
The Foundations of Modern Cryptography�(Version Nr. 2.2)Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.Email: oded@wisdom.weizmann.ac.ilNovember 8, 1997AbstractIn our opinion, the Foundations of Cryptography are the paradigms, approaches and tech-niques used to conceptualize, de�ne and provide solutions to natural cryptographic problems.In this essay, we survey some of these paradigms, approaches and techniques as well as someof the fundamental results obtained using them. Special e�ort is made in attempt to dissolvecommon misconceptions regarding these paradigms and results.

�A preliminary version of this essay has appeared in the proceedings of Crypto97 (Springer's Lecture Notes inComputer Science, Vol. 1294). Revisions will be available from http : ==theory:lcs:mit:edu=� oded=tfoc:html.0

Contents1 Introduction 2I Basic Tools 52 Central Paradigms 52.1 Computational Di�culty : 62.2 Computational Indistinguishability : 62.3 The Simulation Paradigm : 73 Pseudorandomness 74 Zero-Knowledge 9II Basic Utilities 125 Encryption 125.1 De�nitions : 125.2 Constructions : 135.3 Beyond eavesdropping security : 156 Signatures 166.1 De�nitions : 166.2 Constructions : 177 Cryptographic Protocols 187.1 De�nitions : 197.2 Constructions : 20III Concluding Comments 218 Some Notes 219 Historical Perspective 2410 Two Suggestions for Future Research 2511 Some Suggestions for Further Reading 25Bibliography 271

It is possible to build a cabin with no foundations,but not a lasting building.Eng. Isidor Goldreich (1906{1995)1 IntroductionCryptography is concerned with the construction of schemes which are robust against maliciousattempts to make these schemes deviate from their prescribed functionality. Given a desired func-tionality, a cryptographer should design a scheme which not only satis�es the desired functionalityunder \normal operation", but also maintains this functionality in face of adversarial attemptswhich are devised after the cryptographer has completed his/her work. The fact that an adversarywill devise its attack after the scheme has been speci�ed, makes the design of such schemes veryhard. In particular, the adversary will try to take actions other than the ones the designer hadenvisioned. Thus, our approach is that it makes little sense to make assumptions regarding thespeci�c strategy that the adversary may use. The only assumptions which can be justi�ed refer tothe computational abilities of the adversary. Furthermore, it is our opinion that the design of cryp-tographic systems has to be based on �rm foundations; whereas ad-hoc approaches and heuristicsare a very dangerous way to go. A heuristic may make sense when the designer has a very goodidea about the environment in which a scheme is to operate, yet a cryptographic scheme has tooperate in a maliciously selected environment which typically transcends the designer's view.Providing �rm foundations to Cryptography has been a major research direction in the last twodecades. Indeed, the pioneering paper of Di�e and Hellman [55] should be considered the initiatorof this direction. Two major (interleaved) activities have been:1. De�nitional Activity: The identi�cation, conceptualization and rigorous de�nition of crypto-graphic tasks which capture natural security concerns; and2. Constructive Activity: The study and design of cryptographic schemes satisfying de�nitions asin (1).The de�nitional activity provided a de�nition of secure encryption [92]. The reader may besurprised: what is there to de�ne (beyond the basic setting formulated in [55])? Let us answer witha question (posed by [92]): should an encryption scheme which leaks the �rst bit of the plaintext beconsidered secure? Clearly, the answer is negative and so some naive conceptions regarding secureencryption (e.g., \a scheme is secure if it is infeasible to obtain the plaintext from the ciphertextwhen not given the decryption key") turn out to be unsatisfactory. The lesson is that even whena natural concern (e.g., \secure communication over insecure channels") has been identi�ed, workstill needs to be done towards a satisfactory (rigorous) de�nition of the underlying concept. Thede�nitional activity also undertook the treatment of unforgeable signature schemes [94]: One resultof the treatment was the refutation of a \folklore theorem" (attributed to Ron Rivest) by which\a signature scheme that is robust against chosen message attack cannot have a proof of security".The lesson here is that unclear/unsound formulations (i.e., those underlying the above folkloreparadox) lead to false conclusions.Another existing concept which was re-examined is the then-fuzzy notion of a \pseudorandomgenerator". Although ad-hoc \pseudorandom generators" which pass some ad-hoc statistical testsmay be adequate for some statistical samplings, they are certainly inadequate for use in Cryptogra-phy: For example, sequences generated by linear congruential generators are easy to predict [28, 74]2

and endanger cryptographic applications even when not given in the clear [8]. The alternative sug-gested in [26, 92, 144] is a robust notion of pseudorandom generators { such a generator producessequences which are computationally indistinguishable from truly random sequences, and thus, canreplace truly random sequences in any practical application. We mention that the notion of com-putational indistinguishability has played a central role in the formulation of other cryptographicconcepts (such as secure encryption and zero-knowledge).The de�nitional activity has identi�ed concepts which were not known before. One well-knownexample is the introduction of zero-knowledge proofs [93]. A key paradigm crystallized in makingthe latter de�nition is the simulation paradigm: A party is said to have gained nothing from someextra information given to it if it can generate (i.e., simulate the receipt of) essentially the sameinformation by itself (i.e., without being given this information). The simulation paradigm plays acentral role in the related de�nitions of secure multi-party computations (with respect to varyingsettings such as in [118, 2, 91, 33]). However, it has been employed also in di�erent settings suchas in [13, 14, 37].The de�nitional activity is an on-going process. Its more recent targets have included mobileadversaries (aka \proactive security") [130, 38, 99], Electronic Cash [42], Coercibility [36, 35],Threshold Cryptography [54], and more.The constructive activity. As new de�nitions of cryptographic tasks emerged, the �rst chal-lenge was to demonstrate that they can be achieved. Thus, the �rst goal of the constructive activityis to demonstrate the plausibility of obtaining certain goals. Thus, standard assumptions such asthat the RSA is hard to invert were used to construct secure public-key encryption schemes [92, 144]and unforgeable digital schemes [94]. We stress that assuming that RSA is hard to invert is di�erentfrom assuming that RSA is a secure encryption scheme. Furthermore, plain RSA (alike any deter-ministic public-key encryption scheme) is not secure (as one can easily distinguish the encryptionof one predetermined message from the encryption of another). Yet, RSA can be easily transformedinto a secure public-key encryption scheme by using a construction which is reminiscent of a com-mon practice (of padding the message with random noise). We stress that the resulting scheme isnot merely believed to be secure but rather its security is linked to a much simpler assumption (i.e.,the assumption that RSA is hard to invert). Likewise, although plain RSA signing is vulnerable to\existential forgery" (and other attacks), RSA can be transformed into a signature scheme which isunforgeable (provided RSA is hard to invert). Using the assumption that RSA is hard to invert, onecan construct pseudorandom generators [26, 144], zero-knowledge proofs for any NP-statement [86],and multi-party protocols for securely computing any multi-variant function [145, 87].A major misconception regarding theoretical work in Cryptography stems from not distinguish-ing work aimed at demonstrating the plausibility of obtaining certain goals from work aimed atsuggesting paradigms and/or constructions which can be used in practice. For example, the generalresults concerning zero-knowledge proofs and multi-party protocols [86, 145, 87] mentioned aboveare merely claims of plausibility: What they say is that any problem of the above type (i.e., anyprotocol problem as discussed in Section 7) can be solved in principle. This is a very valuable pieceof information. Thus, if you have a speci�c problem which falls into the above category then youshould know that the problem is solvable in principle. However, if you need to construct a realsystem then you should probably construct a solution from scratch (rather than employing theabove general results). Typically, some tools developed towards solving the general problem maybe useful in solving the speci�c problem. Thus, we distinguish three types of results:1. Plausibility results: Here we refer to mere statements of the type \any NP-language has azero-knowledge proof system" (cf., [86]). 3

2. Introduction of paradigms and techniques which may be applicable in practice: Typical ex-amples include construction paradigms as the \choose n out of 2n technique" of [132], the\authentication tree" of [113, 115], the \randomized encryption" paradigm of [92], prooftechniques as the \hybrid argument" of [92] (cf., [79, Sec. 3.2.3]), and many others.3. Presentation of schemes which are suitable for practical applications: Typical examples in-clude the public-key encryption schemes of [25], the digital signature schemes of [62, 59, 47],the session-key protocols of [13, 14], and many others.Typically, it is quite easy to determine to which of the above categories a speci�c technical contri-bution belongs. Unfortunately, the classi�cation is not always stated in the paper; however, it istypically evident from the construction. We stress that all results we are aware of (and in particularall results cited in this essay), come with an explicit construction. Furthermore, the security ofthe resulting construction is explicitly related to the complexity of certain intractable tasks. Incontrast to some uninformed beliefs, for each of these results there is an explicit translation of con-crete intractability assumptions (on which the scheme is based) into lower bounds on the amountof work required to violate the security of the resulting scheme.1 We stress that this translationcan be invoked for any value of the security parameter. Doing so determines whether a speci�cconstruction is adequate for a speci�c application under speci�c reasonable intractability assump-tions. In many cases the answer is in the a�rmative, but in general this does depend on the speci�cconstruction as well as on the speci�c value of the security parameter and on what is reasonable toassume for this value. When we say that a result is suitable for practical applications (i.e., belongsto Type 3 above), we mean that it o�ers reasonable security for reasonable implementation valuesof the security parameter and reasonable assumptions.Other activities. This essay is focused on the de�nitional and constructive activities mentionedabove. Other activities in the foundations of cryptography include the exploration of new direc-tions and the marking of limitations. For example, we mention novel modes of operation suchas split-entities [17, 54, 117], batching operations [70], o�-line/on-line signing [62] and IncrementalCryptography [6, 7]. On the limitation side, we mention [102, 84]. In particular, [102] indicates thatcertain tasks (e.g., secret key exchange) are unlikely to be achieved by using a one-way function ina \black-box manner".Organization: Although encryption, signatures and secure protocols are the primary tasks ofCryptography, we start our presentation with basic paradigms and tools such as computationaldi�culty (Section 2), pseudorandomness (Section 3) and zero-knowledge (Section 4). Once these arepresented, we turn to encryption (Section 5), signatures (Section 6) and secure protocols (Section 7).We conclude with some notes (Section 8), a short historical perspective (Section 9), two suggestionsfor future research (Section 10) and some suggestions for further reading (Section 11).This Version: This is a revised and slightly expanded version of an essay which appears in theproceedings of Crypto97, Springer's Lecture Notes in Computer Science, Vol. 1294, pages 46{74.Speci�c additions include (1) actual de�nitions of secure encryption and unforgeable signatures;(2) detailed description of the Blum{Goldwasser encryption scheme [25]; and (3) a historical per-spective.1 The only exception to the latter statement is Levin's observation regarding the existence of a universal one-wayfunction (cf., [109] and [79, Sec. 2.4.1]). 4

