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1 Introduction and PreliminariesIt is possible to build a cabin with no foundations,but not a lasting building.Eng. Isidor Goldreich (1906{1995)1.1 IntroductionModern cryptography is concerned with the construction of systems that are robust against ma-licious attempts to make these systems deviate from their prescribed functionality. Indeed, thescope of modern cryptography is very broad, and stands in contrast to \classical" cryptography,which has been associated with the single problem of providing secret communication over insecurecommunication media.The design of cryptographic schemes is a very di�cult task. One cannot rely on intuitionsregarding the \typical" state of the environment in which the system operates. For sure, theadversary attacking the system will try to manipulate the environment into \untypical" states.Nor can one be content with counter-measures designed to withstand speci�c attacks, since theadversary (which acts after the design of the system is completed) will try to attack the schemesin ways that are di�erent from the ones the designer had envisioned. The validity of the aboveassertions seems self-evident, still some people hope that in practice ignoring these tautologies willnot result in actual damage. Experience shows that these hopes rarely come true; cryptographicschemes based on make-believe are broken, typically sooner than later.In view of the foregoing, we believe that it makes little sense to make assumptions regarding thespeci�c strategy that the adversary may use. The only assumptions that can be justi�ed refer tothe computational abilities of the adversary. Furthermore, the design of cryptographic systems hasto be based on �rm foundations; whereas ad-hoc approaches and heuristics are a very dangerousway to go. A heuristic may make sense when the designer has a very good idea regarding theenvironment in which a scheme is to operate, yet a cryptographic scheme has to operate in amaliciously selected environment which typically transcends the designer's view.This primer is aimed at presenting the foundations for cryptography. The foundations of cryp-tography are the paradigms, approaches and techniques used to conceptualize, de�ne and providesolutions to natural \security concerns". We will present some of these paradigms, approaches andtechniques as well as some of the fundamental results obtained using them. Our emphasis is on theclari�cation of fundamental concepts and on demonstrating the feasibility of solving several centralcryptographic problems.Solving a cryptographic problem (or addressing a security concern) is a two-stage process con-sisting of a de�nitional stage and a constructive stage. First, in the de�nitional stage, the function-ality underlying the natural concern is to be identi�ed, and an adequate cryptographic problem hasto be de�ned. Trying to list all undesired situations is infeasible and prone to error. Instead, oneshould de�ne the functionality in terms of operation in an imaginary ideal model, and require acandidate solution to emulate this operation in the real, clearly de�ned, model (which speci�es theadversary's abilities). Once the de�nitional stage is completed, one proceeds to construct a systemthat satis�es the de�nition. Such a construction may use some simpler tools, and its security isproved relying on the features of these tools. In practice, of course, such a scheme may need tosatisfy also some speci�c e�ciency requirements.This primer focuses on several archetypical cryptographic problems (e.g., encryption and sig-nature schemes) and on several central tools (e.g., computational di�culty, pseudorandomness,1



and zero-knowledge proofs). For each of these problems (resp., tools), we start by presenting thenatural concern underlying it (resp., its intuitive objective), then de�ne the problem (resp., tool),and �nally demonstrate that the problem may be solved (resp., the tool can be constructed). Inthe latter step, our focus is on demonstrating the feasibility of solving the problem, not on provid-ing a practical solution. As a secondary concern, we typically discuss the level of practicality (orimpracticality) of the given (or known) solution.Computational Di�cultyThe speci�c constructs mentioned above (as well as most constructs in this area) can exist onlyif some sort of computational hardness exists. Speci�cally, all these problems and tools require(either explicitly or implicitly) the ability to generate instances of hard problems. Such ability iscaptured in the de�nition of one-way functions. Thus, one-way functions are the very minimumneeded for doing most tasks of cryptography. As we shall see, one-way functions actually su�cefor doing much of cryptography (and the rest can be done by augmentations and extensions of theassumption that one-way functions exist).Our current state of understanding of e�cient computation does not allow us to prove thatone-way functions exist. In particular, the existence of one-way functions implies that NP is notcontained in BPP � P (not even \on the average"), which would resolve the most famous openproblem of computer science. Thus, we have no choice (at this stage of history) but to assumethat one-way functions exist. As justi�cation to this assumption we may only o�er the combinedbeliefs of hundreds (or thousands) of researchers. Furthermore, these beliefs concern a simply statedassumption, and their validity follows from several widely believed conjectures which are centralto various �elds (e.g., the conjecture that factoring integers is hard is central to computationalnumber theory).Since we need assumptions anyhow, why not just assume what we want (i.e., the existence ofa solution to some natural cryptographic problem)? Well, �rst we need to know what we want: asstated above, we must �rst clarify what exactly we want; that is, go through the typically complexde�nitional stage. But once this stage is completed, can we just assume that the de�nition derivedcan be met? Not really: once a de�nition is derived, how can we know that it can at all bemet? The way to demonstrate that a de�nition is viable (and that the intuitive security concerncan be satis�ed at all) is to construct a solution based on a better understood assumption (i.e.,one that is more common and widely believed). For example, looking at the de�nition of zero-knowledge proofs, it is not a-priori clear that such proofs exist at all (in a non-trivial sense). Thenon-triviality of the notion was �rst demonstrated by presenting a zero-knowledge proof system forstatements, regarding Quadratic Residuosity, which are believed to be hard to verify (without extrainformation). Furthermore, contrary to prior beliefs, it was later shown that the existence of one-way functions implies that any NP-statement can be proved in zero-knowledge. Thus, facts thatwere not known at all to hold (and even believed to be false), were shown to hold by reduction towidely believed assumptions (without which most of modern cryptography collapses anyhow). Tosummarize, not all assumptions are equal, and so reducing a complex, new and doubtful assumptionto a widely-believed simple (or even merely simpler) assumption is of great value. Furthermore,reducing the solution of a new task to the assumed security of a well-known primitive typicallymeans providing a construction that, using the known primitive, solves the new task. This meansthat we do not only know (or assume) that the new task is solvable but also have a solution basedon a primitive that, being well-known, typically has several candidate implementations.2



Prerequisites and StructureOur aim is to present the basic concepts, techniques and results in cryptography. As stated above,our emphasis is on the clari�cation of fundamental concepts and the relationship among them. Thisis done in a way independent of the particularities of some popular number theoretic examples.These particular examples played a central role in the development of the �eld and still o�erthe most practical implementations of all cryptographic primitives, but this does not mean thatthe presentation has to be linked to them. On the contrary, we believe that concepts are bestclari�ed when presented at an abstract level, decoupled from speci�c implementations. Thus, themost relevant background for this primer is provided by basic knowledge of algorithms (includingrandomized ones), computability and elementary probability theory.The primer is organized in two main parts corresponding to Basic Tools and Basic Applica-tions, which are preceded by preliminaries (regarding e�cient and feasible computations). TheBasic Tools consist of computational di�culty (one-way functions), pseudorandomness and zero-knowledge proofs. These basic tools are used for the Basic Applications, which in turn consist ofEncryption Schemes, Signature Schemes, and General Cryptographic Protocols.Suggestions for Further ReadingThis primer is a brief summary of the author's two-volume work on the subject [67, 68]. Further-more, Part I corresponds to [67], whereas Part II corresponds to [68]. Needless to say, the readeris referred to these textbooks for further detail.Current research on the foundations of cryptography appears in general computer science con-ferences (e.g., FOCS and STOC), in cryptography conferences (e.g., Crypto and EuroCrypt) aswell as in the newly established Theory of Cryptography Conference (TCC).The aim of this primer is to introduce the reader to the theoretical foundations of cryptography.As argued above, such foundations are necessary for sound practice of cryptography. Indeed,practice requires more than theoretical foundations, whereas the current work makes no attempt toprovide anything beyond the latter. However, given a sound foundation, one can learn and evaluatevarious practical suggestions that appear elsewhere (e.g., in [99]). On the other hand, lack of soundfoundations results in inability to critically evaluate practical suggestions, which in turn leads tounsound decisions. Nothing could be more harmful to the design of schemes that need to withstandadversarial attacks than misconceptions about such attacks.Among other things, this primer reviews zero-knowledge proofs (which are probabilistic) andpseudorandom generators (and functions). A wider perspective on probabilistic proof systems andpseudorandomness is provided in [66].Non-cryptographic references: Some \non-cryptographic" works were referenced for sake ofwider perspective. Examples include [3, 4, 5, 6, 57, 71, 79, 98, 122].1.2 PreliminariesModern Cryptography, as surveyed here, is concerned with the construction of e�cient schemes forwhich it is infeasible to violate the security feature. Thus, we need a notion of e�cient computationsas well as a notion of infeasible ones. The computations of the legitimate users of the scheme oughtbe e�cient, whereas violating the security features (by an adversary) ought to be infeasible. Westress that we do not identify feasible computations with e�cient ones, but rather view the formernotion as potentially more liberal. 3



E�cient computations and infeasible ones. E�cient computations are commonly modeledby computations that are polynomial-time in the security parameter. The polynomial boundingthe running-time of the legitimate user's strategy is �xed and typically explicit (and small). Indeed,our aim is to have a notion of e�ciency that is as strict as possible (or, equivalently, developstrategies that are as e�cient as possible). Here (i.e., when referring to the complexity of thelegitimate users) we are in the same situation as in any algorithmic setting. Things are di�erentwhen referring to our assumptions regarding the computational resources of the adversary, wherewe refer to the notion of feasible that we wish to be as wide as possible. A common approachis to postulate that feasible computations are polynomial-time too, but here the polynomial is nota-priori speci�ed (and is to be thought of as arbitrarily large). In other words, the adversary isrestricted to the class of polynomial-time computations and anything beyond this is considered tobe infeasible. Although many de�nitions explicitly refer to the convention of associating feasiblecomputations with polynomial-time ones, this convention is inessential to any of the results knownin the area. In all cases, a more general statement can be made by referring to a general notionof feasibility, which should be preserved under standard algorithmic composition, yielding theoriesthat refer to adversaries of running-time bounded by any speci�c super-polynomial function (orclass of functions). Still, for sake of concreteness and clarity, we shall use the former conventionin our formal de�nitions (but our motivational discussions will refer to an unspeci�ed notion offeasibility that covers at least e�cient computations).Randomized (or probabilistic) computations. Randomized computations play a central rolein cryptography. One fundamental reason for this fact is that randomness is essential for the ex-istence (or rather the generation) of secrets. Thus, we must allow the legitimate users to employrandomized computations, and certainly (since randomization is feasible) we must consider alsoadversaries that employ randomized computations. This brings up the issue of success probability:typically, we require that legitimate users succeed (in ful�lling their legitimate goals) with proba-bility 1 (or negligibly close to this), whereas adversaries succeed (in violating the security features)with negligible probability. Thus, the notion of a negligible probability plays an important role inour exposition. One requirement of the de�nition of negligible probability is to provide a robustnotion of rareness: A rare event should occur rarely even if we repeat the experiment for a feasiblenumber of times. That is, in case we consider any polynomial-time computation to be feasible, anyfunction � :N!N that satis�es 1 � (1 � �(n))p(n) < 0:01, for every polynomial p and su�cientlybig n, is considered negligible (i.e., � is negligible if for every positive polynomial p0 the function�(�) is upper-bounded by 1=p0(�)). However, if we consider the function T (n) to provide our notionof infeasible computation then functions bounded above by 1=T (n) are considered negligible (in n).We will also refer to the notion of noticeable probability. Here the requirement is that events thatoccur with noticeable probability, will occur almost surely (i.e., except with negligible probability)if we repeat the experiment for a polynomial number of times. Thus, a function � :N!N is callednoticeable if for some positive polynomial p0 the function �(�) is lower-bounded by 1=p0(�).
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Part IBasic ToolsIn this part we survey three basic tools used in Modern Cryptography. The most basic tool is com-putational di�culty, which in turn is captured by the notion of one-way functions. Next, we surveythe notion of computational indistinguishability, which underlies the theory of pseudorandomnessas well as much of the rest of cryptography. In particular, pseudorandom generators and functionsare important tools that will be used in later sections. Finally, we survey zero-knowledge proofs,and their use in the design of cryptographic protocols. For more details regarding the contents ofthe current part, see our textbook [67].2 Computational Di�culty and One-Way FunctionsModern Cryptography is concerned with the construction of schemes that are easy to operate(properly) but hard to foil. Thus, a complexity gap (between the complexity of proper usage andthe complexity of defeating the prescribed functionality) lies at the heart of Modern Cryptography.However, gaps as required for Modern Cryptography are not known to exist; they are only widelybelieved to exist. Indeed, almost all of Modern Cryptography rises or falls with the question ofwhether one-way functions exist. We note that the existence of one-way functions implies that NPcontains search problems that are hard to solve on the average, which in turn implies that NP isnot contained in BPP (i.e., a worst-case complexity conjecture).
x f(x)

easy

HARDFigure 1: One way functions { an illustration.Loosely speaking, one-way functions are functions that are easy to evaluate but hard (on theaverage) to invert. Such functions provide an e�cient way of generating puzzles that are infeasibleto solve. Furthermore, the person generating the puzzle knows a solution to it and can e�cientlyverify the validity of (possibly other) solutions to the puzzle. Thus, one-way functions by de�nitionhave a clear cryptographic 
avor. 5



2.1 One-Way FunctionsOne-way functions are functions that are e�ciently computable but infeasible to invert (in anaverage-case sense). That is, a function f :f0; 1g�!f0; 1g� is called one-way if there is an e�cientalgorithm that on input x outputs f(x), whereas any feasible algorithm that tries to �nd a preim-age of f(x) under f may succeed only with negligible probability (where the probability is takenuniformly over the choices of x and the algorithm's coin tosses). Associating feasible computationswith probabilistic polynomial-time algorithms, we obtain the following de�nition.De�nition 2.1 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the follow-ing two conditions hold:1. easy to evaluate: There exist a polynomial-time algorithm A such that A(x) = f(x) for everyx 2 f0; 1g�.2. hard to invert: For every probabilistic polynomial-time algorithm A0, every polynomial p, andall su�ciently large n, Pr[A0(f(x); 1n) 2 f�1(f(x))] < 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gn and all thepossible outcomes of the internal coin tosses of algorithm A0.Algorithm A0 is given the auxiliary input 1n so to allow it to run in time polynomial in the length ofx, which is important in case f drastically shrinks its input (e.g., jf(x)j = O(log jxj)). Typically, fis length preserving, in which case the auxiliary input 1n is redundant. Note that A0 is not requiredto output a speci�c preimage of f(x); any preimage (i.e., element in the set f�1(f(x))) will do.(Indeed, in case f is 1-1, the string x is the only preimage of f(x) under f ; but in general there maybe other preimages.) It is required that algorithm A0 fails (to �nd a preimage) with overwhelmingprobability, when the probability is also taken over the input distribution. That is, f is \typically"hard to invert, not merely hard to invert in some (\rare") cases.Some of the most popular candidates for one-way functions are based on the conjectured in-tractability of computational problems in number theory. One such conjecture is that it is infeasibleto factor large integers. Consequently, the function that takes as input two (equal length) primesand outputs their product is widely believed to be a one-way function. Furthermore, factoring sucha composite is infeasible if and only if squaring modulo such a composite is a one-way function(see [112]). For certain composites (i.e., products of two primes that are both congruent to 3 mod 4),the latter function induces a permutation over the set of quadratic residues modulo this compos-ite. A related permutation, which is widely believed to be one-way, is the RSA function [116]:x 7! xe mod N , where N = P �Q is a composite as above, e is relatively prime to (P � 1) � (Q� 1),and x 2 f0; :::; N � 1g. The latter examples (as well as other popular suggestions) are better cap-tured by the following formulation of a collection of one-way functions (which is indeed related toDe�nition 2.1):De�nition 2.2 (collections of one-way functions and additional properties): A collection of func-tions, ffi : Di ! f0; 1g�gi2I , is called one-way if there exists three probabilistic polynomial-timealgorithms, I, D and F , so that the following two conditions hold1. easy to sample and compute: The output of algorithm I, on input 1n, is distributed over theset I \ f0; 1gn (i.e., is an n-bit long index of some function). The output of algorithm D, oninput (an index of a function) i 2 I, is distributed over the set Di (i.e., over the domain ofthe function). On input i 2 I and x 2 Di, algorithm F always outputs fi(x).6



2. hard to invert:1 For every probabilistic polynomial-time algorithm, A0, every positive polyno-mial p(�), and all su�ciently large n'sPr hA0(i; fi(x))2f�1i (fi(x))i < 1p(n)where i I(1n) and x D(i).The collection is said to be a collection of permutations if each of the fi's is a permutation overthe corresponding Di, and D(i) is almost uniformly distributed in Di. Such a collection is calleda trapdoor permutation2 if in addition to the above there are two probabilistic polynomial-time al-gorithms I 0 and F�1 such that (1) the distribution I 0(1n) ranges over pairs of strings so that the�rst string is distributed as in I(1n), and (2) for every (i; t) in the range of I 0(1n) it holds thatF�1(t; fi(x)) = x. (That is, t is a trapdoor that allows to invert fi.)Strong versus weak one-way functions. Recall that the above de�nitions require that anyfeasible algorithm succeeds in inverting the function with negligible probability. A weaker notiononly requires that any feasible algorithm fails to invert the function with noticeable probability. Itturns out that the existence of such weak one-way functions implies the existence of strong one-way functions (as de�ned above). The construction itself is straightforward: one just parses theargument to the new function into su�ciently many blocks, and applies the weak one-way functionon the individual blocks. We warn that the hardness of the resulting function is not established bymere \combinatorics" (i.e., one may not assume that the potential inverting algorithm works inde-pendently on each block).3 Instead, a \reducibility argument" is used, showing that an invertingalgorithm for the resulting function can be used to construct an inverting algorithm for the originalfunction. The proof, presented in [67, Sec. 2.3], demonstrates that ampli�cation of computationaldi�culty is much more involved than ampli�cation of an analogous probabilistic event. An alter-native demonstration of the di�culty of reasoning about computational di�culty (in comparisonto an analogous purely probabilistic situation) as well as a discussion of reducibility arguments isprovided in the proof of Theorem 2.4.2.2 Hard-Core PredicatesLoosely speaking, saying that a function f is one-way implies that given y (in the range of f) itis infeasible to �nd a preimage of y under f . This does not mean that it is infeasible to �nd outpartial information about the preimage(s) of y under f . Speci�cally it may be easy to retrievehalf of the bits of the preimage (e.g., given a one-way function f consider the function g de�nedby g(x; r) def= (f(x); r), for every jxj= jrj). The fact that one-way functions do not necessarily hidepartial information about their preimage limits their \direct applicability" to tasks such as secureencryption. Fortunately, assuming the existence of one-way functions, it is possible to constructone-way functions that hide speci�c partial information about their preimage (which is easy tocompute from the preimage itself). This partial information can be considered as a \hard core" of1Note that this condition refers to the distributions I(1n) and D(i), which are merely required to range overI \ f0; 1gn and Di, respectively. (Typically, the distributions I(1n) and D(i) are (almost) uniform over I \ f0; 1gnand Di, respectively.)2Indeed, a more adequate term would be a collection of trapdoor permutations, but the shorter (and less precise)term is the commonly used one.3Indeed this assumption seems reasonable, but we should not assume that the adversary behaves in a reasonableway (unless we can actually prove that it gains nothing by behaving in ways that seem unreasonable to us).7



