a truly random fun
tion, and next one argues that the a
tual imple-mentation (whi
h uses a pseudorandom fun
tion) is se
ure (as otherwise one obtains an eÆ
ientora
le ma
hine that distinguishes a pseudorandom fun
tion from a truly random one).4The aforementioned methodology is sound provided that the adversary does not get the des
ription of thepseudorandom fun
tion in use, but rather only (possibly limited) ora
le a

ess to it. This is di�erent from theso-
alled Random Ora
le Methodology formulated in [22℄ and 
riti
ized in [39℄.
13



4 Zero-KnowledgeZero-knowledge proofs, introdu
ed by Goldwasser, Mi
ali and Ra
ko� [83℄, provide a powerfultool for the design of 
ryptographi
 proto
ols. Loosely speaking, zero-knowledge proofs are proofsthat yield nothing beyond the validity of the assertion. That is, a veri�er obtaining su
h a proofonly gains 
onvi
tion in the validity of the assertion (as if it was told by a trusted party thatthe assertion holds). This is formulated by saying that anything that is feasibly 
omputable froma zero-knowledge proof is also feasibly 
omputable from the (valid) assertion itself. The latterformulation follows the simulation paradigm, whi
h is dis
ussed next.
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Figure 3: Zero-knowledge proofs { an illustration.4.1 The Simulation ParadigmA key question regarding the modeling of se
urity 
on
erns is how to express the intuitive require-ment that an adversary \gains nothing substantial" by deviating from the pres
ribed behavior ofan honest user. Our approa
h is that the adversary gains nothing if whatever it 
an obtain by unre-stri
ted adversarial behavior 
an also be obtained within essentially the same 
omputational e�ortby a benign behavior. The de�nition of the \benign behavior" 
aptures what we want to a
hievein terms of se
urity, and is spe
i�
 to the se
urity 
on
ern to be addressed. For example, in theprevious paragraph, we said that a proof is zero-knowledge if it yields nothing beyond the validityof the assertion (i.e., the benign behavior is any 
omputation that is based (only) on the assertionitself, while assuming that the latter is valid). Other examples are dis
ussed in Se
tions 5.1 and 7.1.A notable property of the aforementioned simulation paradigm, as well as of the entire approa
hsurveyed here, is that this approa
h is overly liberal with respe
t to its view of the abilities ofthe adversary as well as to what might 
onstitute a gain for the adversary. Thus, the approa
hmay be 
onsidered overly 
autious, be
ause it prohibits also \non-harmful" gains of some \farfet
hed" adversaries. We warn against this impression. Firstly, there is nothing more dangerous in
ryptography than to 
onsider \reasonable" adversaries (a notion whi
h is almost a 
ontradi
tionin terms): typi
ally, the adversaries will try exa
tly what the system designer has dis
arded as \farfet
hed". Se
ondly, it seems impossible to 
ome up with de�nitions of se
urity that distinguish\breaking the s
heme in a harmful way" from \breaking it in a non-harmful way": what is harmfulis appli
ation-dependent, whereas a good de�nition of se
urity ought to be appli
ation-independent(as otherwise using the s
heme in any new appli
ation will require a full re-evaluation of its se
urity).14



Furthermore, even with respe
t to a spe
i�
 appli
ation, it is typi
ally very hard to 
lassify the setof \harmful breakings".4.2 The A
tual De�nition A proof is whatever 
onvin
es me.Shimon Even (1935{2004)Before de�ning zero-knowledge proofs, we have to de�ne proofs. The standard notion of stati
 (i.e.,non-intera
tive) proofs will not do (be
ause stati
 zero-knowledge proofs exist only for sets thatare easy to de
ide (i.e, are in BPP) [77℄, whereas we are interested in zero-knowledge proofs forarbitrary NP-sets). Instead, we use the notion of an intera
tive proof (introdu
ed exa
tly for thatreason in [83℄). That is, here a proof is a (multi-round) randomized proto
ol for two parties, 
alledveri�er and prover, in whi
h the prover wishes to 
onvin
e the veri�er of the validity of a givenassertion. Su
h an intera
tive proof should allow the prover to 
onvin
e the veri�er of the validityof any true assertion, whereas no prover strategy may fool the veri�er to a

ept false assertions.Both the above 
ompleteness and soundness 
onditions should hold with high probability (i.e., anegligible error probability is allowed). The pres
ribed veri�er strategy is required to be eÆ
ient.No su
h requirement is made with respe
t to the prover strategy; yet we will be interested in\relatively eÆ
ient" prover strategies (see below).Zero-knowledge is a property of some prover-strategies. More generally, we 
onsider intera
-tive ma
hines that yield no knowledge while intera
ting with an arbitrary feasible adversary on a
ommon input taken from a predetermined set (in our 
ase the set of valid assertions). A strategyA is zero-knowledge on (inputs from) the set S if, for every feasible strategy B�, there exists afeasible 
omputation C� su
h that the following two probability ensembles are 
omputationallyindistinguishable5:1. f(A;B�)(x)gx2S def= the output of B� after intera
ting with A on 
ommon input x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.We stress that the �rst ensemble represents an a
tual exe
ution of an intera
tive proto
ol, whereasthe se
ond ensemble represents the 
omputation of a stand-alone pro
edure (
alled the \simulator"),whi
h does not intera
t with anybody.The above de�nition does not a

ount for auxiliary information that an adversary may haveprior to entering the intera
tion. A

ounting for su
h auxiliary information is essential for usingzero-knowledge proofs as subproto
ols inside larger proto
ols (see [73, 77℄). This is taken 
are ofby a more stri
t notion 
alled auxiliary-input zero-knowledge.5Here we refer to a natural extension of De�nition 3.1: Rather than referring to ensembles indexed by N , we referto ensembles indexed by a set S � f0; 1g�. Typi
ally, for an ensemble fZ�g�2S, it holds that Z� ranges over stringsof length that is polynomially-related to the length of �. We say that fX�g�2S and fY�g�2S are 
omputationallyindistinguishable if for every probabilisti
 polynomial-time algorithm D every polynomial p, and all suÆ
iently long� 2 S, jPr[D(�;X�)=1℄� Pr[D(�; Y�)=1℄j < 1p(j�j)where the probabilities are taken over the relevant distribution (i.e., either X� or Y�) and over the internal 
oin tossesof algorithm D. 15



De�nition 4.1 (zero-knowledge [83℄, revisited [77℄): A strategy A is auxiliary-input zero-knowledgeon inputs from S if for every probabilisti
 polynomial-time strategy B� and every polynomial p thereexists a probabilisti
 polynomial-time algorithm C� su
h that the following two probability ensemblesare 
omputationally indistinguishable:1. f(A;B�(z))(x)gx2S ; z2f0;1gp(jxj) def= the output of B� when having auxiliary-input z and inter-a
ting with A on 
ommon input x 2 S; and2. fC�(x; z)gx2S ; z2f0;1gp(jxj) def= the output of C� on inputs x 2 S and z 2 f0; 1gp(jxj).Almost all known zero-knowledge proofs are in fa
t auxiliary-input zero-knowledge. As hintedabove, auxiliary-input zero-knowledge is preserved under sequential 
omposition [77℄. A simulatorfor the multiple-session proto
ol 
an be 
onstru
ted by iteratively invoking the single-session simu-lator that refers to the residual strategy of the adversarial veri�er in the given session (while feedingthis simulator with the trans
ript of previous sessions). Indeed, the residual single-session veri�ergets the trans
ript of the previous sessions as part of its auxilary input (i.e., z in De�nition 4.1).(For details, see [67, Se
. 4.3.4℄.)4.3 Zero-Knowledge Proofs for all NP-assertions and their appli
ationsA question avoided so far is whether zero-knowledge proofs exist at all. Clearly, every set in P (orrather in BPP) has a \trivial" zero-knowledge proof (in whi
h the veri�er determines membershipby itself); however, what we seek is zero-knowledge proofs for statements that the veri�er 
annotde
ide by itself.Assuming the existen
e of 
ommitment s
hemes, whi
h in turn exist if one-way fun
tions ex-ist [102, 87℄, there exist (auxiliary-input) zero-knowledge proofs of membership in any NP-set (i.e.,sets having eÆ
iently veri�able stati
 proofs of membership). These zero-knowledge proofs, �rst
onstru
ted by Goldrei
h, Mi
ali and Wigderson [75℄ (and depi
ted in Figure 4), have the followingimportant property: the pres
ribed prover strategy is eÆ
ient, provided it is given as auxiliary-inputan NP-witness to the assertion (to be proven).6 That is:Theorem 4.2 ([75℄, using [87, 102℄): If one-way fun
tions exist then every set S 2 NP has azero-knowledge intera
tive proof. Furthermore, the pres
ribed prover strategy 
an be implemented inprobabilisti
 polynomial-time, provided it is given as auxiliary-input an NP-witness for membershipof the 
ommon input in S.Theorem 4.2 makes zero-knowledge a very powerful tool in the design of 
ryptographi
 s
hemesand proto
ols (see below). We 
omment that the intra
tability assumption used in Theorem 4.2seems essential; see [107, 125℄.Analyzing the proto
ol of Figure 4. Let us 
onsider a single exe
ution of the main loop (andrely on the preservation of zero-knowledge under sequential 
omposition). Clearly, the pres
ribedprover is implemented in probabilisti
 polynomial-time, and always 
onvin
es the veri�er (providedthat it is given a valid 3-
oloring of the 
ommon input graph). In 
ase the graph is not 3-
olorable6The auxiliary-input given to the pres
ribed prover (in order to allow for an eÆ
ient implementation of its strategy)is not to be 
onfused with the auxiliary-input that is given to mali
ious veri�ers (in the de�nition of auxiliary-inputzero-knowledge). The former is typi
ally an NP-witness for the 
ommon input, whi
h is available to the user thatinvokes the prover strategy (
f. the generi
 appli
ation dis
ussed below). In 
ontrast, the auxiliary-input that is givento mali
ious veri�ers models arbitrary possible partial information that may be available to the adversary.16



Commitment s
hemes are digital analogies of sealed envelopes (or, better, lo
ked boxes). Sending a 
om-mitment means sending a string that binds the sender to a unique value without revealing this value to there
eiver (as when getting a lo
ked box). De
ommitting to the value means sending some auxiliary informationthat allows to read the uniquely 
ommitted value (as when sending the key to the lo
k).Common Input: A graph G(V;E). Suppose that V � f1; :::; ng for n def= jV j.Auxiliary Input (to the prover): A 3-
oloring � : V ! f1; 2; 3g.The following 4 steps are repeated t � jEj many times so to obtain soundness error exp(�t).Prover's �rst step (P1): Sele
t uniformly a permutation � over f1; 2; 3g. For i = 1 to n, send the veri�era 
ommitment to the value �(�(i)).Veri�er's �rst step (V1): Sele
t uniformly an edge e 2 E and send it to the prover.Prover's se
ond step (P2): Upon re
eiving e = (i; j) 2 E, de
ommit to the i-th and j-th values sent inStep (P1).Veri�er's se
ond step (V2): Che
k whether or not the de
ommitted values are di�erent elements off1; 2; 3g and whether or not they mat
h the 
ommitments re
eived in Step (P1).Figure 4: The zero-knowledge proof of Graph 3-Colorability (of [75℄). Zero-knowledge proofsfor other NP-sets 
an be obtained using the standard redu
tions.then, no matter how the prover behaves, the veri�er will reje
t with probability at least 1=jEj(be
ause at least one of the edges must be improperly 
olored by the prover). We stress that theveri�er sele
ts uniformly whi
h edge to inspe
t after the prover has 
ommitted to the 
olors of allverti
es. Thus, Figure 4 depi
ts an intera
tive proof system for Graph 3-Colorability (with errorprobability exp(�t)). As the reader might have guessed, the zero-knowledge property is the hardestto establish, and we will 
on�ne ourselves to presenting an adequate simulator (whi
h we hope will
onvin
e the reader without a detailed analysis). We start with three simplifying 
onventions (whi
hare useful in general):1. Without loss of generality, we may assume that the 
heating veri�er strategy is implementedby a deterministi
 polynomial-time algorithm with an auxiliary input. This is justi�ed by�xing any out
ome of the veri�er's 
oins (as part of the auxiliary input), and observing thatour (uniform) simulation of the various (residual) deterministi
 strategies yields a simulationof the original probabilisti
 strategy.2. Without loss of generality, it suÆ
es to 
onsider 
heating veri�ers that (only) output theirview of the intera
tion (i.e., their input, 
oin tosses, and the messages they re
eived). This isjusti�ed by observing that the output of the original veri�er 
an be 
omputed by an algorithmof 
omparable 
omplexity that is given the veri�er's view of the intera
tion. Thus, it suÆ
esto simulate the view of that 
heating veri�ers have of the real intera
tion.3. Without loss of generality, it suÆ
es to 
onstru
t a \weak simulator" that produ
es outputwith some noti
eable probability. This is the 
ase be
ause, by repeatedly invoking this weaksimulator (polynomially) many times, we may obtain a simulator that fails to produ
e anoutput with negligible probability, whereas the latter yields a simulator that never fails (asrequired). 17



Our simulator starts by sele
ting uniformly and independently a random 
olor (i.e., element off1; 2; 3g) for ea
h vertex, and feeding the veri�er strategy with random 
ommitments to theserandom 
olors. Indeed, the simulator feeds the veri�er with a distribution that is very di�erentfrom the distribution that the veri�er sees in a real intera
tion with the prover. However, being
omputationally-restri
ted the veri�er 
annot tell these distributions apart (or else we obtain a
ontradi
tion to the se
urity of the 
ommitment s
heme in use). Now, if the veri�er asks to inspe
tan edge that is properly 
olored then the simulator performs the proper de
ommitment a
tion andoutputs the trans
ript of this intera
tion. Otherwise, the simulator halts pro
laiming failure. We
laim that failure o

urs with probability approximately 1=3 (or else we obtain a 
ontradi
tion tothe se
urity of the 
ommitment s
heme in use). Furthermore, based on the same hypothesis (butvia a more 
omplex proof (
f. [67, Se
. 4.4.2.3℄)), 
onditioned on not failing, the output of thesimulator is 
omputationally indistinguishable from the veri�er's view of the real intera
tion.Commitment s
hemes. Loosely speaking, 
ommitment s
hemes are two-stage (two-party) pro-to
ols allowing for one party to 
ommit itself (at the �rst stage) to a value while keeping thevalue se
ret. In a (se
ond) latter stage, the 
ommitment is \opened" and it is guaranteed that the\opening" 
an yield only a single value determined in the 
ommitting phase. Thus, the (�rst stageof the) 
ommitment s
heme is both binding and hiding. A simple (uni-dire
tional 
ommuni
ation)
ommitment s
heme 
an be 
onstru
ted based on any one-way 1-1 fun
tion f (with a 
orrespondinghard-
ore b). To 
ommit to a bit �, the sender uniformly sele
ts s 2 f0; 1gn, and sends the pair(f(s); b(s)� �). Note that this is both binding and hiding. An alternative 
onstru
tion, whi
h 
anbe based on any one-way fun
tion, uses a pseudorandom generator G that stret
hes its seed by afa
tor of three (
f. Theorem 3.4). A 
ommitment is established, via two-way 
ommuni
ation, asfollows (
f. [102℄): The re
eiver sele
ts uniformly r 2 f0; 1g3n and sends it to the sender, whi
hsele
ts uniformly s 2 f0; 1gn and sends r �G(s) if it wishes to 
ommit to the value one and G(s)if it wishes to 
ommit to zero. To see that this is binding, observe that there are at most 22nvalues r that satisfy G(s0) = r �G(s1) for some pair (s0; s1). The hiding property follows by thepseudorandomness of G.Zero-knowledge proofs for other NP-sets. By using the standard Karp-redu
tions to 3-Colorability, the proto
ol of Figure 4 
an be used for 
onstru
ting zero-knowledge proofs for anyset in NP . We 
omment that this is probably the �rst time that an NP-
ompleteness result wasused in a \positive" way (i.e., in order to 
onstru
t something rather than in order to derive ahardness result).7EÆ
ien
y 
onsiderations. The proto
ol in Figure 4 
alls for invoking some 
onstant-roundproto
ol for a non-
onstant number of times (and its analysis relies on the preservation of zero-knowledge under sequential 
omposition). At �rst glan
e, it seems that one 
an derive a 
onstant-round zero-knowledge proof system (of negligible soundness error) by performing these invo
ationsin parallel (rather than sequentially). Unfortunately, as demonstrated in [73℄, it is not 
lear thatthe resulting intera
tive proof is zero-knowledge. Still, under standard intra
tability assumptions(e.g., the intra
tability of fa
toring), 
onstant-round zero-knowledge proofs (of negligible soundnesserror) do exist for every set inNP (
f. [72℄). We 
omment that the number of rounds in a proto
ol is7Subsequent positive uses of 
ompleteness results have appeared in the 
ontext of intera
tive proofs [97, 121℄,probabilisti
ally 
he
kable proofs [5, 57, 4, 3℄, \hardness versus randomness trade-o�s" [6℄, and statisti
al zero-knowledge [119℄. 18