Part IBasic Tools2 Central ParadigmsModern Cryptography, as surveyed here, is concerned with the construction of e�cient schemes forwhich it is infeasible to violate the security feature. Thus, we need a notion of e�cient computationsas well as a notion of infeasible ones. The computations of the legitimate users of the scheme oughtbe e�cient; whereas violating the security features (via an adversary) ought to be infeasible. Ournotions of e�cient and infeasible computations are \asymptotic": They refer to the running time asa function of the security parameter. This is done in order to avoid cumbersome formulations whichrefer to the actual running-time on a speci�c model for speci�c values of the security parameter.As discussed above one can easily derive such speci�c statements from the asymptotic treatment.Actually, the term \asymptotic" is misleading since, from the functional treatment of the running-time (as a function of the security parameter), one can derive statements for any value of thesecurity parameter.E�cient computations are commonly modeled by computations which are polynomial-time in thesecurity parameter. The polynomial bounding the running-time of the legitimate user's strategy is�xed and typically explicit and small (still in some cases it is indeed a valuable goal to make it evensmaller). Here (i.e., when referring to the complexity of the legitimate user) we are in the samesituation as in any algorithmic research. Things are di�erent when referring to our assumptionsregarding the computational resources of the adversary. A common approach is to postulate that thelatter are polynomial-time too, where the polynomial is not a-priori speci�ed. In other words, theadversary is restricted to the class of e�cient computations and anything beyond this is consideredto be infeasible. Although many de�nitions explicitly refer to this convention, this convention isinessential to any of the results known in the area. In all cases, a more general (and yet morecumbersome) statement can be made by referring to adversaries of running-time bounded by anyfunction (or class of functions). For example, for any function T :N 7!N (e.g., T (n) = 2 3pn), wemay consider adversaries which on security parameter n run for at most T (n) steps. Doing so we(implicitly) de�ne as infeasible any computation which (on security parameter n) requires morethan T (n) steps. A typical result has the form2If RSA with n-bit moduli cannot be inverted in time T (n) then the following con-struction (using security parameter n) is secure against adversaries operating in timeT 0(n) = T (g(n))=f(n), where f and g�1 are explicitly given polynomials.However, most papers prefer to present a simpli�ed statement of the form \if RSA cannot beinverted in polynomial-time then the following construction is secure against polynomial-time ad-versaries". This is unfortunate since it is the speci�c functions f and g, which are (sometimesexplicit and) always implicit in the proof, that determine the practicality of the construction.32 Actually, the form below is over-simpli�ed. The actual statement refers also to the success probabilities ofboth attacks. It reads: If RSA with n-bit moduli cannot be inverted in time T (n), with success probabilitygreater than �(n), then the following construction (using security parameter n) cannot be broken by adversariesoperating in time T 0(n) with success probability greater than �0(n), where T 0(n) and �0(n) are related to T (g(n))and �(g(n)) via explicit polynomial expressions and g�1 is an explicitly given polynomial. Speci�cally, T (g(n)) =poly(n; T 0(n))=poly(�0(n)) and �(g(n)) = poly(�0(n))=poly(n; T 0(n)). Typically, T (g(n)) = poly(n=�0(n)) � T 0(n) and�(g(n)) = poly(�0(n))=poly(T 0(n)).3 The importance of explicitly relating the security of the resulting scheme to the quanti�ed intractability assump-tion has been advocated (and practiced) in a sequence of recent works by Bellare and Rogaway (cf., [10, p. 343]).5

The smaller f and g�1, the better. Our rule of thumb is that results with g�1(n) = O(n) (e.g.,g(n) = n=2) are practical, whereas results with, say, g�1(n) = n4 (i.e., g(n) = 4pn) are to beconsidered merely plausibility results.Lastly we consider the notion of a negligible probability. The idea behind this notion is to havea robust notion of rareness: A rare event should occur rarely even if we repeat the experiment fora feasible number of times. That is, if we consider any polynomial-time computation to be feasiblethen any function f : N 7! N so that (1 � f(n))p(n) > 0:99, for any polynomial p, is considerednegligible (i.e., f is negligible if for any polynomial p the function f(�) is bounded above by 1=p(�)).However, if we consider the function T (n) to provide our notion of infeasible computation thenfunctions bounded above by 1=T (n) are considered negligible (in n).In the rest of this essay we adopt the simpler convention of de�ning infeasible computationsas ones which cannot be conducted in polynomial-time. (However, we explicitly state the level ofpracticality of each of the results presented.) The interested reader is referred to [110] for a moregeneral treatment.2.1 Computational Di�cultyModern Cryptography is concerned with the construction of schemes which are easy to operate(properly) but hard to foil. Thus, a complexity gap (i.e., between the complexity of proper usage andthe complexity of defeating the prescribed functionality) lies in the heart of Modern Cryptography.However, gaps as required for Modern Cryptography are not known to exist { they are only widelybelieved to exist. Indeed, almost all of Modern Cryptography rises or falls with the question ofwhether one-way functions exist (e.g., see [97, 80, 138, 120, 86] for positive results and [109, 138, 129]for negative ones). One-way functions are functions which are easy to evaluate but hard (on theaverage) to invert.De�nition 1 (one-way functions [55]): A function f :f0; 1g� 7!f0; 1g� is called one-way if� easy direction: there is an e�cient algorithm which on input x outputs f(x).� hard direction: given f(x), where x is uniformly selected, it is infeasible to �nd, with non-negligible probability, a preimage of f(x). That is, any feasible algorithm which tries to doinvert f may succeed only with negligible probability, where the probability is taken over thechoices of x and the algorithm's coin tosses.Warning: the above de�nition, as well as all other de�nitions in this essay, avoids some technical-ities and so is imprecise. The interested reader is referred to other texts (see Section 11).2.2 Computational IndistinguishabilityA central notion in Modern Cryptography is that of \e�ective similarity". The underlying idea isthat we do not care if objects are equal or not { all we care is whether a di�erence between theobjects can be observed by a feasible computation. In case the answer is negative, we may say thatthe two objects are equivalent as far as any practical application is concerned. Indeed, it will beour common practice to interchange such (computationally indistinguishable) objects.De�nition 2 (computational indistinguishability [92, 144]): Let X = fXngn2N and Y = fYngn2Nbe probability ensembles such that each Xn and Yn ranges over strings of length n. We say that Xand Y are computationally indistinguishable if for every feasible algorithm A the di�erencedA(n) def= jPr(A(Xn)=1)� Pr(A(Yn)=1)j6

is a negligible function in n.2.3 The Simulation ParadigmA key question regarding the modeling of security concerns is how to express the intuitive require-ment that an adversary \gains nothing substantial" by deviating from the prescribed behavior ofan honest user. The approach initiated in [92, 93] is that the adversary gains nothing if whatever itcan obtain by deviating from the prescribed honest behavior can also be obtained in an appropri-ately de�ned \ideal model". The de�nition of the \ideal model" captures what we want to achievein terms of security, and so is speci�c to the security concern to be addressed. For example, anencryption scheme is considered secure (against eavesdropping) if an adversary which eavesdropson a channel on which messages are sent, using this encryption scheme, gains nothing over a userwhich does not tap this channel. Thus, the encryption scheme \simulates" an ideal private channelbetween parties.A notable property of the above simulation paradigm, as well as of the entire approach surveyedhere, is that this approach is very liberal with respect to its view of the abilities of the adversary aswell as to what might constitute a gain for the adversary. For example, we consider an encryptionscheme to be secure only if it can simulate a private channel. Indeed, failure to provide sucha simulation does not necessarily mean that the encryption scheme can be \broken" in someintuitively harmful sense. Thus, it seems that our approach to de�ning security is overly cautious.However, it seems impossible to come up with de�nitions of security which distinguish \breakingthe scheme in a harmful sense" from \breaking it in a non-harmful sense": What is harmful isapplication-dependent, whereas a good de�nition of security ought to be application independent(as otherwise using the scheme in any new application will require a full re-evaluation of its security).Furthermore, since we are interested in secure schemes, there is no harm in employing overlycautious de�nitions, provided that this does not prevent us (or even disturb us) from constructing\good" schemes. We claim that this has been the case in the past. In most cases it has been possibleto construct schemes which meet the overly cautious de�nitions (of security), and in other casesthe di�culty to construct such schemes has demonstrated an inherent problem (e.g., [102, 84]).3 PseudorandomnessIn practice \pseudorandom" sequences are used instead of truly random sequences in many appli-cations. The underlying belief is that if an (e�cient) application performs well when using a trulyrandom sequence then it will perform essentially as well when using a \pseudorandom" sequence.However, this belief is not supported by previous characterizations of \pseudorandomness" (e.g.,such as passing the statistical tests in Knuth's book or having large linear-complexity). In con-trast, the above belief is an easy corollary of de�ning pseudorandom distributions as ones which arecomputationally indistinguishable from uniform distributions. We are interested in pseudorandomsequences which can be generated and determined by short random seeds. That is,De�nition 3 (pseudorandom generator [26, 144]): Let ` : N 7! N be so that `(n) > n, 8n. Apseudorandom generator, with stretch function `, is an e�cient (deterministic) algorithm which oninput a random n-bit seed outputs a `(n)-bit sequence which is computationally indistinguishablefrom a uniformly chosen `(n)-bit sequence.We stress that pseudorandom sequences can replace truly random sequences not only in \ordinary"computations but also in cryptographic ones. That is, any cryptographic application which is7

secure when the legitimate parties use truly random sequences, is also secure when the legitimateparties use pseudorandom sequences. Various cryptographic applications of pseudorandom gener-ators will be presented in the sequel, but �rst let us consider the construction of pseudorandomgenerators. A key paradigm is presented next. It uses the notion of a hard-core predicate [26] of a(one-way) function: The predicate b is a hard-core of the function f if b is easy to evaluate but b(x)is hard to predict from f(x). That is, it is infeasible, given f(x) when x is uniformly chosen, topredict b(x) substantially better than with probability 1=2. Intuitively, b \inherits in a concentratedsense" the di�culty of inverting f . (Note that if b is a hard-core of an e�ciently computable 1-1function f then f must be one-way.)The iteration paradigm [26]: Let f be a 1-1 function which is length-preserving and e�cientlycomputable, and b be a hard-core predicate of f . ThenG(s) = b(s) � b(f(s)) � � �b(f `(jsj)�1(s))is a pseudorandom generator (with stretch function `), where f i+1(x) def= f(f i(x)) and f0(x) def= x.As a concrete example, consider the permutation x 7! x2 mod N , where N is the product of twoprimes each congruent to 3 (mod 4). We have GN (s) = lsb(s) � lsb(s2 mod N) � � � lsb(s2`(jsj)�1 modN), where lsb(x) is the least signi�cant bit of x (which by [1, 142] is a hard-core of the modularsquaring function). We note that for any one-way permutation f 0, the inner-product mod 2 of xand r is a hard-core of f(x; r) = (f 0(x); r) [85]. Thus, using any one-way permutation, we caneasily construct pseudorandom generators.The iteration paradigm is even more bene�cial when one has a hard-core function rather thana hard-core predicate: h is called a hard-core function of f if h is easy to evaluate but, for arandom x2f0; 1g�, the distribution f(x) � h(x) is pseudorandom. (Note that a hard-core predicateis a special case.) Using a hard-core function h for f , we obtain the pseudorandom generatorG0(s) = h(s) � h(f(s)) � h(f2(s)) � � �. In particular, assuming the intractability of the subset sumproblem (for suitable densities) or of the decoding of random linear codes, this paradigm was usedin [101, 72] to construct very e�cient pseudorandom generators. Alternatively, encouraged by theresults in [1, 98], we conjecture that the �rst n=2 least signi�cant bits of the argument constitute ahard-core function of the modular squaring function for n-bit long moduli. This conjecture yieldsan e�cient pseudorandom generator: G0N(s) = lsbN (s) � lsbN(s2 mod N) � lsbN (s4 mod N) � � �,where lsbN(x) denotes the 0:5 log2N least signi�cant bits of x.A plausibility result [97]: Pseudorandom generators exist if (and only if) one-way functionsexist. Unlike the construction of pseudorandom generators from one-way permutations, the knownconstruction of pseudorandom generators from arbitrary one-way functions has no practical signif-icance. It is indeed an important open problem to provide an alternative construction which maybe practical and still utilize an arbitrary one-way function.Pseudorandom FunctionsPseudorandom generators allow to e�ciently generate long pseudorandom sequences from shortrandom seeds. Pseudorandom functions (de�ned below) are even more powerful: They allow ef-�cient direct access to a huge pseudorandom sequence (which is not feasible to scan bit-by-bit).Put in other words, pseudorandom functions can replace truly random functions in any application8