the di�culty of inverting f . Loosely speaking, a polynomial-time predicate b, is called a hard-coreof a function f if no feasible algorithm, given f(x), can guess b(x) with success probability that isnon-negligibly better than one half.De�nition 2.3 (hard-core predicates [32]): A polynomial-time computable predicate b : f0; 1g� !f0; 1g is called a hard-core of a function f if for every probabilistic polynomial-time algorithm A0,every positive polynomial p(�), and all su�ciently large n'sPr �A0(f(x))=b(x)� < 12 + 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gn and all thepossible outcomes of the internal coin tosses of algorithm A0.Note that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obvious algorithms thatguess b(x) from f(x) with success probability at least one half (e.g., the algorithm that, obliviously ofits input, outputs a uniformly chosen bit). Also, if b is a hard-core predicate (for any function) thenb must be almost unbiased (i.e., for a uniformly chosen x, the di�erence jPr[b(x)=0]�Pr[b(x)=1]jmust be a negligible function in n). Finally, if b is a hard-core of a 1-1 function f that is polynomial-time computable then f is a one-way function.Theorem 2.4 ([74], see simpler proof in [67, Sec. 2.5.2]): For any one-way function f , the inner-product mod 2 of x and r is a hard-core of f 0(x; r) = (f(x); r).The proof is by a so-called \reducibility argument" (which is used to prove all conditional results inthe area). Speci�cally, we reduce the task of inverting f to the task of predicting the hard-core off 0, while making sure that the reduction (when applied to input distributed as in the hypothesis)generates a distribution as in the actual de�nition of the conclusion. Thus, a contradiction to theconclusion yields a contradiction to the hypothesis. Note that this argument is far more complexthan analyzing the probabilistic behavior of b(X;Un) given Un, where Un denotes the uniformdistribution over f0; 1gn, b(u; v) denotes the inner-product mod 2 of u and v, and X is a randomvariable with super-logarithmic min-entropy.4Proof sketch: The actual proof refers to an arbitrary algorithm B that, when given (f(x); r),tries to guess b(x; r). Suppose that this algorithm succeeds with probability 12 + �, where theprobability is taken over the random choices of x and r (as well as the internal coin tosses of B).By an averaging argument, we �rst identify a �=2 fraction of the possible coin tosses of B such thatusing any of these coin sequences B succeeds with probability at least 12 + �=2. Similarly, we canidentify a �=4 fraction of the x's such that B succeeds (in guessing b(x; r)) with probability at least12 + �=4, where now the probability is taken only over the r's. We will show how to use B in orderto invert f , on input f(x), provided that x is in the good set (which has density �=4).As a warm-up, suppose for a moment that, for the aforementioned x's, algorithm B succeedswith probability p > 34 + 1=poly(jxj) (rather than at least 12 + �=4). In this case, retrieving x fromf(x) is quite easy: To retrieve the ith bit of x, denoted xi, we �rst randomly select r 2 f0; 1gjxj, andobtain B(f(x); r) and B(f(x); r�ei), where ei = 0i�110jxj�i and v�u denotes the addition mod 2 of4The min-entropy of X is de�ned as minvflog2(1=Pr[X = v])g; that is, if X has min-entropym then maxvfPr[X =v]g = 2�m. The Leftover Hashing Lemma [124, 23, 89] implies that, in this case, Pr[b(X;Un) = 1jUn] = 12 � 2�
(m).In this probabilistic analogue, X captures the \e�ective" knowledge of x, when given f(x).8



the binary vectors v and u. Note that if both B(f(x); r) = b(x; r) and B(f(x); r� ei) = b(x; r� ei)indeed hold, then B(f(x); r) � B(f(x); r � ei) equals b(x; r) � b(x; r � ei) = b(x; ei) = xi. Theprobability that both B(f(x); r)=b(x; r) and B(f(x); r � ei)=b(x; r � ei) hold, for a random r, isat least 1� 2 � (1� p) > 12 + 1poly(jxj) . Hence, repeating the above procedure su�ciently many times(using independent random choices of such r's) and ruling by majority, we retrieve xi with veryhigh probability. Similarly, we can retrieve all the bits of x, and hence invert f on f(x). However,the entire analysis was conducted under (the unjusti�able) assumption that p > 34+ 1poly(jxj) , whereaswe only know that p > 12+ �4 (for � > 1=poly(jxj)).The problem with the above procedure is that it doubles the original error probability of algo-rithm B on inputs of the form (f(x); �). Under the unrealistic assumption (made above), that B'saverage error on such inputs is non-negligibly smaller than 14 , the \error-doubling" phenomenonraises no problems. However, in general (and even in the special case where B's error is exactly14) the above procedure is unlikely to invert f . Note that the average error probability of B (fora �xed f(x), when the average is taken over a random r) can not be decreased by repeating Bseveral times (e.g., for every x, it may be that B always answer correctly on three quarters of thepairs (f(x); r), and always err on the remaining quarter). What is required is an alternative wayof using the algorithm B, a way that does not double the original error probability of B.The key idea is to generate the r's in a way that allows to apply algorithm B only once per eachr (and i), instead of twice. Speci�cally, we will use algorithm B to obtain a \guess" for b(x; r� ei),and obtain b(x; r) in a di�erent way (which does not use B). The good news is that the errorprobability is no longer doubled, since we only use B to get a \guess" of b(x; r� ei). The bad newsis that we still need to know b(x; r), and it is not clear how we can know b(x; r) without applying B.The answer is that we can guess b(x; r) by ourselves. This is �ne if we only need to guess b(x; r) forone r (or logarithmically in jxjmany r's), but the problem is that we need to know (and hence guess)the value of b(x; r) for polynomially many r's. An obvious way of guessing these b(x; r)'s yields anexponentially vanishing success probability. Instead, we generate these polynomially many r's suchthat, on one hand they are \su�ciently random" whereas, on the other hand, we can guess all theb(x; r)'s with noticeable success probability. Speci�cally, generating the r's in a speci�c pairwiseindependent manner will satisfy both (seemingly contradictory) requirements. We stress that incase we are successful (in our guesses for all the b(x; r)'s), we can retrieve x with high probability.Hence, we retrieve x with noticeable probability.A word about the way in which the pairwise independent r's are generated (and the correspond-ing b(x; r)'s are guessed) is indeed in place. To generate m = poly(jxj) many r's, we uniformly (andindependently) select ` def= log2(m+ 1) strings in f0; 1gjxj. Let us denote these strings by s1; :::; s`.We then guess b(x; s1) through b(x; s`). Let us denote these guesses, which are uniformly (andindependently) chosen in f0; 1g, by �1 through �`. Hence, the probability that all our guesses forthe b(x; si)'s are correct is 2�` = 1poly(jxj) . The di�erent r's correspond to the di�erent non-emptysubsets of f1; 2; :::; `g. Speci�cally, for every such subset J , we let rJ def= �j2Jsj. The reader caneasily verify that the rJ 's are pairwise independent and each is uniformly distributed in f0; 1gjxj.The key observation is that b(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj). Hence, our guess for b(x; rJ) is�j2J�j , and with noticeable probability all our guesses are correct.3 PseudorandomnessIn practice \pseudorandom" sequences are often used instead of truly random sequences. Theunderlying belief is that if an (e�cient) application performs well when using a truly random9



sequence then it will perform essentially as well when using a \pseudorandom" sequence. However,this belief is not supported by ad-hoc notions of \pseudorandomness" such as passing the statisticaltests in [94] or having large linear-complexity (as in [85]). In contrast, the above belief is an easycorollary of de�ning pseudorandom distributions as ones that are computationally indistinguishablefrom uniform distributions.Loosely speaking, pseudorandom generators are e�cient procedures for creating long \random-looking" sequences based on few truly random bits (i.e., a short random seed). The relevance ofsuch constructs to cryptography is in the ability of legitimate users that share short random seedsto create large objects that look random to any feasible adversary (which does not know the saidseed).3.1 Computational Indistinguishability Indistinguishable things are identical(or should be considered as identical).The Principle of Identity of IndiscerniblesG.W. Leibniz (1646{1714)(Leibniz admits that counterexamples to this principle are conceivable, but will not occur in reallife because God is much too benevolent.)A central notion in Modern Cryptography is that of \e�ective similarity" (introduced by Gold-wasser, Micali and Yao [82, 127]). The underlying thesis is that we do not care whether or notobjects are equal, all we care about is whether or not a di�erence between the objects can beobserved by a feasible computation. In case the answer is negative, the two objects are equivalentas far as any practical application is concerned. Indeed, in the sequel we will often interchangesuch (computationally indistinguishable) objects. Let X = fXngn2N and Y = fYngn2N be proba-bility ensembles such that each Xn and Yn is a distribution that ranges over strings of length n (orpolynomial in n). We say that X and Y are computationally indistinguishable if for every feasiblealgorithm A the di�erence dA(n) def= jPr[A(Xn) = 1] � Pr[A(Yn) = 1]j is a negligible function in n.That is:De�nition 3.1 (computational indistinguishability [82, 127]): We say that X = fXngn2N and Y =fYngn2N are computationally indistinguishable if for every probabilistic polynomial-time algorithm Devery polynomial p, and all su�ciently large n,jPr[D(Xn)=1] � Pr[D(Yn)=1]j < 1p(n)where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn) and over theinternal coin tosses of algorithm D.That is, we can think of D as somebody who wishes to distinguish two distributions (based on asample given to it), and think of 1 as D's verdict that the sample was drawn according to the �rstdistribution. Saying that the two distributions are computationally indistinguishable means thatif D is a feasible procedure then its verdict is not really meaningful (because the verdict is almostas often 1 when the input is drawn from the �rst distribution as when the input is drawn from thesecond distribution). 10



We comment that, for \e�ciently constructible" distributions, indistinguishability by a singlesample (as de�ned above) implies indistinguishability by multiple samples (see [67, Sec. 3.2.3]).The proof of this fact provides a simple demonstration of a central proof technique, known as ahybrid argument, which we brie
y present next. To prove that two sequences of independentlydrawn samples are indistinguishable, we consider hybrid sequences such that the ith hybrid consistsof i samples taken from the �rst distribution and the rest taken from the second distribution.The \homogeneous" sequences (which we wish to prove to be computational indistinguishable) arethe extreme hybrids (i.e., the �rst and last hybrids considered above). Thus, distinguishing them(towards the contradiction hypothesis) yields a procedure for distinguishing the ith hybrid from thei+1st hybrid, for a randomly selected i. That is, if D distinguishes the extreme hybrids, then it alsodistinguishes a random pair of neighboring hybrids (i.e., D distinguishes the ith hybrid from thei+1st hybrid, for a randomly selected i). Using D, we obtain a distinguisher D0 of single samples:Given a single sample, D0 selects i at random, generates i samples from the �rst distribution andthe rest from the second, and invokes D with the corresponding sequence, while placing the inputsample in location i + 1 of the sequence. We stress that although the original distinguisher D(arising from the contradiction hypothesis) was only \supposed to work" for the extreme hybrids,we can consider D's performance on any distribution that we please, and draw adequate conclusions(as we have done).
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Figure 2: Pseudorandom generators { an illustration.3.2 Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an e�cient (deterministic) algorithm that on inputa short random seed outputs a (typically much) longer sequence that is computationally indistin-guishable from a uniformly chosen sequence. Pseudorandom generators were introduced by Blum,Micali and Yao [32, 127], and are formally de�ned as follows.De�nition 3.2 (pseudorandom generator [32, 127]): Let ` :N!N satisfy `(n) > n, for all n 2 N .A pseudorandom generator, with stretch function `, is a (deterministic) polynomial-time algorithmG satisfying the following:1. For every s 2 f0; 1g�, it holds that jG(s)j = `(jsj).2. fG(Un)gn2N and fU`(n)gn2N are computationally indistinguishable, where Um denotes theuniform distribution over f0; 1gm.Indeed, the probability ensemble fG(Un)gn2N is called pseudorandom.Thus, pseudorandom sequences can replace truly random sequences not only in \standard" algo-rithmic applications but also in cryptographic ones. That is, any cryptographic application that is11



secure when the legitimate parties use truly random sequences, is also secure when the legitimateparties use pseudorandom sequences. The bene�t in such a substitution (of random sequences bypseudorandom ones) is that the latter sequences can be e�ciently generated using much less truerandomness. Furthermore, in an interactive setting, it is possible to eliminate all random stepsfrom the on-line execution of a program, by replacing them with the generation of pseudorandombits based on a random seed selected and �xed o�-line (or at set-up time).Various cryptographic applications of pseudorandom generators will be presented in the sequel,but �rst let us show a construction of pseudorandom generators based on the simpler notion of aone-way function. Using Theorem 2.4, we may actually assume that such a function is accompaniedby a hard-core predicate. We start with a simple construction that su�ces for the case of 1-1 (andlength-preserving) functions.Theorem 3.3 ([32, 127], see [67, Sec. 3.4]): Let f be a 1-1 function that is length-preserving and ef-�ciently computable, and b be a hard-core predicate of f . Then G(s) = b(s)�b(f(s)) � � � b(f `(jsj)�1(s))is a pseudorandom generator (with stretch function `), where f i+1(x) def= f(f i(x)) and f0(x) def= xAs a concrete example, consider the permutation x 7! x2 mod N , where N is the product of twoprimes each congruent to 3 (mod 4), and x is a quadratic residue modulo N . Then, we haveGN (s) = lsb(s) � lsb(s2 mod N) � � � lsb(s2`(jsj)�1 mod N), where lsb(x) is the least signi�cant bit ofx (which is a hard-core of the modular squaring function [2]).Proof sketch of Theorem 3.3: We use the fundamental fact that asserts that the following twoconditions are equivalent:1. The distribution X (in our case fG(Un)gn2N) is pseudorandom (i.e., is computationally in-distinguishable from a uniform distribution (on fU`(n)gn2N)).2. The distribution X is unpredictable in polynomial-time; that is, no feasible algorithm, givena pre�x of the sequence, can guess its next bit with a non-negligible advantage over 12 .Clearly, pseudorandomness implies polynomial-time unpredictability (i.e., polynomial-time pre-dictability violates pseudorandomness). The converse is shown using a hybrid argument, whichrefers to hybrids consisting of a pre�x of X followed by truly random bits (i.e., a su�x of theuniform distribution). Thus, we focus on proving that G0(Un) is polynomial-time unpredictable,where G0(s) = b(f `(jsj)�1(s)) � � � b(f(s)) � b(s) is the reverse of G(s).Suppose towards the contradiction that, for some j < ` def= `(n), given the j-bit long pre�x ofG0(Un) an algorithm A0 can predict the j+1st bit of G0(Un). That is, given b(f `�1(s)) � � � b(f `�j(s)),algorithm A0 predicts b(f `�(j+1)(s)), where s is uniformly distributed in f0; 1gn. Then, for xuniformly distributed in f0; 1gn, given y = f(x) one can predict b(x) by invoking A0 on inputb(f j�1(y)) � � � b(y) = b(f j(x)) � � � b(f(x)), which in turn is polynomial-time computable from y =f(x). In the analysis, we use the hypothesis that f induces a permutation over f0; 1gn, and associatex with f `�(j+1)(s).We mention that the existence of a pseudorandom generator with any stretch function (includingthe very minimal stretch function `(n) = n+ 1) implies the existence of pseudorandom generatorsfor any desired stretch function. The construction is similar to the one presented in Theorem 3.3.That is, for a pseudorandom generator G1, let F (x) (resp., B(x)) denote the �rst jxj bits of G1(x)(resp., the jxj+1st bit of G1(x)), and consider G(s) = B(s) �B(F (s)) � � �B(F `(jsj)�1(s)), where ` is12



the desired stretch. Although F is not necessarily 1-1, it can be shown that G is a pseudorandomgenerator [67, Sec. 3.3.2].We conclude this section by mentioning that pseudorandom generators can be constructed fromany one-way function (rather than merely from one-way permutations, as above). On the otherhand, the existence of one-way functions is a necessary condition to the existence of pseudorandomgenerators. That is:Theorem 3.4 [87]: Pseudorandom generators exist if and only if one-way functions exist.The necessary condition is easy to establish. Given a pseudorandom generator G that stretches bya factor of two, consider the function f(x) = G(x) (or, to obtain a length preserving-function, letf(x; y) = G(x), where jxj = jyj). An algorithm that inverts f with non-negligible success probability(on the distribution f(Un) = G(Un)) yields a distinguisher of fG(Un)gn2N from fU2ngn2N, becausethe probability that U2n is an image of f is negligible.3.3 Pseudorandom FunctionsPseudorandom generators provide a way to e�ciently generate long pseudorandom sequences fromshort random seeds. Pseudorandom functions, introduced and constructed by Goldreich, Gold-wasser and Micali [70], are even more powerful: they provide e�cient direct access to bits of a hugepseudorandom sequence (which is not feasible to scan bit-by-bit). More precisely, a pseudorandomfunction is an e�cient (deterministic) algorithm that given an n-bit seed, s, and an n-bit argument,x, returns an n-bit string, denoted fs(x), so that it is infeasible to distinguish the values of fs, fora uniformly chosen s 2 f0; 1gn, from the values of a truly random function F : f0; 1gn ! f0; 1gn.That is, the (feasible) testing procedure is given oracle access to the function (but not its explicitdescription), and cannot distinguish the case it is given oracle access to a pseudorandom functionfrom the case it is given oracle access to a truly random function.One key feature of the above de�nition is that pseudorandom functions can be generated andshared by merely generating and sharing their seed; that is, a \random looking" function fs :f0; 1gn ! f0; 1gn, is determined by its n-bit seed s. Parties wishing to share a \random looking"function fs (determining 2n-many values), merely need to generate and share among themselves then-bit seed s. (For example, one party may randomly select the seed s, and communicate it, via asecure channel, to all other parties.) Sharing a pseudorandom function allows parties to determine(by themselves and without any further communication) random-looking values depending on theircurrent views of the environment (which need not be known a priori). To appreciate the potentialof this tool, one should realize that sharing a pseudorandom function is essentially as good asbeing able to agree, on the 
y, on the association of random values to (on-line) given values, wherethe latter are taken from a huge set of possible values. We stress that this agreement is achievedwithout communication and synchronization: Whenever some party needs to associate a randomvalue to a given value, v 2 f0; 1gn, it will associate to v the (same) random value rv 2 f0; 1gn (bysetting rv = fs(v), where fs is a pseudorandom function agreed upon beforehand).Theorem 3.5 ([70], see [67, Sec. 3.6.2]): Pseudorandom functions can be constructed using anypseudorandom generator.Proof sketch: Let G be a pseudorandom generator that stretches its seed by a factor of two (i.e.,`(n) = 2n), and let G0(s) (resp., G1(s)) denote the �rst (resp., last) jsj bits in G(s). De�neG�jsj����2�1(s) def= G�jsj(� � �G�2(G�1(s)) � � �)13



