
Public-Key Cryptosystemsfrom Lattice Reduction ProblemsOded Goldreich� Sha� Goldwassery Shai HalevizMIT - Laboratory for Computer ScienceNovember 12, 1996AbstractWe present a new proposal for a trapdoor one-way function, from which wederive public-key encryption and digital signatures. The security of the new con-struction is based on the conjectured computational di�culty of lattice-reductionproblems, providing a possible alternative to existing public-key encryption algo-rithms and digital signatures such as RSA and DSS.
Keywords: Public-Key Cryptosystems, Lattice Reduction Problems, Collision Free Hashing.�oded@theory.lcs.mit.edu. On sabatical leave from the Weizmann Institute of Science, Israel.yshafi@theory.lcs.mit.edu.zContact author at MIT - LCS, NE43-342, 545 Tech. Square, Cambridge, MA 02139, USA. E-mail:shaih@theory.lcs.mit.edu 0

1 IntroductionThe need for public-key encryption and digital signatures is spreading rapidly today as more peopleuse computer networks to exchange con�dential documents, buy products and access sensitive data.In fact, several of these tasks are impossible to achieve without the availability of good (secure ande�cient) public-key cryptography.In light of the importance of public key cryptography, it is surprising that there are relativelyfew proposals of public key cryptosystems which have received any attention. Moreover, the sourceof security of these proposals almost always relies on the (apparent) computational intractabilityof problems in �nite integer rings, speci�cally integer factorization and discrete logarithm com-putations. In this paper we propose a new public key encryption algorithm and digital signaturescheme whose security relies on the computational di�culty of lattice reduction problems, in par-ticular the problem of �nding closest vectors in a lattice to a given point (CVP). For comparisonwith existing schemes, we �rst quickly review some of the most famous public-key encryption anddigital signatures proposals, with emphasis on the computational problems their security is basedon.1.1 Previous proposalsThe security of the RSA cryptosystem [RSA], is related to the di�culty of integer factorizationin the sense that discovering the secret key is as hard as factoring integers, although the actualcryptanalysis problem is potentially easier than factoring integers. Other methods, whose securityrelies on the di�culty of factoring integers, include Rabin's digital signature method [Ra79] (andits variants { e.g., [Wi84]), the semantically-secure public-key encryption of [GM82, BG84], andthe existentially unforgeable signature schemes of [GMR85].The security of the Di�e-Hellman public-key encryption scheme1 is related to the problem ofcomputing discrete logarithms (DLP) in �nite �elds in the sense that �nding the secret key isas hard as computing discrete logarithms. Again, the actual cryptanalysis problem is potentiallyeasier than discrete log computation. The digital signature method of El-Gamal [El85] (and itsDSS modi�cation [DSS]) is also no harder to break than it is to solve discrete logarithms in �nite�elds. A similar paradigm to the above discrete log based schemes, can be carried out over ellipticcurves. In that case, the underlying computational problem is the Elliptic Logarithm problem,to compute logarithms in the additive group of points de�ned by elliptic-curves.The McEliece public-key encryption scheme [Mc79] is substantially di�erent from the aboveproposals, in that its security is based on a problem from algebraic coding theory. The securityof this scheme is based on the conjecture that decoding with a \random looking" linear code isas hard as decoding with a truly random linear code, and on the widely believed intractability ofdecoding with random linear codes. In terms of e�ciency, encryption and decryption amount to amatrix-by-vector multiplication which takes time quadratic in the natural security parameter (i.e.,the dimension of the matrix). This compares favorably to the cubic time requires in RSA and theother number theoretic proposals above, yet the size of the public key is larger than in the case ofRSA (i.e, quadratic rather than linear). The best known cryptanalytic attack against the McEliecesystem takes time exponential in the dimension of the code, yet the security of the McEliecesystem has not been studied as extensively as the RSA system. No digital signature scheme basedon algebraic coding theory has been proposed to accompany the public-key encryption scheme.1 A straightforward modi�cation of their earlier key-exchange protocol [DH76].1