where the function is used in a black-box fashion (i.e., the adversary may obtain the value of thefunction at arguments of its choice but is not able to evaluate the function by itself).4De�nition 4 (pseudorandom functions [80]): A pseudorandom function is an e�cient (determin-istic) algorithm which given an n-bit seed, s, and an n-bit argument, x, returns an n-bit string,denoted fs(x), so that it is infeasible to distinguish the responses of fs, for a uniformly chosen s,from the responses of a truly random function.That is, the distinguisher is given access to a function and is required to distinguish a randomfunction f :f0; 1gn 7!f0; 1gn from a function chosen uniformly in ffs : s2f0; 1gng. We stress thatin the latter case the distinguisher is not given the description of the function fs (i.e., the seed s),but rather may obtain the value of fs on any n-bit string of its choice.5Pseudorandom functions are a very useful cryptographic tool (cf., [81, 76] and Section 5): Onemay �rst design a cryptographic scheme assuming that the legitimate users have black-box accessto a random function, and next implement the random function using a pseudorandom function.From pseudorandom generators to pseudorandom functions [80]: Let G be a pseudo-random generator with stretching function `(n) = 2n, and let G0(s) (resp., G1(s)) denote the �rst(resp., last) n bits in G(s) where s 2 f0; 1gn. We de�ne the function ensemble ffs : f0; 1gjsj 7!f0; 1gjsjg, where fs(�jsj � � ��2�1) = G�jsj(� � �G�2(G�1(s)) � � �). This ensemble is pseudorandom.Alternative constructions of pseudorandom functions have been suggested in [123, 125].4 Zero-KnowledgeLoosely speaking, zero-knowledge proofs are proofs which yield nothing beyond the validity of theassertion. That is, a veri�er obtaining such a proof only gains conviction in the validity of theassertion. Using the simulation paradigm this requirement is stated by postulating that anythingthat is feasibly computable from a zero-knowledge proof is also feasibly computable from the validassertion alone. All the above refers to proofs as to interactive and randomized processes. Thatis, here a proof is a (multi-round) protocol for two parties, called veri�er and prover, in whichthe prover wishes to convince the veri�er of the validity of a given assertion. Such an interactiveproof should allow the prover to convince the veri�er of the validity of any true assertion, whereasno prover strategy may fool the veri�er to accept false assertions. Both the above completenessand soundness conditions should hold with high probability (i.e., a negligible error probabilityis allowed). The prescribed veri�er strategy is required to be e�cient. No such requirement ismade with respect to the prover strategy; yet we will be interested in \relatively e�cient" proverstrategies (see below). Zero-knowledge is a property of some prover-strategies. More generally,we consider interactive machines which yield no knowledge while interacting with an arbitraryfeasible adversary on a common input taken from a predetermined set (in our case the set of validassertions).4 This is di�erent from the Random Oracle Model of [12], where the adversary has a direct access to the function.5 Typically, the distinguisher stands for an adversary that attacks a system which uses a pseudorandom function.The values of the function on arguments of the adversary's choice are obtained from the legitimate users of the systemwho, unlike the adversary, know the seed s. The de�nition implies that the adversary will not be more successful inits attack than it could have been if the system was to use a truly random function. Needless to say that the lattersystem is merely a Gedanken Experiment (it cannot be implemented since it is infeasible to even store a truly randomfunction). 9

De�nition 5 (zero-knowledge [93]): A strategy A is zero-knowledge on inputs from S if, for everyfeasible strategy B�, there exists a feasible computation C� so that the following two probabilityensembles are computationally indistinguishable:1. f(A;B�)(x)gx2S def= the output of B� when interacting with A on common input x 2 S; and2. fC�(x)gx2S def= the output of C� on input x 2 S.Note that whereas A and B� above are interactive strategies, C� is a non-interactive computation.The above de�nition does not account for auxiliary information which an adversary may haveprior to entering the interaction. Accounting for such auxiliary information is essential for usingzero-knowledge proofs as subprotocols inside larger protocols (see [84, 88]). Another concern isthat we prefer that the complexity of C� be bounded as a function of the complexity of B�. Bothconcerns are taken care of by a more strict notion of zero-knowledge presented next.De�nition 6 (zero-knowledge, revisited [88]): A strategy A is black-box zero-knowledge on inputsfrom S if there exists an e�cient (universal) subroutine-calling algorithm U so that for every fea-sible strategy B�, the probability ensembles f(A;B�)(x)gx2S and fUB�(x)gx2S are computationallyindistinguishable, where UB� is algorithm U using strategy B� as a subroutine.Note that the running time of UB� is at most the running-time of U times the running-time of B�.Actually, the �rst term may be replaced by the number of times U invokes the subroutine. Allknown zero-knowledge proofs are in fact black-box zero-knowledge.A general plausibility result [86]: Assuming the existence of commitment schemes, thereexist (black-box) zero-knowledge proofs for membership in any NP-language.6 Furthermore, theprescribed prover strategy is e�cient provided it is given an NP-witness to the assertion to beproven. This makes zero-knowledge a very powerful tool in the design of cryptographic schemesand protocols.Zero-knowledge as a tool: In a typical cryptographic setting, a user, referred to as A, has asecret and is supposed to take some steps depending on its secret. The question is how can otherusers verify that A indeed took the correct steps (as determined by A's secret and the publiclyknown information). Indeed, if A discloses its secret then anybody can verify that it took thecorrect steps. However, A does not want to reveal its secret. Using zero-knowledge proofs wecan satisfy both conicting requirements. That is, A can prove in zero-knowledge that it tookthe correct steps. Note that A's claim to having taken the correct steps is an NP-assertion andthat A has an NP-witness to its validity (i.e., its secret!). Thus, by the above result, it is possiblefor A to e�ciently prove the correctness of its actions without yielding anything about its secret.(However, in practice one may want to design a speci�c zero-knowledge proof, tailored to the speci�capplication and so being more e�cient, rather than invoking the general result above. Thus, thedevelopment of techniques for the construction of e�cient zero-knowledge proof systems is still ofinterest { see, for example, [83, 32, 67, 105, 52, 48].)6 NP is the class of languages having e�ciently veri�able (and short) proofs of membership. That is, L is in NP ifthere exists a polynomial-time recognizable binary relation RL and a polynomial ` so that x 2 L if and only if thereexists y so that jyj � `(jxj) and (x; y) 2 RL. 10

Some VariantsPerfect zero-knowledge arguments: This term captures two deviations from the above de�-nition; the �rst being a strengthening and the second being a weakening. Perfect zero-knowledgestrategies are such for which the ensembles in De�nition 5 are identically distributed (rather thancomputationally indistinguishable). This means that the zero-knowledge clause holds regardlessof the computational abilities of the adversary. However, arguments (aka computationally soundproofs) di�er from interactive proofs in having a weaker soundness clause: it is infeasible (ratherthan impossible) to fool the veri�er to accept false assertion (except with negligible probability) [30].Perfect zero-knowledge arguments for NP were constructed using any one-way permutation [121].Non-Interactive zero-knowledge proofs [24, 66]: Here the interaction between the proverand the veri�er consists of the prover sending a single message to the veri�er (as in \classicalproofs"). In addition, both players have access to a \random reference string" which is postulated tobe uniformly selected. Non-interactive zero-knowledge proofs are useful in applications where one ofthe parties may be trusted to select the abovementioned reference string (e.g., see Section 5.3). Non-interactive zero-knowledge arguments for NP were constructed using any trapdoor permutation [66,106].Zero-knowledge proofs of knowledge [93, 71, 5]: Loosely speaking, a system for proofs ofknowledge guarantees that whenever the veri�er is convinced that the prover knows X , this X canbe e�ciently extracted from the prover's strategy. One natural application of (zero-knowledge)proofs of knowledge is for identi�cation [71, 65].Relaxations of Zero-knowledge: Important relaxations of zero-knowledge were presented in [68].Speci�cally, in witness indistinguishable proofs it is infeasible to tell which NP-witness to the as-sertion the prover is using. Unlike zero-knowledge proofs, this notion is closed under parallel com-position. Furthermore, this relaxation su�ces for some applications in which one may originallythink of using zero-knowledge proofs.
11

Part IIBasic Utilities5 EncryptionBoth Private-Key and Public-Key encryption schemes consists of three e�cient algorithms: keygeneration, encryption and decryption. The di�erence between the two types is reected in thede�nition of security { the security of a public-key encryption scheme should hold also when theadversary is given the encryption key, whereas this is not required for private-key encryption scheme.Thus, public-key encryption schemes allow each user to broadcast its encryption key so that anyuser may send it encrypted messages (without needing to �rst agree on a private encryption-keywith the receiver). Below we present de�nitions of security for private-key encryption schemes. Thepublic-key analogies can be easily derived by considering adversaries which get the encryption keyas additional input. (For private-key encryption schemes we may assume, without loss of generality,that the encryption key is identical to the decryption key.)5.1 De�nitionsFor simplicity we consider only the encryption of a single message; however this message may belonger than the key (which rules out information-theoretic secrecy [139]). We present two equivalentde�nitions of security. The �rst, called semantic security, is a computational analogue of Shannon'sde�nition of perfect secrecy [139]. The second de�nition views secure encryption schemes as ones forwhich it is infeasible to distinguish encryptions of any (known) pair of messages (e.g., the all-zerosmessage and the all-ones message). The latter de�nition is technical in nature and is referred to asindistinguishability of encryptions.We stress that the de�nitions presented below go way beyond saying that it is infeasible torecover the plaintext from the ciphertext. The latter statement is indeed a minimal requirementfrom a secure encryption scheme, but we claim that it is way too weak a requirement: An encryptionscheme is typically used in applications where obtaining speci�c partial information on the plaintextendangers the security of the application. When designing an application-independent encryptionscheme, we do not know which partial information endangers the application and which doesnot. Furthermore, even if one wants to design an encryption scheme tailored to one's own speci�capplications, it is rare (to say the least) that one has a precise characterization of all possible partialinformation which endanger these applications. Thus, we require that it is infeasible to obtainany information about the plaintext from the ciphertext. Furthermore, in most applications theplaintext may not be uniformly distributed and some a-priori information regarding it is availableto the adversary. We require that the secrecy of all partial information is preserved also in sucha case. That is, even in presence of a-priori information on the plaintext, it is infeasible to obtainany (new) information about the plaintext from the ciphertext (beyond what is feasible to obtainfrom the a-priori information on the plaintext). The de�nition of semantic security postulates allof this. The equivalent de�nition of indistinguishability of encryptions is useful in demonstratingthe security of candidate constructions as well as for arguing about their usage as part of largerprotocols.The actual de�nitions: In both de�nitions we consider (feasible) adversaries which obtain, inaddition to the ciphertext, also auxiliary information which may depend on the potential plaintexts12