We consider the function ensemble ffs :f0; 1gjsj!f0; 1gjsjgs2f0;1g� , where fs(x) def= Gx(s). Pictori-ally, the function fs is de�ned by n-step walks down a full binary tree of depth n having labels atthe vertices. The root of the tree, hereafter referred to as the level 0 vertex of the tree, is labeledby the string s. If an internal vertex is labeled r then its left child is labeled G0(r) whereas its rightchild is labeled G1(r). The value of fs(x) is the string residing in the leaf reachable from the rootby a path corresponding to the string x.We claim that the function ensemble ffsgs2f0;1g� , de�ned above, is pseudorandom. The proofuses the hybrid technique: The ith hybrid, Hin, is a function ensemble consisting of 22i�n functionsf0; 1gn ! f0; 1gn, each de�ned by 2i random n-bit strings, denoted s = hs�i�2f0;1gi . The valueof such function hs at x = ��, where j�j = i, is G�(s�). (Pictorially, the function hs is de�nedby placing the strings in s in the corresponding vertices of level i, and labeling vertices of lowerlevels using the very rule used in the de�nition of fs.) The extreme hybrids correspond to ourindistinguishability claim (i.e., H0n � fUn and Hnn is a truly random function), and neighboringhybrids correspond to our indistinguishability hypothesis (speci�cally, to the indistinguishability ofG(Un) and U2n under multiple samples).Useful variants (and generalizations) of the notion of pseudorandom functions include Booleanpseudorandom functions that are de�ned for all strings (i.e., fs : f0; 1g� ! f0; 1g) and pseudoran-dom functions that are de�ned for other domains and ranges (i.e., fs : f0; 1gd(jsj) ! f0; 1gr(jsj), forarbitrary polynomially bounded functions d; r : N ! N). Various transformations between thesevariants are known (cf. [67, Sec. 3.6.4] and [68, Apdx. C.2]).Applications and a generic methodology. Pseudorandom functions are a very useful cryp-tographic tool: One may �rst design a cryptographic scheme assuming that the legitimate usershave black-box access to a random function, and next implement the random function using apseudorandom function. The usefulness of this tool stems from the fact that having (black-box)access to a random function gives the legitimate parties a potential advantage over the adversary(which does not have free access to this function).5 The security of the resulting implementation(which uses a pseudorandom function) is established in two steps: First one proves the security ofan idealized scheme that uses a truly random function, and next one argues that the actual imple-mentation (which uses a pseudorandom function) is secure (as otherwise one obtains an e�cientoracle machine that distinguishes a pseudorandom function from a truly random one).4 Zero-KnowledgeZero-knowledge proofs, introduced by Goldwasser, Micali and Racko� [83], provide a powerfultool for the design of cryptographic protocols. Loosely speaking, zero-knowledge proofs are proofsthat yield nothing beyond the validity of the assertion. That is, a veri�er obtaining such a proofonly gains conviction in the validity of the assertion (as if it was told by a trusted party thatthe assertion holds). This is formulated by saying that anything that is feasibly computable froma zero-knowledge proof is also feasibly computable from the (valid) assertion itself. The latterformulation follows the simulation paradigm, which is discussed next.5The aforementioned methodology is sound provided that the adversary does not get the description of thepseudorandom function (i.e., the seed) in use, but has only (possibly limited) oracle access to it. This is di�erentfrom the so-called Random Oracle Methodology formulated in [22] and criticized in [39].
14
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Figure 3: Zero-knowledge proofs { an illustration.4.1 The Simulation ParadigmA key question regarding the modeling of security concerns is how to express the intuitive require-ment that an adversary \gains nothing substantial" by deviating from the prescribed behavior ofan honest user. Our approach is that the adversary gains nothing if whatever it can obtain by unre-stricted adversarial behavior can also be obtained within essentially the same computational e�ortby a benign behavior. The de�nition of the \benign behavior" captures what we want to achievein terms of security, and is speci�c to the security concern to be addressed. For example, in theprevious paragraph, we said that a proof is zero-knowledge if it yields nothing beyond the validityof the assertion (i.e., the benign behavior is any computation that is based (only) on the assertionitself, while assuming that the latter is valid). Other examples are discussed in Sections 5.1 and 7.1.A notable property of the aforementioned simulation paradigm, as well as of the entire approachsurveyed here, is that this approach is overly liberal with respect to its view of the abilities ofthe adversary as well as to what might constitute a gain for the adversary. Thus, the approachmay be considered overly cautious, because it prohibits also \non-harmful" gains of some \farfetched" adversaries. We warn against this impression. Firstly, there is nothing more dangerous incryptography than to consider \reasonable" adversaries (a notion which is almost a contradictionin terms): typically, the adversaries will try exactly what the system designer has discarded as \farfetched". Secondly, it seems impossible to come up with de�nitions of security that distinguish\breaking the scheme in a harmful way" from \breaking it in a non-harmful way": what is harmfulis application-dependent, whereas a good de�nition of security ought to be application-independent(as otherwise using the scheme in any new application will require a full re-evaluation of its security).Furthermore, even with respect to a speci�c application, it is typically very hard to classify the setof \harmful breakings".4.2 The Actual De�nition A proof is whatever convinces me.Shimon Even (1935{2004)Before de�ning zero-knowledge proofs, we have to de�ne proofs. The standard notion of a static(i.e., non-interactive) proof will not do, because static zero-knowledge proofs exist only for sets thatare easy to decide (i.e, are in BPP) [77], whereas we are interested in zero-knowledge proofs for15



arbitrary NP-sets. Instead, we use the notion of an interactive proof (introduced exactly for thatreason in [83]). That is, here a proof is a (multi-round) randomized protocol for two parties, calledveri�er and prover, in which the prover wishes to convince the veri�er of the validity of a givenassertion. Such an interactive proof should allow the prover to convince the veri�er of the validityof any true assertion (i.e., completeness), whereas no prover strategy may fool the veri�er to acceptfalse assertions (i.e., soundness). Both the completeness and soundness conditions should hold withhigh probability (i.e., a negligible error probability is allowed). The prescribed veri�er strategy isrequired to be e�cient. No such requirement is made with respect to the prover strategy; yet wewill be interested in \relatively e�cient" prover strategies (see below).Zero-knowledge is a property of some prover strategies. More generally, we consider interac-tive machines that yield no knowledge while interacting with an arbitrary feasible adversary on acommon input taken from a predetermined set (in our case the set of valid assertions). A strategyA is zero-knowledge on (inputs from) the set S if, for every feasible strategy B�, there exists afeasible computation C� such that the following two probability ensembles are computationallyindistinguishable6:1. f(A;B�)(x)gx2S def= the output of B� after interacting with A on common input x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.We stress that the �rst ensemble represents an actual execution of an interactive protocol, whereasthe second ensemble represents the computation of a stand-alone procedure (called the \simulator"),which does not interact with anybody.The above de�nition does not account for auxiliary information that an adversary B� may haveprior to entering the interaction. Accounting for such auxiliary information is essential for usingzero-knowledge proofs as subprotocols inside larger protocols (see [73, 77]). This is taken care ofby a stricter notion called auxiliary-input zero-knowledge.De�nition 4.1 (zero-knowledge [83], revisited [77]): A strategy A is auxiliary-input zero-knowledgeon inputs from S if, for every probabilistic polynomial-time strategy B� and every polynomial p,there exists a probabilistic polynomial-time algorithm C� such that the following two probabilityensembles are computationally indistinguishable:1. f(A;B�(z))(x)gx2S ; z2f0;1gp(jxj) def= the output of B� when having auxiliary-input z and inter-acting with A on common input x 2 S; and2. fC�(x; z)gx2S ; z2f0;1gp(jxj) def= the output of C� on inputs x 2 S and z 2 f0; 1gp(jxj).Almost all known zero-knowledge proofs are in fact auxiliary-input zero-knowledge. As hintedabove, auxiliary-input zero-knowledge is preserved under sequential composition [77]. A simulator6Here we refer to a natural extension of De�nition 3.1: Rather than referring to ensembles indexed by N , we referto ensembles indexed by a set S � f0; 1g�. Typically, for an ensemble fZ�g�2S, it holds that Z� ranges over stringsof length that is polynomially-related to the length of �. We say that fX�g�2S and fY�g�2S are computationallyindistinguishable if for every probabilistic polynomial-time algorithm D every polynomial p, and all su�ciently long� 2 S, jPr[D(�;X�)=1]� Pr[D(�; Y�)=1]j < 1p(j�j)where the probabilities are taken over the relevant distribution (i.e., either X� or Y�) and over the internal coin tossesof algorithm D. 16



for the multiple-session protocol can be constructed by iteratively invoking the single-session simu-lator that refers to the residual strategy of the adversarial veri�er in the given session (while feedingthis simulator with the transcript of previous sessions). Indeed, the residual single-session veri�ergets the transcript of the previous sessions as part of its auxiliary input (i.e., z in De�nition 4.1).(For details, see [67, Sec. 4.3.4].)4.3 Zero-Knowledge Proofs for all NP-assertions and their applicationsA question avoided so far is whether zero-knowledge proofs exist at all. Clearly, every set in P (orrather in BPP) has a \trivial" zero-knowledge proof (in which the veri�er determines membershipby itself); however, what we seek is zero-knowledge proofs for statements that the veri�er cannotdecide by itself.Assuming the existence of \commitment schemes" (see below), which in turn exist if one-wayfunctions exist [103, 87], there exist (auxiliary-input) zero-knowledge proofs of membership in anyNP-set (i.e., sets having e�ciently veri�able static proofs of membership). These zero-knowledgeproofs, �rst constructed by Goldreich, Micali and Wigderson [75] (and depicted in Figure 4), havethe following important property: the prescribed prover strategy is e�cient, provided it is given asauxiliary-input an NP-witness to the assertion (to be proved).7 That is:Theorem 4.2 ([75], using [87, 103]): If one-way functions exist then every set S 2 NP has azero-knowledge interactive proof. Furthermore, the prescribed prover strategy can be implemented inprobabilistic polynomial-time, provided it is given as auxiliary-input an NP-witness for membershipof the common input in S.Theorem 4.2 makes zero-knowledge a very powerful tool in the design of cryptographic schemesand protocols (see below). We comment that the intractability assumption used in Theorem 4.2seems essential; see [108, 126].Analyzing the protocol of Figure 4. Let us consider a single execution of the main loop (andrely on the preservation of zero-knowledge under sequential composition). Clearly, the prescribedprover is implemented in probabilistic polynomial-time, and always convinces the veri�er (providedthat it is given a valid 3-coloring of the common input graph). In case the graph is not 3-colorablethen, no matter how the prover behaves, the veri�er will reject with probability at least 1=jEj(because at least one of the edges must be improperly colored by the prover). We stress that theveri�er selects uniformly which edge to inspect after the prover has committed to the colors of allvertices. Thus, Figure 4 depicts an interactive proof system for Graph 3-Colorability (with errorprobability exp(�t)). As the reader might have guessed, the zero-knowledge property is the hardestto establish, and we will con�ne ourselves to presenting an adequate simulator. We start with threesimplifying conventions (which are useful in general):1. Without loss of generality, we may assume that the cheating veri�er strategy is implementedby a deterministic polynomial-time algorithm with an auxiliary input. This is justi�ed by�xing any outcome of the veri�er's coins (as part of the auxiliary input), and observing that7The auxiliary-input given to the prescribed prover (in order to allow for an e�cient implementation of its strategy)is not to be confused with the auxiliary-input that is given to malicious veri�ers (in the de�nition of auxiliary-inputzero-knowledge). The former is typically an NP-witness for the common input, which is available to the user thatinvokes the prover strategy (cf. the generic application discussed below). In contrast, the auxiliary-input that is givento malicious veri�ers models arbitrary partial information that may be available to the adversary.17



Commitment schemes are digital analogs of sealed envelopes (or, better, locked boxes). Sending a commitmentmeans sending a string that binds the sender to a unique value without revealing this value to the receiver(as when getting a locked box). Decommitting to the value means sending some auxiliary information thatallows the receiver to read the uniquely committed value (as when sending the key to the lock).Common Input: A graph G(V;E). Suppose that V � f1; :::; ng for n def= jV j.Auxiliary Input (to the prover): A 3-coloring � : V ! f1; 2; 3g.The following 4 steps are repeated t � jEj many times so to obtain soundness error exp(�t).Prover's �rst step (P1): Select uniformly a permutation � over f1; 2; 3g. For i = 1 to n, send the veri�era commitment to the value �(�(i)).Veri�er's �rst step (V1): Select uniformly an edge e 2 E and send it to the prover.Prover's second step (P2): Upon receiving e = (i; j) 2 E, decommit to the i-th and j-th values sent inStep (P1).Veri�er's second step (V2): Check whether or not the decommitted values are di�erent elements off1; 2; 3g and whether or not they match the commitments received in Step (P1).Figure 4: The zero-knowledge proof of Graph 3-Colorability (of [75]). Zero-knowledge proofsfor other NP-sets can be obtained using the standard reductions.our (uniform) simulation of the various (residual) deterministic strategies yields a simulationof the original probabilistic strategy.2. Without loss of generality, it su�ces to consider cheating veri�ers that (only) output theirview of the interaction (i.e., their input, coin tosses, and the messages they received). This isjusti�ed by observing that the output of the original veri�er can be computed by an algorithmof comparable complexity that is given the veri�er's view of the interaction. Thus, it su�cesto simulate the view of the cheating veri�er instead of its output.3. Without loss of generality, it su�ces to construct a \weak simulator" that produces an out-put with some noticeable probability, provided that (conditioned on producing output) theoutput is computationally indistinguishable from the desired distribution (i.e., the view of thecheating veri�er in a real interaction). This is the case because, by repeatedly invoking thisweak simulator (polynomially) many times, we may obtain a simulator that fails to producean output with negligible probability. Finally, letting the simulator produce an arbitrary out-put rather than failing, we obtain a simulator that never fails (as required by the de�nition),while skewing the output distribution by at most a negligible amount.Our simulator starts by selecting uniformly and independently a random color (i.e., element off1; 2; 3g) for each vertex, and feeding the veri�er strategy with random commitments to theserandom colors. Indeed, the simulator feeds the veri�er with a distribution that is very di�erentfrom the distribution that the veri�er sees in a real interaction with the prover. However, beingcomputationally-restricted the veri�er cannot tell these distributions apart (or else we obtain acontradiction to the security of the commitment scheme in use). Now, if the veri�er asks to inspectan edge that is properly colored then the simulator performs the proper decommitment action andoutputs the transcript of this interaction. Otherwise, the simulator halts proclaiming failure. Weclaim that failure occurs with probability approximately 1=3 (or else we obtain a contradiction to18



the security of the commitment scheme in use). Furthermore, based on the same hypothesis (butvia a more complex proof (cf. [67, Sec. 4.4.2.3])), conditioned on not failing, the output of thesimulator is computationally indistinguishable from the veri�er's view of the real interaction.Commitment schemes. Loosely speaking, commitment schemes are two-stage (two-party) pro-tocols allowing for one party to commit itself (at the �rst stage) to a value while keeping thevalue secret. In a (second) latter stage, the commitment is \opened" and it is guaranteed that the\opening" can yield only a single value determined in the committing phase. Thus, the (�rst stageof the) commitment scheme is both binding and hiding. A simple (uni-directional communication)commitment scheme can be constructed based on any one-way 1-1 function f (with a correspondinghard-core b). To commit to a bit �, the sender uniformly selects s 2 f0; 1gn, and sends the pair(f(s); b(s)� �). Note that this is both binding and hiding. An alternative construction, which canbe based on any one-way function, uses a pseudorandom generator G that stretches its seed by afactor of three (cf. Theorem 3.4). A commitment is established, via two-way communication, asfollows (cf. [103]): The receiver selects uniformly r 2 f0; 1g3n and sends it to the sender, whichselects uniformly s 2 f0; 1gn and sends r �G(s) if it wishes to commit to the value one and G(s)if it wishes to commit to zero. To see that this is binding, observe that there are at most 22n\bad" values r that satisfy G(s0) = r�G(s1) for some pair (s0; s1), and with overwhelmingly highprobability the receiver will not pick one of these bad values. The hiding property follows by thepseudorandomness of G.Zero-knowledge proofs for other NP-sets. By using the standard Karp-reductions to 3-Colorability, the protocol of Figure 4 can be used for constructing zero-knowledge proofs for anyset in NP . We comment that this is probably the �rst time that an NP-completeness result wasused in a \positive" way (i.e., in order to construct something rather than in order to derive ahardness result).8E�ciency considerations. The protocol in Figure 4 calls for invoking some constant-roundprotocol for a non-constant number of times (and its analysis relies on the preservation of zero-knowledge under sequential composition). At �rst glance, it seems that one can derive a constant-round zero-knowledge proof system (of negligible soundness error) by performing these invocationsin parallel (rather than sequentially). Unfortunately, as demonstrated in [73], it is not clear thatthe resulting interactive proof is zero-knowledge. Still, under standard intractability assumptions(e.g., the intractability of factoring), constant-round zero-knowledge proofs (of negligible soundnesserror) do exist for every set inNP (cf. [72]). We comment that the number of rounds in a protocol iscommonly considered the most important e�ciency criterion (or complexity measure), and typicallyone desires to have it be a constant.A generic application. As mentioned above, Theorem 4.2 makes zero-knowledge a very powerfultool in the design of cryptographic schemes and protocols. This wide applicability is due to twoimportant aspects regarding Theorem 4.2: Firstly, Theorem 4.2 provides a zero-knowledge proof forevery NP-set, and secondly the prescribed prover can be implemented in probabilistic polynomial-time when given an adequate NP-witness. We now turn to a typical application of zero-knowledge8Subsequent positive uses of completeness results have appeared in the context of interactive proofs [98, 122],probabilistically checkable proofs [5, 57, 4, 3], \hardness versus randomness trade-o�s" [6], and statistical zero-knowledge [120]. 19



proofs. In a typical cryptographic setting, a user U has a secret and is supposed to take some actiondepending on its secret. The question is how can other users verify that U indeed took the correctaction (as determined by U 's secret and publicly known information). Indeed, if U discloses itssecret then anybody can verify that U took the correct action. However, U does not want to revealits secret. Using zero-knowledge proofs we can satisfy both con
icting requirements (i.e., havingother users verify that U took the correct action without violating U 's interest in not revealingits secret). That is, U can prove in zero-knowledge that it took the correct action. Note that U 'sclaim to having taken the correct action is an NP-assertion (since U 's legal action is determinedas a polynomial-time function of its secret and the public information), and that U has an NP-witness to its validity (i.e., the secret is an NP-witness to the claim that the action �ts the publicinformation). Thus, by Theorem 4.2, it is possible for U to e�ciently prove the correctness of itsaction without yielding anything about its secret. Consequently, it is fair to ask U to prove (inzero-knowledge) that it behaves properly, and so to force U to behave properly. Indeed, \forcingproper behavior" is the canonical application of zero-knowledge proofs (see [76, 65]).This paradigm (i.e., \forcing proper behavior" via zero-knowledge proofs), which in turn isbased on the fact that zero-knowledge proofs can be constructed for any NP-set, has been utilizedin numerous di�erent settings. Indeed, this paradigm is the basis for the wide applicability ofzero-knowledge protocols in Cryptography.Zero-knowledge proofs for all IP. For the sake of elegancy, we mention that under the sameassumption used in the case of NP , it holds that any set that has an interactive proof also has azero-knowledge interactive proof (cf. [90, 25]).4.4 Variants and IssuesA fundamental variant on the notion of interactive proofs was introduced by Brassard, Chaum andCr�epeau [33], who relaxed the soundness condition so that it only refers to feasible ways of tryingto fool the veri�er (rather than to all possible ways). Speci�cally, the soundness condition wasreplaced by a computational soundness condition that asserts that it is infeasible to fool the veri�erinto accepting false statements. We warn that although the computational-soundness error canalways be reduced by sequential repetitions, it is not true that this error can always be reducedby parallel repetitions (cf. [21]). Protocols that satisfy the computational-soundness condition arecalled arguments.9 We mention that argument systems may be more e�cient than interactive proofs(see [92] vs. [71, 79]) as well as provide stronger zero-knowledge guarantees (see [33] vs. [61, 1]).4.4.1 De�nitional variationsWe consider several de�nitional issues regarding the notion of zero-knowledge (as de�ned in De�-nition 4.1).Universal and black-box simulation. Further strengthening of De�nition 4.1 is obtained byrequiring the existence of a universal simulator, denoted C, that is given the program of the veri�er(i.e., B�) as an auxiliary-input; that is, in terms of De�nition 4.1, one should replace C�(x; z) byC(x; z; hB�i), where hB�i denotes the description of the program of B� (which may depend on xand on z). That is, we e�ectively restrict the simulation by requiring that it be a uniform (feasible)function of the veri�er's program (rather than arbitrarily depend on it). This restriction is very9A related notion (not discussed here) is that of CS-proofs, introduced by Micali [101].20



natural, because it seems hard to envision an alternative way of establishing the zero-knowledgeproperty of a given protocol. Taking another step, one may argue that since it seems infeasibleto reverse-engineer programs, the simulator may as well just use the veri�er strategy as an oracle(or as a \black-box"). This reasoning gave rise to the notion of black-box simulation, which wasintroduced and advocated in [73] and further studied in numerous works (see, e.g., [41]). Thebelief was that impossibility results regarding black-box simulation represent inherent limitationsof zero-knowledge itself. However, this belief has been refuted recently by Barak [7]. For furtherdiscussion, see Section 4.4.3.Honest veri�er versus general cheating veri�er. De�nition 4.1 refers to all feasible veri�erstrategies, which is most natural (in the cryptographic setting) because zero-knowledge is sup-posed to capture the robustness of the prover under any feasible (i.e., adversarial) attempt to gainsomething by interacting with it. A weaker and still interesting notion of zero-knowledge refersto what can be gained by an \honest veri�er" (or rather a semi-honest veri�er)10 that interactswith the prover as directed, with the exception that it may maintain (and output) a record of theentire interaction (i.e., even if directed to erase all records of the interaction). Although such aweaker notion is not satisfactory for standard cryptographic applications, it yields a fascinatingnotion from a conceptual as well as a complexity-theoretic point of view. Furthermore, as shownin [78, 126], every proof system that is zero-knowledge with respect to the honest-veri�er can betransformed into a standard zero-knowledge proof (without using intractability assumptions and incase of \public-coin" proofs this is done without signi�cantly increasing the prover's computationale�ort).Statistical versus Computational Zero-Knowledge. Recall that De�nition 4.1 postulatesthat for every probability ensemble of one type (i.e., representing the veri�er's output after in-teraction with the prover) there exists a \similar" ensemble of a second type (i.e., representingthe simulator's output). One key parameter is the interpretation of \similarity". Three interpreta-tions, yielding di�erent notions of zero-knowledge, have been commonly considered in the literature(cf., [83, 61]):1. Perfect Zero-Knowledge (PZK) requires that the two probability ensembles be identical.112. Statistical Zero-Knowledge (SZK) requires that these probability ensembles be statisticallyclose (i.e., the variation distance between them is negligible).3. Computational (or rather general) Zero-Knowledge (CZK) requires that these probability en-sembles be computationally indistinguishable.Indeed, Computational Zero-Knowledge (CZK) is the most liberal notion, and is the notion con-sidered in De�nition 4.1. We note that the class SZK contains several problems that are consideredintractable. The interested reader is referred to [125].10The term \honest veri�er" is more appealing when considering an alternative (equivalent) formulation of De�ni-tion 4.1. In the alternative de�nition (see [67, Sec. 4.3.1.3]), the simulator is \only" required to generate the veri�er'sview of the real interaction, where the veri�er's view includes its (common and auxiliary) inputs, the outcome of itscoin tosses, and all messages it has received.11The actual de�nition of PZK allows the simulator to fail (while outputting a special symbol) with negligibleprobability, and the output distribution of the simulator is conditioned on its not failing.21