In addition, there are general constructions of (semantically-secure [GM82]) public-key en-cryption schemes based on any trapdoor function [Ya82]. Interestingly, digital signature schemeswhich are existentially-unforgeable [GMR85], can be constructed based on any one-way func-tion [NY89, Ro90], without need of trapdoor. Thus one may bene�t from the slightly more extendedvariety of candidate one-way functions which, in addition to the above, include a candidate basedon the conjectured intractability of decoding random linear codes [GKL] and Ajtai's recent candi-date [Aj96] which is based on the worst-case complexity of approximating the shortest vector ina lattice. Unfortunately, these general constructions for digital signatures (i.e., of [NY89, Ro90])tend to be ine�cient.1.2 The new proposalIn this paper we propose a new trapdoor one-way function relying on the computational di�cultyof lattice reduction problems, in particular the problem of �nding closest vectors in a lattice to agiven point (CVP).Starting with this trapdoor function, we derive a public-key encryption and digital signaturemethods, which are asymptotically more e�cient than RSA and its variants, in that the computa-tion time for encryption, decryption, signing, and verifying are all quadratic in the natural securityparameter. The size of the public key, however, is longer than for the RSA system. Speci�cally,for security parameter k, the length of the RSA public-key is k and cost of computation time isO(k3), whereas for the new scheme the public key is of size O(k2) and the computation time isO(k2). Thus, our complexities are as in McEliece encryption scheme [Mc79]. We feel that it ishigh time to reconsider the belief that shorter (private and public) keys are preferable to fasterencryption and decryption time (or signing and veri�cation for signatures). In particular, spaceand communication costs (associated with keys) in Internet applications seem to be less restrictedthan envisioned for public-key cryptography applications 20 years ago.Our trapdoor function. The idea underling our construction is that, given any basis for alattice, it is easy to generate a vector which is close to a lattice point (i.e., by taking a lattice pointand adding to it a small error vector). However it seems hard to return from this \close-to-lattice"vector to the original lattice point (given an arbitrary lattice basis). Thus, the operation of addinga small error vector to a lattice point can be thought of as a one-way computation.In order to introduce a trapdoor mechanism into this one-way computation, we use the factthat di�erent bases of the same lattice seems to yield a di�erence in the ability to �nd close latticepoints to arbitrary vectors in Rn. Therefore the trapdoor information may be a basis of a latticewhich allows very good approximation of the closest lattice point problem. Thus, we use twodi�erent bases of the same lattice. One basis is chosen to allows computing the function but notinverting it, while the other basis is chosen to allow computing the inverse function by permittinggood approximation to the closet lattice vector problem (CVP). For the sake of the introduction,we simply call such a basis a reduced basis. In Section 2, we de�ne a reduced basis to be onewith a small dual-orthogonality defect (where `small' is a parameter). Below we give an informaldescription of our trapdoor one-way function which uses the above ideas.The parameters of the system includes the security parameter n (which is the dimension ofthe lattices that we work with) and a \threshold" parameter � which determines the size of theerror-vectors which we add to the lattice points (say, in L1 norm).A particular function and its trapdoor information are speci�ed by a pair of bases of the same(full rank) lattice in Rn: A \non-reduced" basis B which is used to compute the function and a2

reduced basis R which serves as the trapdoor information and is used for inversion. The \reduced"basis is selected \uniformly" and the \non-reduced" basis is derived from it using a randomizeduni-modular transformation.The input to the function is a lattice point (which is speci�ed by an integral linear combinationof the columns of B) and an error vector whose size is bounded by �. The value of the function onthis input is just the vector sum of the two points. To invert the function, we use a reduced basisR in one of Babai's nearest-vector approximation algorithms [Ba86] to �nd a lattice point which isat most � away from the given vector.The cryptanalytic problem underlying our scheme is to approximate the closest vector problem(CVP) in a lattice, given a \non-reduced" basis for that lattice. A related problem is the problemof reducing the given public basis (since one obvious attack is to reduce the given basis and thenuse the result for inverting the function). See Section 2.1 for a description of these computationalproblems in lattices.From trapdoor function to encryption scheme. In order to use the above trapdoor functionfor public-key encryption, we need a way to embed the message in the arguments to this function.There are several ways to do that, and we discuss some of them in Section 4.2. Here we onlydescribe one of them, in which the message is embedded in the lattice point.The private and public pair of keys of a user are a pair of two bases of the same lattice ofdimension n (the security parameter). The public basis will allow