ommonly 
onsidered the most important eÆ
ien
y 
riteria (or 
omplexity measure), and typi
allyone desires to have it be a 
onstant.A generi
 appli
ation. As mentioned above, Theorem 4.2 makes zero-knowledge a very powerfultool in the design of 
ryptographi
 s
hemes and proto
ols. This wide appli
ability is due to twoimportant aspe
ts regarding Theorem 4.2: Firstly, Theorem 4.2 provides a zero-knowledge proof forevery NP-set, and se
ondly the pres
ribed prover 
an be implemented in probabilisti
 polynomial-time when given an adequate NP-witness. We now turn to a typi
al appli
ation of zero-knowledgeproofs. In a typi
al 
ryptographi
 setting, a user U has a se
ret and is supposed to take some a
tiondepending on its se
ret. The question is how 
an other users verify that U indeed took the 
orre
ta
tion (as determined by U 's se
ret and publi
ly known information). Indeed, if U dis
loses itsse
ret then anybody 
an verify that U took the 
orre
t a
tion. However, U does not want to revealits se
ret. Using zero-knowledge proofs we 
an satisfy both 
on
i
ting requirements (i.e., havingother users verify that U took the 
orre
t a
tion without violating U 's interest in not revealingits se
ret). That is, U 
an prove in zero-knowledge that it took the 
orre
t a
tion. Note that U 's
laim to having taken the 
orre
t a
tion is an NP-assertion (sin
e U 's legal a
tion is determinedas a polynomial-time fun
tion of its se
ret and the publi
 information), and that U has an NP-witness to its validity (i.e., the se
ret is an NP-witness to the 
laim that the a
tion �ts the publi
information). Thus, by Theorem 4.2, it is possible for U to eÆ
iently prove the 
orre
tness of itsa
tion without yielding anything about its se
ret. Consequently, it is fair to ask U to prove (inzero-knowledge) that it behaves properly, and so to for
e U to behave properly. Indeed, \for
ingproper behavior" is the 
anoni
al appli
ation of zero-knowledge proofs (see [76, 65℄).This paradigm (i.e., \for
ing proper behavior" via zero-knowledge proofs), whi
h in turn isbased on the fa
t that zero-knowledge proofs 
an be 
onstru
ted for any NP-set, has been utilizedin numerous di�erent settings. Indeed, this paradigm is the basis for the wide appli
ability ofzero-knowledge proto
ols in Cryptography.Zero-knowledge proofs for all IP. For the sake of elegan
y, we mention that under the sameassumption used in 
ase of NP, it holds that any set that has an intera
tive proof also has azero-knowledge intera
tive proof (
f. [90, 25℄).4.4 Variants and IssuesA fundamental variant on the notion of intera
tive proofs was introdu
ed by Brassard, Chaum andCr�epeau [33℄, who relaxed the soundness 
ondition so that it only refers to feasible ways of tryingto fool the veri�er (rather than to all possible ways). Spe
i�
ally, the soundness 
ondition wasrepla
ed by a 
omputational soundness 
ondition that asserts that it is infeasible to fool the veri�erinto a

epting false statements. We warn that although the 
omputational-soundness error 
analways be redu
ed by sequential repetitions, it is not true that this error 
an always be redu
edby parallel repetitions (
f. [21℄). Proto
ols that satisfy the 
omputational-soundness 
ondition are
alled arguments.8 We mention that argument systems may be more eÆ
ient than intera
tive proofs(see [92℄ vs. [71, 79℄) as well as provide stronger zero-knowledge guarantees (see [33℄ vs. [61, 1℄).8A related notion (not dis
ussed here) is that of CS-proofs, introdu
ed by Mi
ali [100℄.
19



4.4.1 De�nitional variationsWe 
onsider several de�nitional issues regarding the notion of zero-knowledge (as de�ned in De�-nition 4.1).Universal and bla
k-box simulation. Further strengthening of De�nition 4.1 is obtained byrequiring the existen
e of a universal simulator, denoted C, that is given the program of the veri�er(i.e., B�) as an auxiliary-input; that is, in terms of De�nition 4.1, one should repla
e C�(x; z) byC(x; z; hB�i), where hB�i denotes the des
ription of the program of B� (whi
h may depend on xand on z). That is, we e�e
tively restri
t the simulation by requiring that it be a uniform (feasible)fun
tion of the veri�er's program (rather than arbitrarily depend on it). This restri
tion is verynatural, be
ause it seems hard to envision an alternative way of establishing the zero-knowledgeproperty of a given proto
ol. Taking another step, one may argue that sin
e it seems infeasibleto reverse-engineer programs, the simulator may as well just use the veri�er strategy as an ora
le(or as a \bla
k-box"). This reasoning gave rise to the notion of bla
k-box simulation, whi
h wasintrodu
ed and advo
ated in [73℄ and further studied in numerous works (see, e.g., [41℄). Thebelief was that impossibility results regarding bla
k-box simulation represent inherent limitationsof zero-knowledge itself. However, this belief has been refuted re
ently by Barak [7℄. For furtherdis
ussion, see Se
tion 4.4.3.Honest veri�er versus general 
heating veri�er. De�nition 4.1 refers to all feasible veri�erstrategies, whi
h is most natural (in the 
ryptographi
 setting) be
ause zero-knowledge is sup-posed to 
apture the robustness of the prover under any feasible (i.e., adversarial) attempt to gainsomething by intera
ting with it. A weaker and still interesting notion of zero-knowledge refersto what 
an be gained by an \honest veri�er" (or rather a semi-honest veri�er)9 that intera
tswith the prover as dire
ted, with the ex
eption that it may maintain (and output) a re
ord of theentire intera
tion (i.e., even if dire
ted to erase all re
ords of the intera
tion). Although su
h aweaker notion is not satisfa
tory for standard 
ryptographi
 appli
ations, it yields a fas
inatingnotion from a 
on
eptual as well as a 
omplexity-theoreti
 point of view. Furthermore, as shownin [78, 125℄, every proof system that is zero-knowledge with respe
t to the honest-veri�er 
an betransformed into a standard zero-knowledge proof (without using intra
tability assumptions and in
ase of publi
-
oin proofs this is done without signi�
antly in
reasing the prover's 
omputationale�ort).Statisti
al versus Computational Zero-Knowledge. Re
all that De�nition 4.1 postulatesthat for every probability ensemble of one type (i.e., representing the veri�er's output after in-tera
tion with the prover) there exists a \similar" ensemble of a se
ond type (i.e., representingthe simulator's output). One key parameter is the interpretation of \similarity". Three interpreta-tions, yielding di�erent notions of zero-knowledge, have been 
ommonly 
onsidered in the literature(
f., [83, 61℄):1. Perfe
t Zero-Knowledge (PZK) requires that the two probability ensembles be identi
al.109The term \honest veri�er" is more appealing when 
onsidering an alternative (equivalent) formulation of Def-inition 4.1. In the alternative de�nition (see [67, Se
. 4.3.1.3℄), the simulator is \only" required to generate theveri�er's view of the real intera
tion, when the veri�er's view in
ludes its inputs, the out
ome of its 
oin tosses, andall messages it has re
eived.10The a
tual de�nition of PZK allows the simulator to fail (while outputting a spe
ial symbol) with negligibleprobability, and the output distribution of the simulator is 
onditioned on its not failing.20



2. Statisti
al Zero-Knowledge (SZK) requires that these probability ensembles be statisti
ally
lose (i.e., the variation distan
e between them is negligible).3. Computational (or rather general) Zero-Knowledge (CZK) requires that these probability en-sembles be 
omputationally indistinguishable.Indeed, Computational Zero-Knowledge (CZK) is the most liberal notion, and is the notion 
on-sidered in De�nition 4.1. We note that the 
lass SZK 
ontains several problems that are 
onsideredintra
table. The interested reader is referred to [124℄.Stri
t versus expe
ted probabilisti
 polynomial-time. So far, we did not spe
ify what weexa
tly mean by the term probabilisti
 polynomial-time. Two 
ommon interpretations are:1. Stri
t probabilisti
 polynomial-time. That is, there exist a (polynomial in the length of theinput) bound on the number of steps in ea
h possible run of the ma
hine, regardless of theout
ome of its 
oin tosses.2. Expe
ted probabilisti
 polynomial-time. The standard approa
h is to look at the running-time as a random variable and bound its expe
tation (by a polynomial in the length of theinput). As observed by Levin (
f. [67, Se
. 4.3.1.6℄ and [12℄), this de�nitional approa
his quite problemati
 (e.g., it is not model-independent and is not 
losed under algorithmi

omposition), and an alternative treatment of this random variable is preferable.Consequently, the notion of expe
ted polynomial-time raises a variety of 
on
eptual and te
hni
alproblems. For that reason, whenever possible, one should prefer the more robust (and restri
ted)notion of stri
t (probabilisti
) polynomial-time. Thus, with the ex
eption of 
onstant-round zero-knowledge proto
ols, whenever we talked of a probabilisti
 polynomial-time veri�er (resp., simula-tor) we mean one in the stri
t sense. In 
ontrast, with the ex
eption of [7, 12℄, all results regarding
onstant-round zero-knowledge proto
ols refer to a stri
t polynomial-time veri�er and an expe
tedpolynomial-time simulator, whi
h is indeed a small 
heat. For further dis
ussion, the reader isreferred to [12℄.4.4.2 Related notions: POK, NIZK, and WIWe brie
y dis
uss the notions of proofs of knowledge (POK), non-intera
tive zero-knowledge(NIZK), and witness indistinguishable proofs (WI).Proofs of Knowledge. Loosely speaking, proofs of knowledge (
f. [83℄) are intera
tive proofsin whi
h the prover asserts \knowledge" of some obje
t (e.g., a 3-
oloring of a graph), and notmerely its existen
e (e.g., the existen
e of a 3-
oloring of the graph, whi
h in turn is equivalentto the assertion that the graph is 3-
olorable). Before 
larifying what we mean by saying thata ma
hine knows something, we point out that \proofs of knowledge", and in parti
ular zero-knowledge \proofs of knowledge", have many appli
ations to the design of 
ryptographi
 s
hemesand 
ryptographi
 proto
ols. One famous appli
ation of zero-knowledge proofs of knowledge is tothe 
onstru
tion of identi�
ation s
hemes (e.g., the Fiat-Shamir s
heme [60℄).What does it mean to say that a ma
hine knows something? Any standard di
tionarysuggests several meanings for the verb to know, whi
h are typi
ally phrased with refer-en
e to awareness, a notion whi
h is 
ertainly inappli
able in the 
ontext of ma
hines.21



We must look for a behavioristi
 interpretation of the verb to know. Indeed, it is rea-sonable to link knowledge with ability to do something (e.g., the ability to write downwhatever one knows). Hen
e, we will say that a ma
hine knows a string � if it 
an out-put the string �. But this seems as total non-sense too: a ma
hine has a well de�nedoutput { either the output equals � or it does not. So what 
an be meant by sayingthat a ma
hine 
an do something? Loosely speaking, it may mean that the ma
hine
an be easily modi�ed so that it does whatever is 
laimed. More pre
isely, it may meanthat there exists an eÆ
ient ma
hine that, using the original ma
hine as a bla
k-box(or given its 
ode as an input), outputs whatever is 
laimed.So mu
h for de�ning the \knowledge of ma
hines". Yet, whatever a ma
hine knows or does notknow is \its own business". What 
an be of interest and referen
e to the outside is the question ofwhat 
an be dedu
ed about the knowledge of a ma
hine after intera
ting with it. Hen
e, we areinterested in proofs of knowledge (rather than in mere knowledge). For sake of simpli
ity let us
onsider a 
on
rete question: how 
an a ma
hine prove that it knows a 3-
oloring of a graph? Anobvious way is just to send the 3-
oloring to the veri�er. Yet, we 
laim that applying the proto
ol inFigure 4 (i.e., the zero-knowledge proof system for 3-Colorability) is an alternative way of provingknowledge of a 3-
oloring of the graph.Loosely speaking, we may say that an intera
tive ma
hine, V , 
onstitutes a veri�er for knowledgeof 3-
oloring if the probability that the veri�er is 
onvin
ed by a ma
hine P (to a

ept the graphG) is inversely proportional to the 
omplexity of extra
ting a 3-
oloring of G when using ma
hineP as a \bla
k box".11 Namely, the extra
tion of the 3-
oloring is done by an ora
le ma
hine, 
alledan extra
tor, that is given a

ess to a fun
tion spe
ifying the behavior P (i.e., the messages it sendsin response to parti
ular messages it may re
eive). We require that the (expe
ted) running time ofthe extra
tor, on input G and a

ess to an ora
le spe
ifying P 's messages, be inversely related (bya fa
tor polynomial in jGj) to the probability that P 
onvin
es V to a

ept G. In 
ase P always
onvin
es V to a

ept G, the extra
tor runs in expe
ted polynomial-time. The same holds in 
aseP 
onvin
es V to a

ept with noti
eable probability. (We stress that the latter spe
ial 
ases do notsuÆ
e for a satisfa
tory de�nition; see dis
ussion in [67, Se
. 4.7.1℄.)Non-Intera
tive Zero-Knowledge. The model of non-intera
tive zero-knowledge proof sys-tems, introdu
ed in [30℄, 
onsists of three entities: a prover, a veri�er and a uniformly sele
tedreferen
e string (whi
h 
an be thought of as being sele
ted by a trusted third party). Both veri-�er and prover 
an read the referen
e string, and ea
h 
an toss additional 
oins. The intera
tion
onsists of a single message sent from the prover to the veri�er, who then is left with the �nalde
ision (whether to a

ept or not). The (basi
) zero-knowledge requirement refers to a simula-tor that outputs pairs that should be 
omputationally indistinguishable from the distribution (ofpairs 
onsisting of a uniformly sele
ted referen
e string and a random prover message) seen in thereal model.12 Non-intera
tive zero-knowledge proof systems have numerous appli
ations (e.g., tothe 
onstru
tion of publi
-key en
ryption and signature s
hemes, where the referen
e string maybe in
orporated in the publi
-key). Several di�erent de�nitions of non-intera
tive zero-knowledgeproofs were 
onsidered in the literature.� In the basi
 de�nition, one 
onsiders proving a single assertion of a-priori bounded length,where this length may be smaller than the length of the referen
e string.11Indeed, one may 
onsider also non-bla
k-box extra
tors as done in [12℄.12Note that the veri�er does not e�e
t the distribution seen in the real model, and so the basi
 de�nition of zero-knowledge does not refer to it. The veri�er (or rather a pro
ess of adaptively sele
ting assertions to be proved) willbe referred to in the adaptive variants of the de�nition. 22