Strict versus expected probabilistic polynomial-time. So far, we did not specify what weexactly mean by the term probabilistic polynomial-time. Two common interpretations are:1. Strict probabilistic polynomial-time. That is, there exist a (polynomial in the length of theinput) bound on the number of steps in each possible run of the machine, regardless of theoutcome of its coin tosses.2. Expected probabilistic polynomial-time. The standard approach is to look at the running-time as a random variable and bound its expectation (by a polynomial in the length of theinput). As observed by Levin (cf. [67, Sec. 4.3.1.6] and [12]), this de�nitional approachis quite problematic (e.g., it is not model-independent and is not closed under algorithmiccomposition), and an alternative treatment of this random variable is preferable.Consequently, the notion of expected polynomial-time raises a variety of conceptual and technicalproblems. For that reason, whenever possible, one should prefer the more robust (and restricted)notion of strict (probabilistic) polynomial-time. Thus, with the exception of constant-round zero-knowledge protocols, whenever we talked of a probabilistic polynomial-time veri�er (resp., simula-tor) we mean one in the strict sense. In contrast, with the exception of [7, 12], all results regardingconstant-round zero-knowledge protocols refer to a strict polynomial-time veri�er and an expectedpolynomial-time simulator, which is indeed a small cheat. For further discussion, the reader isreferred to [12].4.4.2 Related notions: POK, NIZK, and WIWe brie
y discuss the notions of proofs of knowledge (POK), non-interactive zero-knowledge(NIZK), and witness indistinguishable proofs (WI).Proofs of Knowledge. Loosely speaking, proofs of knowledge (cf. [83]) are interactive proofsin which the prover asserts \knowledge" of some object (e.g., a 3-coloring of a graph), and notmerely its existence (e.g., the existence of a 3-coloring of the graph, which in turn is equivalentto the assertion that the graph is 3-colorable). Before clarifying what we mean by saying thata machine knows something, we point out that \proofs of knowledge", and in particular zero-knowledge \proofs of knowledge", have many applications to the design of cryptographic schemesand cryptographic protocols. One famous application of zero-knowledge proofs of knowledge is tothe construction of identi�cation schemes (e.g., the Fiat-Shamir scheme [60]).What does it mean to say that a machine knows something? Any standard dictionary suggestsseveral meanings for the verb to know, which are typically phrased with reference to awareness, anotion which is certainly inapplicable in the context of machines. We must look for a behavioristicinterpretation of the verb to know. Indeed, it is reasonable to link knowledge with ability to dosomething (e.g., the ability to write down whatever one knows). Hence, we will say that a machineknows a string � if it can output the string �. But this seems as total non-sense too: a machinehas a well de�ned output { either the output equals � or it does not. So what can be meant bysaying that a machine can do something? Loosely speaking, it may mean that the machine can beeasily modi�ed so that it does whatever is claimed. More precisely, it may mean that there existsan e�cient machine that, using the original machine as a black-box (or given its code as an input),outputs whatever is claimed.So much for de�ning the \knowledge of machines". Yet, whatever a machine knows or doesnot know is \its own business". What can be of interest and reference to the outside is whatevercan be deduced about the knowledge of a machine by interacting with it. Hence, we are interested22



in proofs of knowledge (rather than in mere knowledge). For sake of simplicity let us consider aconcrete question: how can a machine prove that it knows a 3-coloring of a graph? An obvious wayis just to send the 3-coloring to the veri�er. Yet, we claim that applying the protocol in Figure 4(i.e., the zero-knowledge proof system for 3-Colorability) is an alternative way of proving knowledgeof a 3-coloring of the graph.The de�nition of a veri�er of knowledge of 3-coloring refers to any possible prover strategy. Itrequires the existence of an e�cient universal way of \extracting" a 3-coloring of a given graph byusing any prover strategy that convinces the verify to accept the graph (with noticeable probability).Surely, we should no expect much of prover strategies that convince the veri�er to accept the graphwith negligible probability. However, a robust de�nition should allow a smooth passage fromnoticeable to negligible, and should allow to establish the intuitive zero-knowledge property of aparty that sends some information that the other party has proved it knows.Loosely speaking, we may say that an interactive machine, V , constitutes a veri�er for knowledgeof 3-coloring if, for any prover strategy P , the complexity of extracting a 3-coloring of G whenusing machine P as a \black box"12 is inversely proportional to the probability that the veri�eris convinced by P (to accept the graph G). Namely, the extraction of the 3-coloring is done byan oracle machine, called an extractor, that is given access to a function specifying the behaviorP (i.e., the messages it sends in response to particular messages it may receive). We require thatthe (expected) running time of the extractor, on input G and access to an oracle specifying P 'smessages, be inversely related (by a factor polynomial in jGj) to the probability that P convinces Vto accept G. In case P always convinces V to accept G, the extractor runs in expected polynomial-time. The same holds in case P convinces V to accept with noticeable probability. On the otherhand, in case P never convinces V to accept, essentially nothing is required of the extractor. (Westress that the latter special cases do not su�ce for a satisfactory de�nition; see discussion in [67,Sec. 4.7.1].)Non-Interactive Zero-Knowledge. The model of non-interactive zero-knowledge proof sys-tems, introduced in [30], consists of three entities: a prover, a veri�er and a uniformly selectedreference string (which can be thought of as being selected by a trusted third party). Both theveri�er and prover can read the reference string, and each can toss additional coins. The interac-tion consists of a single message sent from the prover to the veri�er, who then is left with the �naldecision (whether to accept or not). The (basic) zero-knowledge requirement refers to a simula-tor that outputs pairs that should be computationally indistinguishable from the distribution (ofpairs consisting of a uniformly selected reference string and a random prover message) seen in thereal model.13 Non-interactive zero-knowledge proof systems have numerous applications (e.g., tothe construction of public-key encryption and signature schemes, where the reference string maybe incorporated in the public-key). Several di�erent de�nitions of non-interactive zero-knowledgeproofs were considered in the literature.� In the basic de�nition, one considers proving a single assertion of a-priori bounded length,where this length may be smaller than the length of the reference string.� A natural extension, required in many applications, is the ability to prove multiple assertionsof varying length, where the total length of these assertions may exceed the length of the12Indeed, one may consider also non-black-box extractors as done in [12].13Note that the veri�er does not e�ect the distribution seen in the real model, and so the basic de�nition of zero-knowledge does not refer to it. The veri�er (or rather a process of adaptively selecting assertions to be proved) willbe referred to in the adaptive variants of the de�nition. 23



reference string (as long as the total length is polynomial in the length of the referencestring). This de�nition is sometimes referred to as the unbounded de�nition, because thetotal length of the assertions to be proved is not a-priori bounded.� Other natural extensions refer to the preservation of security (i.e., both soundness and zero-knowledge) when the assertions to be proved are selected adaptively (based on the referencestring and possibly even based on previous proofs).� Finally, we mention the notion of simulation-soundness, which is related to non-malleability.This extension, which mixes the zero-knowledge and soundness conditions, refers to the sound-ness of proofs presented by an adversary after it obtains proofs of assertions of its own choice(with respect to the same reference string). This notion is important in applications of non-interactive zero-knowledge proofs to the construction of public-key encryption schemes secureagainst chosen ciphertext attacks (see [68, Sec. 5.4.4.4]).Constructing non-interactive zero-knowledge proofs seems more di�cult than constructing interac-tive zero-knowledge proofs. Still, based on standard intractability assumptions (e.g., intractabilityof factoring), it is known how to construct a non-interactive zero-knowledge proof (even in theadaptive and non-malleable sense) for any NP-set (cf. [58, 50]).Witness Indistinguishability and the FLS-Technique. The notion of witness indistinguisha-bility was suggested in [59] as a meaningful relaxation of zero-knowledge. Loosely speaking, forany NP-relation R, a proof (or argument) system for the corresponding NP-set is called witnessindistinguishable if no feasible veri�er may distinguish the case in which the prover uses one NP-witness to x (i.e., w1 such that (x;w1) 2 R) from the case in which the prover is using a di�erentNP-witness to the same input x (i.e., w2 such that (x;w2) 2 R). Clearly, any zero-knowledgeprotocol is witness indistinguishable, but the converse does not necessarily hold. Furthermore, itseems that witness indistinguishable protocols are easier to construct than zero-knowledge ones.Another advantage of witness indistinguishable protocols is that they are closed under arbitraryconcurrent composition [59], whereas in general zero-knowledge protocols are not closed even underparallel composition [73]. Witness indistinguishable protocols turned out to be an important toolin the construction of more complex protocols, as is demonstrated next.Feige, Lapidot and Shamir [58] introduced a technique for constructing zero-knowledge proofs(and arguments) based on witness indistinguishable proofs (resp., arguments). Following is asketchy description of a special case of their technique, often referred to as the FLS-technique.On common input x 2 L, where L is the NP-set de�ned by the witness relation R, the followingtwo steps are performed:1. The parties generate an instance x0 for an auxiliary NP-set L0, where L0 is de�ned by a witnessrelation R0. The generation protocol in use must satisfy the following two conditions:(a) If the veri�er follows its prescribed strategy then no matter which strategy is used bythe prover, with high probability, the protocol's outcome is a no-instance of L0.(b) Loosely speaking, there exists an e�cient (non-interactive) procedure for producing a(random) transcript of the generation protocol such that the corresponding protocol'soutcome is a yes-instance of L0 and yet the produced transcript is computationallyindistinguishable from the transcript of a real execution of the protocol. Furthermore,this procedure also outputs an NP-witness for the yes-instance that appears as theprotocol's outcome. 24



For example, L0 may consist of all possible outcomes of a pseudorandom generator thatstretches its seed by a factor of two, and the generation protocol may consist of the twoparties iteratively invoking a \coin tossing" protocol to obtain a random string. Note thatthe outcome of a real execution will be an almost uniformly distributed string, which is mostlikely a no-instance of L0, whereas it is easy to generate a (random) transcript correspondingto any desired outcome (provided that the parties use an adequate coin tossing protocol).2. The parties execute a witness indistinguishable proof for the NP-set L00 de�ned by the witnessrelation R00 = f((�; �0); (�; �0)) : (�; �) 2 R _ (�0; �0) 2 R0g. The sub-protocol is such thatthe corresponding prover can be implemented in probabilistic polynomial-time given any NP-witness for (�; �0) 2 L00. The sub-protocol is invoked on common input (x; x0), where x0 isthe outcome of Step 1, and the sub-prover is invoked with the corresponding NP-witness asauxiliary input (i.e., with (w; �), where w is the NP-witness for x (given to the main prover)).The soundness of the above protocol follows by Property (a) of the generation protocol (i.e., withhigh probability x0 62 L0, and so x 2 L follows by the soundness of the protocol used in Step 2).To demonstrate the zero-knowledge property, we �rst generate a simulated transcript of Step 1(with outcome x0 2 L0) along with an adequate NP-witness (i.e., w0 such that (x0; w0) 2 R0), andthen emulate Step 2 by feeding the sub-prover strategy with the NP-witness (�;w0). CombiningProperty (b) of the generation protocol and the witness indistinguishability property of the protocolused in Step 2, the simulation is indistinguishable from the real execution.4.4.3 Two basic problems: composition and black-box simulationWe conclude this section by considering two basic problems regarding zero-knowledge, which actu-ally arise also with respect to the security of other cryptographic primitives.Composition of protocols. The �rst question refers to the preservation of security (i.e., zero-knowledge in our case) under various types of composition operations. We recall the main factsregarding sequential, parallel and concurrent execution of (arbitrary and/or speci�c) zero-knowledgeprotocols:Sequential composition: As stated above, zero-knowledge (with respect to auxiliary inputs) is closedunder sequential composition.Parallel composition: In general, zero-knowledge is not closed under parallel composition [73]. Yet,some zero-knowledge proofs (for NP) preserve their security when many copies are executedin parallel. Furthermore, some of these protocol use a constant number of rounds (cf. [69]).Concurrent composition: One may view parallel composition as concurrent composition in a modelof strict synchronity. This leads us to consider more general models of concurrent composi-tion. We distinguish between a model of full asynchronicity and a model naturally limitedasynchronicity.� In the full asynchronous model, some zero-knowledge proofs (for NP) preserve theirsecurity when many copies are executed concurrently (cf. [115, 93, 110]), but such aresult is not known for constant-round protocols.� In contrast, constant-round zero-knowledge proofs (for NP) are known (cf. [55, 69]) ina model of limited asynchronicity, where each party holds a local clock such that the25



relative clock rates are bounded by an a-priori known constant and the protocols mayemploy time-driven operations (i.e., time-out in-coming messages and delay out-goingmessages).The study of zero-knowledge in the concurrent setting provides a good test case for the study ofconcurrent security of general protocols. In particular, the results in [73, 41] point out inherentlimitations of the \standard proof methods" (used to establish zero-knowledge) when applied tothe concurrent setting, where [73] treats the synchronous case and [41] uncovers much strongerlimitations for the asynchronous case. By \standard proof methods" we refer to the establishmentof zero-knowledge via a single simulator that obtains only oracle (or \black-box") access to theadversary procedure.Black-box proofs of security. The second basic question regarding zero-knowledge refers tothe usage of the adversary's program within the proof of security (i.e., demonstration of the zero-knowledge property). For 15 years, all known proofs of security used the adversary's program asa black-box (i.e., a universal simulator was presented using the adversary's program as an oracle).Furthermore, it was believed that there was no advantage in having access to the code of the adver-sary's program (cf. [73]). Consequently it was conjectured that negative results regarding black-boxsimulation represent an inherent limitation of zero-knowledge. This belief has been refuted recentlyby Barak [7] who constructed a zero-knowledge argument (for NP) that has important propertiesthat are impossible to achieve by black-box simulation (unless NP � BPP). For example, thiszero-knowledge argument uses a constant number of rounds and preserves its security when ana-priori �xed (polynomial) number of copies are executed concurrently.14Barak's results (cf. [7] and also [8]) call for the re-evaluation of many common beliefs. Mostconcretely, they say that results regarding black-box simulators do not re
ect inherent limitationsof zero-knowledge (but rather an inherent limitation of a natural way of demonstrating the zero-knowledge property). Most abstractly, they say that there are meaningful ways of using a programother than merely invoking it as a black-box. Does this mean that a method was found to \reverseengineer" programs or to \understand" them? We believe that the answer is negative. Barak [7]is using the adversary's program in a signi�cant way (i.e., more signi�cant than just invoking it),without \understanding" it.The key idea underlying Barak's protocol [7] is to have the prover prove that either the originalNP-assertion is valid or that he (i.e., the prover) \knows the veri�er's residual strategy" (in the sensethat it can predict the next veri�er message). Indeed, in a real interaction (with the honest veri�er),it is infeasible for the prover to predict the next veri�er message, and so computational-soundnessof the protocol follows. However, a simulator that is given the code of the veri�er's strategy (andnot merely oracle access to that code), can produce a valid proof of the disjunction by properlyexecuting the sub-protocol using its knowledge of an NP-witness for the second disjunctive. Thesimulation is computationally indistinguishable from the real execution, provided that one cannotdistinguish an execution of the sub-protocol in which one NP-witness (i.e., an NP-witness for theoriginal assertion) is used from an execution in which the second NP-witness (i.e., an NP-witnessfor the auxiliary assertion) is used. That is, the sub-protocol should be a witness indistinguishableargument system, and the entire construction uses the FLS technique (described in Section 4.4.2).14This result falls short of achieving a fully concurrent zero-knowledge argument, because the number of concurrentcopies must be �xed before the protocol is presented. Speci�cally, the protocol uses messages that are longer thanthe allowed number of concurrent copies. However, even preservation of security under an a priori bounded numberof executions goes beyond the impossibility results of [73, 41] (which refers to black-box simulations).26