encryption whereas the privatebasis is chosen to allow decryption. To encrypt a message we �rst map it to a lattice point bytaking the integer combinations \speci�ed" by the message of the public basis vectors, and thenadd to the lattice point a \small error vector" chosen at random. To decrypt, we look for a latticepoint which is close to the ciphertext. By using the private basis, which is a reduced basis, thecorrect decryption is obtained with high probability. We remark that our encryption algorithm issimilar in its algorithmic nature to McEliece's scheme [Mc79].Our signature scheme. Our signature scheme is similar to the encryption scheme. Regard themessage as a n-dimensional vector over the reals. Then, a signature of such vector, is a lattice pointwhich is \close" to it (where closeness is de�ned by a published threshold). The private basis isreduced so that �nding \close" points is possible. Verifying correctness amounts to checking thata signature is indeed a lattice point and that the message is close to the signature.It is important to remark at the outset, that messages which are close to each other will havethe same signature. When applying the method in a setting where this property is desirable (e.g.,signing analog signals which may change a little in time), this feature is of great bene�t. However,when applying the method to a message space where such property is undesirable, we propose to�rst hash the message and only then sign it. This is good practice also in case that the schemeis subject to a chosen message attack, as otherwise being able to obtain di�erent signatures oftwo messages which are close to each other when viewed as points in Rn will imply the ability tocompute a small basis for the lattice which in turn will enable the attacker to �nd close vectorsin a lattice and break the scheme. Interestingly, a family of collision-free hash functions can beconstructed assuming that Lattice-Reduction is hard on the worst-case (see below).1.3 DiscussionOur work was inspired by a remarkable result of Ajtai [Aj96] who introduced a function whichis provably a one-way function if approximating the shortest non-zero vector (SVP) in a lattice3

is hard on the worst case. Ajtai's work may be viewed as exhibiting a samplable distribution onlattices and proving that approximating the shortest non-zero vector in lattices chosen accordingto this distribution is as hard as the worst case instance of approximating the shortest non-zerovector in a lattice. Ajtai's construction, however, does not provide a trapdoor function and thusdoes not provide a way of doing public-key encryption based on lattice problems. Constructingsuch a trapdoor function is the novelty and focus of our work.We remark that the construction of [NY89] can be applied to the one-way function of Ajtai andthus yield a signature scheme based on the SVP problem. However, this construction is genericand thus quite ine�cient. In contrast, the signature scheme which we suggest based on the newtrapdoor function is more e�cient, and based on the computational di�culty of the CVP. Alas, thedistribution over CVP instances, induced by our construction, is not known to enjoy the \hardnessof the worst-case" property of Ajtai's result.In retrospect, our encryption scheme bears much similarity to McEliece's scheme [Mc79]. Hisscheme utilizes a pair of matrices over GF(2), which corresponds to two representations of thesame linear code. The encryption method is probabilistic: one multiplies the public matrix bythe message vector and adds a random noise vector to the resulting codeword. Thus in bothMcEliece and our encryption scheme, encryption amounts to a matrix-by-vector multiplicationand the addition of a suitable random vector to the result. However, the domains in which theseoperations take place are vastly di�erent and so is the algebra. Another di�erence is in the way theprivate-key is generated. In McEliece's scheme the private-key is a random Goppa code and hasstructure essential for legitimate decoding. In our scheme the private-key can be chosen uniformlyand thus is \structure-less" { legitimate decoding merely depends on a property of such randomchoices. In both schemes the public-key is obtained by a suitable random linear transformation ofthe private-key; however, in our scheme the choice of this transformation seems richer. In general,we believe that McEliece's suggestion as well as ours deserve further investigation, especially dueto the di�erence in computational complexity required from the legal sender and receiver in theseschemes as compared with the factoring/DLP based schemes.What can we prove about the security of our proposal? Since complexity theory has yet toproduce a non-linear lower bounds for even one NP-complete problems, our proposal is essentiallybased on the failure of past research e�orts to come up with e�cient algorithms for the relevantlattice approximation tasks (i.e., SVP and CVP). Using the best known algorithms for approximat-ing the closest