(but not on the key). By E(x) we denote the distribution of encryptions of x, when the key isselected at random. To simplify the exposition, let us assume that on security parameter n the keygeneration produces a key of length n, whereas the scheme is used to encrypt messages of lengthn2.De�nition 7 (semantic security (following [92])): An encryption scheme is semantically secure iffor every feasible algorithm, A, there exists a feasible algorithm B so that for every two functionsf; h : f0; 1g� 7! f0; 1g� and all sequences of pairs, (Xn; zn)n2N , where Xn is a random variableranging over f0; 1gn2 and jznj is of feasible (in n) length,Pr(A(E(Xn); h(Xn); zn)=f(Xn)) < Pr(B(h(Xn); zn)=f(Xn)) + �(n)where � is a negligible function. Furthermore, the complexity of B should be related to that of A.What this de�nition says is that a feasible adversary does not gain anything by looking at theciphertext. That is, whatever information (captured by the function f) it tries to compute fromthe ciphertext, can be essentially computed as e�ciently from the available a-priori information(captured by the function h). In particular, the ciphertext does not help in (feasibly) computingthe least signi�cant bit of the plaintext or any other information regarding the plaintext. Thisholds for any distribution of plaintexts (captured by the random variable Xn).De�nition 8 (indistinguishability of encryptions (following [92])): An encryption scheme has indis-tinguishable encryptions if for every feasible algorithm, A, and all sequences of triples, (xn; yn; zn)n2N ,where jxnj = jynj = n2 and jznj is of feasible (in n) length, the di�erencedA(n) def= jPr(A(E(xn); zn)=1)� Pr(A(E(yn); zn)=1)jis a negligible function in n.In particular, zn may equal (xn; yn). Thus, it is infeasible to distinguish the encryptions of any two�x messages such as the all-zero message and the all-ones message.Probabilistic Encryption: It is easy to see that a secure public-key encryption scheme mustemploy a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given the encryptionkey as (additional) input, it is easy to distinguish the encryption of the all-zero message from theencryption of the all-ones message. The same holds for private-key encryption schemes when con-sidering the security of encrypting several messages (rather than a single message as done above).7This explains the linkage between the above robust security de�nitions and the randomizationparadigm (discussed below).5.2 ConstructionsIt is common practice to use \pseudorandom generators" as a basis for private-key stream ciphers.We stress that this is a very dangerous practice when the \pseudorandom generator" is easy topredict (such as the linear congruential generator or some modi�cations of it which output aconstant fraction of the bits of each resulting number { see [28, 74]). However, this commonpractice becomes sound provided one uses pseudorandom generators (as de�ned in Section 3). Analternative, more exible construction follows.7 Here, for example, using a deterministic encryption algorithm allows the adversary to distinguish two encryptionsof the same message from the encryptions of a pair of di�erent messages.13

Private-Key Encryption Scheme based on Pseudorandom Functions: The key generationalgorithm consists of selecting a seed, denoted s, for such a function, denoted fs. To encrypt amessage x 2 f0; 1gn (using key s), the encryption algorithm uniformly selects a string r 2 f0; 1gnand produces the ciphertext (r; x � fs(r)). To decrypt the ciphertext (r; y) (using key s), thedecryption algorithm just computes y � fs(r). The proof of security of this encryption schemeconsists of two steps (suggested as a general methodology in Section 3):1. Prove that an idealized version of the scheme, in which one uses a uniformly selected functionf :f0; 1gn 7!f0; 1gn, rather than the pseudorandom function fs, is secure.2. Conclude that the real scheme (as presented above) is secure (since otherwise one coulddistinguish a pseudorandom function from a truly random one).Note that we could have gotten rid of the randomization if we had allowed the encryption algorithmto be history dependent (e.g., use a counter in the role of r). Furthermore, if the encryption schemeis used for fifo communication between the parties and both can maintain the counter value thenthere is no need for the sender to send the counter value.The randomization paradigm [92]: We demonstrate this paradigm by presenting several con-structions of public-key encryption schemes. First, suppose we have a trapdoor one-way permuta-tion, fp�g�, and a hard-core predicate, b, for it.8 The key generation algorithm consists of selectingat random a permutation p� together with a trapdoor for it: The permutation (or rather its de-scription) serves as the public-key, whereas the trapdoor serves as the private-key. To encrypt asingle bit � (using public key p�), the encryption algorithm uniformly selects an element, r, inthe domain of p� and produces the ciphertext (p�(r); � � b(r)). To decrypt the ciphertext (y; �)(using the private key), the decryption algorithm just computes � � b(p�1� (y)) (where the inverseis computed using the trapdoor (i.e., private-key)). The above scheme is quite wasteful in band-width; however, the paradigm underlying its construction is valuable in practice. Following are twoimportant examples.First, we note that it is better to randomly pad messages (say using padding equal in lengthto the message) before encrypting them using RSA, than to employ RSA on the plain message.Such a heuristic could be placed on �rm grounds if a conjecture analogous to the one mentionedin Section 3 is supported. That is, assume that the �rst n=2 least signi�cant bits of the argumentconstitute a hard-core function of RSA with n-bit long moduli. Then, encrypting n=2-bit messagesby padding the message with n=2 random bits and applying RSA (with an n-bit moduli) on theresult constitutes a secure public-key encryption system, hereafter referred to as Randomized RSA.Secondly, following [25], we present an alternative public-key encryption scheme, which canbe based on any trapdoor permutation. In contrast to the scheme presented above, the currentscheme is not wasteful in bandwidth. The encryption scheme augments the construction of apseudorandom generator, given in Section 3, as follows. The key-generation algorithm consists ofselecting at random a permutation p� together with a trapdoor. To encrypt the n-bit string x(using public key p�), the encryption algorithm uniformly selects an element, s, in the domain ofp� and produces the ciphertext (pn�(s); x�G�(s)), where G�(s) = b(s) � b(p�(s)) � � �b(pn�1� (s)). (Weuse the notation pi+1� (x) = p�(pi�(x)) and p�(i+1)� (x) = p�1� (p�i� (x)).) To decrypt the ciphertext(y; z) (using the private key), the decryption algorithm �rst recovers s = p�n� (y) and then outputsz � G�(s).8 Hard-core predicates are de�ned in Section 3. Recall that by [85], every trapdoor permutation can be modi�edinto one having a hard-core predicate. 14

private-key: Two primes p; q, each congruent to 3 (mod 4).public-key: Their product N def= pq.encryption of message x 2 f0; 1gn:1. Uniformly select s0 2 f1; :::;Ng.2. For i = 1; :::;n, compute �i = lsb(si�1) and si s2i�1 mod N.The ciphertext is (sn; y), where y = x� �1�2 � � ��n.decryption of the ciphertext (r; y). Let d = 2�n mod �(N) [precomputed].1. Let s0 rd mod N .2. For i = 1; :::;n, compute �i = lsb(si�1) and si s2i�1 mod N.The plaintext is y� �1�2 � � ��n.Figure 1: The Blum{Goldwasser Public-Key Encryption Scheme [25]. One may think of n as beingequal the length of N , but this is not essential to the scheme. The larger n, the more e�cient thescheme becomes. Recall, however, that the security of the scheme depends on the length of N (andnot on n).Assuming that factoring Blum Integers (i.e., products of two primes each congruent to 3(mod 4)) is hard, one may use the modular squaring function in role of the trapdoor permuta-tion above (see [25, 1, 142, 73]). This yields a secure public-key encryption scheme (depicted inFigure 1) with e�ciency comparable to that of RSA. Recall that RSA itself is not secure (as itemploys a deterministic encryption algorithm), whereas Randomized RSA (de�ned above) is notknown to be secure under standard assumption such as intractability of factoring (or of invertingthe RSA function).95.3 Beyond eavesdropping securityThe above de�nitions refer only to a \passive" attack in which the adversary merely eavesdropson the line over which ciphertexts are being sent. Stronger types of attacks, culminating in the so-called Chosen Ciphertext Attack,10 may be possible in various applications. In such an attack, theadversary may obtain the plaintexts of ciphertexts of its choice (as well as ciphertexts of plaintextsof its choice) and its task is to obtain information about the plaintext of a di�erent ciphertext.Clearly, the private-key encryption scheme based on pseudorandom functions (described above) issecure also against such attacks. Public-key encryption schemes secure against Chosen CiphertextAttacks can be constructed, assuming the existence of trapdoor permutations and utilizing non-interactive zero-knowledge proofs [128] (which can be constructed under this assumption [66]).Another issue is the non-malleability of the encryption scheme, considered in [56]. Here onerequires that it should be infeasible for an adversary, given a ciphertext, to produce a valid ci-phertext for a related plaintext. For example, given a ciphertext of a plaintext of the form 1x,9 Recall that Randomized RSA is secure assuming that the n=2 least signi�cant bits constitute a hard-core functionfor n-bit RSA moduli. We only know that the O(log n) least signi�cant bits constitute a hard-core function for n-bitmoduli [1].10 An even stronger notion of Chosen Ciphertext Attack is investiagted in [136]. This stronger notion is related tonon-malleability discussed below. 15

it should be infeasible to produce a ciphertext to the plaintext 0x. It is easy to turn a private-key encryption scheme into a non-malleable one, by using a message authentication scheme ontop. Non-malleable public-key encryption schemes are known to exist assuming the existence oftrapdoor permutation [56].6 SignaturesAgain, there are private-key and public-key versions both consisting of three e�cient algorithms:key generation, signing and veri�cation. (Private-key signature schemes are commonly referred toas message authentication schemes or codes (mac).) The di�erence between the two types is againreected in the de�nition of security. This di�erence yields di�erent functionality (even more than inthe case of encryption): Public-key signature schemes (hereafter referred to as signature schemes)may be used to produce signatures which are universally veri�able (given access to the public-key of the signer). Private-key signature schemes (hereafter referred to as message authenticationschemes) are only used to authenticate messages sent among a small set of mutually trusting parties(since ability to verify signatures is linked to the ability to produce them). Put in other words,message authentication schemes are used to authenticate information sent between (typically two)parties, and the purpose is to convince the receiver that the information was indeed sent by thelegitimate sender. In particular, message authentication schemes cannot convince a third party thatthe sender has indeed sent the information (rather than the receiver having generated it by itself).In contrast, public-key signatures can be used to convince third parties: A signature to a documentis typically sent to a second party so that in the future this party may (by merely presenting thesigned document) convince third parties that the document was indeed generated/sent/approvedby the signer.6.1 De�nitionsWe consider very powerful attacks on the signature scheme as well as a very liberal notion ofbreaking it. Speci�cally, the attacker is allowed to obtain signatures to any message of its choice.One may argue that in many applications such a general attack is not possible (as messages to besigned must have a speci�c format). Yet, our view is that it is impossible to de�ne a general (i.e.,application-independent) notion of admissible messages, and thus a general/robust de�nition of anattack seems to have to be formulated as suggested here. (Note that at worst, our approach is overlycautious.) Likewise, the adversary is said to be successful if it can produce a valid signature to anymessage for which it has not asked for a signature during its attack. Again, this de�nes the abilityto form signatures to possibly \nonsensical" messages as a breaking of the scheme. Yet, again, wesee no way to have a general (i.e., application-independent) notion of \meaningful" messages (sothat only forging signatures to them will be consider a breaking of the scheme).De�nition 9 (unforgeable signatures [94]):� A chosen message attack is a process which on input a veri�cation-key can obtain signatures(relative to the corresponding signing-key) to messages of its choice.� Such an attack is said to succeeds (in existential forgery) if it outputs a valid signature to amessage for which it has not requested a signature during the attack.� A signature scheme is secure (or unforgeable) if every feasible chosen message attack succeedswith at most negligible probability. 16