� A natural extension, required in many appli
ations, is the ability to prove multiple assertionsof varying length, where the total length of these assertions may ex
eed the length of thereferen
e string (as long as the total length is polynomial in the length of the referen
estring). This de�nition is sometimes referred to as the unbounded de�nition, be
ause thetotal length of the assertions to be proved is not a-priori bounded.� Other natural extensions refer to the preservation of se
urity (i.e., both soundness and zero-knowledge) when the assertions to be proved are sele
ted adaptivity (based on the referen
estring and possibly even based on previous proofs).� Finally, we mention the notion of simulation-soundness, whi
h is related to non-malleability.This extension, whi
h mixes the zero-knowledge and soundness 
onditions, refers to the sound-ness of proofs presented by an adversary after it obtains proofs of assertions of its own 
hoi
e(with respe
t to the same referen
e string). This notion is important in appli
ations of non-intera
tive zero-knowledge proofs to the 
onstru
tion of publi
-key en
ryption s
hemes se
ureagainst 
hosen 
iphertext atta
ks (see [68, Se
. 5.4.4.4℄).Constru
ting non-intera
tive zero-knowledge proofs seems more diÆ
ult than 
onstru
ting intera
-tive zero-knowledge proofs. Still, based on standard intra
tability assumptions (e.g., intra
tabilityof fa
toring), it is known how to 
onstru
t a non-intera
tive zero-knowledge proof (even in theadaptive and non-malleable sense) for any NP-set (
f. [58, 50℄).Witness Indistinguishability and the FLS-Te
hnique. The notion of witness indistinguisha-bility was suggested in [59℄ as a meaningful relaxation of zero-knowledge. Loosely speaking, for anyNP-relation R, a proof (or argument) system for the 
orresponding NP-set is 
alled witness indistin-guishable if no feasible veri�er may distinguish the 
ase in whi
h the prover uses one NP-witness tox (i.e., w1 su
h that (x;w1) 2 R) from the 
ase in whi
h the prover is using a di�erent NP-witnessto the same input x (i.e., w2 su
h that (x;w2) 2 R). Clearly, any zero-knowledge proto
ol is witnessindistinguishable, but the 
onverse does not ne
essarily hold. Furthermore, it seems that witnessindistinguishable proto
ols are easier to 
onstru
t than zero-knowledge ones. (We mention thatwitness indistinguishable proto
ols are 
losed under parallel 
omposition [59℄, whereas this doesnot hold in general for zero-knowledge proto
ols [73℄.)Feige, Lapidot and Shamir [58℄ introdu
ed a te
hnique for 
onstru
ting zero-knowledge proofs(and arguments) based on witness indistinguishable proofs (resp., arguments). Following is asket
hy des
ription of a spe
ial 
ase of their te
hnique, often referred to as the FLS-te
hnique.On 
ommon input x 2 L, where L is the NP-set de�ned by the witness relation R, the followingtwo steps are performed:1. The parties generate an instan
e x0 for an auxiliary NP-set L0, where L0 is de�ned by a witnessrelation R0. The generation proto
ol in use must satisfy the following two 
onditions:(a) If the veri�er follows its pres
ribed strategy then no matter whi
h strategy is used bythe prover, with high probability, the proto
ol's out
ome is a no-instan
e of L0.(b) Loosely speaking, there exists an eÆ
ient (non-intera
tive) pro
edure for produ
ing a(random) trans
ript of the generation proto
ol along with an NP-witness for the 
orre-sponding out
ome su
h that the produ
ed trans
ript is 
omputationally indistinguishablefrom the trans
ript of a real exe
ution of the proto
ol.23



For example, L0 may 
onsist of all possible out
omes of a pseudorandom generator thatstret
hes its seed by a fa
tor of two, and the generation proto
ol may 
onsist of the twoparties iteratively invoking a 
oin tossing proto
ol to obtain a random string. Note that theout
ome of a real exe
ution will be an almost uniformly distributed string, whi
h is mostlikely a no-instan
e of L0, whereas it is easy to generate a (random) trans
ript 
orrespondingto any desired out
ome (provided that the parties use an adequate 
oin tossing proto
ol).2. The parties exe
ute a witness indistinguishable proof for the NP-set L00 de�ned by the witnessrelation R00 = f((�; �0); (�; �0)) : (�; �) 2 R _ (�0; �0) 2 R0g. The sub-proto
ol is su
h thatthe 
orresponding prover 
an be implemented in probabilisti
 polynomial-time given any NP-witness for (�; �0) 2 L00. The sub-proto
ol is invoked on 
ommon input (x; x0), where x0 isthe out
ome of Step 1, and the sub-prover is invoked with the 
orresponding NP-witness asauxiliary input (i.e., with (w; �), where w is the NP-witness for x (given to the main prover)).The soundness of the above proto
ol follows by Property (a) of the generation proto
ol (i.e., withhigh probability x0 62 L0, and so x 2 L follows by the soundness of the proto
ol used in Step 2).To demonstrate the zero-knowledge property, we �rst generate a simulated trans
ript of Step 1(with out
ome x0 2 L0) along with an adequate NP-witness (i.e., w0 su
h that (x0; w0) 2 R0), andthen emulate Step 2 by feeding the sub-prover strategy with the NP-witness (�;w0). CombiningProperty (b) of the generation proto
ol and the witness indistinguishability property of the proto
olused in Step 2, the simulation is indistinguishable from the real exe
ution.4.4.3 Two basi
 problems: 
omposition and bla
k-box simulationWe 
on
lude this se
tion by 
onsidering two basi
 problems regarding zero-knowledge, whi
h a
tu-ally arise also with respe
t to the se
urity of other 
ryptographi
 primitives.Composition of proto
ols. The �rst question refers to the preservation of se
urity (i.e., zero-knowledge in our 
ase) under various types of 
omposition operations. We re
all the main fa
tsregarding sequential, parallel and 
on
urrent exe
ution of (arbitrary and/or spe
i�
) zero-knowledgeproto
ols:� As shown above, Zero-knowledge (with respe
t to auxiliary inputs) is 
losed under sequential
omposition.� In general, zero-knowledge is not 
losed under parallel 
omposition [73℄. Yet, some zero-knowledge proofs (for NP) preserve their se
urity when many 
opies are exe
uted in parallel.Furthermore, some of these proto
ol use a 
onstant number of rounds (
f. [69℄).� Some zero-knowledge proofs (for NP) preserve their se
urity when many 
opies are exe
uted
on
urrently, but su
h a result is not known for 
onstant-round proto
ols (
f. [114, 93, 109℄).The latter refers to a model allowing arbitrary s
heduling (or full asyn
roni
ity). In 
ontrast,
onstant-round zero-knowledge proofs (for NP) are known (
f. [55, 69℄) in a model of naturally-limited asyn
hronousness, where ea
h party holds a lo
al 
lo
k su
h that the relative 
lo
krates are bounded by an a-priori known 
onstant and the proto
ols may employ time-drivenoperations (i.e., time-out in-
oming messages and delay out-going messages).The study of zero-knowledge in the 
on
urrent setting provides a good test 
ase for the study of
on
urrent se
urity of general proto
ols. In parti
ular, the results in [73, 41℄ point out inherentlimitations of the \standard proof methods" (used to establish zero-knowledge) when applied to24



the 
on
urrent setting, where [73℄ treats the syn
hronous 
ase and [41℄ un
overs mu
h strongerlimitations for the asyn
hronous 
ase. By \standard proof methods" we refer to the establishmentof zero-knowledge via a single simulator that obtains only ora
le (or \bla
k-box") a

ess to theadversary pro
edure.Bla
k-box proofs of se
urity. The se
ond basi
 question regarding zero-knowledge refers tothe usage of the adversary's program within the proof of se
urity (i.e., demonstration of the zero-knowledge property). For 15 years, all known proofs of se
urity used the adversary's program asa bla
k-box (i.e., a universal simulator was presented using the adversary's program as an ora
le).Furthermore, it was believed that there is no advantage in having a

ess to the 
ode of the adver-sary's program (
f. [73℄). Consequently it was 
onje
tured that negative results regarding bla
k-boxsimulation represent an inherent limitation of zero-knowledge. This belief has been refuted re
entlyby Barak [7℄ who 
onstru
ted a zero-knowledge argument (for NP) that has important propertiesthat are una
hievable by bla
k-box simulation. For example, this zero-knowledge argument uses a
onstant number of rounds and preserves its se
urity when an a-priori �xed (polynomial) numberof 
opies are exe
uted 
on
urrently.13Barak's results (
f. [7℄ and also [8℄) 
all for the re-evaluation of many 
ommon beliefs. Most
on
retely, they say that results regarding bla
k-box simulators do not re
e
t inherent limitationsof zero-knowledge (but rather an inherent limitation of a natural way of demonstrating the zero-knowledge property). Most abstra
tly, they say that there are meaningful ways of using a programother than merely invoking it as a bla
k-box. Does this means that a method was found to \reverseengineer" programs or to \understand" them? We believe that the answer is negative. Barak [7℄is using the adversary's program in a signi�
ant way (i.e., more signi�
ant than just invoking it),without \understanding" it.The key idea underlying Barak's proto
ol [7℄ is to have the prover prove that either the originalNP-assertion is valid or that he (i.e., the prover) \knows the veri�er's residual strategy" (in the sensethat it 
an predi
t the next veri�er message). Indeed, in a real intera
tion (with the honest veri�er),it is infeasible for the prover to predi
t the next veri�er message, and so 
omputational-soundnessof the proto
ol follows. However, a simulator that is given the 
ode of the veri�er's strategy (andnot merely ora
le a

ess to that 
ode), 
an produ
e a valid proof of the disjun
tion by properlyexe
uting the sub-proto
ol using its knowledge of an NP-witness for the se
ond disjun
tive. Thesimulation is 
omputationally indistinguishable from the real exe
ution, provided that one 
annotdistinguish an exe
ution of the sub-proto
ol in whi
h one NP-witness (i.e., an NP-witness for theoriginal assertion) is used from an exe
ution in whi
h the se
ond NP-witness (i.e., an NP-witnessfor the auxiliary assertion) is used. That is, the sub-proto
ol should be a witness indistinguishableargument system, and the entire 
onstru
tion uses the FLS te
hnique (des
ribed in Se
tion 4.4.2).We warn the reader that the a
tual implementation of the above idea requires over
oming severalte
hni
al diÆ
ulties (
f. [7, 10℄).
13This result falls short of a
hieving a fully 
on
urrent zero-knowledge argument, be
ause the number of 
on
urrent
opies must be �xed before the proto
ol is presented. Spe
i�
ally, the proto
ol uses messages that are longer thanthe allowed number of 
on
urrent 
opies. However, even preservation of se
urity under an a priori bounded numberof exe
utions goes beyond the impossibility results of [73, 41℄ (whi
h refers to bla
k-box simulations).25



Part IIBasi
 Appli
ationsEn
ryption and signature s
hemes are the most basi
 appli
ations of Cryptography. Their main util-ity is in providing se
ret and reliable 
ommuni
ation over inse
ure 
ommuni
ation media. Looselyspeaking, en
ryption s
hemes are used to ensure the se
re
y (or priva
y) of the a
tual informationbeing 
ommuni
ated, whereas signature s
hemes are used to ensure its reliability (or authenti
ity).In this part we survey these basi
 appli
ations as well as the 
onstru
tion of general se
ure 
ryp-tographi
 proto
ols. For more details regarding the 
ontents of the 
urrent part, see our re
enttextbook [68℄.5 En
ryption S
hemesThe problem of providing se
ret 
ommuni
ation over inse
ure media is the traditional and mostbasi
 problem of 
ryptography. The setting of this problem 
onsists of two parties 
ommuni
atingthrough a 
hannel that is possibly tapped by an adversary. The parties wish to ex
hange informa-tion with ea
h other, but keep the \wire-tapper" as ignorant as possible regarding the 
ontents ofthis information. The 
anoni
al solution to the above problem is obtained by the use of en
ryptions
hemes. Loosely speaking, an en
ryption s
heme is a proto
ol allowing these parties to 
ommu-ni
ate se
retly with ea
h other. Typi
ally, the en
ryption s
heme 
onsists of a pair of algorithms.One algorithm, 
alled en
ryption, is applied by the sender (i.e., the party sending a message), whilethe other algorithm, 
alled de
ryption, is applied by the re
eiver. Hen
e, in order to send a message,the sender �rst applies the en
ryption algorithm to the message, and sends the result, 
alled the
iphertext, over the 
hannel. Upon re
eiving a 
iphertext, the other party (i.e., the re
eiver) appliesthe de
ryption algorithm to it, and retrieves the original message (
alled the plaintext).In order for the above s
heme to provide se
ret 
ommuni
ation, the 
ommuni
ating parties (atleast the re
eiver) must know something that is not known to the wire-tapper. (Otherwise, thewire-tapper 
an de
rypt the 
iphertext exa
tly as done by the re
eiver.) This extra knowledge maytake the form of the de
ryption algorithm itself, or some parameters and/or auxiliary inputs usedby the de
ryption algorithm. We 
all this extra knowledge the de
ryption-key. Note that, withoutloss of generality, we may assume that the de
ryption algorithm is known to the wire-tapper, andthat the de
ryption algorithm operates on two inputs: a 
iphertext and a de
ryption-key. We stressthat the existen
e of a se
ret key, not known to the wire-tapper, is merely a ne
essary 
ondition forse
ret 
ommuni
ation. The above des
ription impli
itly presupposes the existen
e of an eÆ
ientalgorithm for generating (random) keys.Evaluating the \se
urity" of an en
ryption s
heme is a very tri
ky business. A preliminary taskis to understand what is \se
urity" (i.e., to properly de�ne what is meant by this intuitive term).Two approa
hes to de�ning se
urity are known. The �rst (\
lassi
") approa
h, introdu
ed byShannon [122℄, is information theoreti
. It is 
on
erned with the \information" about the plaintextthat is \present" in the 
iphertext. Loosely speaking, if the 
iphertext 
ontains information aboutthe plaintext then the en
ryption s
heme is 
onsidered inse
ure. It has been shown that su
h high(i.e., \perfe
t") level of se
urity 
an be a
hieved only if the key in use is at least as long as the totalamount of information sent via the en
ryption s
heme [122℄. This fa
t (i.e., that the key has to belonger than the information ex
hanged using it) is indeed a drasti
 limitation on the appli
abilityof su
h (perfe
tly-se
ure) en
ryption s
hemes.The se
ond (\modern") approa
h, followed in the 
urrent text, is based on 
omputational 
om-26



plexity. This approa
h is based on the thesis that it does not matter whether the 
iphertext 
ontainsinformation about the plaintext, but rather whether this information 
an be eÆ
iently extra
ted.In other words, instead of asking whether it is possible for the wire-tapper to extra
t spe
i�
 infor-mation, we ask whether it is feasible for the wire-tapper to extra
t this information. It turns outthat the new (i.e., \
omputational 
omplexity") approa
h 
an o�er se
urity even when the key ismu
h shorter than the total length of the messages sent via the en
ryption s
heme.
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The key-pair (e; d) is generated by the re
eiver, who posts the en
ryption-key e on apubli
 media, while keeping the de
ryption-key d se
ret.Figure 5: Publi
-key en
ryption s
hemes { an illustration.The 
omputational 
omplexity approa
h enables the introdu
tion of 
on
epts and primitivesthat 
annot exist under the information theoreti
 approa
h. A typi
al example is the 
on
ept ofpubli
-key en
ryption s
hemes, introdu
ed by DiÆe and Hellman [51℄. Re
all that in the abovedis
ussion we 
on
entrated on the de
ryption algorithm and its key. It 
an be shown that theen
ryption algorithm must get, in addition to the message, an auxiliary input that depends on thede
ryption-key. This auxiliary input is 
alled the en
ryption-key. Traditional en
ryption s
hemes,and in parti
ular all the en
ryption s
hemes used in the millennia until the 1980's, operate withan en
ryption-key that equals the de
ryption-key. Hen
e, the wire-tapper in this s
hemes mustbe ignorant of the en
ryption-key, and 
onsequently the key distribution problem arises; that is,how 
an two parties wishing to 
ommuni
ate over an inse
ure 
hannel agree on a se
ret en
ryp-tion/de
ryption key. (The traditional solution is to ex
hange the key through an alternative 
hannelthat is se
ure though (mu
h) more expensive to use.) The 
omputational 
omplexity approa
h al-lows the introdu
tion of en
ryption s
hemes in whi
h the en
ryption-key may be given to thewire-tapper without 
ompromising the se
urity of the s
heme. Clearly, the de
ryption-key in su
hs
hemes is di�erent and furthermore infeasible to 
ompute from the en
ryption-key. Su
h en
ryp-tion s
hemes, 
alled publi
-key s
hemes, have the advantage of trivially resolving the key distributionproblem (be
ause the en
ryption-key 
an be publi
ized). That is, on
e some Party X generates apair of keys and publi
izes the en
ryption-key, any party 
an send en
rypted messages to Party Xso that Party X 
an retrieve the a
tual information (i.e., the plaintext), whereas nobody else 
anlearn anything about the plaintext.In 
ontrast to publi
-key s
hemes, traditional en
ryption s
heme in whi
h the en
ryption-keyequals the des
ription-key are 
alled private-key s
hemes, be
ause in these s
hemes the en
ryption-27
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The key K is known to both re
eiver and sender, but is unknown to the adversary.For example, the re
eiver may generate K at random and pass it to the sender via aperfe
tly-private se
ondary 
hannel (not shown here).Figure 6: Private-key en
ryption s
hemes { an illustration.key must be kept se
ret (rather than be publi
 as in publi
-key en
ryption s
hemes). We note that afull spe
i�
ation of either s
hemes requires the spe
i�
ation of the way in whi
h keys are generated;that is, a (randomized) key-generation algorithm that, given a se
urity parameter, produ
es a(random) pair of 
orresponding en
ryption/de
ryption keys (whi
h are identi
al in 
ase of private-key s
hemes).Thus, both private-key and publi
-key en
ryption s
hemes 
onsists of three eÆ
ient algorithms:a key generation algorithm denoted G, an en
ryption algorithm denoted E, and an de
ryption algo-rithm denoted D. For every pair of en
ryption and de
ryption keys (e; d) generated by G, and forevery plaintext x, it holds that Dd(Ee(x)) = x, where Ee(x) def= E(e; x) and Dd(y) def= D(d; y). Thedi�eren
e between the two types of en
ryption s
hemes is re
e
ted in the de�nition of se
urity:the se
urity of a publi
-key en
ryption s
heme should hold also when the adversary is given theen
ryption-key, whereas this is not required for private-key en
ryption s
heme. Below we fo
us onthe publi
-key 
ase (and the private-key 
ase 
an be obtained by omitting the en
ryption-key fromthe sequen
e of inputs given to the adversary).5.1 De�nitions A good disguise should not reveal the person's height.Sha� Goldwasser and Silvio Mi
ali, 1982For simpli
ity, we �rst 
onsider the en
ryption of a single message (whi
h, for further simpli
ity, isassumed to be of length n).14 As implied by the above dis
ussion, a publi
-key en
ryption s
hemeis said to be se
ure if it is infeasible to gain any information about the plaintext by looking atthe 
iphertext (and the en
ryption-key). That is, whatever information about the plaintext onemay 
ompute from the 
iphertext and some a-priori information, 
an be essentially 
omputed as14In 
ase of publi
-key s
hemes no generality is lost by these simplifying assumptions, but in 
ase of private-keys
hemes one should 
onsider the en
ryption of polynomially-many messages (as we do below).28