We warn the reader that the actual implementation of the above idea requires overcoming severaltechnical di�culties (cf. [7, 10]).
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Part IIBasic ApplicationsEncryption and signature schemes are the most basic applications of Cryptography. Their main util-ity is in providing secret and reliable communication over insecure communication media. Looselyspeaking, encryption schemes are used to ensure the secrecy (or privacy) of the actual informationbeing communicated, whereas signature schemes are used to ensure its reliability (or authenticity).In this part we survey these basic applications as well as the construction of general secure cryp-tographic protocols. For more details regarding the contents of the current part, see our recenttextbook [68].5 Encryption SchemesThe problem of providing secret communication over insecure media is the traditional and mostbasic problem of cryptography. The setting of this problem consists of two parties communicatingthrough a channel that is possibly tapped by an adversary. The parties wish to exchange informa-tion with each other, but keep the \wire-tapper" as ignorant as possible regarding the contents ofthis information. The canonical solution to the above problem is obtained by the use of encryptionschemes. Loosely speaking, an encryption scheme is a protocol allowing these parties to commu-nicate secretly with each other. Typically, the encryption scheme consists of a pair of algorithms.One algorithm, called encryption, is applied by the sender (i.e., the party sending a message), whilethe other algorithm, called decryption, is applied by the receiver. Hence, in order to send a message,the sender �rst applies the encryption algorithm to the message, and sends the result, called theciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e., the receiver) appliesthe decryption algorithm to it, and retrieves the original message (called the plaintext).In order for the above scheme to provide secret communication, the communicating parties (atleast the receiver) must know something that is not known to the wire-tapper. (Otherwise, thewire-tapper can decrypt the ciphertext exactly as done by the receiver.) This extra knowledge maytake the form of the decryption algorithm itself, or some parameters and/or auxiliary inputs usedby the decryption algorithm. We call this extra knowledge the decryption-key. Note that, withoutloss of generality, we may assume that the decryption algorithm is known to the wire-tapper, andthat the decryption algorithm operates on two inputs: a ciphertext and a decryption-key. Westress that the existence of a decryption-key, not known to the wire-tapper, is merely a necessarycondition for secret communication. The above description implicitly presupposes the existence ofan e�cient algorithm for generating (random) keys.Evaluating the \security" of an encryption scheme is a very tricky business. A preliminary taskis to understand what is \security" (i.e., to properly de�ne what is meant by this intuitive term).Two approaches to de�ning security are known. The �rst (\classical") approach, introduced byShannon [123], is information theoretic. It is concerned with the \information" about the plaintextthat is \present" in the ciphertext. Loosely speaking, if the ciphertext contains information aboutthe plaintext then the encryption scheme is considered insecure. It has been shown that such high(i.e., \perfect") level of security can be achieved only if the key in use is at least as long as the totalamount of information sent via the encryption scheme [123]. This fact (i.e., that the key has to belonger than the information exchanged using it) is indeed a drastic limitation on the applicabilityof such (perfectly-secure) encryption schemes.The second (\modern") approach, followed in the current text, is based on computational com-28



plexity. This approach is based on the thesis that it does not matter whether the ciphertext containsinformation about the plaintext, but rather whether this information can be e�ciently extracted.In other words, instead of asking whether it is possible for the wire-tapper to extract speci�c infor-mation, we ask whether it is feasible for the wire-tapper to extract this information. It turns outthat the new (i.e., \computational complexity") approach can o�er security even when the key ismuch shorter than the total length of the messages sent via the encryption scheme.
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as e�ciently from the a-priori information alone. This fundamental de�nition of security (calledsemantic security) turns out to be equivalent to saying that, for any two messages, it is infeasibleto distinguish the encryption of the �rst message from the encryption of the second message, alsowhen given the encryption-key. Both de�nitions were introduced by Goldwasser and Micali [82].De�nition 5.1 (semantic security (following [82], revisited [64])): A public-key encryption scheme(G;E;D) is semantically secure if for every probabilistic polynomial-time algorithm, A, there existsa probabilistic polynomial-time algorithm B so that for every two functions f; h : f0; 1g�!f0; 1g�such that jh(x)j = poly(jxj), and all probability ensembles fXngn2N, where Xn is a random variableranging over f0; 1gn, it holds thatPr[A(e;Ee(x); h(x))=f(x)] < Pr[B(1n; h(x))=f(x)] + �(n)where the plaintext x is distributed according to Xn, the encryption-key e is distributed accordingto G(1n), and � is a negligible function.That is, it is feasible to predict f(x) from h(x) as successfully as it it to predict f(x) from h(x) and(e;Ee(x)), which means that nothing is gained by obtaining (e;Ee(x)). Note that no computationalrestrictions are made regarding the functions h and f . We stress that the above de�nition (as wellas the next one) refers to public-key encryption schemes, and in the case of private-key schemesalgorithm A is not given the encryption-key e.A good disguise should not allow a mother to distinguish her own children.Sha� Goldwasser and Silvio Micali, 1982The following technical interpretation of security states that it is infeasible to distinguish theencryptions of two plaintexts (of the same length).De�nition 5.2 (indistinguishability of encryptions (following [82])): A public-key encryption scheme(G;E;D) has indistinguishable encryptions if for every probabilistic polynomial-time algorithm, A,and all sequences of triples, (xn; yn; zn)n2N, where jxnj = jynj = n and jznj = poly(n),jPr[A(e;Ee(xn); zn)=1]� Pr[A(e;Ee(yn); zn)=1]j = �(n)Again, e is distributed according to G(1n), and � is a negligible function.In particular, zn may equal (xn; yn). Thus, it is infeasible to distinguish the encryptions of any two�xed messages (such as the all-zero message and the all-ones message).De�nition 5.1 is more appealing in most settings where encryption is considered the end goal.De�nition 5.2 is used to establish the security of candidate encryption schemes as well as to ana-lyze their application as modules inside larger cryptographic protocols. De�nition 5.2 Thus, theirequivalence is of major importance.Equivalence of De�nitions 5.1 and 5.2 { proof ideas. Intuitively, indistinguishability ofencryptions (i.e., of the encryptions of xn and yn) is a special case of semantic security; speci�cally,it corresponds to the case that Xn is uniform over fxn; yng, f indicates one of the plaintextsand h does not distinguish them (i.e., f(w) = 1 i� w = xn and h(xn) = h(yn) = zn, wherezn is as in De�nition 5.2). The other direction is proved by considering the algorithm B that, oninput (1n; v) where v = h(x), generates (e; d) G(1n) and outputs A(e;Ee(1n); v), where A is as inDe�nition 5.1. Indistinguishability of encryptions is used to prove that B performs as well as A (i.e.,for every h; f and fXngn2N, it holds that Pr[B(1n; h(Xn)) = f(Xn)] = Pr[A(e;Ee(1n); h(Xn)) =f(Xn)] approximately equals Pr[A(e;Ee(Xn); h(Xn))=f(Xn)]).31



Probabilistic Encryption: It is easy to see that a secure public-key encryption scheme mustemploy a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given the encryption-key as (additional) input, it is easy to distinguish the encryption of the all-zero message from theencryption of the all-ones message.16 This explains the association of the aforementioned robustsecurity de�nitions and probabilistic encryption, an association that goes back to the title of thepioneering work of Goldwasser and Micali [82].Further discussion: We stress that (the equivalent) De�nitions 5.1 and 5.2 go way beyondsaying that it is infeasible to recover the plaintext from the ciphertext. The latter statement isindeed a minimal requirement from a secure encryption scheme, but is far from being a su�cientrequirement. Typically, encryption schemes are used in applications where even obtaining partialinformation on the plaintext may endanger the security of the application. When designing anapplication-independent encryption scheme, we do not know which partial information endangersthe application and which does not. Furthermore, even if one wants to design an encryption schemetailored to a speci�c application, it is rare (to say the least) that one has a precise characterizationof all possible partial information that endanger this application. Thus, we need to require that itis infeasible to obtain any information about the plaintext from the ciphertext. Furthermore, inmost applications the plaintext may not be uniformly distributed and some a-priori informationregarding it is available to the adversary. We require that the secrecy of all partial information ispreserved also in such a case. That is, even in presence of a-priori information on the plaintext, itis infeasible to obtain any (new) information about the plaintext from the ciphertext (beyond whatis feasible to obtain from the a-priori information on the plaintext). The de�nition of semanticsecurity postulates all of this. The equivalent de�nition of indistinguishability of encryptions isuseful in demonstrating the security of candidate constructions as well as for arguing about theire�ect as part of larger protocols.Security of multiple messages: De�nitions 5.1 and 5.2 refer to the security of an encryptionscheme that is used to encrypt a single plaintext (per generated key). Since the plaintext maybe longer than the key17, these de�nitions are already non-trivial, and an encryption scheme sat-isfying them (even in the private-key model) implies the existence of one-way functions. Still, inmany cases, it is desirable to encrypt many plaintexts using the same encryption-key. Looselyspeaking, an encryption scheme is secure in the multiple-messages setting if analogous de�nitions(to De�nitions 5.1 and 5.2) hold when polynomially-many plaintexts are encrypted using the sameencryption-key (cf. [68, Sec. 5.2.4]). It is easy to see that in the public-key model, security in thesingle-message setting implies security in the multiple-messages setting. We stress that this is notnecessarily true for the private-key model.5.2 ConstructionsIt is common practice to use \pseudorandom generators" as a basis for private-key encryptionschemes. We stress that this is a very dangerous practice when the \pseudorandom generator" is16The same holds for (stateless) private-key encryption schemes, when considering the security of encrypting severalmessages (rather than a single message as done above). For example, if one uses a deterministic encryption algorithmthen the adversary can distinguish two encryptions of the same message from the encryptions of a pair of di�erentmessages.17Recall that for sake of simplicity we have considered only messages of length n, but the general de�nitions referto messages of arbitrary (polynomial in n) length. We comment that, in the general form of De�nition 5.1, one shouldprovide the length of the message as an auxiliary input to both algorithms (A and B).32



easy to predict (such as the linear congruential generator or some modi�cations of it that outputa constant fraction of the bits of each resulting number). However, this common practice becomessound provided one uses pseudorandom generators (as de�ned in Section 3.2). An alternative andmore 
exible construction follows.Private-Key Encryption Scheme based on Pseudorandom Functions: We present a sim-ple construction that uses pseudorandom functions as de�ned in Section 3.3. The key generationalgorithm consists of selecting a seed, denoted s, for a (pseudorandom) function, denoted fs. Toencrypt a message x 2 f0; 1gn (using key s), the encryption algorithm uniformly selects a stringr 2 f0; 1gn and produces the ciphertext (r; x � fs(r)), where � denotes the exclusive-or of bitstrings. To decrypt the ciphertext (r; y) (using key s), the decryption algorithm just computesy � fs(r). The proof of security of this encryption scheme consists of two steps (suggested as ageneral methodology in Section 3.3):1. Prove that an idealized version of the scheme, in which one uses a uniformly selected functionF :f0; 1gn!f0; 1gn, rather than the pseudorandom function fs, is secure.2. Conclude that the real scheme (as presented above) is secure (because, otherwise one coulddistinguish a pseudorandom function from a truly random one).Note that we could have gotten rid of the randomization (in the encryption process) if we hadallowed the encryption algorithm to be history dependent (e.g., use a counter in the role of r).This can be done provided that either only one party uses the key for encryption (and maintains acounter) or that all parties that encrypt, using the same key, coordinate their actions (i.e., maintaina joint state (e.g., counter)). Indeed, when using a private-key encryption scheme, a commonsituation is that the same key is only used for communication between two speci�c parties, whichupdate a joint counter during their communication. Furthermore, if the encryption scheme is usedfor fifo communication between the parties and both parties can reliably maintain the countervalue, then there is no need (for the sender) to send the counter value.We comment that the use of a counter (or any other state) in the encryption process is not rea-sonable in the case of public-key encryption schemes, because it is incompatible with the canonicalusage of such schemes (i.e., allowing all parties to send encrypted messages to the \owner of theencryption-key" without engaging in any type of further coordination or communication). Further-more, as discussed before, probabilistic encryption is essential for a secure public-key encryptionscheme even in the case of encrypting a single message (unlike in the case of private-key schemes).Following Goldwasser and Micali [82], we now demonstrate the use of probabilistic encryption inthe construction of a public-key encryption scheme.Public-Key Encryption Scheme based on Trapdoor Permutations: We present two con-structions that employ a collection of trapdoor permutations, as de�ned in De�nition 2.2. Letffi : Di ! Digi be such a collection, and let b be a corresponding hard-core predicate. The keygeneration algorithm consists of selecting a permutation fi along with a corresponding trapdoort, and outputting (i; t) as the key-pair. To encrypt a (single) bit � (using the encryption-key i),the encryption algorithm uniformly selects r 2 Di, and produces the ciphertext (fi(r); � � b(r)).To decrypt the ciphertext (y; �) (using the decryption-key t), the decryption algorithm computes� � b(f�1i (y)) (using the trapdoor t of fi). Clearly, (� � b(r))� b(f�1i (fi(r))) = �. Indistinguisha-bility of encryptions can be easily proved using the fact that b is a hard-core of fi. We comment33



that the above scheme is quite wasteful in bandwidth; however, the paradigm underlying its con-struction (i.e., applying the trapdoor permutation to a randomized version of the plaintext ratherthan to the actual plaintext) is valuable in practice. A more e�cient construction of a public-keyencryption scheme, which uses the same key-generation algorithm, follows. To encrypt an `-bit longstring x (using the encryption-key i), the encryption algorithm uniformly selects r 2 Di, computesy  b(r) � b(fi(r)) � � � b(f `�1i (r)) and produces the ciphertext (fì (r); x� y). To decrypt the cipher-text (u; v) (using the decryption-key t), the decryption algorithm �rst recovers r = f�`i (u) (usingthe trapdoor t of fi), and then obtains v � b(r) � b(fi(r)) � � � b(f `�1i (r)). Note the similarity to theconstruction in Theorem 3.3, and the fact that the proof can be extended to establish the computa-tional indistinguishability of (b(r) � � � b(f `�1i (r)); fì (r)) and (r0; fì (r)), for random and independentr 2 Di and r0 2 f0; 1g`. Indistinguishability of encryptions follows, and thus the aforementionedscheme is secure.Key-generation on security parameter n:1. Select at random two n-bit primes, P and Q, each congruent to 3 mod 4.2. Compute dP = ((P + 1)=4)`(n) mod P � 1, dQ = ((Q + 1)=4)`(n) mod Q� 1, cP = Q �(Q�1 mod P ), and cQ = P � (P�1 mod Q).The output key-pair is (N; T ), where N = PQ and T = (P;Q;N; cP ; dP ; cQ; dQ).(Note: for every s, it holds that (s2)(P+1)=4 � s (mod P ), and so (s2`(n) )dP � s (mod P ). Thus,raising to the dP -th power modulo P is equivalent to taking the 2`-th root modulo P . To recover rootsmodulo N , we use the Chinese Remainder Theorem with the corresponding coe�cients cP and cQ.)Encryption of message x 2 f0; 1g`(n) using the encryption-key N :1. Uniformly select s0 2 f1; :::; Ng.2. For i = 1; ::; `(n) + 1, compute si  s2i�1 mod N and �i = lsb(si).The ciphertext is (s`(n)+1; y), where y = x� �1�2 � � ��`(n).(Note: s1 plays the role played by r in the general scheme.)Decryption of the ciphertext (r; y) using the encryption-key T = (P;Q;N; cP ; dP ; cQ; dQ):1. Let s0  rdP mod P , and s00  rdQ mod Q.2. Let s1  cP � s0 + cQ � s00 mod N .3. For i = 1; ::; `(n), compute �i = lsb(si) and si+1  s2i mod N .The plaintext is y � �1�2 � � ��`(n).Note: lsb is a hard-core of the modular squaring function [2].Figure 7: The Blum{Goldwasser Public-Key Encryption Scheme [31]. For simplicity weassume that `, which is polynomially bounded (e.g., `(n) = n), is known at key-generationtime.Concrete implementations of the aforementioned public-key encryption schemes: Forthe �rst scheme, we are going to use the RSA scheme [116] as a trapdoor permutation (ratherthan using it directly as an encryption scheme).18 The RSA scheme has an instance-generating18Recall that RSA itself is not semantically secure, because it employs a deterministic encryption algorithm. Thescheme presented here can be viewed as a \randomized version" of RSA.34



algorithm that randomly selects two primes, p and q, computes their product N = p � q, and selectsat random a pair of integers (e; d) such that e �d � 1 (mod �(N)), where �(N) def= (p� 1) � (q� 1).(The \plain RSA" operations are raising to power e or d modulo N .) We construct a public-keyencryption scheme as follows: The key-generation algorithm is identical to the instance-generatoralgorithm of RSA, and the encryption-key is set to (N; e) (resp., the decryption-key is set to (N; d)),just as in \plain RSA". To encrypt a single bit � (using the encryption-key (N; e)), the encryptionalgorithm uniformly selects an element, r, in the set of residues modN , and produces the ciphertext(re mod N;� � lsb(r)), where lsb(r) denotes the least signi�cant bit of r (which is a hard-core ofthe RSA function [2]). To decrypt the ciphertext (y; �) (using the decryption-key (N; d)), thedecryption algorithm just computes � � lsb(yd mod N). Turning to the second scheme, we assumethe intractability of factoring large integers, and use squaring modulo a composite as a trapdoorpermutation over the corresponding quadratic residues (while using composites that are the productof two primes, each congruent to 3 modulo 4). The resulting secure public-key encryption scheme,depicted in Figure 7, has e�ciency comparable to that of (plain) RSA. We comment that specialproperties of modular squaring were only used (in Figure 7) to speed-up the computation of f�`i(i.e., rather than iteratively extracting modular square roots ` times, we extracted the modular2`-th root).5.3 Beyond Eavesdropping SecurityOur treatment so far has referred only to a \passive" attack in which the adversary merely eaves-drops on the line over which ciphertexts are being sent. Stronger types of attacks, culminating inthe so-called Chosen Ciphertext Attack, may be possible in various applications. Speci�cally, insome settings it is feasible for the adversary to make the sender encrypt a message of the adversary'schoice, and in some settings the adversary may even make the receiver decrypt a ciphertext of theadversary's choice. This gives rise to chosen plaintext attacks and to chosen ciphertext attacks,respectively, which are not covered by the security de�nitions considered in previous sections. Inthis section we brie
y discuss such \active" attacks, focusing on chosen ciphertext attacks (of thestronger type known as \a posteriori" or \CCA2").Loosely speaking, in a chosen ciphertext attack, the adversary may obtain the decryptions ofciphertexts of its choice, and is deemed successful if it learns something regarding the plaintextthat corresponds to some di�erent ciphertext (see [91, 19] and [68, Sec. 5.4.4]). That is, theadversary is given oracle access to the decryption function corresponding to the decryption-key inuse (and, in the case of private-key schemes, it is also given oracle access to the correspondingencryption function). The adversary is allowed to query the decryption oracle on any ciphertextexcept for the \test ciphertext" (i.e., the very ciphertext for which it tries to learn somethingabout the corresponding plaintext). It may also make queries that do not correspond to legitimateciphertexts, and the answer will be accordingly (i.e., a special `failure' symbol). Furthermore, theadversary may e�ect the selection of the test ciphertext (by specifying a distribution from whichthe corresponding plaintext is to be drawn).Private-key and public-key encryption schemes secure against chosen ciphertext attacks can beconstructed under (almost) the same assumptions that su�ce for the construction of the corre-sponding passive schemes. Speci�cally:Theorem 5.3 (folklore, see [68, Sec. 5.4.4.3]): Assuming the existence of one-way functions, thereexist private-key encryption schemes that are secure against chosen ciphertext attack.35