vector problem we show in Section 6 that a natural attack on our trapdoor functiontakes exponential time in the dimension of the lattice. In particular, according to our estimatesthis attack should be intractable in practice for dimension 200.Drawing an analogy from the past, in proposing the RSA, Rivest et. al. [RSA] relied on thefailure of past research to produce e�cient factoring algorithms, but did not reduce factoring tothe breaking of their proposal. By now, the assumption that RSA itself is hard to invert (ratherthan factoring in general) can stand on its own, as it has been subjected to much examination andscrutiny. The structure of our proposal (i.e the key generation process) is more complex than inRSA and requires stating a more complex assumption. Essentially, we need to conjecture that forsome natural distribution on lattices and bases for these lattices, the CVP is hard. We don't knowif a result similar to Ajtai's can be proved for the distribution which we propose over the CVPinstances. (Similarity, it is not known whether such a result can be proved for RSA.) We hope thatour suggestion will stir up further investigation into the complexity of lattice problems.4

1.4 OrganizationIn Section 2 we review necessary material about lattices and lattice problems. In Section 3 wedescribe our construction of a trapdoor function and discuss various parameters and attacks. Sec-tion 4 describes our encryption scheme and Section 5 describes our signature scheme. In Section 6we describe our experimental results2 Lattices and Lattice Reduction ProblemsNotations and conventions. In the sequel we use the following conventions: We denote the setof real numbers by R and the set of integers by Z . We denote real numbers by small Greek letters(e.g., �; �; � etc.) and integers by one of the letters i; j; k; l;m; n. We denote vectors by bold-facelowercase letters (e.g., b; c; r etc.). We use capital letters (e.g., B;C;R, etc.) to denote matrices orsets of vectors.In this paper we only care about lattices of full rank, so the de�nitions below only deal withthose.De�nition 1: Given a set of n linearly independent vectors in Rn; B = fb1; � � � ;bng, we de�nethe lattice spanned by B as the set of all possible linear combinations of the bi's with integralcoe�cients, namely L(B) def= fXi kibi : ki 2 Z for all igWe call B a basis of the lattice L(B). We say that a set of vectors L � Rn is a lattice if there isa basis B such that L = L(B). If the vector v belongs to the lattice L, then we say that v is alattice-vector (or a lattice point).Below we brie
y mention a few well-known facts about lattices. In the sequel we view a basisfor a lattice in Rn as an n�n non-singular matrix B whose columns are the basis vectors. Viewedthis way, the lattice spanned by B is the set L(B) = fBv : v is an integral vectorg. We note thatthere are many di�erent bases for any lattice L. In fact, if the set B = fb1; � � � ;bng spans somelattice then by taking any vector bi 2 B and adding to it any integral linear combination of theother vectors we obtain a di�erent basis for the same lattice.All bases have the same determinant. The �rst important fact about lattices is that all thebases of a given lattice have the same determinant. This fact follows since there is an integer matrixT such that BT = C and another integer matrix T�1 such that CT�1 = B.The dual lattice Let B = b1; � � � ;bn be a basis for some lattice in Rn, L = L(B). Recall thatwe think of B as an n � n matrix whose columns are the bi's. The dual lattice of L is the latticewhich is spanned by the rows of the matrix B�1. Let us denote the rows of B�1 by b̂1; � � � ; b̂n.Orthogonality Defect The notion of of the orthogonality defect of a basis which was introducedby Schnorr in [Sc87] plays a crucial role in the security of our schemes.De�nition 2: Let B be a real non-singular n�n matrix. The orthogonality defect of B is de�nedas orth-defect(B) def= Qi kbikdet(B) , where kbik is the Euclidean norm of the i'th column in B.5

Clearly we have orth-defect(B) = 1 if and only if the columns of B are orthogonal to one another,and orth-defect(B) > 1 otherwise. When comparing di�erent bases of the same lattice in Rn, wereally only care about the product of the kbik's, since det(B) is the same for all of them (and servesjust as a normalization factor). In Section 3.5 we demonstrate the importance of the orthogonalitydefect to the security of our schemes. In particular we show that when we use a basis B for a latticeL = L(B) for our trapdoor function, the work load which is associated with a brute-force attackson the scheme is proportional to the orthogonality defect of the corresponding basis for the duallattice. It would therefore be convenient for us to de�ne the dual orthogonality defect for a matrix.De�nition 3: Let B be a real non-singular n � n matrix. The dual orthogonality defect of B isde�ned as orth-defect�(B) def= Qi kb̂ik=det(B�1) = det(B) �Qi kb̂ik, where kb̂ik is the Euclideannorm of the i'th row in B�1.2.1 Hard