We stress that plain RSA (alike plain versions of Rabin's scheme [133] and DSS [119]) is not secureunder the above de�nition. However, it may be secure if the message is \randomized" before RSA(or the other schemes) is applied (cf., [15]). Thus, the randomization paradigm (see Section 5)seems pivotal here too.6.2 ConstructionsMessage authentication schemes can be constructed using pseudorandom functions (see [81] or thebetter constructions in [10, 9, 3]). However, as noted in [4], an extensive usage of pseudorandomfunctions seem an overkill for achieving message authentication, and more e�cient schemes maybe obtained based on other cryptographic primitives. We mention two approaches:1. Fingerprinting the message using a scheme which is secure against forgery provided that theadversary does not have access to the scheme's outcome (e.g., using Universal Hashing [39]),and \hiding" the result using a non-malleable scheme (e.g., a private-key encryption or apseudorandom function). (Non-malleability is not required in certain cases; see [143].)2. Hashing the message using a collision-free scheme (cf., [50, 51]), and authenticating the resultusing a mac which operates on (short) �xed-length strings [4].Three central paradigms in the construction of signature schemes are the \refreshing" of the \ef-fective" signing-key, the usage of an \authentication tree" and the \hashing paradigm".The refreshing paradigm [94]: To demonstrate this paradigm, suppose we have a signaturescheme which is robust against a \random message attack" (i.e., an attack in which the adversaryonly obtains signatures to uniformly distributed messages). Further suppose that we have a one-time signature scheme (i.e., a signature scheme which is secure against an attack in which theadversary obtains a signature to a single message of its choice). Then, we can obtain a securesignature scheme as follows: When a new message is to be signed, we generate a new randomsigning-key for the one-time signature scheme, use it to sign the message, and sign the corresponding(one-time) veri�cation-key using the �xed signing-key of the main signature scheme11 (which isrobust against a \random message attack") [62]. We note that one-time signature schemes (asutilized here) are easy to construct (see, for example [114]).The tree paradigm [113, 94]: To demonstrate this paradigm, we show how to construct ageneral signature scheme using only a one-time signature scheme (alas one where an 2n-bit stringcan be signed w.r.t an n-bit long veri�cation-key). The idea is to use the initial singing-key (i.e.,the one corresponding to the public veri�cation-key) in order to sign/authenticate two new/randomveri�cation keys. The corresponding signing keys are used to sign/authenticate four new/randomveri�cation keys (two per a signing key), and so on. Stopping after d such steps, this processforms a binary tree with 2d leaves where each leaf corresponds to an instance of the one-timesignature scheme. The signing-keys at the leaves can be used to sign the actual messages, and thecorresponding veri�cation-keys may be authenticated using the path from the root. Pseudorandomfunctions may be used to eliminate the need to store the values of intermediate vertices usedin previous signatures [76]. Employing this paradigm and assuming that the RSA function is11 Alternatively, one may generate the one-time key-pair and the signature to its veri�cation-key ahead of time,leading to an \o�-line/on-line" signature scheme [62]. An alternative and more e�cient transformation, of signatureschemes which are robust under a \random message attack" into general ones, has been suggested in [49].17

infeasible to invert, one obtains a secure signature scheme [94, 76] in which the ith message can besigned/veri�ed in time 2 log2 i slower than plain RSA. Using a tree of large fan-in and assuming thatRSA is infeasible to invert, one may obtain a secure signature scheme [59, 47] which for reasonableparameters is only 5 times slower than plain RSA (alas uses a much bigger key).12 We stressthat plain RSA is not a secure signature scheme, whereas the security of its randomized version(mentioned above) is not known to be reducible to the assumption that RSA is hard to invert.The hashing paradigm: A common practice is to sign real documents via a two stage process:First the document is hashed into a (relatively) short bit string, and next the basic signature schemeis applied to the resulting string. We note that this heuristic becomes sound provided the hashingfunction is collision-free (as de�ned in [50]). Collision-free functions can be constructed assumingthe intractability of factoring [50]. One may indeed postulate that certain o�-the-shelf products (asMD5 or SHA) are collision-free, but such assumptions need to be tested (and indeed may turn outfalse). We stress that using a hashing scheme in the above two-stage process without evaluatingwhether it is collision-free is a very dangerous practice.A useful variant on the above paradigm is the use of Universal One-Way Hash Functions (asde�ned in [127]), rather than the collision-free hashing used above. In such a case a new hashfunction is selected per each application of the scheme, and the basic signature scheme is appliedto both the (succinct) description of the hash function and to the resulting (hashed) string. (Incontrast, when using a collision-free hashing function, the same function { the description of whichis part of the signer's public-key { is used in all applications.) The advantage of using UniversalOne-Way Hash Functions is that their security requirement seems weaker than the collision-freecondition (e.g., the former may be constructed using any one-way function [138], whereas this isnot known for the latter).A plausibility result [127, 138]: Signature schemes exist if (and only if) one-way functionsexist. Unlike the constructions of signature schemes described above, the known construction ofsignature schemes from arbitrary one-way functions has no practical signi�cance [138]. It is indeedan important open problem to provide an alternative construction which may be practical and stillutilize an arbitrary one-way function.7 Cryptographic ProtocolsA general framework for casting cryptographic (protocol) problems consists of specifying a randomprocess which maps n inputs to n outputs. The inputs to the process are to be thought of as localinputs of n parties, and the n outputs are their corresponding local outputs. The random processdescribes the desired functionality. That is, if the n parties were to trust each other (or trust someoutside party), then they could each send their local input to the trusted party, who would computethe outcome of the process and send each party the corresponding output. The question addressedin this section is to what extent can this trusted party be \simulated" by the mutually distrustfulparties themselves.12 This �gure refers to signing up-to 1,000,000,000 messages. The scheme in [59] requires a universal set of systemparameters consisting of 1000{2000 integers of the size of the moduli. In the [47] scheme this requirement is removed.18

7.1 De�nitionsFor simplicity we consider the special case where the speci�ed process is deterministic and the noutputs are identical. That is, we consider an arbitrary n-ary function and n parties which wish toobtain the value of the function on their n corresponding inputs. Each party wishes to obtain thecorrect value of the function and prevent any other party from gaining anything else (i.e., anythingbeyond the value of the function and what is implied by it).We �rst observe that (one thing which is unavoidable is that) each party may change its localinput before entering the protocol. However, this is unavoidable also when the parties utilizea trusted party. In general, the basic paradigm underlying the de�nitions of secure multi-partycomputations amounts to saying that situations which may occur in the real protocol, can besimulated in the ideal model (where the parties may employ a trusted party). Thus, the \e�ectivemalfunctioning" of parties in secure protocols is restricted to what is postulated in the correspondingideal model. The speci�c de�nitions di�er in the speci�c restrictions and/or requirements placed onthe parties in the real computation. This is typically reected in the de�nition of the correspondingideal model { see examples below.An example { computations with honest majority: Here we consider an ideal model inwhich any minority group (of the parties) may collude as follows. Firstly this minority shares itsoriginal inputs and decided together on replaced inputs13 to be sent to the trusted party. (The otherparties send their respective original inputs to the trusted party.) When the trusted party returnsthe output, each majority player outputs it locally, whereas the colluding minority may computeoutputs based on all they know (i.e., the output and all the local inputs of these parties). A securemulti-party computation with honest majority is required to simulate this ideal model. That is,the e�ect of any feasible adversary which controls a minority of the players in the actual protocol,can be essentially simulated by a (di�erent) feasible adversary which controls the correspondingplayers in the ideal model. This means that in a secure protocol the e�ect of each minority groupis \essentially restricted" to replacing its own local inputs (independently of the local inputs of themajority players) before the protocol starts, and replacing its own local outputs (depending onlyon its local inputs and outputs) after the protocol terminates. (We stress that in the real executionthe minority players do obtain additional pieces of information; yet in a secure protocol they gainnothing from these additional pieces of information.)Secure protocols according to the above de�nition may even tolerate a situation where a minorityof the parties aborts the execution. An aborted party (in the real protocol) is simulated by a party(in the ideal model) which aborts the execution either before supplying its input to the trustedparty (in which case a default input is used) or after supplying its input. In either case, themajority players (in the real protocol) are able to compute the output although a minority abortedthe execution. This cannot be expected to happen when there is no honest majority (e.g., in atwo-party computation) [46].Another example { two-party computations: In light of the above, we consider an idealmodel where each of the two parties may \shut-down" the trusted (third) party at any point in time.In particular, this may happen after the trusted party has supplied the outcome of the computation13 Such replacement may be avoided if the local inputs of parties are veri�able by the other parties. In such a case,a party (in the ideal model) has the choice of either joining the execution of the protocol with its correct local inputor not join the execution at all (but it cannot join with a replaced local input). Secure protocols simulating this idealmodel can be constructed as well. 19

to one party but before it has supplied it to the second. A secure multi-party computation allowingabort is required to simulate this ideal model. That is, each party's \e�ective malfunctioning" in asecure protocol is restricted to supplying an initial input of its choice and aborting the computationat any point in time. We stress that, as above, the choice of the initial input of each party maynot depend on the input of the other party.7.2 ConstructionsGeneral plausibility results: Assuming the existence of trapdoor permutations, one may pro-vide secure protocols for any two-party computation (allowing abort) [145] as well as for anymulti-party computations with honest majority [87]. Thus, a host of cryptographic problems aresolvable assuming the existence of trapdoor permutations. Speci�cally, any desired (input{output)functionality can be enforced, provided we are either willing to tolerate \early abort" (as de�nedabove) or can rely on a majority of the parties to follow the protocol. Analogous plausibility resultswere obtained in a variety of models. In particular, we mention secure computations in the privatechannels model [18, 41] and in the presence of mobile adversaries [130].As stressed in the case of zero-knowledge proofs, we view these results as asserting that verywide classes of problems are solvable in principle. However, we do not recommend using the solu-tions derived by these general results in practice. For example, although Threshold Cryptography(cf., [54, 75]) is merely a special case of multi-party computation, it is indeed bene�cial to focus onits speci�cs.

20

Part IIIConcluding Comments8 Some NotesOn information theoretic secrecy: Most of Modern Cryptography aims at achieving compu-tational security; that is, making it infeasible (rather than impossible) for an adversary to breakthe system. The departure from information theoretic secrecy was suggested by Shannon in thevery paper which introduced the notion [139]: In an information theoretic secure encryption schemethe private-key must be longer than the total entropy of the plaintexts to be sent using this key.This drastically restricts the applicability of (information-theoretic secure) private-key encryptionschemes. Furthermore, notions such as public-key cryptography, pseudorandom generators, andmost known cryptographic protocols14 cannot exist in an information theoretic sense.On the need for and choice of assumptions: As stated in Section 2, most of Modern Cryp-tography is based on computational di�culty. Intuitively, this is an immediate consequence of thefact that Modern Cryptography wish to capitalize on the di�erence between feasible attacks andpossible-but-infeasible attacks. Formally, the existence of one-way functions has been shown to bea necessary condition for the existence of secure private-key encryption [100], pseudorandom gen-erators [109], digital signatures [138], \non-trivial" zero-knowledge proofs [129], and various basicprotocols [100].As we need assumptions anyhow, why not assume what we want? Well, �rst we need to knowwhat we want. This calls for a clear de�nition of complex security concerns { an non-trivial issuewhich is discussed at length in previous sections. However, once a de�nition is derived how can weknow that it can at all be met? The way to demonstrate that a de�nition is viable (and so the intu-itive security concern can be satis�ed at all) is to construct a solution based on a better understoodassumption. For example, looking at the de�nition of zero-knowledge proofs [93], it is not a-prioriclear that such proofs exists in a non-trivial sense. The non-triviality of the notion was demon-strated in [93] by presenting a zero-knowledge proof system for statements, regarding QuadraticResiduosity, which are believed to be hard to verify (without extra information). Furthermore, incontrary to prior beliefs, it was shown in [86] that the existence of commitment schemes15 impliesthat any NP-statement can be proven in zero-knowledge. Thus, statements, which were not knownat all to hold (and even believed to be false), where shown to hold by reduction to widely believedassumptions (without which most of Modern Cryptography collapses anyhow). Furthermore, re-ducing the solution of a new task to the assumed security of a well-known primitive typically meansproviding a construction which using the known primitive solves the new task. This means that wedo not only know (or assume) that the new task is solvable but rather have a solution based on aprimitive which, being well-known, typically has several candidate implementations. More on thissubject below.14 Here we refer to cryptographic protocols in the \standard model" where the adversary can read all messagessent between honest parties. In contrast, information-theoretically secure multi-party computation is possible whenassuming the existence of perfect private channels between each pair of honest users [18, 41].15 Consequently, it was shown how to construct commitment schemes based on any pseudorandom generator [120],and that the latter exists if one-way functions exist [97].21