eÆ
iently from the a-priori information alone. This de�nition (
alled semanti
 se
urity) turns outto be equivalent to saying that, for any two messages, it is infeasible to distinguish the en
ryptionof the �rst message from the en
ryption of the se
ond message, also when given the en
ryption-key.Both de�nitions were introdu
ed by Goldwasser and Mi
ali [82℄.De�nition 5.1 (semanti
 se
urity (following [82℄, revisited [64℄)): A publi
-key en
ryption s
heme(G;E;D) is semanti
ally se
ure if for every probabilisti
 polynomial-time algorithm, A, there existsa probabilisti
 polynomial-time algorithm B so that for every two fun
tions f; h : f0; 1g�!f0; 1g�su
h that jh(x)j = poly(jxj), and all probability ensembles fXngn2N, where Xn is a random variableranging over f0; 1gn, it holds thatPr[A(e;Ee(x); h(x))=f(x)℄ < Pr[B(1n; h(x))=f(x)℄ + �(n)where the plaintext x is distributed a

ording to Xn, the en
ryption-key e is distributed a

ordingto G(1n), and � is a negligible fun
tion.That is, it is feasible to predi
t f(x) from h(x) as su

essfully as it it to predi
t f(x) from h(x) and(e;Ee(x)), whi
h means that nothing is gained by obtaining (e;Ee(x)). Note that no 
omputationalrestri
tions are made regarding the fun
tions h and f , and in parti
ular it may be that h(x) =(zjxj; h0(x)), where the sequen
e of zn's is possibly non-uniform. We stress that the above de�nition(as well as the next one) refers to publi
-key en
ryption s
hemes, and in 
ase of private-key s
hemesalgorithm A is not given the en
ryption-key e.A good disguise should not allow a mother to distinguish her own 
hildren.Sha� Goldwasser and Silvio Mi
ali, 1982The following te
hni
al interpretation of se
urity states that it is infeasible to distinguish theen
ryptions of two plaintexts (of the same length).De�nition 5.2 (indistinguishability of en
ryptions (following [82℄)): A publi
-key en
ryption s
heme(G;E;D) has indistinguishable en
ryptions if for every probabilisti
 polynomial-time algorithm, A,and all sequen
es of triples, (xn; yn; zn)n2N, where jxnj = jynj = n and jznj = poly(n),jPr[A(e;Ee(xn); zn)=1℄� Pr[A(e;Ee(yn); zn)=1℄j = �(n)Again, e is distributed a

ording to G(1n), and � is a negligible fun
tion.In parti
ular, zn may equal (xn; yn). Thus, it is infeasible to distinguish the en
ryptions of any two�xed messages (su
h as the all-zero message and the all-ones message).Equivalen
e of De�nitions 5.1 and 5.2 { proof ideas. Intuitively, indistinguishability ofen
ryptions (i.e., of the en
ryptions of xn and yn) is a spe
ial 
ase of semanti
 se
urity; spe
i�
ally,the 
ase thatXn is uniform over fxn; yng, f indi
ates one of the plaintexts and h does not distinguishthem (i.e., f(w) = 1 i� w = xn and h(xn) = h(yn)). The other dire
tion is proved by 
onsideringthe algorithm B that, on input (1n; v) where v = h(x), generates (e; d)  G(1n) and outputsA(e;Ee(1n); v), where A is as in De�nition 5.1. Indistinguishability of en
ryptions is used to provethat B performs as well as A (i.e., for every h; f and fXngn2N, it holds that Pr[B(1n; h(Xn)) =f(Xn)℄ = Pr[A(e;Ee(1n); h(Xn))=f(Xn)℄ approximately equals Pr[A(e;Ee(Xn); h(Xn))=f(Xn)℄).29



Probabilisti
 En
ryption: It is easy to see that a se
ure publi
-key en
ryption s
heme mustemploy a probabilisti
 (i.e., randomized) en
ryption algorithm. Otherwise, given the en
ryption-key as (additional) input, it is easy to distinguish the en
ryption of the all-zero message from theen
ryption of the all-ones message.15 This explains the linkage between the above robust se
urityde�nitions and probabilisti
 en
ryption.Further dis
ussion: We stress that (the equivalent) De�nitions 5.1 and 5.2 go way beyondsaying that it is infeasible to re
over the plaintext from the 
iphertext. The latter statement isindeed a minimal requirement from a se
ure en
ryption s
heme, but is far from being a suÆ
ientrequirement: Typi
ally, en
ryption s
hemes are used in appli
ations where even obtaining partialinformation on the plaintext may endanger the se
urity of the appli
ation. When designing anappli
ation-independent en
ryption s
heme, we do not know whi
h partial information endangersthe appli
ation and whi
h does not. Furthermore, even if one wants to design an en
ryption s
hemetailored to a spe
i�
 appli
ation, it is rare (to say the least) that one has a pre
ise 
hara
terizationof all possible partial information that endanger this appli
ation. Thus, we need to require that itis infeasible to obtain any information about the plaintext from the 
iphertext. Furthermore, inmost appli
ations the plaintext may not be uniformly distributed and some a-priori informationregarding it is available to the adversary. We require that the se
re
y of all partial information ispreserved also in su
h a 
ase. That is, even in presen
e of a-priori information on the plaintext, itis infeasible to obtain any (new) information about the plaintext from the 
iphertext (beyond whatis feasible to obtain from the a-priori information on the plaintext). The de�nition of semanti
se
urity postulates all of this. The equivalent de�nition of indistinguishability of en
ryptions isuseful in demonstrating the se
urity of 
andidate 
onstru
tions as well as for arguing about theire�e
t as part of larger proto
ols.Se
urity of multiple messages: De�nitions 5.1 and 5.2 refer to the se
urity of an en
ryptions
heme that is used to en
rypt a single plaintext (per generated key). Sin
e the plaintext maybe longer than the key16, these de�nitions are already non-trivial, and an en
ryption s
heme sat-isfying them (even in the private-key model) implies the existen
e of one-way fun
tions. Still, inmany 
ases, it is desirable to en
rypt many plaintexts using the same en
ryption-key. Looselyspeaking, an en
ryption s
heme is se
ure in the multiple-message setting if analogous de�nitions(to De�nitions 5.1 and 5.2) hold when polynomially-many plaintexts are en
rypted using the sameen
ryption-key (
f. [68, Se
. 5.2.4℄). It is easy to see that in the publi
-key model, se
urity in thesingle-message setting implies se
urity in the multiple-message setting. We stress that this is notne
essarily true for the private-key model.5.2 Constru
tionsIt is 
ommon pra
ti
e to use \pseudorandom generators" as a basis for private-key en
ryptions
hemes. We stress that this is a very dangerous pra
ti
e when the \pseudorandom generator" iseasy to predi
t (su
h as the linear 
ongruential generator or some modi�
ations of it that output15The same holds for (stateless) private-key en
ryption s
hemes, when 
onsidering the se
urity of en
rypting severalmessages (rather than a single message as done above). For example, if one uses a deterministi
 en
ryption algorithmthen the adversary 
an distinguish two en
ryptions of the same message from the en
ryptions of a pair of di�erentmessages.16Re
all that for sake of simpli
ity we have 
onsidered only messages of length n, but the general de�nitions referto messages of arbitrary (polynomial in n) length. We 
omment that, in the general form of De�nition 5.1, one shouldprovide the length of the message as an auxiliary input to both algorithms (A and B).30



a 
onstant fra
tion of the bits of ea
h resulting number). However, this 
ommon pra
ti
e be
omessound provided one uses pseudorandom generators (as de�ned in Se
tion 3.2). An alternative andmore 
exible 
onstru
tion follows.Private-Key En
ryption S
heme based on Pseudorandom Fun
tions: We present a sim-ple 
onstru
tion that uses pseudorandom fun
tions as de�ned in Se
tion 3.3. The key generationalgorithm 
onsists of sele
ting a seed, denoted s, for a (pseudorandom) fun
tion, denoted fs. Toen
rypt a message x 2 f0; 1gn (using key s), the en
ryption algorithm uniformly sele
ts a stringr 2 f0; 1gn and produ
es the 
iphertext (r; x � fs(r)), where � denotes the ex
lusive-or of bitstrings. To de
rypt the 
iphertext (r; y) (using key s), the de
ryption algorithm just 
omputesy � fs(r). The proof of se
urity of this en
ryption s
heme 
onsists of two steps (suggested as ageneral methodology in Se
tion 3.3):1. Prove that an idealized version of the s
heme, in whi
h one uses a uniformly sele
ted fun
tionF :f0; 1gn!f0; 1gn, rather than the pseudorandom fun
tion fs, is se
ure.2. Con
lude that the real s
heme (as presented above) is se
ure (be
ause, otherwise one 
oulddistinguish a pseudorandom fun
tion from a truly random one).Note that we 
ould have gotten rid of the randomization (in the en
ryption pro
ess) if we hadallowed the en
ryption algorithm to be history dependent (e.g., use a 
ounter in the role of r). This
an be done provided that either only one party uses the key for en
ryption or that all parties thaten
rypt, using the same key, 
oordinate their a
tions (i.e., maintain a joint state (e.g., 
ounter)).Indeed, when using a private-key en
ryption s
heme, a 
ommon situation is that the same key isonly used for 
ommuni
ation between two spe
i�
 parties, whi
h update a joint 
ounter during their
ommuni
ation. Furthermore, if the en
ryption s
heme is used for fifo 
ommuni
ation betweenthe parties and both parties 
an reliably maintain the 
ounter value, then there is no need (for thesender) to send the 
ounter value.We 
omment that the use of a 
ounter (or any other state) in the en
ryption pro
ess is notreasonable in 
ase of publi
-key en
ryption s
hemes, be
ause it is in
ompatible with the 
anoni
alusage of su
h s
hemes (i.e., allowing all parties to send en
rypted messages to the \owner of theen
ryption-key" without engaging in any type of further 
oordination or 
ommuni
ation). Further-more, as dis
ussed before, probabilisti
 en
ryption is essential for a se
ure publi
-key en
ryptions
heme even in the 
ase of en
rypting a single message (unlike in the 
ase of private-key s
hemes).Following Goldwasser and Mi
ali [82℄, we now demonstrate the use of probabilisti
 en
ryption inthe 
onstru
tion of a publi
-key en
ryption s
heme.Publi
-Key En
ryption S
heme based on Trapdoor Permutations: We present two 
on-stru
tions that employ a 
olle
tion of trapdoor permutations, as de�ned in De�nition 2.2. Letffi : Di ! Digi be su
h a 
olle
tion, and let b be a 
orresponding hard-
ore predi
ate. The keygeneration algorithm 
onsists of sele
ting a permutation fi along with a 
orresponding trapdoort, and outputting (i; t) as the key-pair. To en
rypt a (single) bit � (using the en
ryption-key i),the en
ryption algorithm uniformly sele
ts r 2 Di, and produ
es the 
iphertext (fi(r); � � b(r)).To de
rypt the 
iphertext (y; �) (using the de
ryption-key t), the de
ryption algorithm 
omputes� � b(f�1i (y)) (using the trapdoor t of fi). Clearly, (� � b(r))� b(f�1i (fi(r))) = �. Indistinguisha-bility of en
ryptions 
an be easily proven using the fa
t that b is a hard-
ore of fi. We 
ommentthat the above s
heme is quite wasteful in bandwidth; however, the paradigm underlying its 
on-stru
tion (i.e., applying the trapdoor permutation to a randomized version of the plaintext rather31



than to the a
tual plaintext) is valuable in pra
ti
e. A more eÆ
ient 
onstru
tion of a publi
-keyen
ryption s
heme, whi
h uses the same key-genration algorithm, follows. To en
rypt an `-bit longstring x (using the en
ryption-key i), the en
ryption algorithm uniformly sele
ts r 2 Di, 
om-putes y  b(r) � b(fi(r)) � � � b(f `�1i (r)) and produ
es the 
iphertext (fì (r); x � y). To de
rypt the
iphertext (u; v) (using the de
ryption-key t), the de
ryption algorithm �rst re
overs r = f�`i (u)(using the trapdoor t of fi), and then obtains v � b(r) � b(fi(r)) � � � b(f `�1i (r)). Note the similarityto the 
onstru
tion in Theorem 3.3, and the fa
t that the proof 
an be extended to establish the
omputational indisdtinguishability of (b(r) � � � b(f `�1i (r)); fì (r)) and (r0; fì (r)), for random andindependent r 2 Di and r0 2 f0; 1g`. Indistinguishability of en
ryptions follows, and thus theaforementioned s
heme is se
ure.Key-generation on se
urity parameter n:1. Sele
t at random two n-bit primes, P and Q, ea
h 
ongruent to 3 mod 4.2. Compute dP = ((P + 1)=4)`(n) mod P � 1, dQ = ((Q + 1)=4)`(n) mod Q� 1, 
P = Q �(Q�1 mod P ), and 
Q = P � (P�1 mod Q).The output key-pair is (N; T ), where N = PQ and T = (P;Q;N; 
P ; dP ; 
Q; dQ).(Note: for every s, it holds that (s2)(P+1)=4 � s (mod P ), and so (s2`(n) )dP � s (mod P ). Thus,raising to the dP -th power modulo P is equivalent to taking the 2`-th root modulo P . To re
over rootsmodulo N , we use the Chinese Remainder Theorem with the 
orresponding 
oeÆ
ients 
P and 
Q.)En
ryption of message x 2 f0; 1g`(n) using the en
ryption-key N :1. Uniformly sele
t s0 2 f1; :::; Ng.2. For i = 1; ::; `(n) + 1, 
ompute si  s2i�1 mod N and �i = lsb(si).The 
iphertext is (s`(n)+1; y), where y = x� �1�2 � � ��`(n).(Note: s1 plays the role played by r in the general s
heme.)De
ryption of the 
iphertext (r; y) using the en
ryption-key T = (P;Q;N; 
P ; dP ; 
Q; dQ):1. Let s0  rdP mod P , and s00  rdQ mod Q.2. Let s1  
P � s0 + 
Q � s00 mod N .3. For i = 1; ::; `(n), 
ompute �i = lsb(si) and si+1  s2i mod N .The plaintext is y � �1�2 � � ��`(n).Note: lsb is a hard-
ore of the modular squaring fun
tion [2℄.Figure 7: The Blum{Goldwasser Publi
-Key En
ryption S
heme [31℄. For simpli
ity weassume that `, whi
h is polynomially bounded (e.g., `(n) = n), is known at key-generationtime.Con
rete implementations of the aforementioned publi
-key en
ryption s
hemes: Forthe �rst s
heme, we are going to use the RSA s
heme [115℄ as a trapdoor permutation (ratherthan using it dire
tly as an en
ryption s
heme).17 The RSA s
heme has an instan
e-generatingalgorithm that randomly sele
ts two primes, p and q, 
omputes their produ
t N = p � q, and sele
tsat random a pair of integers (e; d) su
h that e �d � 1 (mod �(N)), where �(N) def= (p� 1) � (q� 1).17Re
all that RSA itself is not semanti
ally se
ure, be
ause it employs a deterministi
 en
ryption algorithm. Thes
heme presented here 
an be viewed as a \randomized version" of RSA.32