problems in latticesThe security of our constructions is related to the (conjectured) intractability of a few computationalproblems in lattices.The Shortest non-zero Vector Problem (SVP). This problem underlies the security ofAjtai's construction and our collision-free hashing. In this problem we are given a basis B fora lattice in Rn and our task is to �nd the non-zero vector in L(B) whose Euclidean norm isminimum. There are no known polynomial-time algorithms for solving the SVP, and it is also notknown whether the SVP is NP-hard (although a version of it, where the distance is measured inL1 norm, was shown by van Emde Boas [Bo81] to be NP-hard). There are, however, deterministicpolynomial-time approximation algorithms for the SVP. The LLL algorithm (due to Lov�asz, Lenstraand Lenstra [LLL]) approximates the SVP in Rn up to a factor of 2n=2 in the worst case. This waslater improved by Schnorr [Sc87] to a factor of (1 + ")n for any " > 0.No polynomial-time algorithm is known for approximating the SVP in Rn within a polynomialfactor in n. Indeed such an approximation has been conjectured to be infeasible to achieve. Re-cently, Ajtai [Aj96] described samplable distributions which form also a \hard-core distribution"for the SVP. Namely, any (probabilistic polynomial time) algorithm which can approximate theSVP problem with a polynomial approximation ratio on random instances drawn with Ajtai's dis-tribution, can be transformed into a (probabilistic polynomial time) algorithm which achieves apolynomial approximation ratio on every instance of the SVP.The Closest Vector Problem (CVP). This is the \non-homogeneous" version of the SVP.In this problem we are given a basis B for a lattice in Rn and another vector v 2 Rn, and ourtask is to �nd the vector in L(B) which is closest to v (in some norm). The CVP was shown byvan Emde Boas [Bo81] to be NP-hard. In terms of approximation, it was shown in [Ka] that anyalgorithm which approximates the SVP to within a factor of � can be transformed into an algorithmwhich approximates the CVP to within a factor of n3=2�2. Combined with Schnorr's algorithm, thisyields a polynomial-time deterministic algorithm which approximates the CVP in Rn to within afactor of (1 + ")n for any " > 0.As we explain in Section 3, an attack against our trapdoor function amounts to �nding an exactsolution for some instance of CVP. 6

The Smallest Basis Problem (SBP). In this problem, we are given a basis B for a lattice inRn and our goal is to �nd the \smallest" basis B0 for the same lattice. There are many variantsof this problem, depending on the exact meaning of \smallest". In the context of this paper, wecare about bases with small orthogonality defect. Thus, we consider the version in which we lookfor the basis B0 of L(B) which has smallest orthogonality defect. In out public key constructions,�nding the private-key from the public-key requires solving some distribution over SBP instances.For this problem too there are no known polynomial-time algorithms, and the best polynomial-time approximation algorithms for it are again the LLL and Schnorr's algorithms which achieve anapproximation ratio of 2O(n2) in the worst case for SBP instances in Rn.Worst case vs. average case. The upper-bounds above on the performance of the approxima-tion algorithms are all worst-case bounds. However, for the security of our scheme we are moreinterested in the performance of these algorithms \on the average". In fact, typically the LLLalgorithm and its variants perform much better than the above upper-bounds.The only known theoretical result about the di�culty of \average case" lattice problems isAjtai's result which we mentioned above [Aj96]. As we explained in the Introduction, however,we could not directly use Ajtai's result for our scheme. We instead propose a trapdoor functionand provide some empirical evidence to its security, by testing the di�culty of the distributionof lattice problems which is de�ned by our scheme against some known approximation algorithmswith various parameters. We describe these tests in Section 6.3 A Candidate Trapdoor FunctionIn this section we de�ne our candidate trapdoor function and analyze a few possible attacks againstit. We start by reviewing the de�nition of a collection of trapdoor functionsDe�nition 4: A collection of one-way trapdoor functions consists of four (probabilistic) polynomial-time algorithms, Generate, Sample, Evaluate and InvertGenerate. The randomized algorithm Generate takes as input the security parameter (1n) andoutputs a pair (f; t) where f describes a function and t is a trapdoor information. There is adomain Df which is associated with every function f .Sample. The randomized algorithm Sample takes as input a function description f (which ispart of the output of Generate) and outputs a point x 2 Df . The random choices of thisalgorithm induce a probability distribution over the domain Df .Evaluate. The algorithm Evaluate takes as input a function description f and a point x 2 Dfand returns the value f(x).Invert. The algorithm Invert takes as input a function description f , the corresponding trapdoorinformation t and a point y in the range of f , and returns a point x 2 Df for which f(x) = y.We require that the Invert algorithm be successful with high probability, where this proba-bility is taken over the random coin-tosses ofGenerate and Sample, and over the coin-tossesof Invert itself (if it happens to be randomized).A collection Generate, Sample, Evaluate is one-way if Evaluate is a polynomial-time algo-rithm, and for any probabilistic polynomial time algorithm A, the probability that A succeeds ininverting f - when it is only given 1n; f; f(x) - is negligible. The probability in this case is taken7