On the meaning of asymptotic results: Asymptotic analysis is a major simplifying conven-tion. It allows to disregard speci�cs like the model of computation and to focus on the essentials ofthe problem at hand. Further simpli�cation is achieved by identifying e�cient computations withpolynomial-time computations, and more importantly by identifying infeasible computations withones which are not implementable in polynomial-time. However, none of these conventions is reallyessential for the theory discussed in this essay.16As stated in Section 2, all know results (referring to computational complexity) consists of anexplicit construction in which a complex primitive is implemented based on a simpler one. The claimof security in many papers merely states that if the resulting (complex) primitive can be brokenin polynomial-time then so can the original (simpler) primitive. However, all papers provide anexplicit construction showing how to use any breaking algorithm for the resulting primitive in orderto obtain a breaking algorithm for the original primitive. This transformation does not depend onthe running-time of the �rst algorithm; it typically uses the �rst algorithm as a black-box. Thus, therunning-time of the resulting breaking algorithm (for the simpler primitive) is explicitly boundedin terms of the running-time of the given breaking algorithm (for the complex primitive). Thismeans that for each of these results, one can instantiate the resulting (complex) scheme for anydesired value of the security parameter, make a concrete assumption regarding the security ofthe underlying (simpler) primitive, and derive a concrete estimate of the security of the proposedimplementation of the complex primitive.The applicability of a speci�c theoretical result depends on the complexity of the constructionand the relation between the security of the resulting scheme and the quanti�ed intractability as-sumption. Some of these results seem applicable in practice, some only o�er useful paradigm/techniques,and other only state the plausibility of certain results. In the latter cases it is indeed the task of thetheory community to work towards the improvement of these results. In fact, many improvementsof this type have been achieved in the past (and we hope to see more in the future). Following aresome examples:� A plausibility result of Yao (commonly attributed to [144]) on the existence of hard-corepredicates, assuming the existence of one-way permutations, was replaced by a practicalconstruction of hard-core predicates for any one-way functions [85].� A plausibility result of Yao (commonly attributed to [144]) by which any weak one-waypermutation can be transformed into an ordinary one-way permutation was replaced by ane�cient transformation of weak one-way permutation into ordinary one-way permutation [82].� A plausibility result of [86] by which one may construct Veri�able Secret Sharing schemes(cf., [45]), using any one-way function, was replaced by an e�cient construction the securityof which is based on DLP [69]. In general, many concrete problems which are solvable inprinciple (by the plausibility results of [86, 145, 87]) were given e�cient solutions.Forget the result, use its ideas: As stated above, some theoretical results are not directlyapplicable in practice. Still, in many cases these results utilize ideas which may be of value inpractice. Thus, if you know (by a theoretical result) that a problem is solvable in principle, but theknown construction is not applicable for your purposes, you may try to utilize some of its underlyingideas when trying to come-up with an alternative solution tailored for your own purposes. We note16 As long as the notions of e�cient and feasible computation are su�ciently robust and rich. For example, theyshould be closed under various functional compositions and should allow computations such as RSA.22

that the underling ideas are at least as likely to appear in the proof of security as in the constructionitself.The choice of assumptions, revisited. When constructing a solution to a cryptographic prob-lem one may have a choice of which building blocks to use (e.g., one-way functions or pseudorandomfunctions). In a coarse sense these tools may look equivalent (e.g., one exists if and only if the otherexists), but when deciding which to use in practice one should consider the actual level of securityattributed to each of them and the \cost" of using each of them as a building block in a particularconstruction. In the latter term (\cost") we mean the relationship of the security of the buildingblock to the security of the resulting solution. For further discussion the reader is referred to [3,Sec. 1.5]. Turning the table around, if we note that a speci�c primitive provides good security, whenused as a building block in many constructions, then this may serve as incentive to focus attentionon the implementation of this primitive. The last statement should be understood both as refer-ring to the theory and practice of cryptography. For example, it is our opinion that the industryshould focus on constructing �xed-length-key pseudorandom functions rather than on constructing�xed-length-key pseudorandom permutations (or, equivalently, private-key block ciphers).17Security as a quantity rather than a quality: From the above it should be clear that ournotions of security are quantitative in nature. They refers to the minimal amount of work requiredto break the system (as a function of the security parameter). Thus alternative constructions forthe same task may (and need to) be compared based on the security they provide. This can bedone whenever the underlying assumption are compareable.\Too cautious" de�nitions: As stated in Sections 5 and 6, our de�nitions seem \too cautious"in the sense that they also imply things which may not matter in practice. This is an artifactof our approach to security which requires that the adversary gains nothing (rather than \gainsnothing we care about") by its malicious actions. We stress two advantages of our approach. Firstit yields application-independent notions of security (since the notion of a \gain we care about" isapplication-dependent). Secondly, even when having a speci�c application in mind, it is close toimpossible to come-up with a precise characterization of the set of \gains we care about". Thus,even in the latter case, our approach of depriving the adversary from any gain seems to be the bestway to go.\Provable Security": Some of the papers discussed in this essay use the term \provable secu-rity". The term is supposed to reect the fact that these papers only make well-de�ned technicalclaims and that proofs of these claims are given or known to the authors. Speci�cally, whenever aterm such as \security" is used, the paper o�ers or refers to a rigorous de�nition of the term (andthe authors wish to stress this fact in contrast to prior papers where the term was used as an un-de�ned intuitive phrase). We personally object to this terminology since it suggests the possibilitythat there can be technical claims18 which are well-de�ned and others which are not, and amongthe former some can be stated even when no proof is known. This view is wrong: A technical claimmust always be well-de�ned, and it must always have a proof (otherwise it is a conjecture { not aclaim). There is room for non-technical claims, but these claims should be stated as opinions andsuch. In particular, a technical claim referring to security must always refer to a rigorous de�nition17 Not to mention that the latter can be e�ciently constructed from the former [111, 124].18 We refer to theorems, lemmas, propositions and such.23

of security and the person making this claim must always know a proof (or state the claim as aconjecture).Still, do consider speci�c attack (but as a last resort). We do realize that sometimes one isfaced with a situation where all the paradigms described above o�er no help. A typical exampleoccurs when designing an \atomic" cryptographic primitive (e.g., a one-way function). The �rstthing we suggest in such a case is to formulate precise speci�cations/assumptions regarding thesecurity of this primitive. Once this is done, one may need to turn to ad-hoc methods for tryingto test these assumptions (i.e., if the known attack schemes fail then one gains some con�dencein the validity of the assumptions). For example, if we were to invent RSA today then we wouldhave postulated that it is a trapdoor permutation. To evaluate the validity of our conjecture, wewould have noted (as Rivest, Shamir and Adleman did in [137, Sec. IX]) that known algorithmsfor factoring are infeasible for reasonable values of the security parameter, and that there seems tobe no other way to invert the function.9 Historical PerspectiveWork done during the 1980's plays a dominant role in our exposition. This work was in turntremendously inuenced by previous work, but these inuences were not stated explicitly above.The inuence took the form of setting intuitive goals, providing basic techniques, and suggestingpotential solutions which served as a basis for constructive criticism (leading to robust approaches).In this section, we try to trace some of these inuences.Classic Cryptography. Answering the fundamental question of classic cryptography in a gloomyway (i.e., it is impossible to design a code that cannot be broken), Shannon also suggested amodi�cation to the question [139]: Rather than asking whether it is possible to break the code,one should ask whether it is feasible to break it. A code should be considered good if it cannotbe broken when investing work which is in reasonable proportion to the work required of the legalparties using the code. Indeed, this is the approach followed by Modern Cryptography.New Directions in Cryptography. Prospects of commercial application were the trigger forthe beginning of civil investigations of encryption schemes. The DES designed in the early 70's hasadopted the new paradigm: It is clearly possible, but supposely infeasible to break it. Following thechallenge of constructing and analyzing new (private-key) encryption schemes, came new questionslike how to exchange keys over an insecure channel [112]. New concepts were invented: digital sig-natures [55, 132], public-key cryptosystems [55], and one-way functions [55]. First implementationsof these concepts were suggested in [116, 137, 133].Cryptography was explicitly related to complexity theory in [29, 64, 108]: It was understoodthat problems related to breaking a cryptographic scheme cannot be NP-complete, and that NP-hardness is a poor evidence for cryptographic security. Techniques such as \n-out-of-2n veri�cation"[132] and secret sharing [140] were introduced (and indeed were used extensively in subsequentresearch).At the Dawn of a New Era. Early investigations of cryptographic protocols revealed theinadequacy of imprecise notions of security and the subtleties involved in designing cryptographicprotocols. In particular, problems as coin tossing over telephone [21], exchange of secrets [20],24

and Oblivious Transfer were formulated [134] (cf., [61]). Doubts (raised by Lipton) concerning thesecurity of the \mental poker" protocol of [141] led to the current notion of secure encryption [92]and to concepts as computational indistinguishability. Doubts (raised by Fischer) concerning theOblivious Transfer protocol of [134] led to the concept of zero-knowledge [93] (early versions dateto March 1982).A formal approach to the security of cryptographic protocols was suggested in [57]. Thisapproach actually identi�es a subclass of insecure protocols (i.e., those which can be broken via asyntactically-restricted type of attack). Furthermore, it turned out that it is much too di�cult totest whether a protocol is secure [60]. Recall that, in contrast, our current approach is to constructsecure protocols (alongside with their proof of security), and that this approach is complete (in thesense that it allows to solve any solvable problem).10 Two Suggestions for Future ResearchA very important direction for future research consists of trying to \upgrade" the utility of some ofthe constructions mentioned above. In particular, we have mentioned four plausibility results: tworeferring to the construction of pseudorandom generators and signature schemes and two referring tothe construction of zero-knowledge proofs and multi-party protocols. For the former two results, wesee no fundamental reason why the corresponding constructions can not be replaced by reasonableones (i.e., providing very e�cient constructions of pseudorandom generators and signature schemesbased on arbitrary one-way functions). Furthermore, we believe that working towards this goal mayyield new and useful paradigms (which may be applicable in practice regardless of these results).As for the latter general plausibility results (i.e., the construction of zero-knowledge proofs andmulti-party protocols), here there seem to be little hope for a result which may both maintain thegenerality of the results in [86, 145, 87] and yield practical solutions for each speci�c task. However,we believe that there is work to be done towards the development of additional paradigms andtechniques which may be useful in the construction of schemes for speci�c tasks.Another important direction is to provide results and/or develop techniques for guaranteeingthat individually-secure protocols remain secure when many copies of them are run in parallel and,furthermore, obliviously of one another. Although some negative results are known [84], they onlyrule out speci�c approaches (such as the naive false conjecture that any zero-knowledge proofmaintains its security when executed twice in parallel).11 Some Suggestions for Further ReadingThe intention of these suggestions is not to provide a scholarly account of the due credits butrather to provide sources for further reading. Thus, our main criteria is the readability of the text(not its novelty). The recommendations are arranged by subjects.One-Way Functions, Pseudorandom Generators and Zero-Knowledge: For these, ourfavorite source is our own text [79].Encryption Schemes: A good motivating discussion appears in [92]. The de�nitional treatmentin [77, 78] is the one we prefer, although it can be substantially simpli�ed if one adopts non-uniformcomplexity measures (as done above). Further details on the constructions of public-key encryption25

schemes (sketched above) can be found in [92, 77] and [25, 1], respectively. For discussion of Non-Malleable Cryptography, which actually transcends the domain of encryption, see [56].Signature Schemes: For a de�nitional treatment of signature schemes the reader is referredto [94] and [131]. Easy to understand constructions appear in [11, 62, 59, 47]. Variants on the basicmodel are discussed in [131] and in [40, 104]. For discussion of message authentication schemes(macs) the reader in referred to [4].General Cryptographic Protocols: This area is both most complex and most lacking of goodexpositions. Our own preference is to refer to [33] for the de�nitions, and to [77] for the construc-tions. For a nice brief survey, the reader is referred to [90].New Directions: Incremental Cryptography [6, 7], Realizing the Random Oracle Model [34],Coercibility [36, 35], sharing of cryptographic objects [54, 53, 75], Private Information Retrieval [44,43, 107], Cryptanalysis by induced faults [27], and many others.AcknowledgmentsI wish to thank Ran Canetti, Sha� Goldwasser and Hugo Krawczyk for helpful discussions. Specialthanks to Hugo for carefully reading and commenting on an early draft.Thanks also to Mihir Bellare, Gilles Brassard, Ronald Cramer, Cynthia Dwork and Moni Naorfor comments and corrections regarding previous versions.