(The \plain RSA" operations are raising to power e or d modulo N .) We 
onstru
t a publi
-keyen
ryption s
heme as follows: The key-generation algorithm is identi
al to the instan
e-generatoralgorithm of RSA, and the en
ryption-key is set to (N; e) (resp., the de
ryption-key is set to (N; d)),just as in \plain RSA". To en
rypt a single bit � (using the en
ryption-key (N; e)), the en
ryptionalgorithm uniformly sele
ts an element, r, in the set of residues mod N , and produ
es the 
iphertext(re mod N;� � lsb(r)), where lsb(r) denotes the least signi�
ant bit of r (whi
h is a hard-
ore ofthe RSA fun
tion [2℄). To de
rypt the 
iphertext (y; �) (using the de
ryption-key (N; d)), thede
ryption algorithm just 
omputes � � lsb(yd mod N). Turning to the se
ond s
heme, we assumethe intra
tability of fa
toring large integers, and use squaring modulo a 
omposite as a trapdoorpermutation over the 
orresponding quadrati
 residues (while using 
omposites that are the produ
tof two primes, ea
h 
ongruent to 3 modulo 4). The resulting se
ure publi
-key en
ryption s
heme,depi
ted in Figure 7, has eÆ
ien
y 
omparable to that of (plain) RSA. We 
omment that spe
ialproperties of modular sqauring were only used (in Figure 7) to speed-up the 
omputation of f�`i(i.e., rather than interatively extra
ting modular square roots ` times, we extra
ted the modular2`-th root).5.3 Beyond eavesdropping se
urityThe above de�nitions refer only to \passive" atta
ks in whi
h the adversary merely eavesdrops theline over whi
h 
iphertexts are being sent. Stronger types of atta
ks, 
ulminating in the so-
alledChosen Ciphertext Atta
k, may be possible in various appli
ations. Loosely speaking, in su
h anatta
k, the adversary may obtain the de
ryption of any 
iphertexts of its 
hoi
e, and is deemedsu

essful if it learns something regarding the plaintext that 
orresponds to some other 
iphertext(see [91, 19℄ and [68, Se
. 5.4.4℄). Private-key and publi
-key en
ryption s
hemes se
ure against su
hatta
ks 
an be 
onstru
ted under (almost) the same assumptions that suÆ
e for the 
onstru
tionof the 
orresponding passive s
hemes. Spe
i�
ally:Theorem 5.3 (folklore, see [68, Se
. 5.4.4℄): Assuming the existen
e of one-way fun
tions, thereexist private-key en
ryption s
hemes that are se
ure against 
hosen 
iphertext atta
k.Theorem 5.4 ([105, 52℄ and [30, 58℄, see [118℄ or [68, Se
. 5.4.4℄): Assuming the existen
e ofenhan
ed18 trapdoor permutations, there exist publi
-key en
ryption s
hemes that are se
ure against
hosen 
iphertext atta
k.Se
urity against 
hosen 
iphertext atta
k is related to the notion of non-malleability of the en
ryp-tion s
heme (
f. [52℄). Loosely speaking, in a non-malleable en
ryption s
heme it is infeasible foran adversary, given a 
iphertext, to produ
e a valid 
iphertext for a related plaintext (e.g., givena 
iphertext of a plaintext 1x, for an unknown x, it is infeasible to produ
e a 
iphertext to theplaintext 0x). For further dis
ussion see [52, 19, 91℄.6 Signature and Message Authenti
ation S
hemesBoth signature s
hemes and message authenti
ation s
hemes are methods for \validating" data; thatis, verifying that the data was approved by a 
ertain party (or set of parties). The di�eren
e betweensignature s
hemes and message authenti
ation s
hemes is that signatures should be \universallyveri�able", whereas authenti
ation tags are only required to be veri�able by parties that are alsoable to generate them.18Loosely speaking, the enhan
ement refers to hardness 
ondition of De�nition 2.2 and requires that it be hard tore
over f�1i (y) also when given the 
oins used to sample y (rather than merely y itself). See [68, Apdx. C.1℄.33



Signature S
hemes: The need to dis
uss \digital signatures" [51, 110℄ has arise with the intro-du
tion of 
omputer 
ommuni
ation to the business environment (in whi
h parties need to 
ommitthemselves to proposals and/or de
larations that they make). Dis
ussions of \unforgeable signa-tures" did take pla
e also in previous 
enturies, but the obje
ts of dis
ussion were handwrittensignatures (and not digital ones), and the dis
ussion was not per
eived as related to \
ryptogra-phy". Loosely speaking, a s
heme for unforgeable signatures should satisfy the following:� ea
h user 
an eÆ
iently produ
e its own signature on do
uments of its 
hoi
e;� every user 
an eÆ
iently verify whether a given string is a signature of another (spe
i�
) useron a spe
i�
 do
ument; but� it is infeasible to produ
e signatures of other users to do
uments they did not sign.We note that the formulation of unforgeable digital signatures provides also a 
lear statement ofthe essential ingredients of handwritten signatures. The ingredients are ea
h person's ability tosign for itself, a universally agreed veri�
ation pro
edure, and the belief (or assertion) that it isinfeasible (or at least hard) to forge signatures in a manner that pass the veri�
ation pro
edure.It is not 
lear to what extent do handwritten signatures meet these requirements. In 
ontrast, ourdis
ussion of digital signatures provides pre
ise statements 
on
erning the extent to whi
h digitalsignatures meet the above requirements. Furthermore, unforgeable digital signature s
hemes 
anbe 
onstru
ted based on some reasonable 
omputational assumptions (i.e., the existen
e of one-wayfun
tions).Message authenti
ation s
hemes: Message authenti
ation is a task related to the setting
onsidered for en
ryption s
hemes; that is, 
ommuni
ation over an inse
ure 
hannel. This time, we
onsider an a
tive adversary that is monitoring the 
hannel and may alter the messages sent on it.The parties 
ommuni
ating through this inse
ure 
hannel wish to authenti
ate the messages theysend so that their 
ounterpart 
an tell an original message (sent by the sender) from a modi�edone (i.e., modi�ed by the adversary). Loosely speaking, a s
heme for message authenti
ation shouldsatisfy the following:� ea
h of the 
ommuni
ating parties 
an eÆ
iently produ
e an authenti
ation tag to any messageof its 
hoi
e;� ea
h of the 
ommuni
ating parties 
an eÆ
iently verify whether a given string is an authen-ti
ation tag of a given message; but� it is infeasible for an external adversary (i.e., a party other than the 
ommuni
ating parties)to produ
e authenti
ation tags to messages not sent by the 
ommuni
ating parties.Note that in 
ontrast to the spe
i�
ation of signature s
hemes we do not require universal ver-i�
ation: only the designated re
eiver is required to be able to verify the authenti
ation tags.Furthermore, we do not require that the re
eiver 
an not produ
e authenti
ation tags by itself (i.e.,we only require that external parties 
an not do so). Thus, message authenti
ation s
hemes 
annot
onvin
e a third party that the sender has indeed sent the information (rather than the re
eiverhaving generated it by itself). In 
ontrast, signatures 
an be used to 
onvin
e third parties: in fa
t,a signature to a do
ument is typi
ally sent to a se
ond party so that in the future this party may(by merely presenting the signed do
ument) 
onvin
e third parties that the do
ument was indeedgenerated (or sent or approved) by the signer. 34



6.1 De�nitionsFormally speaking, both signature s
hemes and message authenti
ation s
hemes 
onsist of threeeÆ
ient algorithms: key generation, signing and veri�
ation. As in 
ase of en
ryption s
hemes, thekey-generation algorithm is used to generate a pair of 
orresponding keys, one is used for signingand the other is used for veri�
ation. The di�eren
e between the two types of s
hemes is re
e
tedin the de�nition of se
urity. In 
ase of signature s
heme, the adversary is given the veri�
ation-key, whereas in 
ase of message authenti
ation s
heme the veri�
ation-key (whi
h may equal thesigning-key) is not given to the adversary. Thus, s
hemes for message authenti
ation 
an be viewedas a private-key version of signature s
hemes. This di�eren
e yields di�erent fun
tionality (evenmore than in the 
ase of en
ryption): In typi
al use of a signature s
heme, ea
h user generates apair of signing and veri�
ation keys, publi
izes the veri�
ation-key and keeps the signing-key se
ret.Subsequently, ea
h user may sign do
uments using its own signing-key, and these signatures areuniversally veri�able with respe
t to its publi
 veri�
ation-key. In 
ontrast, message authenti
ations
hemes are typi
ally used to authenti
ate information sent among a set of mutually trusting partiesthat agree on a se
ret key, whi
h is being used both to produ
e and verify authenti
ation-tags.(Indeed, it is assumed that the mutually trusting parties have generated the key together or haveex
hanged the key in a se
ure way, prior to the 
ommuni
ation of information that needs to beauthenti
ated.)We fo
us on the de�nition of se
ure signature s
hemes. Following Goldwasser, Mi
ali andRivest [84℄, we 
onsider very powerful atta
ks on the signature s
heme as well as a very liberalnotion of breaking it. Spe
i�
ally, the atta
ker is allowed to obtain signatures to any message ofits 
hoi
e. One may argue that in many appli
ations su
h a general atta
k is not possible (be
ausemessages to be signed must have a spe
i�
 format). Yet, our view is that it is impossible to de�nea general (i.e., appli
ation-independent) notion of admissible messages, and thus a general/robustde�nition of an atta
k seems to have to be formulated as suggested here. (Note that at worst, ourapproa
h is overly 
autious.) Likewise, the adversary is said to be su

essful if it 
an produ
e avalid signature to any message for whi
h it has not asked for a signature during its atta
k. Again,this refers to the ability to form signatures to possibly \nonsensi
al" messages as a breaking ofthe s
heme. Yet, again, we see no way to have a general (i.e., appli
ation-independent) notion of\meaningful" messages (so that only forging signatures to them will be 
onsider a breaking of thes
heme).De�nition 6.1 (se
ure signature s
hemes { a sket
h): A 
hosen message atta
k is a pro
ess that,on input a veri�
ation-key, 
an obtain signatures (relative to the 
orresponding signing-key) tomessages of its 
hoi
e. Su
h an atta
k is said to su

eeds (in existential forgery) if it outputsa valid signature to a message for whi
h it has not requested a signature during the atta
k. Asignature s
heme is se
ure (or unforgeable) if every feasible 
hosen message atta
k su

eeds with atmost negligible probability, where the probability is taken over the initial 
hoi
e of the key-pair aswell as over the adversary's a
tions.We stress that plain RSA (alike plain versions of Rabin's s
heme [111℄ and the DSS [106℄) is notse
ure under the above de�nition. However, it may be se
ure if the message is \randomized" beforeRSA (or the other s
hemes) is applied.6.2 Constru
tionsSe
ure message authenti
ation s
hemes 
an be 
onstru
ted using pseudorandom fun
tions [70℄.Spe
i�
ally, the key-generation algorithm 
onsists of sele
ting a seed s 2 f0; 1gn for su
h a fun
tion,35



denoted fs, and the (only valid) tag of message x with respe
t to the key s is fs(x). As in the 
aseof our private-key en
ryption s
heme, the proof of se
urity of the 
urrent message authenti
ations
heme 
onsists of two steps:1. Prove that an idealized version of the s
heme, in whi
h one uses a uniformly sele
ted fun
tionF :f0; 1gn!f0; 1gn, rather than the pseudorandom fun
tion fs, is se
ure (i.e., unforgeable).2. Con
lude that the real s
heme (as presented above) is se
ure (be
ause, otherwise one 
oulddistinguish a pseudorandom fun
tion from a truly random one).We 
omment that an extensive usage of pseudorandom fun
tions seem an overkill for a
hievingmessage authenti
ation, and more eÆ
ient s
hemes may be obtained based on other 
ryptographi
primitives (
f., e.g., [17℄).Constru
ting se
ure signature s
hemes seems more diÆ
ult than 
onstru
ting message authen-ti
ation s
hemes. Nevertheless, se
ure signature s
hemes 
an be 
onstru
ted based on any one-wayfun
tion. Furthermore:Theorem 6.2 ([104, 117℄, see [68, Se
. 6.4℄): The following three 
onditions are equivalent.1. One-way fun
tions exist.2. Se
ure signature s
hemes exist.3. Se
ure message authenti
ation s
hemes exist.We stress that, unlike in the 
ase of publi
-key en
ryption s
hemes, the 
onstru
tion of signatures
hemes (whi
h may be viewed as a publi
-key analogue of message authenti
ation) does not usea trapdoor property. Three 
entral paradigms in the 
onstru
tion of signature s
hemes are the\refreshing" of the \e�e
tive" signing-key, the usage of an \authenti
ation tree", and the \hashingparadigm" (all to be dis
ussed in the sequel). In addition to being used in the proof of Theorem 6.2,all three paradigms are also of independent interest.The refreshing paradigm, introdu
ed in [84℄, is aimed at limiting the potential dangers of 
hosenmessage atta
ks. This is a
hieved by signing the a
tual do
ument using a newly (randomly) gen-erated instan
e of the signature s
heme, and authenti
ating (the veri�
ation-key of) this randominstan
e relative to the �xed publi
-key. That is, 
onsider a basi
 signature s
heme (G;S; V ) usedas follows. Suppose that the user U has generated a key-pair, (s; v)  G(1n), and has pla
ed theveri�
ation-key v on a publi
-�le. When a party asks U to sign some do
ument �, the user Ugenerates a new (fresh) key-pair, (s0; v0)  G(1n), signs v0 using the original signing-key s, signs� using the new (fresh) signing-key s0, and presents (Ss(v0); v0; Ss0(�)) as a signature to �. Analleged signature, (�1; v0; �2), is veri�ed by 
he
king whether both Vv(v0; �1) = 1 and Vv0(�; �2) = 1hold. Intuitively, the gain in terms of se
urity is that a full-
edged 
hosen message atta
k 
annotbe laun
hed on a �xed instan
e of (G;S; V ) (i.e., on the �xed veri�
ation-key that resides in thepubli
-�le and is known to the atta
ker). All that an atta
ker may obtain (via a 
hosen mes-sage atta
k on the new s
heme) is signatures, relative to the original signing-key s of (G;S; V ), torandomly strings (distributed a

ording to G(1n)) as well as additional signatures that are ea
hrelative to a random and independently distributed signing-key.A more dramati
 e�e
t is obtained by using authenti
ation trees, as introdu
ed in [99℄. The ideais to use the publi
 veri�
ation-key in order to authenti
ate several (e.g., two) fresh instan
es of thesignature s
heme, use ea
h of these instan
es to authenti
ate several additional fresh instan
es, andso on. We obtain a tree of fresh instan
es of the basi
 signature s
heme, where ea
h internal nodeauthenti
ates its 
hildren. We 
an now use the leaves of this tree in order to sign a
tual do
uments,36