Theorem 5.4 ([106, 52], using [30, 58], see [68, Sec. 5.4.4.4]): Assuming the existence of enhanced19trapdoor permutations, there exist public-key encryption schemes that are secure against chosenciphertext attack.Both theorems are proved by constructing encryption schemes in which the adversary's gain froma chosen ciphertext attack is eliminated by making it infeasible (for the adversary) to obtain anyuseful knowledge via such an attack. In the case of private-key schemes (i.e., Theorem 5.3), this isachieved by making it infeasible (for the adversary) to produce legitimate ciphertexts (other thanthose explicitly given to it, in response to its request to encrypt plaintexts of its choice). This,in turn, is achieved by augmenting the ciphertext with an \authentication tag" that is hard togenerate without knowledge of the encryption-key; that is, we use a message-authentication scheme(as de�ned in Section 6). In the case of public-key schemes (i.e., Theorem 5.4), the adversarycan certainly generate ciphertexts by itself, and the aim is to to make it infeasible (for the adver-sary) to produce legitimate ciphertexts without \knowing" the corresponding plaintext. This, inturn, will be achieved by augmenting the plaintext with a non-interactive zero-knowledge \proofof knowledge" of the corresponding plaintext.Security against chosen ciphertext attack is related to the notion of non-malleability of theencryption scheme (cf. [52]). Loosely speaking, in a non-malleable encryption scheme it is infeasiblefor an adversary, given a ciphertext, to produce a valid ciphertext for a related plaintext (e.g., givena ciphertext of a plaintext 1x, for an unknown x, it is infeasible to produce a ciphertext to theplaintext 0x). For further discussion see [52, 19, 91].6 Signature and Message Authentication SchemesBoth signature schemes and message authentication schemes are methods for \validating" data; thatis, verifying that the data was approved by a certain party (or set of parties). The di�erence betweensignature schemes and message authentication schemes is that signatures should be \universallyveri�able", whereas authentication tags are only required to be veri�able by parties that are alsoable to generate them.Signature Schemes: The need to discuss \digital signatures" [51, 111] has arisen with theintroduction of computer communication to the business environment (in which parties need tocommit themselves to proposals and/or declarations that they make). Discussions of \unforgeablesignatures" did take place also in previous centuries, but the objects of discussion were handwrittensignatures (and not digital ones), and the discussion was not perceived as related to \cryptography".Loosely speaking, a scheme for unforgeable signatures should satisfy the following:� each user can e�ciently produce its own signature on documents of its choice;� every user can e�ciently verify whether a given string is a signature of another (speci�c) useron a speci�c document; but� it is infeasible to produce signatures of other users to documents they did not sign.We note that the formulation of unforgeable digital signatures provides also a clear statement of theessential ingredients of handwritten signatures. The ingredients are each person's ability to sign for19Loosely speaking, the enhancement refers to the hardness condition of De�nition 2.2, and requires that it be hardto recover f�1i (y) also when given the coins used to sample y (rather than merely y itself). See [68, Apdx. C.1].36



itself, a universally agreed veri�cation procedure, and the belief (or assertion) that it is infeasible(or at least hard) to forge signatures (i.e., produce some other person's signatures to documentsthat were not signed by it such that these \unauthentic" signatures are accepted by the veri�cationprocedure). It is not clear to what extent handwritten signatures meet these requirements. Incontrast, our discussion of digital signatures provides precise statements concerning the extent towhich digital signatures meet the above requirements. Furthermore, unforgeable digital signatureschemes can be constructed based on some reasonable computational assumptions (i.e., the existenceof one-way functions).Message authentication schemes: Message authentication is a task related to the settingconsidered for encryption schemes; that is, communication over an insecure channel. This time, weconsider an active adversary that is monitoring the channel and may alter the messages sent on it.The parties communicating through this insecure channel wish to authenticate the messages theysend so that their counterpart can tell an original message (sent by the sender) from a modi�edone (i.e., modi�ed by the adversary). Loosely speaking, a scheme for message authentication shouldsatisfy the following:� each of the communicating parties can e�ciently produce an authentication tag to any messageof its choice;� each of the communicating parties can e�ciently verify whether a given string is an authen-tication tag of a given message; but� it is infeasible for an external adversary (i.e., a party other than the communicating parties)to produce authentication tags to messages not sent by the communicating parties.Note that in contrast to the speci�cation of signature schemes we do not require universal ver-i�cation: only the designated receiver is required to be able to verify the authentication tags.Furthermore, we do not require that the receiver can not produce authentication tags by itself (i.e.,we only require that external parties can not do so). Thus, message authentication schemes cannotconvince a third party that the sender has indeed sent the information (rather than the receiverhaving generated it by itself). In contrast, signatures can be used to convince third parties: in fact,a signature to a document is typically sent to a second party so that in the future this party may(by merely presenting the signed document) convince third parties that the document was indeedgenerated (or sent or approved) by the signer.6.1 De�nitionsFormally speaking, both signature schemes and message authentication schemes consist of threee�cient algorithms: key generation, signing and veri�cation. As in the case of encryption schemes,the key-generation algorithm is used to generate a pair of corresponding keys, one is used for signingand the other is used for veri�cation. The di�erence between the two types of schemes is re
ected inthe de�nition of security. In the case of signature schemes, the adversary is given the veri�cation-key,whereas in the case of message authentication schemes the veri�cation-key (which may equal thesigning-key) is not given to the adversary. Thus, schemes for message authentication can be viewedas a private-key version of signature schemes. This di�erence yields di�erent functionalities (evenmore than in the case of encryption): In typical use of a signature scheme, each user generates apair of signing and veri�cation keys, publicizes the veri�cation-key and keeps the signing-key secret.Subsequently, each user may sign documents using its own signing-key, and these signatures are37



universally veri�able with respect to its public veri�cation-key. In contrast, message authenticationschemes are typically used to authenticate information sent among a set of mutually trusting partiesthat agree on a secret key, which is being used both to produce and verify authentication-tags.(Indeed, it is assumed that the mutually trusting parties have generated the key together or haveexchanged the key in a secure way, prior to the communication of information that needs to beauthenticated.)We focus on the de�nition of secure signature schemes. Following Goldwasser, Micali andRivest [84], we consider very powerful attacks on the signature scheme as well as a very liberalnotion of breaking it. Speci�cally, the attacker is allowed to obtain signatures to any message ofits choice. One may argue that in many applications such a general attack is not possible (becausemessages to be signed must have a speci�c format). Yet, our view is that it is impossible to de�nea general (i.e., application-independent) notion of admissible messages, and thus a general/robustde�nition of an attack seems to have to be formulated as suggested here. (Note that at worst, ourapproach is overly cautious.) Likewise, the adversary is said to be successful if it can produce avalid signature to any message for which it has not asked for a signature during its attack. Again,this refers to the ability to form signatures to possibly \nonsensical" messages as a breaking ofthe scheme. Yet, again, we see no way to have a general (i.e., application-independent) notion of\meaningful" messages (so that only forging signatures to them will be consider a breaking of thescheme).De�nition 6.1 (secure signature schemes { a sketch): A chosen message attack is a process that,on input a veri�cation-key, can obtain signatures (relative to the corresponding signing-key) tomessages of its choice. Such an attack is said to succeed (in existential forgery) if it outputs a validsignature to a message for which it has not requested a signature during the attack. A signaturescheme is secure (or unforgeable) if every feasible chosen message attack succeeds with at mostnegligible probability, where the probability is taken over the initial choice of the key-pair as well asover the adversary's actions.We stress that plain RSA (alike plain versions of Rabin's scheme [112] and the DSS [107]) is notsecure under the above de�nition. However, it may be secure if the message is \randomized" beforeRSA (or the other schemes) is applied.6.2 ConstructionsSecure message authentication schemes can be constructed using pseudorandom functions [70].Speci�cally, the key-generation algorithm consists of selecting a seed s 2 f0; 1gn for such a function,denoted fs : f0; 1g�!f0; 1gn, and the (only valid) tag of message x with respect to the key s isfs(x). As in the case of our private-key encryption scheme, the proof of security of the currentmessage authentication scheme consists of two steps:1. Prove that an idealized version of the scheme, in which one uses a uniformly selected functionF :f0; 1g�!f0; 1gn, rather than the pseudorandom function fs, is secure (i.e., unforgeable).2. Conclude that the real scheme (as presented above) is secure (because, otherwise one coulddistinguish a pseudorandom function from a truly random one).Note that the aforementioned message authentication scheme makes an \extensive use of pseu-dorandom functions" (i.e., the pseudorandom function is applied directly to the message, whichrequires a generalized notion of pseudorandom functions (cf. Section 3.3)). More e�cient schemes38



may be obtained either based on a more restricted use of a pseudorandom function (cf., e.g., [17])or based on other cryptographic primitives (cf., e.g., [95]).Constructing secure signature schemes seems more di�cult than constructing message authen-tication schemes. Nevertheless, secure signature schemes can be constructed based on any one-wayfunction. Furthermore:Theorem 6.2 ([105, 118], see [68, Sec. 6.4]): The following three conditions are equivalent.1. One-way functions exist.2. Secure signature schemes exist.3. Secure message authentication schemes exist.We stress that, unlike in the case of public-key encryption schemes, the construction of signatureschemes (which may be viewed as a public-key analogue of message authentication) does not use atrapdoor property.How to construct secure signature schemesThree central paradigms used in the construction of secure signature schemes are the \refreshing"of the \e�ective" signing-key, the usage of an \authentication tree", and the \hashing paradigm"(all to be discussed in the sequel). In addition to being used in the proof of Theorem 6.2, all threeparadigms are also of independent interest.The refreshing paradigm. Introduced in [84], the refreshing paradigm is aimed at limiting thepotential dangers of chosen message attacks. This is achieved by signing the actual documentusing a newly (randomly) generated instance of the signature scheme, and authenticating (theveri�cation-key of) this random instance with respect to the �xed public-key. That is, consider abasic signature scheme (G;S; V ) used as follows. Suppose that the user U has generated a key-pair,(s; v) G(1n), and has placed the veri�cation-key v on a public-�le. When a party asks U to signsome document �, the user U generates a new (\fresh") key-pair, (s0; v0)  G(1n), signs v0 usingthe original signing-key s, signs � using the new signing-key s0, and presents (Ss(v0); v0; Ss0(�)) as asignature to �. An alleged signature, (�1; v0; �2), is veri�ed by checking whether both Vv(v0; �1) = 1and Vv0(�; �2) = 1 hold. Intuitively, the gain in terms of security is that a full-
edged chosenmessage attack cannot be launched on a �xed instance of (G;S; V ) (i.e., on the �xed veri�cation-key that resides in the public-�le and is known to the attacker). All that an attacker may obtain(via a chosen message attack on the new scheme) is signatures, relative to the original signing-keys of (G;S; V ), to randomly strings (distributed according to G(1n)) as well as additional signaturesthat are each relative to a random and independently distributed signing-key.Authentication trees. The security bene�ts of the refreshing paradigm are increased whencombining it with the use of authentication trees, as introduced in [100]. The idea is to use thepublic veri�cation-key in order to authenticate several (e.g., two) fresh instances of the signaturescheme, use each of these instances to authenticate several additional fresh instances, and so on. Weobtain a tree of fresh instances of the basic signature scheme, where each internal node authenticatesits children. We can now use the leaves of this tree in order to sign actual documents, where eachleaf is used at most once. Thus, a signature to an actual document consists of (1) a signature to thisdocument authenticated with respect to the veri�cation-key associated with some leaf, and (2) asequence of veri�cation-keys associated with the nodes along the path from the root to this leaf,39



where each such veri�cation-key is authenticated with respect to the veri�cation-key of its parent.We stress that (by suitable implementation to be discussed below) each instance of the signaturescheme is used to sign at most one string (i.e., a single sequence of veri�cation-keys if the instanceresides in an internal node, and an actual document if the instance resides in a leaf). Thus, itsu�ces to use a signature scheme that is secure as long as it is used to legitimately sign a singlestring. Such signature schemes, called one-time signature schemes and introduced in [111], are easierto construct than standard signature schemes, especially if one only wishes to sign strings that aresigni�cantly shorter than the signing-key (resp., than the veri�cation-key). For example, using aone-way function f , we may let the signing-key consist of a sequence of n pairs of strings, let thecorresponding veri�cation-key consist of the corresponding sequence of images of f , and sign ann-bit long message by revealing the adequate pre-images.20The hashing paradigm. Note, however, that in the aforementioned authentication-tree, theinstances of the signature scheme (associated with internal nodes) are used to sign a pair ofveri�cation-keys. Thus, we need a one-time signature scheme that can be used for signing messagesthat are longer than the veri�cation-key. Here is where the hashing paradigm comes into play. Thisparadigm refers to the common practice of signing documents via a two stage process: First theactual document is hashed to a (relatively) short bit string, and next the basic signature schemeis applied to the resulting string. This practice (as well as other usages of the hashing paradigm)is sound provided that the hashing function belongs to a family of collision-free hashing (cf. [48]).(A variant of the hashing paradigm uses the weaker notion of a family of Universal One-Way HashFunctions (cf. [105]), which in turn can be constructed using any one-way function [105, 118].)Implementation details. In order to implement the aforementioned (full-
edged) signaturescheme one needs to store in (secure) memory all the instances of the basic (one-time) signaturescheme that are generated throughout the entire signing process (which refers to numerous doc-uments). This can be done by extending the model so to allow for memory-dependent signatureschemes. Alternatively, we note that all that we need to store are the random-coins used for gen-erating each of these instances, and the former can be determined by a pseudorandom function(applied to the name of the corresponding vertex in the tree). Indeed, the seed of this pseudoran-dom function will be part of the signing-key of the resulting (full-
edged) signature scheme.6.3 Public-Key InfrastructureThe standard use of public-key encryption schemes (resp., signature schemes) in real-life communi-cation requires a mechanism for providing the sender (resp., signature veri�er) with the receiver'sauthentic encryption-key (resp., signer's authentic veri�cation-key). Speci�cally, this problem arisesin large-scale systems, where typically the sender (resp., veri�er) does not have a local record ofthe receiver's encryption-key (resp., signer's veri�cation-key), and so must obtain this key in a\reliable" way (i.e., typically, certi�ed by some trusted authority). In most theoretical works, oneassumes that the keys are posted on and can be retrieved from a public-�le that is maintained bya trusted party (which makes sure that each user can post only keys bearing its own identity). Inpractice, maintaining such a public-�le is a major problem, and mechanisms that implement thisabstraction are typically referred to by the generic term \public-key infrastructure (PKI)". For adiscussion of the practical problems regarding PKI deployment see, e.g., [99, Chap. 13].20That is, the signing-key consist of a sequence ((s01; s11); :::; (s0n; s1n)) 2 f0; 1g2n2 , the corresponding veri�cation-keyis (f(s01); f(s11)); :::; (f(s0n); f(s1n))), and the signature of the message �1 � � � �n is (s�11 ; :::; s�nn ).40



7 Cryptographic ProtocolsA general framework for casting (m-party) cryptographic (protocol) problems consists of specifyinga random process21 that maps m inputs to m outputs. The inputs to the process are to be thoughtof as the local inputs of m parties, and the m outputs are their corresponding (desired) localoutputs. The random process describes the desired functionality. That is, if the m parties wereto trust each other (or trust some external party), then they could each send their local inputto the trusted party, who would compute the outcome of the process and send to each party thecorresponding output. A pivotal question in the area of cryptographic protocols is to what extentcan this (imaginary) trusted party be \emulated" by the mutually distrustful parties themselves.

REAL   MODEL IDEAL   MODELFigure 8: Secure protocols emulate a trusted party { an illustration.The results surveyed below describe a variety of models in which such an \emulation" is possible.The models vary by the underlying assumptions regarding the communication channels, numerousparameters relating to the extent of adversarial behavior, and the desired level of emulation of thetrusted party (i.e., level of \security").7.1 The De�nitional Approach and Some ModelsBefore describing these results, we further discuss the notion of \emulating a trusted party", whichunderlies the de�nitional approach to secure multi-party computation (as initiated and developedin [81, 102, 13, 14, 35, 36]) The approach can be traced back to the de�nition of zero-knowledge(cf. [83]), and even to the de�nition of secure encryption (cf. [64], rephrasing [82]). The underlyingparadigm (called the simulation paradigm (cf. Section 4.1)) is that a scheme is secure if whatevera feasible adversary can obtain after attacking it, is also feasibly attainable \from scratch". In thecase of zero-knowledge this amounts to saying that whatever a (feasible) veri�er can obtain afterinteracting with the prover on a prescribed valid assertion, can be (feasibly) computed from theassertion itself. In the case of multi-party computation we compare the e�ect of adversaries that21That is, we consider the secure evaluation of randomized functionalities, rather than \only" the secure evaluationof functions. Speci�cally, we consider an arbitrary (randomized) process F that on input (x1; :::; xm), �rst selectsat random (depending only on ` def= Pmi=1 jxij) an m-ary function f , and then outputs the m-tuple f(x1; :::; xm) =(f1(x1; :::; xm); :::; fm(x1; :::; xm)). In other words, F (x1; :::; xm) = F 0(r; x1; :::; xm), where r is uniformly selected inf0; 1g`0 (with `0 = poly(`)), and F 0 is a function mapping (m+ 1)-long sequences to m-long sequences.41



participate in the execution of the actual protocol to the e�ect of adversaries that participate in animaginary execution of a trivial (ideal) protocol for computing the desired functionality with thehelp of a trusted party. If whatever the adversaries can feasibly obtain in the former real setting canalso be feasibly obtained in the latter ideal setting then the protocol \emulates the ideal setting"(i.e., \emulates a trusted party"), and so is deemed secure. This basic approach can be applied ina variety of models, and is used to de�ne the goals of security in these models.22 We �rst discusssome of the parameters used in de�ning various models, and next demonstrate the application ofthis approach in two important models. For further details, see [36] or [68, Sec. 7.2 and 7.5.1].7.1.1 Some parameters used in de�ning security modelsThe following parameters are described in terms of the actual (or real) computation. In some cases,the corresponding de�nition of security is obtained by imposing some restrictions or provisions onthe ideal model. For example, in the case of two-party computation (see below), secure computa-tion is possible only if premature termination is not considered a breach of security. In that case,the suitable security de�nition is obtained (via the simulation paradigm) by allowing (an analogueof) premature termination in the ideal model. In all cases, the desired notion of security is de�nedby requiring that for any adequate adversary in the real model, there exist a corresponding adver-sary in the corresponding ideal model that obtains essentially the same impact (as the real-modeladversary).The communication channels: The parameters of the model include questions like whether ornot the channels may be tapped by an adversary, whether or not they are tamper-free, andquestions referring to the network behavior (in the case of multi-party protocols).Wire-tapping versus the private-channel model: The standard assumption in cryptography isthat the adversary may tap all communication channels (between honest parties). In contrast,one may postulate that the adversary cannot obtain messages sent between a pair of honestparties, yielding the so-called private-channel model (cf. [26, 43]). The latter postulate maybe justi�ed in some settings. Furthermore, it may be viewed as a useful abstraction thatprovides a clean model for the study and development of secure protocols. In this respect, itis important to mention that, in a variety of settings of the other parameters, private channelscan be easily emulated by ordinary \tapped channels".Broadcast channel: In the multi-party context, one may postulate the existence of a broadcastchannel (cf. [114]), and the motivation and justi�cations are as in the case of the private-channel model.The tamper-free assumption: The standard assumption in the area is that the adversary can-not modify, duplicate, or generate messages sent over the communication channels (betweenhonest parties). Again, this assumption can be justi�ed in some settings and can be emulatedin others (cf., [18, 37]).22A few technical comments are in place. Firstly, we assume that the inputs of all parties are of the same length.We comment that as long as the lengths of the inputs are polynomially related, the above convention can be enforcedby padding. On the other hand, some length restriction is essential for the security results, because in general it isimpossible to hide all information regarding the length of the inputs to a protocol. Secondly, we assume that thedesired functionality is computable in probabilistic polynomial-time, because we wish the secure protocol to run inprobabilistic polynomial-time (and a protocol cannot be more e�cient than the corresponding centralized algorithm).Clearly, the results can be extended to functionalities that are computable within any given (time-constructible) timebound, using adequate padding. 42