over the coin tosses of Generate, Sample and A itself, and is measured against the securityparameter which was the input to both Generate and A. Namely, we havePrf;x �A(1n; f; f(x)) 2 f�1[f(x)]� = negligible(n)where the probability is taken over the choice of f by Generate, the choice of x by Sample andthe internal coin-tosses of the A. (we say that a real-valued function is negligible in n, if as n getslarger this function becomes smaller than any polynomial in 1=n).3.1 Our constructionGenerate On input 1n, we generate two bases B and R of the same full-rank lattice in Zn and apositive real number �. We generate these bases so that R has a low dual-orthogonality-defectand B has a high dual-orthogonality-defect. We describe the generation process in detailsin Section 3.3. The bases B;R are represented by n � n matrices where the basis-vectorsare the columns of these matrices. In the sequel we call B the \public basis" and R the\private basis". We view (B; �) as the description of a function fB;� and R as the trapdoorinformation. The domain of fB;� consists of pairs of vectors v; e 2 Rn.Sample Given (B; �), we output vectors v; e 2 Rn as follows:The vector v is chosen at random from a \large enough" cube in Zn. For example, we canpick each entry in v uniformly at random from the range f�n2;�n2 + 1; � � � ;+n2g. 2The vector e is chosen at random fromRn, so that each entry in it has zero-mean and variance�2. For example, we can pick each entry in e as ��, each with probability 12 . Alternatively,if we want e to have integral entries we can pick each entry as equal to �d�e each withprobability �2=2 d�e2 and 0 with probability 1� �2= d�e2.Evaluate Given B; �;v; e, we compute c = fB;�(v; e) = Bv + e.Invert Given R and c, we use Babai's Round-O� algorithm [Ba86] to invert the function. Namely,we represent c as a linear combination on the columns of R and then round the coe�cientsin this linear combination to the nearest integers to get a lattice point. The representation ofthis lattice point as a linear combination on the columns of B is the vector v. Once we havev we can compute e. More precisely, denote T def= B�1R, so we compute v T dR�1cc ande c�Bv.3.2 The Inversion AlgorithmIn this section we show how � can be chosen so that the inversion algorithm is successful with highprobability. Recall that the inversion algorithm succeeds in inverting the function on c if using theprivate basis R in Babai's \round o�" algorithm results in �nding the closest lattice-point to c.Below we suggest two di�erent ways to bound the value of �, based on the L1 norm and L1 normof rows in R�1. Both bounds uses the following lemma.Lemma 3.1: Let R be the private basis used in the inversion of fB;�(v; e). Then an inversionerror occurs if and only if dR�1ec 6= �0.2We do not know if the size of this range has any in
uence on the security of the construction. The value n2 israther arbitrary, and was only chosen to get integers of about 16 bits for the parameters which we work with.8

Proof: Let T be the unimodular transformationmatrix T = B�1R. Then the inversion algorithmis v = T dR�1cc and e = c � Bv. Obviously, if v is computed correctly then so is e. Thus, let usexamine the conditions under which this algorithm �nds the correct vector v. Recall that c wascomputed as c = Bv + e, soT dR�1cc = T dR�1(Bv + e)c= T dR�1Bv +R�1ec = T d(BT)�1Bv + R�1ec = T dT�1v +R�1ecBut since T is a unimodular matrix (and therefore, so it T�1) and since v is an integral vector, thenT�1v is also an integral vector. Hence we have dT�1v+ R�1ec = T�1v+ dR�1ec, and therefore�R�1c� = T (T�1v + �R�1e�) = v + T �R�1e�Thus the inversion algorithm succeeds if and only if dR�1ec = �0.We proceed to show the bounds on �. In both the theorems below we assume that each entryin the \error vector" e is chosen equal to ��, each with probability a half. We start by assertingthat we can choose � so that we never get any inversion errors.Theorem 1: Let R be the private basis used in the inversion of fB;� , and denote the maximumL1 norm of the rows in R�1 by �. Then as long as � < 1=(2�), no inversion errors can occur.Proof: We �rst introduce a few notations. We denote d def= R�1e and denote the i'th entry in dand e by �i and �i respectively. Also, we denote the i'th row in R�1 by r̂i and the i; j'th elementin R�1 by �ij.By Lemma 3.1 above, we get an inversion error only when dR�1ec 6= �0, which means thatj�ij > 12 for some i. However, since all the entries in e are equal ��, we get for every ij�ij = ĵri � ej = jXj �ij�j j � � �Xj j�ijj � � � � < 12Although Theorem 1 gives a su�cient condition to get the error-probability down to 0, we maychoose to set a higher value for � in order to get better security. The next theorem asserts adi�erent bound on �, which guarantee a low error probability.Theorem 2: Let R be the private basis used in the inversion of fB;� , and denote the maximumL1 norm of the rows in R�1 by