26

References[1] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Parts areAs Hard As the Whole. SIAM Journal on Computing, Vol. 17, April 1988, pages 194{209.[2] D. Beaver. Foundations of Secure Interactive Computing. In Crypto91, Springer-VerlagLecture Notes in Computer Science (Vol. 576), pages 377{391.[3] M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions Revisited: The Cas-cade Construction and its Concrete Security. In 37th IEEE Symposium on Foundations ofComputer Science, pages 514{523, 1996.[4] M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions for Message Authentication.In Crypto96, Springer Lecture Notes in Computer Science (Vol. 1109), pages 1{15.[5] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. In Crypto92, Springer-VerlagLecture Notes in Computer Science (Vol. 740), pages 390{420.[6] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography: the Case of Hashingand Signing. In Crypto94, Springer-Verlag Lecture Notes in Computer Science (Vol. 839),pages 216{233, 1994.[7] M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography and Application toVirus Protection. In 27th ACM Symposium on the Theory of Computing, pages 45{56, 1995.[8] M. Bellare, S. Goldwasser and D. Micciancio. \Pseudo-random" Number Generation withinCryptographic Algorithms: the DSS Case. In Crypto97, Springer Lecture Notes in ComputerScience (Vol. 1294), pages 277{291.[9] M. Bellare, R. Guerin and P. Rogaway. XOR MACs: New Methods for Message Authenti-cation using Finite Pseudorandom Functions. In Crypto95, Springer-Verlag Lecture Notes inComputer Science (Vol. 963), pages 15{28.[10] M. Bellare, J. Kilian and P. Rogaway. The Security of Cipher Block Chaining. In Crypto94,Springer-Verlag Lecture Notes in Computer Science (Vol. 839), pages 341{358.[11] M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function. Journal of the ACM,Vol. 39, pages 214{233, 1992.[12] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing E�cientProtocols. In 1st Conf. on Computer and Communications Security, ACM, pages 62{73, 1993.[13] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Crypto93,Springer-Verlag Lecture Notes in Computer Science (Vol. 773), pages 232{249, 1994.[14] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three PartyCase. In 27th ACM Symposium on the Theory of Computing, pages 57{66, 1995.[15] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: How to Sign with RSAand Rabin. In EuroCrypt96, Springer Lecture Notes in Computer Science (Vol. 1070), pages399{416. 27

[16] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali and P. Rogaway.Everything Provable is Probable in Zero-Knowledge. In Crypto88, Springer-Verlag LectureNotes in Computer Science (Vol. 403), pages 37{56, 1990[17] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive Proofs:How to Remove Intractability. In 20th ACM Symposium on the Theory of Computing, pages113{131, 1988.[18] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-CryptographicFault-Tolerant Distributed Computation. In 20th ACM Symposium on the Theory of Com-puting, pages 1{10, 1988.[19] G.R. Blakley. Safeguarding Cryptographic Keys. In Proc. of National Computer Conf.,Vol. 48, AFIPS Press, pages 313{317, 1979.[20] M. Blum. How to Exchange Secret Keys. ACM Trans. Comput. Sys., Vol. 1, pages 175{193,1983.[21] M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133{137, February 1982.See also SIGACT News, Vol. 15, No. 1, 1983.[22] L. Blum, M. Blum and M. Shub. A Simple Secure Unpredictable Pseudo-Random NumberGenerator. SIAM Journal on Computing, Vol. 15, 1986, pages 364{383.[23] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge ProofSystems. SIAM Journal on Computing, Vol. 20, No. 6, pages 1084{1118, 1991. (Consideredthe journal version of [24].)[24] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications.In 20th ACM Symposium on the Theory of Computing, pages 103{112, 1988. See [23].[25] M. Blum and S. Goldwasser. An E�cient Probabilistic Public-Key Encryption Scheme whichhides all partial information. In Crypto84, Lecture Notes in Computer Science (Vol. 196)Springer-Verlag, pages 289{302.[26] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminaryversion in 23rd IEEE Symposium on Foundations of Computer Science, 1982.[27] D. Boneh, R. DeMillo and R. Lipton. On the Importance of Checking Cryptographic Protocolsfor Faults. In EuroCrypt97, Springer Lecture Notes in Computer Science (Vol. 1233), pages37{51, 1997.[28] J.B. Boyar. Inferring Sequences Produced by Pseudo-Random Number Generators. Journalof the ACM, Vol. 36, pages 129{141, 1989.[29] G. Brassard. A Note on the Complexity of Cryptography. IEEE Trans. on Inform. Th.,Vol. 25, pages 232{233, 1979.[30] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs of Knowledge. Journalof Computer and System Science, Vol. 37, No. 2, pages 156{189, 1988. Preliminary versionby Brassard and Cr�epeau in 27th IEEE Symposium on Foundations of Computer Science,1986. 28

[31] G. Brassard and C. Cr�epeau. Zero-Knowledge Simulation of Boolean Circuits. In Crypto86,Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages 223{233, 1987.[32] G. Brassard, C. Cr�epeau and M. Yung. Constant-Round Perfect Zero-Knowledge Computa-tionally Convincing Protocols. Theoretical Computer Science, Vol. 84, pages 23{52, 1991.[33] R. Canetti. Studies in Secure Multi-Party Computation and Applications. Ph.D. Thesis,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,Rehovot, Israel, June 1995.Available from from http : ==theory:lcs:mit:edu=� tcryptol=BOOKS=ran� phd:html.[34] R. Canetti. Towards Realizing Random Oracles: Hash Functions that Hide All Partial In-formation. In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294), pages455{469.[35] R. Canetti, C. Dwork, M. Naor and R. Ostrovsky. Deniable Encryption. In Crypto97, SpringerLecture Notes in Computer Science (Vol. 1294), pages 90{104.[36] R. Canetti and R. Gennaro. Incoercible Multiparty Computation. In 37th IEEE Symposiumon Foundations of Computer Science, pages 504{513, 1996.[37] R. Canetti, S. Halevi and A. Herzberg. How to Maintain Authenticated Communication inthe Presence of Break-Ins. In 16th ACM Symposium on Principles of Distributed Computing,1997.[38] R. Canetti and A. Herzberg. Maintaining Security in the Presence of Transient Faults. InCrypto94, Springer-Verlag Lecture Notes in Computer Science (Vol. 839), pages 425{439.[39] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and SystemScience, Vol. 18, 1979, pages 143{154.[40] D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82, Plenum Press, pages199{203, 1983.[41] D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party unconditionally Secure Protocols. In20th ACM Symposium on the Theory of Computing, pages 11{19, 1988.[42] D. Chaum, A. Fiat and M. Naor. Untraceable Electronic Cash. In Crypto88, Springer-VerlagLecture Notes in Computer Science (Vol. 403), pages 319{327.[43] B. Chor and N. Gilboa. Computationally Private Information Retrieval. In 29th ACMSymposium on the Theory of Computing, pages 304{313, 1997.[44] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, Private Information Retrieval. In 36thIEEE Symposium on Foundations of Computer Science, pages 41{50, 1995.[45] B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Veri�able Secret Sharing and AchievingSimultaneity in the Presence of Faults. In 26th IEEE Symposium on Foundations of ComputerScience, pages 383{395, 1985.[46] R. Cleve. Limits on the Security of Coin Flips when Half the Processors are Faulty. In 18thACM Symposium on the Theory of Computing, pages 364{369, 1986.29

[47] R. Cramer and I. Damg�ard. New Generation of Secure and Practical RSA-based Signatures.In Crypto96, Springer Lecture Notes in Computer Science (Vol. 1109), pages 173{185.[48] R. Cramer and I. Damg�ard. Linear Zero-Knowledge { A Note on E�cient Zero-KnowledgeProofs and Arguments. In 29th ACM Symposium on the Theory of Computing, pages 436{445,1997.[49] R. Cramer, I. Damg�ard, and T. Pedersen. E�cient and provable security ampli�cations. InProc. of 4th Cambridge Security Protocols Workshop, Springer, Lecture Notes in ComputerScience (Vol. 1189), pages 101{109.[50] I. Damg�ard. Collision Free Hash Functions and Public Key Signature Schemes. In Euro-Crypt87, Springer-Verlag, Lecture Notes in Computer Science (Vol. 304), pages 203{216.[51] I. Damg�ard. A Design Principle for Hash Functions. In Crypto89, Springer-Verlag LectureNotes in Computer Science (Vol. 435), pages 416{427.[52] I. Damg�ard, O. Goldreich, T. Okamoto and A. Wigderson. Honest Veri�er vs DishonestVeri�er in Public Coin Zero-Knowledge Proofs. In Crypto95, Springer-Verlag Lecture Notesin Computer Science (Vol. 963), pages 325{338, 1995.[53] A. De-Santis, Y. Desmedt, Y. Frankel and M. Yung. How to Share a Function Securely. In26th ACM Symposium on the Theory of Computing, pages 522{533, 1994.[54] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89, Springer-Verlag LectureNotes in Computer Science (Vol. 435), pages 307{315.[55] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Info. Theory,IT-22 (Nov. 1976), pages 644{654.[56] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rd ACM Symposiumon the Theory of Computing, pages 542{552, 1991. Full version available from authors.[57] D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEE Trans. on Inform.Theory, Vol. 30, No. 2, pages 198{208, 1983.[58] C. Dwork, and M. Naor. Pricing via Processing or Combatting Junk Mail. In Crypto92,Springer-Verlag Lecture Notes in Computer Science (Vol. 740), pages 139{147.[59] C. Dwork, and M. Naor. An E�cient Existentially Unforgeable Signature Scheme and itsApplication. To appear in Journal of Cryptology. Preliminary version in Crypto94.[60] S. Even and O. Goldreich. On the Security of Multi-party Ping-Pong Protocols. 24th IEEESymposium on Foundations of Computer Science, pages 34{39, 1983.[61] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing Contracts. CACM,Vol. 28, No. 6, 1985, pages 637{647.[62] S. Even, O. Goldreich and S. Micali. On-line/O�-line Digital signatures. Journal of Cryptol-ogy, Vol. 9, 1996, pages 35{67.[63] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Applicationsto Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159{173, 1984.30