Network behavior: Most works in the area assume that communication is synchronous andthat point-to-point channels exist between every pair of processors (i.e., a complete network).However, one may also consider asynchronous communication (cf. [24]) and arbitrary networksof point-to-point channels (cf. [53]).Set-up assumptions: Unless stated di�erently, we make no set-up assumptions (except for theobvious assumption that all parties have identical copies of the protocol's program). However,in some cases it is assumed that each party knows a veri�cation-key corresponding to eachof the other parties (or that a public-key infrastructure is available). Another assumption,made more rarely, is that all parties have access to some common (trusted) random string.Computational limitations: Typically, we consider computationally-bounded adversaries (e.g.,probabilistic polynomial-time adversaries). However, the private-channel model allows for the(meaningful) consideration of computationally-unbounded adversaries.We stress that, also in the case of computationally-unbounded adversaries, security shouldbe de�ned by requiring that for every real adversary, whatever the adversary can computeafter participating in the execution of the actual protocol is computable within comparabletime by an imaginary adversary participating in an imaginary execution of the trivial idealprotocol (for computing the desired functionality with the help of a trusted party). That is,although no computational restrictions are made on the real-model adversary, it is requiredthat the ideal-model adversary that obtains the same impact does so within comparable time(i.e., within time that is polynomially related to the running time of the real-model adversarybeing simulated). Thus, any construction proven secure in the computationally-unboundedadversary model is (trivially) secure with respect to computationally-bounded adversaries.Restricted adversarial behavior: The parameters of the model include questions like whetheror not the adversary is \adaptive" and \active" (where these terms are discussed next).Adaptive versus non-adaptive: The most general type of an adversary considered in the liter-ature is one that may corrupt parties to the protocol while the execution goes on, and doesso based on partial information it has gathered so far (cf., [38]). A somewhat more restrictedmodel, which seems adequate in many settings, postulates that the set of dishonest partiesis �xed (arbitrarily) before the execution starts (but this set is, of course, not known to thehonest parties). The latter model is called non-adaptive as opposed to the adaptive adver-sary discussed �rst. Although the adaptive model is stronger, the author believes that thenon-adaptive model provides a reasonable level of security in many applications.Active versus passive: An orthogonal parameter of restriction refers to whether a dishonestparty takes active steps to disrupt the execution of the protocol (i.e., sends messages thatdi�er from those speci�ed by the protocol), or merely gathers information (which it may lattershare with the other dishonest parties). The latter adversary has been given a variety of namessuch as semi-honest, passive, and honest-but-curious. This restricted model may be justi�edin certain settings, and certainly provides a useful methodological locus (cf., [75, 76, 65] andSection 7.3). Below we refer to the adversary of the unrestricted model as to active; anothercommonly used name is malicious.Restricted notions of security: One important example is the willingness to tolerate \unfair"protocols in which the execution can be suspended (at any time) by a dishonest party, providedthat it is detected doing so. We stress that in case the execution is suspended, the dishonestparty does not obtain more information than it could have obtained when not suspending the43



execution. (What may happen is that the honest parties will not obtain their desired outputs,but rather will detect that the execution was suspended.) We stress that the motivation tothis restricted model is the impossibility of obtaining general secure two-party computationin the unrestricted model.Upper bounds on the number of dishonest parties: In some models, secure multi-party com-putation is possible only if a majority of the parties is honest (cf., [26, 45]). Sometimes even aspecial majority (e.g., 2/3) is required. General \(resilient) adversarial-structures" have beenconsidered too (cf. [88]).Mobile adversary: In most works, once a party is said to be dishonest it remains so throughoutthe execution. More generally, one may consider transient adversarial behavior (e.g., anadversary seizes control of some site and later withdraws from it). This model, introducedin [109], allows to construct protocols that remain secure even in case the adversary may seizecontrol of all sites during the execution (but never control concurrently, say, more than 10%of the sites). We comment that schemes secure in this model were later termed \proactive"(cf., [40]).7.1.2 Example: Multi-party protocols with honest majorityHere we consider an active, non-adaptive, computationally-bounded adversary, and do not assumethe existence of private channels. Our aim is to de�ne multi-party protocols that remain secureprovided that the honest parties are in majority. (The reason for requiring a honest majority willbe discussed at the end of this subsection.)Consider any multi-party protocol. We �rst observe that each party may change its local inputbefore even entering the execution of the protocol. However, this is unavoidable also when theparties utilize a trusted party. Consequently, such an e�ect of the adversary on the real execution(i.e., modi�cation of its own input prior to entering the actual execution) is not considered a breachof security. In general, whatever cannot be avoided when the parties utilize a trusted party, is notconsidered a breach of security. We wish secure protocols (in the real model) to su�er only fromwhatever is unavoidable also when the parties utilize a trusted party. Thus, the basic paradigmunderlying the de�nitions of secure multi-party computations amounts to requiring that the onlysituations that may occur in the real execution of a secure protocol are those that can also occurin a corresponding ideal model (where the parties may employ a trusted party). In other words,the \e�ective malfunctioning" of parties in secure protocols is restricted to what is postulated inthe corresponding ideal model.When de�ning secure multi-party protocols with honest majority, we need to pin-point whatcannot be avoided in the ideal model (i.e., when the parties utilize a trusted party). This is easy,because the ideal model is very simple. Since we are interested in executions in which the majorityof parties are honest, we consider an ideal model in which any minority group (of the parties) maycollude as follows:1. Firstly this dishonest minority shares its original inputs and decides together on replacedinputs to be sent to the trusted party. (The other parties send their respective original inputsto the trusted party.)2. Upon receiving inputs from all parties, the trusted party determines the corresponding outputsand sends them to the corresponding parties. (We stress that the information sent betweenthe honest parties and the trusted party is not seen by the dishonest colluding minority.)44



3. Upon receiving the output-message from the trusted party, each honest party outputs itlocally, whereas the dishonest colluding minority may determine their outputs based on allthey know (i.e., their initial inputs and their received outputs).Note that the above behavior of the minority group is unavoidable in any execution of any protocol(even in presence of trusted parties). This is the reason that the ideal model was de�ned as above.Now, a secure multi-party computation with honest majority is required to emulate this ideal model.That is, the e�ect of any feasible adversary that controls a minority of the parties in a real executionof the actual protocol, can be essentially simulated by a (di�erent) feasible adversary that controlsthe corresponding parties in the ideal model. That is:De�nition 7.1 (secure protocols { a sketch): Let f be an m-ary functionality and � be an m-partyprotocol operating in the real model.� For a real-model adversary A, controlling some minority of the parties (and tapping all com-munication channels), and an m-sequence x, we denote by real�;A(x) the sequence of moutputs resulting from the execution of � on input x under attack of the adversary A.� For an ideal-model adversary A0, controlling some minority of the parties, and an m-sequencex, we denote by idealf;A0(x) the sequence of m outputs resulting from the ideal process de-scribed above, on input x under attack of the adversary A0.We say that � securely implements f with honest majority if for every feasible real-model adversaryA, controlling some minority of the parties, there exists a feasible ideal-model adversary A0, con-trolling the same parties, so that the probability ensembles freal�;A(x)gx and fidealf;A0(x)gx arecomputationally indistinguishable (as in Footnote 6).Thus, security means that the e�ect of each minority group in a real execution of a secure protocolis \essentially restricted" to replacing its own local inputs (independently of the local inputs of themajority parties) before the protocol starts, and replacing its own local outputs (depending onlyon its local inputs and outputs) after the protocol terminates. (We stress that in the real executionthe minority parties do obtain additional pieces of information; yet in a secure protocol they gainnothing from these additional pieces of information, because they can actually reproduce those bythemselves.)The fact that De�nition 7.1 refers to a model without private channels is due to the fact thatour (sketchy) de�nition of the real-model adversary allowed it to tap the channels, which in turne�ects the set of possible ensembles freal�;A(x)gx. When de�ning security in the private-channelmodel, the real-model adversary is not allowed to tap channels between honest parties, and thisagain e�ects the possible ensembles freal�;A(x)gx. On the other hand, when we wish to de�nesecurity with respect to passive adversaries, both the scope of the real-model adversaries and thescope of the ideal-model adversaries changes. In the real-model execution, all parties follow theprotocol but the adversary may alter the output of the dishonest parties arbitrarily depending onall their intermediate internal states (during the execution). In the corresponding ideal-model, theadversary is not allowed to modify the inputs of dishonest parties (in Step 1), but is allowed tomodify their outputs (in Step 3).We comment that a de�nition analogous to De�nition 7.1 can be presented also in case thedishonest parties are not in minority. In fact, such a de�nition seems more natural, but the problemis that such a de�nition cannot be satis�ed. That is, most natural functionalities do not have aprotocol for computing them securely in case at least half of the parties are dishonest and employan adequate adversarial strategy. This follows from an impossibility result regarding two-party45



computation, which essentially asserts that there is no way to prevent a party from prematurelysuspending the execution [47]. On the other hand, secure multi-party computation with dishonestmajority is possible if premature suspension of the execution is not considered a breach of security(cf. Section 7.1.3).7.1.3 Another example: Two-party protocols allowing abortIn light of the last paragraph, we now consider multi-party computations in which prematuresuspension of the execution is not considered a breach of security. For concreteness, we focus hereon the special case of two-party computations.23Intuitively, in any two-party protocol, each party may suspend the execution at any point intime, and furthermore it may do so as soon as it learns the desired output. Thus, in case theoutput of each parties depends on both inputs, it is always possible for one of the parties to obtainthe desired output while preventing the other party from fully determining its own output. Thesame phenomenon occurs even in case the two parties just wish to generate a common randomvalue. Thus, when considering active adversaries in the two-party setting, we do not consider suchpremature suspension of the execution a breach of security. Consequently, we consider an idealmodel where each of the two parties may \shut-down" the trusted (third) party at any point intime. In particular, this may happen after the trusted party has supplied the outcome of thecomputation to one party but before it has supplied it to the other. That is, an execution in theideal model proceeds as follows:1. Each party sends its input to the trusted party, where the dishonest party may replace itsinput or send no input at all (which can be treated as sending a default value).2. Upon receiving inputs from both parties, the trusted party determines the correspondingoutputs, and sends the �rst output to the �rst party.3. In case the �rst party is dishonest, it may instruct the trusted party to halt, otherwise italways instructs the trusted party to proceed. If instructed to proceed, the trusted partysends the second output to the second party.4. Upon receiving the output-message from the trusted party, the honest party outputs it locally,whereas the dishonest party may determine its output based on all it knows (i.e., its initialinput and its received output).A secure two-party computation allowing abort is required to emulate this ideal model. That is,as in De�nition 7.1, security is de�ned by requiring that for every feasible real-model adversaryA, there exists a feasible ideal-model adversary A0, controlling the same party, so that the prob-ability ensembles representing the corresponding (real and ideal) executions are computationallyindistinguishable. This means that each party's \e�ective malfunctioning" in a secure protocol isrestricted to supplying an initial input of its choice and aborting the computation at any point intime. (Needless to say, the choice of the initial input of each party may not depend on the inputof the other party.)We mention that an alternative way of dealing with the problem of premature suspension of ex-ecution (i.e., abort) is to restrict our attention to single-output functionalities; that is, functionalitiesin which only one party is supposed to obtain an output. The de�nition of secure computation ofsuch functionalities can be made identical to De�nition 7.1, with the exception that no restriction23As in Section 7.1.2, we consider a non-adaptive, active, computationally-bounded adversary.46



is made on the set of dishonest parties (and in particular one may consider a single dishonest partyin the case of two-party protocols). For further details, see [68, Sec. 7.2.3].7.2 Some Known ResultsWe next list some of the models for which general secure multi-party computation is known to beattainable (i.e., models in which one can construct secure multi-party protocols for computing anydesired functionality). We mention that the �rst results of this type were obtained by Goldreich,Micali, Wigderson and Yao [75, 128, 76].� Assuming the existence of enhanced24 trapdoor permutations, secure multi-party computationis possible in the following models (cf. [75, 128, 76] and details in [65, 68]):1. Passive adversary, for any number of dishonest parties (cf. [68, Sec. 7.3]).2. Active adversary that may control only a minority of the parties (cf. [68, Sec. 7.5.4]).3. Active adversary, for any number of bad parties, provided that suspension of executionis not considered a violation of security (i.e., as discussed in Section 7.1.3). (See [68,Sec. 7.4 and 7.5.5].)In all these cases, the adversary is computationally-bounded and non-adaptive. On the otherhand, the adversary may tap the communication lines between honest parties (i.e., we donot assume \private channels" here). The results for active adversaries assume a broadcastchannel. Indeed, the latter can be implemented (while tolerating any number of bad parties)using a signature scheme and assuming a public-key infrastructure (or that each party knowsthe veri�cation-key corresponding to each of the other parties).� Making no computational assumptions and allowing computationally-unbounded adversaries,but assuming private channels, secure multi-party computation is possible in the followingmodels (cf. [26, 43]):1. Passive adversary that may control only a minority of the parties.2. Active adversary that may control only less than one third of the parties.25In both cases the adversary may be adaptive (cf. [26, 38]).� Secure multi-party computation is possible against an active, adaptive and mobile adversarythat may control a small constant fraction of the parties at any point in time [109]. Thisresult makes no computational assumptions, allows computationally-unbounded adversaries,but assumes private channels.� Assuming the existence of trapdoor permutations, secure multi-party computation is possiblein a model allowing an active and adaptive computationally-bounded adversary that maycontrol only less than one third of the parties [38, 49]. We stress that this result does notassume \private channels".Results for asynchronous communication and arbitrary networks of point-to-point channels werepresented in [24, 27] and [53], respectively.24See Footnote 19.25Fault-tolerance can be increased to a regular minority if a broadcast channel exists [114].47



Note that the implementation of a broadcast channel can be cast as a cryptographic protocolproblem (i.e., for the functionality (v; �; :::; �) 7! (v; v; :::; v)). Thus, it is not surprising that theresults regarding active adversaries either assume the existence of such a channel or require a settingin which the latter can be implemented.Secure reactive computation: All the above results (easily) extend to a reactive model of com-putation in which each party interacts with a high-level process (or application). The high-levelprocess supplies each party with a sequence of inputs, one at a time, and expect to receive corre-sponding outputs from the parties. That is, a reactive system goes through (a possibly unboundednumber of) iterations of the following type:� Parties are given inputs for the current iteration.� Depending on the current inputs, the parties are supposed to compute outputs for the currentiteration. That is, the outputs in iteration j are determined by the inputs of the jth iteration.A more general formulation allows the outputs of each iteration to depend also on a global state,which is possibly updated in each iteration. The global state may include all inputs and outputsof previous iterations, and may only be partially known to individual parties. (In a secure reactivecomputation such a global state may be maintained by all parties in a \secret sharing" manner.)For further discussion, see [68, Sec. 7.7.1].E�ciency considerations: One important e�ciency measure regarding protocols is the numberof communication rounds in their execution. The results mentioned above were originally obtainedusing protocols that use an unbounded number of rounds. In some cases, subsequent works obtainedsecure constant-round protocols: for example, in the case of multi-party computations with honestmajority (cf. [15]) and in the case of two-party computations allowing abort (cf. [96]). Otherimportant e�ciency considerations include the total number of bits sent in the execution of aprotocol, and the local computation time. The (communication and computation) complexitiesof the protocols establishing the above results are related to the computational complexity ofthe computation, but alternative relations (e.g., where the complexities of the secure protocols arerelated to the (insecure) communication complexity of the computation) may be possible (cf. [104]).Theory versus practice (or general versus speci�c): This primer is focused on presentinggeneral notions and general feasibility results. Needless to say, practical solutions to speci�c prob-lems (e.g., voting [86], secure payment systems [16], and threshold cryptosystems [62]) are typicallyderived by speci�c constructions (and not by applying general results of the abovementioned type).Still, the (abovementioned) general results are of great importance to practice because they charac-terize a wide class of security problems that are solvable in principle, and provide techniques thatmay be useful also towards constructing reasonable solutions to speci�c problems.7.3 Construction Paradigms and Two Simple ProtocolsWe brie
y sketch a couple of paradigms used in the construction of secure multi-party protocols. Wefocus on the construction of secure protocols for the model of computationally-bounded and non-adaptive adversaries [75, 128, 76]. These constructions proceed in two steps (see details in [65, 68]).First a secure protocol is presented for the model of passive adversaries (for any number of dishonestparties), and next such a protocol is \compiled" into a protocol that is secure in one of the two48



models of active adversaries (i.e., either in a model allowing the adversary to control only a minorityof the parties or in a model in which premature suspension of the execution is not considered aviolation of security). These two steps are presented in the following two corresponding subsections,in which we also present two relatively simple protocols for two speci�c tasks, which are usedextensively in the general protocols.Recall that in the model of passive adversaries, all parties follow the prescribed protocol, butat termination the adversary may alter the outputs of the dishonest parties depending on all theirintermediate internal states (during the execution). Below, we refer to protocols that are secure inthe model of passive (resp., active) adversaries by the term passively-secure (resp., actively-secure).7.3.1 Passively-secure computation with sharesFor any m � 2, suppose that m parties, each having a private input, wish to obtain the value ofa predetermined m-argument function evaluated at their sequence of inputs. Below, we outline apassively-secure protocol for achieving this goal. We mention that the design of passively-securemulti-party protocol for any functionality (allowing di�erent outputs to di�erent parties as well ashandling also randomized computations) reduces easily to the aforementioned task.We assume that the parties hold a circuit for computing the value of the function on inputsof the adequate length, and that the circuit contains only and and not gates. The key idea is tohave each party \secretly share" its input with everybody else, and \secretly transform" shares ofthe top wires of the circuit into shares of the bottom wires, thus obtaining shares of the outputs(which allows for the reconstruction of the actual outputs). The value of each wire in the circuit isshared in a way such that all shares yield the value, whereas lacking even one of the shares keepsthe value totally undetermined. That is, we use a simple secret sharing scheme (cf. [121]) such thata bit b is shared by a random sequence of m bits that sum-up to b mod 2. First, each party shareseach of its input bits with all parties (by secretly sending each party a random value and setting itsown share accordingly). Next, all parties jointly scan the circuit from its input wires to the outputwires, processing each gate as follows:� When encountering a gate, the parties already hold shares of the values of the wires enteringthe gate, and their aim is to obtain shares of the value of the wires exiting the gate.� For a not-gate this is easy: the �rst party just 
ips the value of its share, and all other partiesmaintain their shares.� Since an and-gate corresponds to multiplication modulo 2, the parties need to securely com-pute the following randomized functionality (in which the xi's denote shares of one entry-wire,the yi's denote shares of the second entry-wire, the zi's denote shares of the exit-wire, andthe shares indexed by i belongs to Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; zm) (1)where Pmi=1 zi = (Pmi=1 xi) � (Pmi=1 yi). (2)That is, the zi's are random subject to Eq. (2).Finally, the parties send their shares of each circuit-output wire to the designated party, whichreconstructs the value of the corresponding bit. Thus, the parties have propagated shares of theinput wires into shares of the output wires, by repeatedly conducting privately-secure computationof the m-ary functionality of Eq. (1)& (2). That is, securely evaluating the entire (arbitrary) circuit49