where ea
h leaf is used at most on
e. Thus, a signature to an a
tual do
ument 
onsists of (1) asignature to this do
ument authenti
ated with respe
t to the veri�
ation-key asso
iated with someleaf, and (2) a sequen
e of veri�
ation-keys asso
iated with the nodes along the path from the rootto this leaf, where ea
h su
h veri�
ation-key is authenti
ated with respe
t to the veri�
ation-keyof its parent. We stress that ea
h instan
e of the signature s
heme is used to sign at most onestring (i.e., a single sequen
e of veri�
ation-keys if the instan
e resides in an internal node, andan a
tual do
ument if the instan
e resides in a leaf). Thus, it suÆ
es to use a signature s
hemethat is se
ure as long as it is used to legitimately sign a single string. Su
h signature s
hemes,
alled one-time signature s
hemes and introdu
ed in [110℄, are easier to 
onstru
t than standardsignature s
hemes, espe
ially if one only wishes to sign strings that are signi�
antly shorter thanthe signing-key (resp., than the veri�
ation-key). For example, using a one-way fun
tion f , we maylet the signing-key 
onsist of a sequen
e of n pairs of strings, let the 
orresponding veri�
ation-key
onsist of the 
orresponding sequen
e of images of f , and sign an n-bit long message by revealingthe adequate pre-images.19Note, however, that in the aforementioned authenti
ation-tree, the instan
es of the signatures
heme (asso
iated with internal nodes) are used to sign a pair of veri�
ation-keys. Thus, weneed a one-time signature s
heme that 
an be used for signing messages that are longer than theveri�
ation-key (or at least as long as it). Here is where the hashing paradigm 
omes into play. Thisparagigm refers to the 
ommon pra
ti
e of signing do
uments via a two stage pro
ess: First thea
tual do
ument is hashed to a (relatively) short bit string, and next the basi
 signature s
hemeis applied to the resulting string. This pra
ti
e (as well as other usages of the hashing paradigm)is sound provided that the hashing fun
tion belongs to a family of 
ollision-free hashing (
f. [48℄).(A variant of the hashing paradigm uses the weaker notion of a family of Universal One-Way HashFun
tions (
f. [104℄), whi
h in turn 
an be 
onstru
ted using any one-way fun
tion [104, 117℄.)Note that in order to implement the aforementioned (full-
edged) signature s
heme one needsto store in (se
ure) memory all the instan
es of the basi
 (one-time) signature s
heme that aregenerated throughout the entire signing pro
ess (whi
h refers to numerous do
uments). This 
an bedone by extending the model so to allow for memory-dependent signature s
hemes. Alternatively,we note that all that we need to store are the random-
oins used for generating ea
h of theseinstan
es, and the former 
an be determined by a pseudorandom fun
tion (applied to the name ofthe 
oreresponding vertex in the tree). Indeed, the seed of this pseudorandom fun
tion will be partof the signing-key of the resulting (full-
edged) signature s
heme.6.3 Publi
-Key Infrastru
tureThe standard use of publi
-key en
ryption s
hemes (resp., signature s
hemes) in real-life 
ommuni-
ation requires a me
hanism for providing the sender (resp., signature veri�er) with the re
eiver'sauthenti
 en
ryption-key (resp., signer's authenti
 veri�
ation-key). Spe
i�
ally, this problem arisesin large-s
ale systems, where typi
ally the sender (resp., veri�er) does not have a lo
al re
ord ofthe re
eiver's en
ryption-key (resp., signer's veri�
ation-key), and so must obtain this key in a\reliable" way (i.e., typi
ally, 
erti�ed by some trusted authority). In most theoreti
al work, oneassumes that the keys are posted on and 
an be retrieved from a publi
-�le that is maintained bya trusted party (whi
h makes sure that ea
h user 
an post only keys bearing its own identity). Inpra
ti
e, maintaining su
h a publi
-�le is a major problem, and me
hanisms that implement thisabstra
tion are typi
ally referred to by the generi
 term \publi
-key infrastru
ture (PKI)". For a19That is, the signing-key 
onsist of a sequen
e ((s01; s11); :::; (s0n; s1n)) 2 f0; 1g2n2 , the 
orresponding veri�
ation-keyis (f(s01); f(s11)); :::; (f(s0n); f(s1n))), and the signature of the message �1 � � � �n is (s�11 ; :::; s�nn ).37



dis
ussion of the pra
ti
al problems regarding PKI deployment see, e.g., [98, Chap. 13℄.7 Cryptographi
 Proto
olsA general framework for 
asting (m-party) 
ryptographi
 (proto
ol) problems 
onsists of spe
ifyinga random pro
ess that maps m inputs to m outputs.20 The inputs to the pro
ess are to be thoughtof as lo
al inputs of m parties, and the m outputs are their 
orresponding (desired) lo
al outputs.The random pro
ess des
ribes the desired fun
tionality. That is, if the m parties were to trust ea
hother (or trust some external party), then they 
ould ea
h send their lo
al input to the trusted party,who would 
ompute the out
ome of the pro
ess and send to ea
h party the 
orresponding output.A pivotal question in the area of 
ryptographi
 proto
ols is to what extent 
an this (imaginary)trusted party be \emulated" by the mutually distrustful parties themselves.

REAL   MODEL IDEAL   MODELFigure 8: Se
ure proto
ols emulate a trusted party { an illustration.The results surveyed below des
ribe a variety of models in whi
h su
h an \emulation" is possible.The models vary by the underlying assumptions regarding the 
ommuni
ation 
hannels, numerousparameters relating to the extent of adversarial behavior, and the desired level of emulation of thetrusted party (i.e., level of \se
urity").7.1 The De�nitional Approa
h and Some ModelsBefore des
ribing these results, we further dis
uss the notion of \emulating a trusted party", whi
hunderlies the de�nitional approa
h to se
ure multi-party 
omputation (as initiated and developedin [81, 101, 13, 14, 35, 36℄) The approa
h 
an be tra
ed ba
k to the de�nition of zero-knowledge(
f. [83℄), and even to the de�nition of se
ure en
ryption (
f. [64℄, rephrasing [82℄). The underlyingparadigm (
alled the simulation paradigm (
f. Se
tion 4.1)) is that a s
heme is se
ure if whatevera feasible adversary 
an obtain after atta
king it, is also feasibly attainable \from s
rat
h". In
ase of zero-knowledge this amounts to saying that whatever a (feasible) veri�er 
an obtain after20That is, we 
onsider the se
ure evaluation of randomized fun
tionalities, rather than \only" the se
ure evaluationof fun
tions. Spe
i�
ally, we 
onsider an arbitrary (randomized) pro
ess F that on input (x1; :::; xm), �rst sele
tsat random (depending only on ` def= Pmi=1 jxij) an m-ary fun
tion f , and then outputs the m-tuple f(x1; :::; xm) =(f1(x1; :::; xm); :::; fm(x1; :::; xm)). In other words, F (x1; :::; xm) = F 0(r; x1; :::; xm), where r is uniformly sele
ted inf0; 1g`0 (with `0 depending on `), and F 0 is a fun
tion mapping (m+ 1)-long sequen
es to m-long sequen
es.38



intera
ting with the prover on a pres
ribed valid assertion, 
an be (feasibly) 
omputed from theassertion itself. In 
ase of multi-party 
omputation we 
ompare the e�e
t of adversaries thatparti
ipate in the exe
ution of the a
tual proto
ol to the e�e
t of adversaries that parti
ipate in animaginary exe
ution of a trivial (ideal) proto
ol for 
omputing the desired fun
tionality with thehelp of a trusted party. If whatever adversaries 
an feasibly obtain in the former real setting 
analso be feasibly obtained in the latter ideal setting then the proto
ol \emulates the ideal setting"(i.e., \emulates a trusted party"), and so is deemed se
ure. This basi
 approa
h 
an be applied ina variety of models, and is used to de�ne the goals of se
urity in these models.21 We �rst dis
usssome of the parameters used in de�ning various models, and next demonstrate the appli
ation ofthis approa
h in two important models. For further details, see [36℄ or [68, Se
. 7.2 and 7.5.1℄.7.1.1 Some parameters used in de�ning se
urity modelsThe following parameters are des
ribed in terms of the a
tual (or real) 
omputation. In some 
ases,the 
orresponding de�nition of se
urity is obtained by some restri
tions or provisions applied tothe ideal model. In all 
ases, the desired notion of se
urity is de�ned by requiring that for anyadequate adversary in the real model, there exist a 
orresponding adversary in the 
orrespondingideal model that obtains essentially the same impa
t (as the real-model adversary).� The 
ommuni
ation 
hannels: The standard assumption in 
ryptography is that the adversarymay tap all 
ommuni
ation 
hannels (between honest parties). In 
ontrast, one may postulatethat the adversary 
annot obtain messages sent between a pair of honest parties, yielding theso-
alled private-
hannel model (
f. [26, 43℄). In addition, one may postulate the existen
eof a broad
ast 
hannel (
f. [113℄). Ea
h of these postulates may be justi�ed in some settings.Furthermore, ea
h postulate may be viewed as a useful abstra
tion that provide a 
lean modelfor the study and development of se
ure proto
ols. In this respe
t, it is important to mentionthat, in a variety of settings of the other parameters, both types of 
hannels 
an be easilyemulated by ordinary \tapped 
hannels".The standard assumption in the area is that the adversary 
annot modify, dupli
ate, orgenerate messages sent over the 
ommuni
ation 
hannels (between honest parties). Again,this assumption 
an be justi�ed in some settings and emulated in others (
f., [18, 37℄).Most work in the area assume that 
ommuni
ation is syn
hronous and that point-to-point
hannels exist between every pair of pro
essors. However, one may also 
onsider asyn
hronous
ommuni
ation (
f. [24℄) and arbitrary networks of point-to-point 
hannels (
f. [53℄).� Set-up assumptions: Unless stated di�erently, we make no set-up assumptions (ex
ept for theobvious assumption that all parties have identi
al 
opies of the proto
ol's program). However,in some 
ases it is assumed that ea
h party knows a veri�
ation-key 
orresponding to ea
hof the other parties (or that a publi
-key infrastru
ture is available). Another assumption,made more rarely, is that all parties have a

ess to some 
ommon (trusted) random string.21A few te
hni
al 
omments are in pla
e. Firstly, we assume that the inputs of all parties are of the same length.We 
omment that as long as the lengths of the inputs are polynomially related, the above 
onvention 
an be enfor
edby padding. On the other hand, some length restri
tion is essential for the se
urity results, be
ause in general it isimpossible to hide all information regarding the length of the inputs to a proto
ol. Se
ondly, we assume that thedesired fun
tionality is 
omputable in probabilisti
 polynomial-time, be
ause we wish the se
ure proto
ol to run inprobabilisti
 polynomial-time (and a proto
ol 
annot be more eÆ
ient than the 
orresponding 
entralized algorithm).Clearly, the results 
an be extended to fun
tionality that are 
omputable within any given (time-
onstru
tible) timebound, using adequate padding. 39



� Computational limitations: Typi
ally, we 
onsider 
omputationally-bounded adversaries (e.g.,probabilisti
 polynomial-time adversaries). However, the private-
hannel model allows for the(meaningfully) 
onsideration of 
omputationally-unbounded adversaries.We stress that, also in the latter 
ase, se
urity should be de�ned by requiring that for everyreal adversary, whatever the adversary 
an 
ompute after parti
ipating in the exe
ution of thea
tual proto
ol is 
omputable within 
omparable time by an imaginary adversary parti
ipatingin an imaginary exe
ution of the trivial ideal proto
ol (for 
omputing the desired fun
tionalitywith the help of a trusted party). Thus, results in the 
omputationally-unbounded adversarymodel trivially imply results for 
omputationally-bounded adversaries.� Restri
ted adversarial behavior: The most general type of an adversary 
onsidered in theliterature is one that may 
orrupt parties to the proto
ol while the exe
ution goes on, and doso based on partial information it has gathered so far (
f., [38℄). A somewhat more restri
tedmodel, whi
h seems adequate in many setting, postulates that the set of dishonest partiesis �xed (arbitrarily) before the exe
ution starts (but this set is, of 
ourse, not known to thehonest parties). The latter model is 
alled non-adaptive as opposed to the adaptive adversarydis
ussed �rst.An orthogonal parameter of restri
tion refers to whether a dishonest party takes a
tive stepsto disrupt the exe
ution of the proto
ol (i.e., sends messages that di�er from those spe
i�edby the proto
ol), or merely gathers information (whi
h it may latter share with the otherdishonest parties). The latter adversary has been given a variety of names su
h as semi-honest,passive, and honest-but-
urious. This restri
ted model may be justi�ed in 
ertain settings,and 
ertainly provides a useful methodologi
al lo
us (
f., [75, 76, 65℄ and Se
tion 7.3). Belowwe refer to the adversary of the unrestri
ted model as to a
tive; another 
ommonly used nameis mali
ious.� Restri
ted notions of se
urity: One example is the willingness to tolerate \unfair" proto
ols inwhi
h the exe
ution 
an be suspended (at any time) by a dishonest party, provided that it isdete
ted doing so. We stress that in 
ase the exe
ution is suspended, the dishonest party doesnot obtain more information than it 
ould have obtained when not suspending the exe
ution.(What may happen is that the honest parties will not obtain their desired outputs, but ratherwill dete
t that the exe
ution was suspended.)� Upper bounds on the number of dishonest parties: In some models, se
ure multi-party 
ompu-tation is possible only if a majority of the parties are honest (
f., [26, 45℄). Sometimes even aspe
ial majority (e.g., 2/3) is required. General \(resilient) adversarial-stru
tures" have been
onsidered too (
f. [88℄).� Mobile adversary: In most works, on
e a party is said to be dishonest it remains so throughoutthe exe
ution. More generally, one may 
onsider transient adversarial behavior (e.g., anadversary seizes 
ontrol of some site and later withdraws from it). This model, introdu
edin [108℄, allows to 
onstru
t proto
ols that remain se
ure even in 
ase the adversary may seize
ontrol of all sites during the exe
ution (but never 
ontrol 
on
urrently, say, more than 10%of the sites). We 
omment that s
hemes se
ure in this model were later termed \proa
tive"(
f., [40℄).
40



7.1.2 Example: Multi-party proto
ols with honest majorityHere we 
onsider an a
tive, non-adaptive, 
omputationally-bounded adversary, and do not assumethe existen
e of private 
hannels. Our aim is to de�ne multi-party proto
ols that remain se
ureprovided that the honest parties are in majority. (The reason for requiring a honest majority willbe dis
ussed at the end of this subse
tion.)Consider any multi-party proto
ol. We �rst observe that ea
h party may 
hange its lo
al inputbefore even entering the exe
ution of the proto
ol. However, this is unavoidable also when theparties utilize a trusted party. Consequently, su
h an e�e
t of the adversary on the real exe
ution(i.e., modi�
ation of its own input prior to entering the a
tual exe
ution) is not 
onsidered a brea
hof se
urity. In general, whatever 
annot be avoided when the parties utilize a trusted party, is not
onsidered a brea
h of se
urity. We wish se
ure proto
ols (in the real model) to su�er only fromwhatever is unavoidable also when the parties utilize a trusted party. Thus, the basi
 paradigmunderlying the de�nitions of se
ure multi-party 
omputations amounts to requiring that the onlysituations that may o

ur in the real exe
ution of a se
ure proto
ol, are those that 
an also o

urin a 
orresponding ideal model (where the parties may employ a trusted party). In other words,the \e�e
tive malfun
tioning" of parties in se
ure proto
ols is restri
ted to what is postulated inthe 
orresponding ideal model.When de�ning se
ure multi-party proto
ols with honest majority, we need to pin-point what
annot be avoided in the ideal model (i.e., when the parties utilize a trusted party). This is easy,be
ause the ideal model is very simple. Sin
e we are interested in exe
utions in whi
h the majorityof parties are honest, we 
onsider an ideal model in whi
h any minority group (of the parties) may
ollude as follows:1. Firstly this dishonest minority shares its original inputs and de
ided together on repla
edinputs to be sent to the trusted party. (The other parties send their respe
tive original inputsto the trusted party.)2. Upon re
eiving inputs from all parties, the trusted party determines the 
orresponding outputsand sends them to the 
orresponding parties. (We stress that the information sent betweenthe honest parties and the trusted party is not seen by the dishonest 
olluding minority.)3. Upon re
eiving the output-message from the trusted party, ea
h honest party outputs itlo
ally, whereas the dishonest 
olluding minority may determine their outputs based on allthey know (i.e., their initial inputs and their re
eived outputs).Note that the above behavior of the minority group is unavoidable in any exe
ution of any proto
ol(even in presen
e of trusted parties). This is the reason that the ideal model was de�ned as above.Now, a se
ure multi-party 
omputation with honest majority is required to emulate this ideal model.That is, the e�e
t of any feasible adversary that 
ontrols a minority of the parties in a real exe
utionof the a
tual proto
ol, 
an be essentially simulated by a (di�erent) feasible adversary that 
ontrolsthe 
orresponding parties in the ideal model. That is:De�nition 7.1 (se
ure proto
ols { a sket
h): Let f be an m-ary fun
tionality and � be an m-partyproto
ol operating in the real model.� For a real-model adversary A, 
ontrolling some minority of the parties (and tapping all 
om-muni
ation 
hannels), and an m-sequen
e x, we denote by real�;A(x) the sequen
e of moutputs resulting from the exe
ution of � on input x under atta
k of the adversary A.41