[64] S. Even and Y. Yacobi. Cryptography and NP-Completeness. In proceedings of 7th ICALP,Springer-Verlag Lecture Notes in Computer Science (Vol. 85), pages 195{207, 1980. See [63].[65] U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology,Vol. 1, 1988, pages 77{94.[66] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Basedon a Single Random String. In 31th IEEE Symposium on Foundations of Computer Science,pages 308{317, 1990. To appear in SIAM Journal on Computing.[67] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In Crypto89,Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 526{544.[68] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22ndACM Symposium on the Theory of Computing, pages 416{426, 1990.[69] P. Feldman. A Practical Scheme for Non-interactive Veri�able Secret Sharing. In 28th IEEESymposium on Foundations of Computer Science, pages 427{437, 1987.[70] A. Fiat. Batch RSA. Journal of Cryptology, Vol. 10, 1997, pages 75{88.[71] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identi�cation and Signa-ture Problems. In Crypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263),pages 186{189, 1987.[72] J.B. Fischer and J. Stern. An E�cient Pseudorandom Generator Provably as Secure as Syn-drome Decoding. In EuroCrypt96, Springer Lecture Notes in Computer Science (Vol. 1070),pages 245{255.[73] R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Rabin Bits. In Euro-Crypt97, Springer Lecture Notes in Computer Science (Vol. 1233), pages 267{279, 1997.[74] A.M. Frieze, J. H�astad, R. Kannan, J.C. Lagarias, and A. Shamir. Reconstructing TruncatedInteger Variables Satisfying Linear Congruences. SIAM Journal on Computing, Vol. 17, pages262{280, 1988.[75] P.S. Gemmell. An Introduction to Threshold Cryptography. In CryptoBytes, RSA Lab.,Vol. 2, No. 3, 1997.[76] O. Goldreich. Two Remarks Concerning the GMR Signature Scheme. In Crypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages 104{110, 1987.[77] O. Goldreich. Lecture Notes on Encryption, Signatures and Cryptographic Protocol. Spring1989. Available from http : ==theory:lcs:mit:edu=� oded=ln89:html.[78] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Journalof Cryptology, Vol. 6, No. 1, pages 21{53, 1993.[79] O. Goldreich. Foundation of Cryptography { Fragments of a Book. February 1995. Availablefrom http : ==theory:lcs:mit:edu=� oded=frag:html.[80] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journalof the ACM, Vol. 33, No. 4, pages 792{807, 1986.31

[81] O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Applications of RandomFunctions. In Crypto84, Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages276{288, 1985.[82] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman. Security Pre-serving Ampli�cation of Hardness. In 31st IEEE Symposium on Foundations of ComputerScience, pages 318{326, 1990.[83] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Sys-tems for NP. Journal of Cryptology, Vol. 9, No. 2, pages 167{189, 1996. Preliminary versionsdate to 1988.[84] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.SIAM Journal on Computing, Vol. 25, No. 1, February 1996, pages 169{192.[85] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACMSymposium on the Theory of Computing, pages 25{32, 1989.[86] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38,No. 1, pages 691{729, 1991. Preliminary version in 27th IEEE Symposium on Foundations ofComputer Science, 1986.[87] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game { A CompletenessTheorem for Protocols with Honest Majority. In 19th ACM Symposium on the Theory ofComputing, pages 218{229, 1987.[88] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems.Journal of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.[89] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs.Journal of the ACM, Vol. 43, 1996, pages 431{473.[90] S. Goldwasser. Fault Tolerant Multi Party Computations: Past and Present. In 16thACM Symposium on Principles of Distributed Computing, 1997. Also available fromhttp : ==www:cs:cornell:edu=Info=People=chandra=podc97=newProgram:html.[91] S. Goldwasser and L.A. Levin. Fair Computation of General Functions in Presence of ImmoralMajority. In Crypto90, Springer-Verlag Lecture Notes in Computer Science (Vol. 537), pages77{93.[92] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and SystemScience, Vol. 28, No. 2, pages 270{299, 1984. Preliminary version in 14th ACM Symposiumon the Theory of Computing, 1982.[93] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in17th ACM Symposium on the Theory of Computing, 1985.[94] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against Adap-tive Chosen-Message Attacks. SIAM Journal on Computing, April 1988, pages 281{308.32

[95] S. Goldwasser, S. Micali and P. Tong. Why and How to Establish a Private Code in aPublic Network. In 23rd IEEE Symposium on Foundations of Computer Science, 1982, pages134{144.[96] S. Goldwasser, S. Micali and A.C. Yao. Strong Signature Schemes. In 15th ACM Symposiumon the Theory of Computing, pages 431{439, 1983.[97] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of PseudorandomGeneratorfrom any One-Way Function. To appear in SIAM Journal on Computing. Preliminary versionsby Impagliazzo et. al. in 21st ACM Symposium on the Theory of Computing (1989) and H�astadin 22nd ACM Symposium on the Theory of Computing (1990).[98] J. H�astad, A. Schrift and A. Shamir. The Discrete Logarithm Modulo a Composite HidesO(n) Bits. Journal of Computer and System Science, Vol. 47, pages 376{404, 1993.[99] A. Herzberg, S. Jarecki, H. Krawczyk and M. Yu. Proactive Secret Sharing, or How to Copewith Perpetual Leakage. In Crypto95, Springer-Verlag Lecture Notes in Computer Science(Vol. 963), pages 339{352.[100] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Complexity Based Cryp-tography. In 30th IEEE Symposium on Foundations of Computer Science, pages 230-235,1989.[101] R. Impagliazzo and M. Naor. E�cient Cryptographic Schemes Provable as Secure as SubsetSum. Journal of Cryptology, Vol. 9, 1996, pages 199{216.[102] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way Permuta-tions. In 21st ACM Symposium on the Theory of Computing, pages 44{61, 1989.[103] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In Crypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293), pages 40{51, 1987.[104] A. Juels, M. Luby and R. Ostrovsky. Security of Blind Digital Signatures. In Crypto97,Springer Lecture Notes in Computer Science (Vol. 1294), pages 150{164.[105] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In 24th ACM Sympo-sium on the Theory of Computing, pages 723{732, 1992.[106] J. Kilian and E. Petrank. An E�cient Non-Interactive Zero-Knowledge Proof System for NPwith General Assumptions. To appear in Journal of Cryptology.[107] E. Kushilevitz and R. Ostrovsky. Replication is not Needed: A Single Database, Computa-tional PIR. TR CS0906, Department of Computer Science, Technion, May 1997. To appearin 38th IEEE Symposium on Foundations of Computer Science, 1997.[108] A. Lempel. Cryptography in Transition. Computing Surveys, Dec. 1979.[109] L.A. Levin. One-Way Function and Pseudorandom Generators. Combinatorica, Vol. 7, pages357{363, 1987.[110] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press,1996. 33

[111] M. Luby and C. Racko�. How to Construct Pseudorandom Permutations from PseudorandomFunctions. SIAM Journal on Computing, Vol. 17, 1988, pages 373{386.[112] R.C. Merkle. Secure Communication over Insecure Channels. CACM, Vol. 21, No. 4, pages294{299, 1978.[113] R.C. Merkle. Protocols for public key cryptosystems. In Proc. of the 1980 Symposium onSecurity and Privacy.[114] R.C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In Crypto87,Springer-Verlag Lecture Notes in Computer Science (Vol. 293), 1987, pages 369-378.[115] R.C. Merkle. A Certi�ed Digital Signature Scheme. In Crypto89, Springer-Verlag LectureNotes in Computer Science (Vol. 435), pages 218{238.[116] R.C. Merkle and M.E. Hellman. Hiding Information and Signatures in Trapdoor Knapsacks.IEEE Trans. Inform. Theory, Vol. 24, pages 525{530, 1978.[117] S. Micali. Fair Public-Key Cryptosystems. In Crypto92, Springer-Verlag Lecture Notes inComputer Science (Vol. 740), pages 113{138.[118] S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-Verlag Lecture Notesin Computer Science (Vol. 576), pages 392{404.[119] National Institute for Standards and Technology. Digital Signature Standard (dss), FederalRegister, Vol. 56, No. 169, August 1991.[120] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology, Vol. 4,pages 151{158, 1991.[121] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Arguments for NP canbe Based on General Assumptions. In Crypto92, Springer-Verlag Lecture Notes in ComputerScience (Vol. 740), pages 196{214.[122] M. Naor and B. Pinkas. Visual Authentication and Identi�cation. In Crypto97, SpringerLecture Notes in Computer Science (Vol. 1294), pages 322{336.[123] M. Naor and O. Reingold. Synthesizers and their Application to the Parallel Construction ofPseudo-Random Functions. In 36th IEEE Symposium on Foundations of Computer Science,pages 170{181, 1995.[124] M. Naor and O. Reingold. On the Construction of Pseudo-Random Permutations: Luby-Racko� Revisited. In 29th ACM Symposium on the Theory of Computing, pages 189{199,1997.[125] M. Naor and O. Reingold. Number-theoretic constructions of e�cient pseudo-random func-tions and other cryptographic primitives. To appear in 38th IEEE Symposium on Foundationsof Computer Science, 1997.[126] M. Naor and A. Shamir. Visual Cryptography. In EuroCrypt94, Springer-Verlag LectureNotes in Computer Science (Vol. 950), 1995, pages 1{12.34

[127] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Appli-cation. 21st ACM Symposium on the Theory of Computing, 1989, pages 33{43.[128] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen Cipher-text Attacks. In 22nd ACM Symposium on the Theory of Computing, pages 427-437, 1990.[129] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial Zero-Knowledge. In 2nd Israel Symp. on Theory of Computing and Systems (ISTCS93), IEEEComputer Society Press, pages 3{17, 1993.[130] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. In 10th ACM Sympo-sium on Principles of Distributed Computing, pages 51{59, 1991.[131] B. P�tzmann. Digital Signature Schemes (General Framework and Fail-Stop Signatures).Springer Lecture Notes in Computer Science (Vol. 1100), 1996.[132] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation (R.A. DeMilloet. al. eds.), Academic Press, 1977.[133] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractable as Factoring.MIT/LCS/TR-212, 1979.[134] M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, AikenComputation Laboratory, Harvard U., 1981.[135] T. Rabin and M. Ben-Or. Veri�able Secret Sharing and Multi-party Protocols with HonestMajority. In 21st ACM Symposium on the Theory of Computing, pages 73{85, 1989.[136] C. Racko� and D.R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Cho-sen Ciphertext Attack. In Crypto91, Springer-Verlag Lecture Notes in Computer Science(Vol. 576), pages 433{444.[137] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and PublicKey Cryptosystems. CACM, Vol. 21, Feb. 1978, pages 120{126.[138] J. Rompel. One-way Functions are Necessary and Su�cient for Secure Signatures. In 22ndACM Symposium on the Theory of Computing, 1990, pages 387{394.[139] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech. J., Vol. 28, pages656{715, 1949.[140] A. Shamir. How to Share a Secret. CACM, Vol. 22, Nov. 1979, pages 612{613.[141] A. Shamir, R.L. Rivest, and L. Adleman. Mental Poker. MIT/LCS Report TM-125, 1979.[142] U.V. Vazirani and V.V. Vazirani. E�cient and Secure Pseudo-Random Number Generation.25th IEEE Symposium on Foundations of Computer Science, pages 458{463, 1984.[143] M. Wegman and L. Carter. New Hash Functions and their Use in Authentication and SetEquality. Journal of Computer and System Science, Vol. 22, 1981, pages 265{279.[144] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium onFoundations of Computer Science, pages 80{91, 1982.35

[145] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium on Foundationsof Computer Science, pages 162{167, 1986.

36