\reduces" to securely conducting a speci�c (very simple) multi-party computation. But things geteven simpler: the key observation is that mXi=1 xi! �  mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) (3)Thus, the m-ary functionality of Eq. (1)& (2) can be computed as follows (where all arithmeticoperations are mod 2):1. Each Party i locally computes zi;i def= xiyi.2. Next, each pair of parties (i.e., Parties i and j) securely compute random shares of xiyj+yixj .That is, Parties i and j (holding (xi; yi) and (xj ; yj), respectively), need to securely computethe randomized two-party functionality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z's are ran-dom subject to zi;j + zj;i = xiyj + yixj. Equivalently, Party j uniformly selects zj;i 2 f0; 1g,and Parties i and j securely compute the deterministic functionality ((xi; yi); (xj ; yj; zj;i)) 7!(zj;i + xiyj + yixj ; �).The latter simple two-party computation can be securely implemented using a 1-out-of-4Oblivious Transfer (cf. [80] and [68, Sec. 7.3.3]), which in turn can be implemented using en-hanced trapdoor permutations (see below). Loosely speaking, a 1-out-of-k Oblivious Transferis a protocol enabling one party to obtain one of k secrets held by another party, without thesecond party learning which secret was obtained by the �rst party. That is, we refer to thetwo-party functionality (i; (s1; :::; sk)) 7! (si; �) (4)Note that any function f : [k] � f0; 1g� ! f0; 1g� can be privately-computed by invoking a1-out-of-k Oblivious Transfer on inputs i and (f(1; y); :::; f(k; y)), where i (resp., y) is theinitial input of the �rst (resp., second) party.3. Finally, for every i = 1; :::;m, summing-up all the zi;j's yields the desired share of Party i.The above construction is analogous to a construction that was brie
y described in [76]. A detaileddescription and full proofs appear in [65, 68].We mention that an analogous construction has been subsequently used in the private channelmodel and withstands computationally unbounded active (resp., passive) adversaries that controlless than one third (resp., a minority) of the parties [26]. The basic idea is to use a more sophisti-cated secret sharing scheme; speci�cally, via a low degree polynomial [121]. That is, the Booleancircuit is viewed as an arithmetic circuit over a �nite �eld having more than m elements, and asecret element s of the �eld is shared by selecting uniformly a polynomial of degree d = b(m� 1)=3c(resp., degree d = b(m� 1)=2c) having a free-term equal to s, and handing each party the value ofthis polynomial evaluated at a di�erent (�xed) point (e.g., party i is given the value at point i).Addition is emulated by (local) point-wise addition of the (secret sharing) polynomials represent-ing the two inputs (using the fact that for polynomials p and q, and any �eld element e (and inparticular e = 0; 1; :::;m), it holds that p(e) + q(e) = (p + q)(e)). The emulation of multiplicationis more involved and requires interaction (because the product of polynomials yields a polynomialof higher degree, and thus the polynomial representing the output cannot be the product of thepolynomials representing the two inputs). Indeed, the aim of the interaction is to turn the sharesof the product polynomial into shares of a degree d polynomial that has the same free-term as theproduct polynomial (which is of degree 2d). This can be done using the fact that the coe�cients of50



a polynomial are a linear combination of its values at su�ciently many arguments (and the otherway around), and the fact that one can privately-compute any linear combination (of secret values).For details see [26, 63].A passively-secure 1-out-of-k Oblivious Transfer. Using a collection of enhanced trapdoorpermutations, ff� : D� ! D�g�2I , we outline a passively-secure implementation of the function-ality of Eq. (4). The implementation originates in [56] (and a full description is provided in [68,Sec. 7.3.2]).Inputs: The sender has input (�1; �2; :::; �k) 2 f0; 1gk , the receiver has input i 2 f1; 2; :::; kg.Step S1: The sender selects at random a permutation f� along with a corresponding trapdoor,denoted t, and sends the permutation f� (i.e., its index �) to the receiver.Step R1: The receiver uniformly and independently selects x1; :::; xk 2 D�, sets yi = f�(xi) andyj = xj for every j 6= i, and sends (y1; y2; :::; yk) to the sender.Thus, the receiver knows f�1� (yi) = xi, but cannot predict b(f�1� (yj)) for any j 6= i. Of course,the last assertion presumes that the receiver follows the protocol (i.e., is semi-honest).Step S2: Upon receiving (y1; y2; :::; yk), using the inverting-with-trapdoor algorithm and the trap-door t, the sender computes zj = f�1� (yj), for every j 2 f1; :::; kg. It sends the k-tuple(�1 � b(z1); �2 � b(z2); :::; �k � b(zk)) to the receiver.Step R2: Upon receiving (c1; c2; :::; ck), the receiver locally outputs ci � b(xi).We �rst observe that the above protocol correctly computes 1-out-of-k Oblivious Transfer; that is,the receiver's local output (i.e., ci � b(xi)) indeed equals (�i � b(f�1� (f�(xi)))) � b(xi) = �i. Next,we o�er some intuition as to why the above protocol constitutes a privately-secure implementationof 1-out-of-k Oblivious Transfer. Intuitively, the sender gets no information from the executionbecause, for any possible value of i, the senders sees the same distribution; speci�cally, a sequenceof k uniformly and independently distributed elements of D�. (Indeed, the key observation is thatapplying f� to a uniformly distributed element of D� yields a uniformly distributed element ofD�.) Intuitively, the receiver gains no computational knowledge from the execution because, forj 6= i, the only information that the receiver has regarding �j is the triplet (�; xj ; �j � b(f�1� (xj))),where xj is uniformly distributed in D�, and from this information it is infeasible to predict �jbetter than by a random guess. The latter intuition presumes that sampling D� is trivial (i.e.,that there is an easily computable correspondence between the coins used for sampling and theresulting sample), whereas in general the coins used for sampling may be hard to compute from thecorresponding outcome (which is the reason that an enhanced hardness assumption is used in thegeneral analysis of the the above protocol). (See [68, Sec. 7.3.2] for a detailed proof of security.)7.3.2 Compilation of passively-secure protocols into actively-secure onesWe show how to transform any passively-secure protocol into a corresponding actively-secure pro-tocol. The communication model in both protocols consists of a single broadcast channel. Notethat the messages of the original protocol may be assumed to be sent over a broadcast channel, be-cause the adversary may see them anyhow (by tapping the point-to-point channels), and because abroadcast channel is trivially implementable in the case of passive adversaries. As for the resultingactively-secure protocol, the broadcast channel it uses can be implemented via an (authenticated)51



Byzantine Agreement protocol [54, 97], thus providing an emulation of this model on the standardpoint-to-point model (in which a broadcast channel does not exist). We mention that authenticatedByzantine Agreement is typically implemented using a signature scheme (and assuming that eachparty knows the veri�cation-key corresponding to each of the other parties).Turning to the transformation itself, the main idea is to use zero-knowledge proofs (as describedin Section 4.3) in order to force parties to behave in a way that is consistent with the (passively-secure) protocol. Actually, we need to con�ne each party to a unique consistent behavior (i.e.,according to some �xed local input and a sequence of coin tosses), and to guarantee that a partycannot �x its input (and/or its coins) in a way that depends on the inputs of honest parties. Thus,some preliminary steps have to be taken before the step-by-step emulation of the original protocolmay start. Speci�cally, the compiled protocol (which like the original protocol is executed over abroadcast channel) proceeds as follows:1. Committing to the local input: Prior to the emulation of the original protocol, each partycommits to its input (using a commitment scheme [103]). In addition, using a zero-knowledgeproof-of-knowledge [83, 20, 75], each party also proves that it knows its own input; that is,that it can decommit to the commitment it sent. (These zero-knowledge proof-of-knowledgeare conducted sequentially to prevent dishonest parties from setting their inputs in a way thatdepends on inputs of honest parties; a more round-e�cient method was presented in [46].)2. Generation of local random tapes: Next, all parties jointly generate a sequence of random bitsfor each party such that only this party knows the outcome of the random sequence generatedfor it, but everybody gets a commitment to this outcome. These sequences will be used asthe random-inputs (i.e., sequence of coin tosses) for the original protocol. Each bit in therandom-sequence generated for Party X is determined as the exclusive-or of the outcomes ofinstances of an (augmented) coin-tossing protocol (cf. [28] and [68, Sec. 7.4.3.5]) that Party Xplays with each of the other parties. The latter protocol provides the other parties with acommitment to the outcome obtained by Party X.3. E�ective prevention of premature termination: In addition, when compiling (the passively-secure protocol to an actively-secure protocol) for the model that allows the adversary tocontrol only a minority of the parties, each party shares its input and random-input with allother parties using a \Veri�able Secret Sharing" (VSS) protocol (cf. [44] and [68, Sec. 7.5.5.1]).Loosely speaking, a VSS protocol allows to share a secret in a way that enables each partic-ipant to verify that the share it got �ts the publicly posted information, which includes (ontop of the commitments posted in Steps 1 and 2) commitments to all shares. The use of VSSguarantees that if Party X prematurely suspends the execution, then the honest parties cantogether reconstruct all Party X's secrets and carry on the execution while playing its role.This step e�ectively prevents premature termination, and is not needed in a model that doesnot consider premature termination a breach of security.4. Step-by-step emulation of the original protocol: After all the above steps were completed, weturn to the main step in which the new protocol emulates the original one. In each step, eachparty augments the message determined by the original protocol with a zero-knowledge proofthat asserts that the message was indeed computed correctly. Recall that the next message (asdetermined by the original protocol) is a function of the sender's own input, its random-input,and the messages it has received so far (where the latter are known to everybody becausethey were sent over a broadcast channel). Furthermore, the sender's input is determinedby its commitment (as sent in Step 1), and its random-input is similarly determined (in52



Step 2). Thus, the next message (as determined by the original protocol) is a function ofpublicly known strings (i.e., the said commitments as well as the other messages sent overthe broadcast channel). Moreover, the assertion that the next message was indeed computedcorrectly is an NP-assertion, and the sender knows a corresponding NP-witness (i.e., its owninput and random-input as well as the corresponding decommitment information). Thus,the sender can prove in zero-knowledge (to each of the other parties) that the message it issending was indeed computed according to the original protocol.The above compilation was �rst outlined in [75, 76]. A detailed description and full proofs appearin [65, 68].A secure coin-tossing protocol. Using a commitment scheme (see Section 4.3), we outline asecure (ordinary as opposed to augmented) coin-tossing protocol, which originates in [28].Step C1: Party 1 uniformly selects � 2 f0; 1g and sends Party 2 a commitment, denoted c, to �.Step C2: Party 2 uniformly selects �0 2 f0; 1g, and sends �0 to Party 1.Step C3: Party 1 outputs the value ���0, and sends � along with the decommitment information,denoted d, to Party 2.Step C4: Party 2 checks whether or not (�; d) �t the commitment c it has obtained in Step 1. Itoutputs � � �0 if the check is satis�ed and halts with output ? otherwise (indicating thatParty 1 has essentially aborted the protocol prematurely).Outputs: Party 1 always outputs b def= � � �0, whereas Party 2 either outputs b or ?.Intuitively, Steps C1{C2 may be viewed as \tossing a coin into the well". At this point (i.e., afterStep C2) the value of the coin is determined (essentially as a random value), but only one party(i.e., Party 1) \can see" (i.e., knows) this value. Clearly, if both parties are honest then they bothoutput the same uniformly chosen bit, recovered in Steps C3 and C4, respectively. Intuitively, eachparty can guarantee that the outcome is uniformly distributed, and Party 1 can cause prematuretermination by improper execution of Step 3. Formally, we have to show how the e�ect of everyreal-model adversary can be simulated by an adequate ideal-model adversary (which is allowedpremature termination). This is done in [68, Sec. 7.4.3.1].7.4 Concurrent execution of protocolsThe de�nitions and results surveyed so far refer to a setting in which, at each time, only a singleexecution of a cryptographic protocol takes place (or only one execution may be controlled bythe adversary). In contrast, in many distributed settings (e.g., the Internet), many executionsare taking place concurrently (and several of them may be controlled by the same adversary).Furthermore, it is undesirable (and sometimes even impossible) to coordinate these executions (soto e�ectively enforce a single-execution setting). Still, the de�nitions and results obtained in thesingle-execution setting serve as a good starting point for the study of security in the setting ofconcurrent executions.As in the case of stand-alone security, the notion of zero-knowledge provides a good test casefor the study of concurrent security. Indeed, in order to demonstrate the security issues arisingfrom concurrent execution of protocols, we consider the concurrent execution of zero-knowledgeprotocols. Speci�cally, we consider a party P holding a random (or rather pseudorandom) function53



f : f0; 1g2n!f0; 1gn, and willing to participate in the following protocol (with respect to securityparameter n).26 The other party, called A for adversary, is supposed to send P a binary valuev 2 f1; 2g specifying which of the following cases to execute:For v = 1: Party P uniformly selects � 2 f0; 1gn, and sends it to A, which is supposed to replywith a pair of n-bit long strings, denoted (�; 
). Party P checks whether or not f(��) = 
.In case equality holds, P sends A some secret information (e.g., the secret-key correspondingto P 's public-key).For v = 2: Party A is supposed to uniformly select � 2 f0; 1gn, and sends it to P , which selectsuniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy (in each case) is zero-knowledge (even w.r.t auxiliary-inputs as de�nedin De�nition 4.1): Intuitively, if the adversary A chooses the case v = 1, then it is infeasible forA to guess a passing pair (�; 
) with respect to a random � selected by P . Thus, except withnegligible probability (when it may get secret information), A does not obtain anything from theinteraction. On the other hand, if the adversary A chooses the case v = 2, then it obtains a pairthat is indistinguishable from a uniformly selected pair of n-bit long strings (because � is selecteduniformly by P , and for any � the value f(��) looks random to A). In contrast, if the adversaryA can conduct two concurrent executions with P , then it may learn the desired secret information:In one session, A sends v = 1 while in the other it sends v = 2. Upon receiving P 's message,denoted �, in the �rst session, A sends it as its own message in the second session, obtaining a pair(�; f(��)) from P 's execution of the second session. Now, A sends the pair (�; f(��)) to the �rstsession of P , this pair passes the check, and so A obtains the desired secret.An attack of the above type is called a relay attack: During such an attack the adversary justinvokes two executions of the protocol and relays messages between them (without any modi�ca-tion). However, in general, the adversary in a concurrent setting is not restricted to relay attacks.For example, consider a minor modi�cation to the above protocol so that, in case v = 2, partyP replies with (say) the pair (�; f(��)), where � = � � 1j�j, rather than with (�; f(��)). Themodi�ed strategy P is zero-knowledge and it also withstands a relay attack, but it can be \abused"easily by a more general concurrent attack.The above example is merely the tip of an iceberg, but it su�ces for introducing the mainlesson: an adversary attacking several concurrent executions of the same protocol may be able tocause more damage than by attacking a single execution (or several sequential executions) of thesame protocol. One may say that a protocol is concurrently secure if whatever the adversary mayobtain by invoking and controlling parties in real concurrent executions of the protocol is alsoobtainable by a corresponding adversary that controls corresponding parties making concurrentfunctionality calls to a trusted party (in a corresponding ideal model).27 More generally, one mayconsider concurrent executions of many sessions of several protocols, and say that a set of protocolsis concurrently secure if whatever the adversary may obtain by invoking and controlling such realconcurrent executions is also obtainable by a corresponding adversary that invokes and controlsconcurrent calls to a trusted party (in a corresponding ideal model). Consequently, a protocol26In fact, assuming that P shares a pseudorandom function f with his friends (as explained in Section 3.3), theabove protocol is an abstraction of a natural \mutual identi�cation" protocol. (The example is adapted from [73].)27One speci�c concern (in such a concurrent setting) is the ability of the adversary to \non-trivially correlatethe outputs" of concurrent executions. This ability, called malleability, was �rst investigated by Dolev, Dwork andNaor [52]. We comment that providing a general de�nition of what \correlated outputs" means seems very challenging(if at all possible). Indeed the focus of [52] is on several important special cases such as encryption and commitmentschemes. 54



is said to be secure with respect to concurrent compositions if adding this protocol to any set ofconcurrently secure protocols yields a set of concurrently secure protocols.A much more appealing approach was recently suggested by Canetti [37]. Loosely speaking,Canetti suggests to consider a protocol to be secure (called environmentally-secure (or UniversallyComposable secure [37])) only if it remains secure when executed within any (feasible) environment.Following the simulation paradigm, we get the following de�nition:De�nition 7.2 (environmentally-secure protocols [37] { a rough sketch): Let f be an m-ary func-tionality and � be an m-party protocol, and consider the following real and ideal models.In the real model the adversary controls some of the parties in an execution of � and all partiescan communicate with an arbitrary probabilistic polynomial-time process, which is called anenvironment (and possibly represents other executions of various protocols that are taking placeconcurrently). Honest parties only communicate with the environment before the executionstarts and when it ends; they merely obtain their inputs from the environment and pass theiroutputs to it. In contrast, dishonest parties may communicate freely with the environment,concurrently to the entire execution of �.In the ideal model the (simulating) adversary controls the same parties, which use an ideal (trusted-party) that behaves according to the functionality f (as in Section 7.1.2). All parties can com-municate with the (same) environment (as in the real model). Indeed, the dishonest partiesmay communicate extensively with the environment before and after their single communica-tion with the trusted party.We say that � is an environmentally-secure protocol for computing f if for every probabilistic polynomial-time adversary A in the real model there exists a probabilistic polynomial-time adversary A0 con-trolling the same parties in the ideal model such that no probabilistic polynomial-time environmentcan distinguish the case in which it is accessed by the parties in the real execution from the case itis accessed by parties in the ideal model.As hinted above, the environment may account for other executions of various protocols that aretaking place concurrently to the main execution being considered. The de�nition requires that suchenvironments cannot distinguish the real execution from an ideal one. This means that anythingthat the real adversary (i.e., operating in the real model) gains from the execution and someenvironment, can be also obtained by an adversary operating in the ideal model and having accessto the same environment. Indeed, Canetti proves that environmentally-secure protocols are securewith respect to concurrent compositions [37].It is known is that environmentally-secure protocols for any functionality can be constructedfor settings in which more than two-thirds of the active parties are honest [37]. This holds un-conditionally for the private channel model, and under standard assumptions (e.g., allowing theconstruction of public-key encryption schemes) for the standard model (i.e., without private chan-nel). The immediate consequence of this result is that general environmentally-secure multi-partycomputation is possible, provided that more than two-thirds of the parties are honest.In contrast, general environmentally-secure two-party computation is not possible (in the stan-dard sense).28 Still, one can salvage general environmentally-secure two-party computation in thefollowing reasonable model: Consider a network that contains servers that are willing to participate28Of course, some speci�c two-party computations do have environmentally-secure protocols. See [37] for severalimportant examples (e.g., key exchange). 55



(as \helpers", possibly for a payment) in computations initiated by a set of (two or more) users.Now, suppose that two users wishing to conduct a secure computation can agree on a set of serversso that each user believes that more than two-thirds of the servers (in this set) are honest. Then,with the active participation of this set of servers, the two users can compute any functionality inan environmentally-secure manner.Other reasonable models where general environmentally-secure two-party computation is possi-ble include the common random-string (CRS) model [42] and variants of the public-key infrastruc-ture (PKI) model [9]. In the CRS model, all parties have access to a universal random string (oflength related to the security parameter). We stress that the entity trusted to post this universalrandom string is not required to take part in any execution of any protocol, and that all executionsof all protocols may use the same universal random string. The PKI models considered in [9]require that each party deposits a public-key with a trusted center, while proving knowledge of acorresponding private-key. This proof may be conducted in zero-knowledge during special epochsin which no other activity takes place.7.5 Concluding RemarksIn Sections 7.1-7.2 we have mentioned a host of de�nitions of security and constructions for multi-party protocols (especially for the case of more than two parties). Furthermore, some of thesede�nitions are incomparable to others (i.e., they neither imply the others nor are implies by them),and there seems to be no single de�nition that may be crowned as the central one.For example, in Sections 7.1.2 and 7.1.3, we have presented two alternative de�nitions of \securemulti-party protocols", one requiring an honest majority and the other allowing abort. Thesede�nitions are incomparable and there is no generic reason to prefer one over the other. Actually,as mentioned in Section 7.1.2, one could formulate a natural de�nition that implies both de�nitions(i.e., waiving the bound on the number of dishonest parties in De�nition 7.1). Indeed, the resultingde�nition is free of the annoying restrictions that were introduced in each of the two aforementionedde�nitions; the \only" problem with the resulting de�nition is that it cannot be satis�ed (in general).Thus, for the �rst time in this primer, we have reached a situation in which a natural (and general)de�nition cannot be satis�ed, and we are forced to choose between two weaker alternatives, whereeach of these alternatives carries fundamental disadvantages.In general, Section 7 carries a stronger 
avor of compromise (i.e., recognizing inherent limitationsand settling for a restricted meaningful goal) than previous sections. In contrast to the impressiongiven in other parts of this primer, it is now obvious that we cannot get all that we may want (seeSection 7.4). Instead, we should study the alternatives, and go for the one that best suits our realneeds.Indeed, as stated in Section 1.1, the fact that we can de�ne a cryptographic goal does not meanthat we can satisfy it as de�ned. In case we cannot satisfy the initial de�nition, we should searchfor relaxations that can be satis�ed. These relaxations should be de�ned in a clear manner so thatit would be obvious what they achieve (and what they fail to achieve). Doing so will allow a soundchoice of the relaxation to be used in a speci�c application. This seems to be a good point to endthe current primer. A good compromise is one in whichthe most important interestsof all parties are satis�ed.Adv. Klara Goldreich-Ingwer (1912{2004)56
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