� For an ideal-model adversary A0, 
ontrolling some minority of the parties, and an m-sequen
ex, we denote by idealf;A0(x) the sequen
e of m outputs resulting from the ideal pro
ess de-s
ribed above, on input x under atta
k of the adversary A0.We say that � se
urely implements f with honest majority if for every feasible real-model adversaryA, 
ontrolling some minority of the parties, there exists a feasible ideal-model adversary A0, 
on-trolling the same parties, so that the probability ensembles freal�;A(x)gx and fidealf;A0(x)gx are
omputationally indistinguishable (as in Footnote 5).Thus, se
urity means that the e�e
t of ea
h minority group in a real exe
ution of a se
ure proto
olis \essentially restri
ted" to repla
ing its own lo
al inputs (independently of the lo
al inputs of themajority parties) before the proto
ol starts, and repla
ing its own lo
al outputs (depending onlyon its lo
al inputs and outputs) after the proto
ol terminates. (We stress that in the real exe
utionthe minority parties do obtain additional pie
es of information; yet in a se
ure proto
ol they gainnothing from these additional pie
es of information, be
ause they 
an a
tually reprodu
e those bythemselves.)The fa
t that De�nition 7.1 refers to a model without private 
hannels is due to the fa
t thatour (sket
hy) de�nition of the real-model adversary allowed it to tap the 
hannels, whi
h in turne�e
ts the set of possible ensembles freal�;A(x)gx. When de�ning se
urity in the private-
hannelmodel, the real-model adversary is not allowed to tap 
hannels between honest parties, and thisagain e�e
ts the possible ensembles freal�;A(x)gx. On the other hand, when we wish to de�nese
urity with respe
t to passive adversaries, both the s
ope of the real-model adversaries and thes
ope of the ideal-model adversaries 
hanges. In the real-model exe
ution, all parties follow theproto
ol but the adversary may alter the output of the dishonest parties arbitrarily depending onall their intermediate internal stated (during the exe
ution). In the 
orresponding ideal-model, theadversary is not allowed to modify the inputs of dishonest parties (in Step 1), but is allowed tomodify their outputs (in Step 3).We 
omment that a de�nition analogous to De�nition 7.1 
an be presented also in 
ase thedishonest parties are not in minority. In fa
t, su
h a de�nition seems more natural, but the problemis that su
h a de�nition 
annot be satis�ed. That is, most natural fun
tionalities do not have aproto
ol for 
omputing them se
urely in 
ase at least half of the parties are dishonest and employan adequate adversarial strategy. This follows from an impossibility result regarding two-party
omputation, whi
h essentially asserts that there is no way to prevent a party from prematurelysuspending the exe
ution [47℄. On the other hand, se
ure multi-party 
omputation with dishonestmajority is possible if premature suspension of the exe
ution is not 
onsidered a brea
h of se
urity(
f. Se
tion 7.1.3).7.1.3 Another example: Two-party proto
ols allowing abortIn light of the last paragraph, we now 
onsider multi-party 
omputations in whi
h prematuresuspension of the exe
ution is not 
onsidered a brea
h of se
urity. For 
on
reteness, we fo
us hereon the spe
ial 
ase of two-party 
omputations.22Intuitively, in any two-party proto
ol, ea
h party may suspend the exe
ution at any point intime, and furthermore it may do so as soon as it learns the desired output. Thus, in 
ase theoutput of ea
h parties depends on both inputs, it is always possible for one of the parties to obtainthe desired output while preventing the other party from fully-determining its own output. Thesame phenomenon o

urs even in 
ase the two parties just wish to generate a 
ommon random22As in Se
tion 7.1.2, we 
onsider a non-adaptive, a
tive, 
omputationally-bounded adversary.42



value. Thus, when 
onsidering a
tive adversaries in the two-party setting, we do not 
onsider su
hpremature suspension of the exe
ution a brea
h of se
urity. Consequently, we 
onsider an idealmodel where ea
h of the two parties may \shut-down" the trusted (third) party at any point intime. In parti
ular, this may happen after the trusted party has supplied the out
ome of the
omputation to one party but before it has supplied it to the other. That is, an exe
ution in theideal model pro
eeds as follows:1. Ea
h party sends its input to the trusted party, where the dishonest party may repla
e itsinput or send no input at all (whi
h 
an be treated as sending a default value).2. Upon re
eiving inputs from both parties, the trusted party determines the 
orrespondingoutputs, and sends the �rst output to the �rst party.3. In 
ase the �rst party is dishonest, it may instru
t the trusted party to halt, otherwise italways instru
ts the trusted party to pro
eed. If instru
ted to pro
eed, the trusted partysends the se
ond output to the se
ond party.4. Upon re
eiving the output-message from the trusted party, the honest party outputs it lo
ally,whereas the dishonest party may determine its output based on all it knows (i.e., its initialinput and its re
eived output).A se
ure two-party 
omputation allowing abort is required to emulate this ideal model. That is,as in De�nition 7.1, se
urity is de�ned by requiring that for every feasible real-model adversaryA, there exists a feasible ideal-model adversary A0, 
ontrolling the same party, so that the prob-ability ensembles representing the 
orresponding (real and ideal) exe
utions are 
omputationallyindistinguishable. This means that ea
h party's \e�e
tive malfun
tioning" in a se
ure proto
ol isrestri
ted to supplying an initial input of its 
hoi
e and aborting the 
omputation at any point intime. (Needless to say, the 
hoi
e of the initial input of ea
h party may not depend on the inputof the other party.)We mention that an alternative way of dealing with the problem of premature suspension ofexe
ution (i.e., abort) is to restri
t attention to single-output fun
tionalities; that is, fun
tionalitiesin whi
h only one party is supposed to obtain an output. The de�nition of se
ure 
omputation ofsu
h fun
tionalities 
an be identi
al to the De�nition 7.1, with the ex
eption that no restri
tion ismade on the set of dishonest parties (and in parti
ular one may 
onsider a single dishonest partyin 
ase of two-party proto
ols). For further details, see [68, Se
. 7.2.3℄.7.2 Some Known ResultsWe next list some of the models for whi
h general se
ure multi-party 
omputation is known to beattainable (i.e., models in whi
h one 
an 
onstru
t se
ure multi-party proto
ols for 
omputing anydesired fun
tionality). We mention that the �rst results of this type were obtained by Goldrei
h,Mi
ali, Wigderson and Yao [75, 127, 76℄.� Assuming the existen
e of enhan
ed23 trapdoor permutations, se
ure multi-party 
omputationis possible in the following models (
f. [75, 127, 76℄ and details in [65, 68℄):1. Passive adversary, for any number of dishonest parties (
f. [68, Se
. 7.3℄).2. A
tive adversary that may 
ontrol only a minority of the parties (
f. [68, Se
. 7.5.4℄).23See Footnote 18. 43



3. A
tive adversary, for any number of bad parties, provided that suspension of exe
utionis not 
onsidered a violation of se
urity (i.e., as dis
ussed in Se
tion 7.1.3). (See [68,Se
. 7.4 and 7.5.5℄.)In all these 
ases, the adversary is 
omputationally-bounded and non-adaptive. On the otherhand, the adversary may tap the 
ommuni
ation lines between honest parties (i.e., we donot assume \private 
hannels" here). The results for a
tive adversaries assume a broad
ast
hannel. Indeed, the latter 
an be implemented (while tolerating any number of bad parties)using a signature s
heme and assuming a publi
-key infrastru
ture (or that ea
h party knowsthe veri�
ation-key 
orresponding to ea
h of the other parties).� Making no 
omputational assumptions and allowing 
omputationally-unbounded adversaries,but assuming private 
hannels, se
ure multi-party 
omputation is possible in the followingmodels (
f. [26, 43℄):1. Passive adversary that may 
ontrol only a minority of the parties.2. A
tive adversary that may 
ontrol only less than one third of the parties.24In both 
ases the adversary may be adaptive (
f. [26, 38℄).� Se
ure multi-party 
omputation is possible against an a
tive, adaptive and mobile adversarythat may 
ontrol a small 
onstant fra
tion of the parties at any point in time [108℄. Thisresult makes no 
omputational assumptions, allows 
omputationally-unbounded adversaries,but assumes private 
hannels.� Assuming the existen
e of trapdoor permutations, se
ure multi-party 
omputation is possiblein a model allowing an a
tive and adaptive 
omputationally-bounded adversary that may
ontrol only less than one third of the parties [38, 49℄. We stress that this result does notassume \private 
hannels".Results for asyn
hronous 
ommuni
ation and arbitrary networks of point-to-point 
hannels werepresented in [24, 27℄ and [53℄, respe
tively.Note that the implementation of a broad
ast 
hannel 
an be 
asted as a 
ryptographi
 proto
olproblem (i.e., for the fun
tionality (v; �; :::; �) 7! (v; v; :::; v)). Thus, it is not surprising that theresults regarding a
tive adversaries either assume the existen
e of su
h a 
hannel or require a settingin whi
h the latter 
an be implemented.Se
ure rea
tive 
omputation: All the above results (easily) extend to a rea
tive model of 
om-putation in whi
h ea
h party intera
ts with a high-level pro
ess (or appli
ation). The high-levelpro
ess supplies ea
h party with a sequen
e of inputs, one at a time, and expe
t to re
eive 
orre-sponding outputs from the parties. That is, a rea
tive system goes through (a possibly unboundednumber of) iterations of the following type:� Parties are given inputs for the 
urrent iteration.� Depending on the 
urrent inputs, the parties are supposed to 
ompute outputs for the 
urrentiteration. That is, the outputs in iteration j are determined by the inputs of the jth iteration.24Fault-toleran
e 
an be in
reased to a regular minority if broad
ast 
hannels exists [113℄.44



A more general formulation allows the outputs of ea
h iteration to depend also on a global state,whi
h is possibly updated in ea
h iteration. The global state may in
lude all inputs and outputsof previous iterations, and may only be partially known to individual parties. (In a se
ure rea
tive
omputation su
h a global state may be maintained by all parties in a \se
ret sharing" manner.)For further dis
ussion, see [68, Se
. 7.7.1℄.EÆ
ien
y 
onsiderations: One important eÆ
ien
y measure regarding proto
ols is the numberof 
ommuni
ation rounds in their exe
ution. The results mentioned above were originally obtainedusing proto
ols that use an unbounded number of rounds. In some 
ases, subsequent works obtainedse
ure 
onstant-round proto
ols: for example, in 
ase of multi-party 
omputations with honestmajority (
f. [15℄) and in 
ase of two-party 
omputations allowing abort (
f. [95℄). Other importanteÆ
ien
y 
onsiderations in
lude the total number of bits sent in the exe
ution of a proto
ol, andthe lo
al 
omputation time. The (
ommuni
ation and 
omputation) 
omplexities of the proto
olsestablishing the above results are related to the 
omputational 
omplexity of the 
omputation, butalternative relations (e.g., referring to the (inse
ure) 
ommuni
ation 
omplexity of the 
omputation)may be possible (
f. [103℄).Theory versus pra
ti
e (or general versus spe
i�
): This survey is fo
used on presentinggeneral notions and general feasibility results. Needless to say, pra
ti
al solutions to spe
i�
 prob-lems (e.g., voting [86℄, se
ure payment systems [16℄, and threshold 
ryptosystems [62℄) are typi
allyderived by spe
i�
 
onstru
tions (and not by applying general results of the abovementioned type).Still, the (abovementioned) general results are of great importan
e to pra
ti
e be
ause they 
hara
-terize a wide 
lass of se
urity problems that are solvable in prin
iple, and provide te
hniques thatmay be useful also towards 
onstru
ting reasonable solutions to spe
i�
 problems.7.3 Constru
tion ParadigmsWe brie
y sket
h a 
ouple of paradigms used in the 
onstru
tion of se
ure multi-party proto
ols. Wefo
us on the 
onstru
tion of se
ure proto
ols for the model of 
omputationally-bounded and non-adaptive adversaries [75, 127, 76℄. These 
onstru
tions pro
eed in two steps (see details in [65, 68℄).First a se
ure proto
ol is presented for the model of passive adversaries (for any number of dishonestparties), and next su
h a proto
ol is \
ompiled" into a proto
ol that is se
ure in one of the twomodels of a
tive adversaries (i.e., either in a model allowing the adversary to 
ontrol only a minorityof the parties or in a model in whi
h premature suspension of the exe
ution is not 
onsidered aviolation of se
urity).Re
all that in the model of passive adversaries, all parties follow the pres
ribed proto
ol, butat termination the adversary may alter the outputs of the dishonest parties depending on all theirintermediate internal states (during the exe
ution). Below, we refer to proto
ols that are se
urein the model of passive (resp., general or a
tive) adversaries by the term passively-se
ure (resp.,a
tively-se
ure).7.3.1 Compilation of passively-se
ure proto
ols into a
tively-se
ure onesWe show how to transform any passively-se
ure proto
ol into a 
orresponding a
tively-se
ure pro-to
ol. The 
ommuni
ation model in both proto
ols 
onsists of a single broad
ast 
hannel. Notethat the messages of the original proto
ol may be assumed to be sent over a broad
ast 
hannel,be
ause the adversary may see them anyhow (by tapping the point-to-point 
hannels), and be
ausea broad
ast 
hannel is trivially implementable in 
ase of passive adversaries. As for the resulting45



a
tively-se
ure proto
ol, the broad
ast 
hannel it uses 
an be implemented via an (authenti
ated)Byzantine Agreement proto
ol [54, 96℄, thus providing an emulation of this model on the standardpoint-to-point model (in whi
h a broad
ast 
hannel does not exist). Re
all that authenti
atedByzantine Agreement is typi
ally implemented using a signature s
heme (and assuming that ea
hparty knows the veri�
ation-key 
orresponding to ea
h of the other parties).Turning to the transformation itself, the main idea is to use zero-knowledge proofs (as des
ribedin Se
tion 4.3) in order to for
e parties to behave in a way that is 
onsistent with the (passively-se
ure) proto
ol. A
tually, we need to 
on�ne ea
h party to a unique 
onsistent behavior (i.e.,a

ording to some �xed lo
al input and a sequen
e of 
oin tosses), and to guarantee that a party
annot �x its input (and/or its 
oins) in a way that depends on the inputs of honest parties. Thus,some preliminary steps have to be taken before the step-by-step emulation of the original proto
olmay start. Spe
i�
ally, the 
ompiled proto
ol (whi
h like the original proto
ol is exe
uted over abroad
ast 
hannel) pro
eeds as follows:1. Prior to the emulation of the original proto
ol, ea
h party 
ommits to its input (using a
ommitment s
heme [102℄). In addition, using a zero-knowledge proof-of-knowledge [83, 20,75℄, ea
h party also proves that it knows its own input; that is, that it 
an de
ommit to the
ommitment it sent. (These zero-knowledge proof-of-knowledge are 
ondu
ted sequentially toprevent dishonest parties from setting their inputs in a way that depends on inputs of honestparties; a more round-eÆ
ient method was presented in [46℄.)2. Next, all parties jointly generate a sequen
e of random bits for ea
h party su
h that onlythis party knows the out
ome of the random sequen
e generated for it, but everybody getsa 
ommitment to this out
ome. These sequen
es will be used as the random-inputs (i.e.,sequen
e of 
oin tosses) for the original proto
ol. Ea
h bit in the random-sequen
e generatedfor Party X is determined as the ex
lusive-or of the out
omes of instan
es of an (augmented)
oin-tossing proto
ol (
f. [28℄ and [68, Se
. 7.4.3.5℄) that Party X plays with ea
h of the otherparties.3. In addition, when 
ompiling (the passively-se
ure proto
ol to an a
tively-se
ure proto
ol) forthe model that allows the adversary to 
ontrol only a minority of the parties, ea
h party sharesits input and random-input with all other parties using a Veri�able Se
ret Sharing proto
ol(
f. [44℄ and [68, Se
. 7.5.5.1℄). This will guarantee that if some party prematurely suspendsthe exe
ution, then all the parties 
an together re
onstru
t all its se
rets and 
arry-on theexe
ution while playing its role.4. After all the above steps were 
ompleted, we turn to the main step in whi
h the new proto
olemulates the original one. In ea
h step, ea
h party augments the message determined by theoriginal proto
ol with a zero-knowledge that asserts that the message was indeed 
omputed
orre
tly. Re
all that the next message (as determined by the original proto
ol) is a fun
tionof the sender's own input, its random-input, and the messages it has re
eived so far (where thelatter are known to everybody be
ause they were sent over a broad
ast 
hannel). Furthermore,the sender's input is determined by its 
ommitment (as sent in Step 1), and its random-input is similarly determined (in Step 2). Thus, the next message (as determined by theoriginal proto
ol) is a fun
tion of publi
ly known strings (i.e., the said 
ommitments as wellas the other messages sent over the broad
ast 
hannel). Moreover, the assertion that thenext message was indeed 
omputed 
orre
tly is an NP-assertion, and the sender knows a
orresponding NP-witness (i.e., its own input and random-input as well as the 
orrespondingde
ommitment information). Thus, the sender 
an prove in zero-knowledge (to ea
h of the46