pn . Then the probability of inversion errors is bounded byPr[inversion error using R] � 2n � exp�� 18�2
2� (1)Proof: We use the notations d; �i; �i; r̂i and �ij as in the proof of Theorem 1. We �rst �x somei and evaluate Pr[j�ij � 12]. Recall that �i = r̂i � e = Pj �ij�j . Since for all j, j�ijj �
=pn and�j = ��, each with probability 12 , then all the random variables �ij�j have zero mean and they areall limited to the interval [� �
pn ;+ �
pn]. Therefore we can use Hoe�ding bound to conclude thatPr �j�ij > 12� = Pr24jXj �ij�j j > 1235 < 2 exp�� 18�2
2�9

Using the union bound to bound the probability that any such i exists completes the proof.Remark. The last theorem implies that to get the error probability below " it is su�cient tochoose � � �
p8 ln(2n=")��1. In fact, the above bound is overly pessimistic in that it only looksat the largest entry in R�1. A more re�ned bound can be obtained by considering the few largestentries in each row separately and applying the above argument to the rest of the entries.Alternatively, we can get an estimate (rather that a bound) of the error probability by usingEquation 1 as if all the entries in each row of R�1 have the same absolute value. In this case
 isthe maximum Euclidean norm of the rows in R�1 so we get an estimate of the error-probability interms of the Euclidean norm of the rows in R�1. This estimate is about the same as the one whichwe get by viewing each of the �i's as a zero-mean Gaussian random variable with variance (�kr̂ik)2(where kr̂ik is the Euclidean norm of the i'th row in R�1).To get a feeling for the size of the parameters involved, consider the parameters n = 140; " =2�30. For a certain setting of the parameters which we tested, the Euclidean norm of all the rowsin R�1 is below 1=30. Evaluating the expression above for
 = 1=30 yields� � 130s8 ln� 2802�30�!�1 � 3014:6 � 2For the same parameters of R, setting " = 10�4 yields � � 2:73.3 The Generate AlgorithmIn this section we discuss various aspects of the Generate algorithm. We described in Section 3.2how the value of � can be computed once we have the private basis R. Now we suggest a fewways to pick R and B. Recall that R;B are two bases for some lattice in Zn, where R has smalldual orthogonality defect and B has a large dual orthogonality defect. Our high-level approach forgenerating the private and public bases is to choose at random n vectors in Zn to get the privatebasis and then to mix them so as to get the public one. There are two distributions to consider inthis process� A distribution on the lattices in Zn which is induced by the choice of the private basis R.� Once we have the private basis R, there is a distribution which is induced on the bases ofL(R) by the process of \mixing" R to get the public basis B.To guide us through the choices of the various parameters, we relied on experimental results (SeeSection 6). Below we brie
y discuss the various parameters which are involved in this process.3.3.1 Lattice dimensionThe �rst parameter we need to set is the dimension of the lattice (the value of n). Clearly, thelarger n is, we expect that our schemes will be more secure. On the other hand, both the spaceneeded for the key pair and the running-time of function-evaluation and function-inversion grow(at least) as
(n2).The lattice-reduction algorithm which we used for our experiments is capable of �nding abasis with very small orthogonality defect as long as the lattice dimension is no more than 60-80(depending on other parameters). Beyond this point, the quality of the bases we get from thislattice reduction algorithm degrades rapidly with the dimensions. In particular, we found that in10