other parties) that the message it is sending was indeed 
omputed a

ording to the originalproto
ol.The above 
ompilation was �rst outlined in [75, 76℄. A detailed des
ription and full proofs appearin [65, 68℄.7.3.2 Passively-se
ure 
omputation with sharesFor any m � 2, suppose that m parties, ea
h having a private input, wish to obtain the valueof a predetermined m-argument fun
tion evaluated at their sequen
e of inputs. Further supposethat the parties hold a 
ir
uit that 
omputes the value of the fun
tion on inputs of the adequatelength, and that the 
ir
uit 
ontains only and and not gates. The idea is to have ea
h party\se
retly share" its input with everybody else, and \se
retly transform" shares of the top wiresof the 
ir
uit into shares of the bottom wires, thus obtaining shares of the outputs (whi
h allowsfor the re
onstru
tion of the a
tual outputs). The value of ea
h wire in the 
ir
uit is shared in away su
h that all shares yield the value, whereas la
king even one of the shares keeps the valuetotally undetermined. That is, we use a simple se
ret sharing s
heme (
f. [120℄) su
h that a bit bis shared by a random sequen
e of m bits that sum-up to b mod 2. First, ea
h party shares ea
hof its input bits with all parties (by se
retly sending ea
h party a random value and setting itsown share a

ordingly). Next, all parties jointly s
an the 
ir
uit from its input wires to the outputwires, pro
essing ea
h gate as follows:� When en
ountering a gate, the parties already hold shares of the values of the wires enteringthe gate, and their aim is to obtain shares of the value of the wire exiting the gate.� For a not-gate this is easy: the �rst party just 
ips the value of its share, and all other partiesmaintain their shares.� Sin
e an and-gate 
orresponds to multipli
ation modulo 2, the parties need to se
urely 
om-pute the following randomized fun
tionality (in whi
h the xi's denote shares of one entry-wire,the yi's denote shares of the se
ond entry-wire, the zi's denote shares of the exit-wire, andthe shares indexed by i belongs to Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; z2) (1)where Pmi=1 zi = (Pmi=1 xi) � (Pmi=1 yi). (2)That is, the zi's are random subje
t to Eq. (2).Finally, the parties send their shares of ea
h 
ir
uit-output wire to the designated party, whi
hre
onstru
ts the value of the 
orresponding bit. Thus, the parties have propagated shares of theinput wires into shares of the output wires, by repeatedly 
ondu
ting privately-se
ure 
omputationof the m-ary fun
tionality of Eq. (1)& (2). That is, se
urely evaluating the entire (arbitrary) 
ir
uit\redu
es" to se
urely 
ondu
ting a spe
i�
 (very simple) multi-party 
omputation. But things geteven simpler: the key observation is that mXi=1 xi! �  mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) (3)Thus, the m-ary fun
tionality of Eq. (1)& (2) 
an be 
omputed as follows (where all arithmeti
operations are mod 2): 47



1. Ea
h Party i lo
ally 
omputes zi;i def= xiyi.2. Next, ea
h pair of parties (i.e., Parties i and j) se
urely 
ompute random shares of xiyj+yixj .That is, Parties i and j (holding (xi; yi) and (xj ; yj), respe
tively), need to se
urely 
omputethe randomized two-party fun
tionality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z's are ran-dom subje
t to zi;j + zj;i = xiyj + yixj. Equivalently, Party j uniformly sele
ts zj;i 2 f0; 1g,and Parties i and j se
urely 
ompute the deterministi
 fun
tionality ((xi; yi); (xj ; yj; zj;i)) 7!(zj;i + xiyj + yixj ; �).The latter simple two-party 
omputation 
an be se
urely implemented using (a 1-out-of-4)Oblivious Transfer (
f. [80℄ and [68, Se
. 7.3.3℄), whi
h in turn 
an be implemented usingenhan
ed trapdoor permutations (
f. [56℄ and [68, Se
. 7.3.2℄). Loosely speaking, a 1-out-of-kOblivious Transfer is a proto
ol enabling one party to obtain one of k se
rets held by anotherparty, without the se
ond party learning whi
h se
ret was obtained by the �rst party. Thatis, we refer to the two-party fun
tionality(i; (s1; :::; sk)) 7! (si; �) (4)Note that any fun
tion f : [k℄ � f0; 1g� ! f0; 1g� 
an be privately-
omputed by invoking a1-out-of-k Oblivious Transfer on inputs i and (f(1; y); :::; f(k; y)), where i (resp., y) is theinitial input of the �rst (resp., se
ond) party.3. Finally, for every i = 1; :::;m, summing-up all the zi;j's yields the desired share of Party i.The above 
onstru
tion is analogous to a 
onstru
tion that was brie
y des
ribed in [76℄. A detaileddes
ription and full proofs appear in [65, 68℄.We mention that an analogous 
onstru
tion has been subsequently used in the private 
hannelmodel and withstands 
omputationally unbounded a
tive (resp., passive) adversaries that 
ontrolless than one third (resp., a minority) of the parties [26℄. The basi
 idea is to use a more sophisti-
ated se
ret sharing s
heme; spe
i�
ally, via a low degree polynomials [120℄. That is, the Boolean
ir
uit is viewed as an arithmeti
 
ir
uit over a �nite �eld having more than m elements, and ase
ret element s of the �eld is shared by sele
ting uniformly a polynomial of degree d = b(m� 1)=3
(resp., degree d = b(m� 1)=2
) having a free-term equal to s, and handing ea
h party the value ofthis polynomial evaluated at a di�erent (�xed) point (e.g., party i is given the value at point i).Addition is emulated by (lo
al) point-wise addition of the (se
ret sharing) polynomials represent-ing the two inputs (using the fa
t that for polynomials p and q, and any �eld element e (and inparti
ular e = 0; 1; :::;m), it holds that p(e) + q(e) = (p + q)(e)). The emulation of multipli
ationis more involved and requires intera
tion (be
ause the produ
t of polynomials yields a polynomialof higher degree, and thus the polynomial representing the output 
annot be the produ
t of thepolynomials representing the two inputs). Indeed, the aim of the intera
tion is to turn the sharesof the produ
t polynomial into shares of a degree d polynomial that has the same free-term as theprodu
t polynomial (whi
h is of degree 2d). This 
an be done using the fa
t that the 
oeÆ
ients ofa polynomial are a linear 
ombination of its values at suÆ
iently many arguments (and the otherway around), and the fa
t that one 
an privately-
ompute any linear 
ombination (of se
ret values).For details see [26, 63℄.7.4 Con
urrent exe
ution of proto
olsThe de�nitions and results surveyed so far refer to a setting in whi
h, at ea
h time, only a singleexe
ution of a 
ryptographi
 proto
ol takes pla
e (or only one exe
ution may be 
ontrolled by48



the adversary). In 
ontrast, in many distributed settings (e.g., the Internet), many exe
utionsare taking pla
e 
on
urrently (and several of them may be 
ontrolled by the same adversary).Furthermore, it is undesirable (and sometimes even impossible) to 
oordinate these exe
utions (soto e�e
tively enfor
e a single-exe
ution setting). Still, the de�nitions and results obtained in thesingle-exe
ution setting serves as a good starting point for the study of se
urity in the setting of
on
urrent exe
utions.As in 
ase of stand-alone se
urity, the notion of zero-knowledge provides a good test 
asefor the study of 
on
urrent se
urity. Indeed, in order to demonstrate the se
urity issues arisingfrom 
on
urrent exe
ution of proto
ols, we 
onsider the 
on
urrent exe
ution of zero-knowledgeproto
ols. Spe
i�
ally, we 
onsider a party P holding a random (or rather pseudorandom) fun
tionf : f0; 1g2n!f0; 1gn, and willing to parti
ipate in the following proto
ol (with respe
t to se
urityparameter n).25 The other party, 
alled A for adversary, is supposed to send P a binary valuev 2 f1; 2g spe
ifying whi
h of the following 
ases to exe
ute:For v = 1: Party P uniformly sele
ts � 2 f0; 1gn, and sends it to A, whi
h is supposed to replywith a pair of n-bit long strings, denoted (�; 
). Party P 
he
ks whether or not f(��) = 
.In 
ase equality holds, P sends A some se
ret information (e.g., the se
ret-key 
orrespondingto P 's publi
-key).For v = 2: Party A is supposed to uniformly sele
t � 2 f0; 1gn, and sends it to P , whi
h sele
tsuniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy is zero-knowledge (even w.r.t auxiliary-inputs as de�ned in De�nition 4.1):Intuitively, if the adversary A 
hooses the 
ase v = 1, then it is infeasible for A to guess a passingpair (�; 
) with respe
t to a random � sele
ted by P . Thus, ex
ept with negligible probability (whenit may get se
ret information), A does not obtain anything from the intera
tion. On the other hand,if the adversary A 
hooses the 
ase v = 2, then it obtains a pair that is indistinguishable from auniformly sele
ted pair of n-bit long strings (be
ause � is sele
ted uniformly by P , and for any �the value f(��) looks random to A). In 
ontrast, if the adversary A 
an 
ondu
t two 
on
urrentexe
utions with P , then it may learn the desired se
ret information: In one session, A sends v = 1while in the other it sends v = 2. Upon re
eiving P 's message, denoted �, in the �rst session, Asends it as its own message in the se
ond session, obtaining a pair (�; f(��)) from P 's exe
utionof the se
ond session. Now, A sends the pair (�; f(��)) to the �rst session of P , this pair passesthe 
he
k, and so A obtains the desired se
ret.An atta
k of the above type is 
alled a relay atta
k: During su
h an atta
k the adversary justinvokes two exe
utions of the proto
ol and relays messages between them (without any modi�
a-tion). However, in general, the adversary in a 
on
urrent setting is not restri
ted to relay atta
ks.For example, 
onsider a minor modi�
ation to the above proto
ol so that in 
ase v = 2 partyP replies with (say) the pair (�; f(��)), where � = � � 1j�j, rather than with (�; f(��)). Themodi�ed strategy P is zero-knowledge and it also withstands a relay atta
k, but it 
an be \abused"easily by a more general 
on
urrent atta
k.The above example is merely the tip of an i
eberg, but it suÆ
es for introdu
ing the mainlesson: an adversary atta
king several 
on
urrent exe
utions of the same proto
ol may be able to
ause more damage than by atta
king a single exe
ution (or several sequential exe
utions) of thesame proto
ol. One may say that a proto
ol is 
on
urrently se
ure if whatever the adversary mayobtain by invoking and 
ontrolling parties in real 
on
urrent exe
utions of the proto
ol is also25In fa
t, assuming that P shares a pseudorandom fun
tion f with his friends (as explained in Se
tion 3.3), theabove proto
ol is an abstra
tion of a natural \mutual identi�
ation" proto
ol. (The example is adapted from [73℄.)49



obtainable by a 
orresponding adversary that 
ontrols 
orresponding parties making 
on
urrentfun
tionality 
alls to a trusted party (in a 
orresponding ideal model).26 More generally, one may
onsider 
on
urrent exe
utions of many sessions of several proto
ols, and say that a set of proto
olsis 
on
urrently se
ure if whatever the adversary may obtain by invoking and 
ontrolling su
h real
on
urrent exe
utions is also obtainable by a 
orresponding adversary that invokes and 
ontrols
on
urrent 
alls to a trusted party (in a 
orresponding ideal model). Consequently, a proto
olis said to be se
ure with respe
t to 
on
urrent 
ompositions if adding this proto
ol to any set of
on
urrently se
ure proto
ols yields a set of 
on
urrently se
ure proto
ols.A mu
h more appealing approa
h was re
ently suggested by Canetti [37℄. Loosely speaking,Canetti suggests to 
onsider a proto
ol to be se
ure (
alled environmentally-se
ure (or UniversallyComposable se
ure [37℄)) only if it remains se
ure when exe
uted within any (feasible) environment.Following the simulation paradigm, we get the following de�nition:De�nition 7.2 (environmentally-se
ure proto
ols [37℄ { a rough sket
h): Let f be an m-ary fun
-tionality and � be an m-party proto
ol, and 
onsider the following real and ideal models.In the real model the adversary 
ontrols some of the parties in an exe
ution of � and all parties
an 
ommuni
ate with an arbitrary probabilisti
 polynomial-time pro
ess, whi
h is 
alled anenvironment (and possibly represents other exe
utions of various proto
ols that are taking pla
e
on
urrently). Honest parties only 
ommuni
ate with the environment before the exe
utionstarts and when it ends; they merely obtain their inputs from the environment and pass theiroutputs to it. In 
ontrast, dishonest parties may 
ommuni
ate freely with the environment,
on
urrently to the entire exe
ution of �.In the ideal model the (simulating) adversary 
ontrols the same parties, whi
h use an ideal (trusted-party) that behaves a

ording to the fun
tionality f (as in Se
tion 7.1.2). All parties 
an 
om-muni
ate with the (same) environment (as in the real model). Indeed, the dishonest partiesmay 
ommuni
ate extensively with the environment before and after their single 
ommuni
a-tion with the trusted party.We say that � is an environmentally-se
ure proto
ol for 
omputing f if for every probabilisti
 polynomial-time adversary A in the real model there exists a probabilisti
 polynomial-time adversary A0 
on-trolling the same parties in the ideal model su
h that no probabilisti
 polynomial-time environment
an distinguish the 
ase in whi
h it is a

essed by the parties in the real exe
ution from the 
ase itis a

essed by parties in the ideal model.As hinted above, the environment may a

ount for other exe
utions of various proto
ols that aretaking pla
e 
on
urrently to the main exe
ution being 
onsidered. The de�nition requires thatsu
h environments 
annot distinguish the real exe
ution from an ideal one. This means thatanything that the real adversary (i.e., operating in the real model) gains from the exe
ution andany environment, 
an be also obtained by an adversary operating in the ideal model and havinga

ess to the same environment. Indeed, Canetti proves that environmentally-se
ure proto
ols arese
ure with respe
t to 
on
urrent 
ompositions [37℄.26One spe
i�
 
on
ern (in su
h a 
on
urrent setting) is the ability of the adversary to \non-trivially 
orrelatethe outputs" of 
on
urrent exe
utions. This ability, 
alled malleability, was �rst investigated by Dolev, Dwork andNaor [52℄. We 
omment that providing a general de�nition of what \
orrelated outputs" means seems very 
hallenging(if at all possible). Indeed the fo
us of [52℄ is on several important spe
ial 
ases su
h as en
ryption and 
ommitments
hemes. 50



It is known is that environmentally-se
ure proto
ols for any fun
tionality 
an be 
onstru
tedfor settings in whi
h more than two-thirds of the a
tive parties are honest [37℄. This holds un-
onditionally for the private 
hannel model, and under standard assumptions (e.g., allowing the
onstru
tion of publi
-key en
ryption s
hemes) for the standard model (i.e., without private 
han-nel). The immediate 
onsequen
e of this result is that general environmentally-se
ure multi-party
omputation is possible, provided that more than two-thirds of the parties are honest.In 
ontrast, general environmentally-se
ure two-party 
omputation is not possible (in the stan-dard sense).27 Still, one 
an salvage general environmentally-se
ure two-party 
omputation in thefollowing reasonable model: Consider a network that 
ontains servers that are willing to parti
ipate(as \helpers", possibly for a payment) in 
omputations initiated by a set of (two or more) users.Now, suppose that two users wishing to 
ondu
t a se
ure 
omputation 
an agree on a set of serversso that ea
h user believes that more than two-thirds of the servers (in this set) are honest. Then,with the a
tive parti
ipation of this set of servers, the two users 
an 
ompute any fun
tionality inan environmentally-se
ure manner.Other reasonable models where general environmentally-se
ure two-party 
omputation is possi-ble in
lude the 
ommon random-string (CRS) model [42℄ and variants of the publi
-key infrastru
-ture (PKI) model [9℄. In the CRS model, all parties have a

ess to a universal random string (oflength related to the se
urity parameter). We stress that the entity trusted to post this universalrandom string is not required to take part in any exe
ution of any proto
ol, and that all exe
utionsof all proto
ols may use the same universal random string. The PKI models 
onsidered in [9℄require that ea
h party deposits a publi
-key with a trusted 
enter, while proving knowledge of a
orresponding private-key. This proof may be 
ondu
ted in zero-knowledge during spe
ial epo
hsin whi
h no other a
tivity takes pla
e.

27Of 
ourse, some spe
i�
 two-party 
omputations do have environmentally-se
ure proto
ols. See [37℄ for severalimportant examples (e.g., key ex
hange). 51
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