dimension 100, the bases we obtained had a high dial-orthogonality-defect. At the present time,the best \practical lattice-reduction algorithm" which we are aware of is Schnorr`s block-reductionscheme (which was used to attack the Chor-Rivest cryptosystem, see [Sc95]). We speculate thatworking in dimensions about 150-200 might be good enough with respect to this algorithm.3.3.2 Distribution of the private basisAfter setting the dimension, we need to decide on the distribution according to which we choosethe private basis. We considered two possible such distributions.1. Choosing a \random lattice": We choose a matrix R which is uniformly distributed inf�l; � � � ;+lgn�n for some integer bound l. In our experiments, the value of l had almostno e�ect on the quality of the bases which we got. Therefore we chose to work with smallintegers (e.g, between �4), since this makes some of the operations more e�cient.2. Choosing a \rectangular lattice": We start from the box kI in Rn (for some number k), andadd \noise" to each of the box vectors. Namely, we �rst pick a matrix R0 which is uniformlydistributed in f�l; � � � ;+lgn�n, and then compute R R0 + kI .The larger the value of k is, this process generates a basis with smaller dual orthogonalityfactor, but it may also allow an attacker to obtain a basis with smaller dual orthogonalityfactor by reducing the public basis.3.3.3 Generating the public basisOnce we have the private basis R, we should pick the public basis according to some distributionon the bases of the lattice L(R). Since every basis of L(R) is obtained as B = RT for someunimodular transformation matrix T , then picking B when we have R is equivalent to picking a\random unimodular transformation". We tried two ways of generating these \random unimodulartransformations". Both methods work by multiplying many \elementary matrices", of di�erentforms.� One type of elementary matrices which we considered are matrices of the form0BBBBBBBBBBB@ 1 ?...1 ?1? 1...? 1 1CCCCCCCCCCCA or 0BBBBBBBBBB@ 1 1? � � � ? 1 ? � � � ?1 1 1CCCCCCCCCCAwhere the ?'s represent any integers and the blanks represent zeros. (The �rst form corre-sponds to adding to the i'th columns an integer linear combination of the other columns andthe second corresponds to adding an integral multiple of the i'th column to all the othercolumns.) We typically chose the ? components at random from f�1; 0; 1g with a bias to-wards 0 (speci�cally, we used Pr[1] = Pr[�1] = 1=7). This was done so that the size of thenumbers in the public basis will not grow too fast.11

An important parameter in this process is the number of elementary matrices which wemultiply together (which we refer to as the \number of mixing steps"). In our experimentswe only used matrices of the �rst form, and went through the values of i in order so as tomake sure that we hit them all. Our experiments indicate that using 2n such matrices issu�cient.� Another possible type of elementary matrices are upper- and lower-triangular matrices with�1 on the main diagonal. We did very few experiments with these matrices. In these ex-periments we chose the non-zero entries in L and U (which are lower- and upper-diagonalrespectively) from f�1; 0; 1g. We found that we need to multiply at least 4 LU pairs toprevent LLL from recovering the original basis.Comparing the two methods, we found that for the same \level of security", the second methodrequired a basis B with larger entries. Thus we used the �rst method in the most of our experiments.One way to keep the entries of the public basis small (using either of the distributions above) is toLLL-reduce the mixed basis. This does not a�ect the security of the trapdoor function (since anattacker can do the same thing). However, when used in the encryption scheme which we suggestin Section 4, there may be some advantage in keeping the entries in B \not too small".3.4 Bases representation.To make evaluating and inverting the function more e�cient, we chose the following representationfor the private and public bases. The public bases is represented by the integer matrix B whosecolumns are the basis-vectors, so that evaluating fB;�(v; e) = Bv + e can be done in quadratictime. To invert fB;� e�ciently, however, we do not store the private basis R itself. Instead, westore the matrix R�1 and the unimodular matrix T = B�1R. Then, to compute f�1B;�(c) we setv = T dR�1cc and e = c�Bv, both of which can be done in quadratic time.Representing B; T is easy since they are integral matrices, but R�1 is not an integral matrix, sowe need to consider how it should be represented. One possibility, of course, is to keep the exactvalues of all the entries in R�1. After all, the entries of R�1 are all rational, and the number of bits ittake to write them down is at most polynomial in the number of bits of R. This approach, however,is rather expensive in terms of running time. Although the entries in R are small (typically, only2-3 bits) the determinant of R is much larger (about 200 bits if R is a 100�100 matrix) whichmeans that we need to work with very large numbers in order to perform operations on R�1. Adi�erent approach is to only keep a few bits of each entry in R�1. This, of course, may introduceserrors. If we only keep ` bits per entry then we get an error of at most 2�` in each entry.Clearly, this has no e�ect on the security of the system (since it only e�ects the operationsdone using the private basis), but it may increase the probability of inversion errors. Since we onlyperform linear operations on R�1, it is rather straightforward to evaluate the e�ect of adding smallerrors to its entries. Denote the \error matrix" by E = (�ij). That is, �ij is the di�erence betweenthe value which is stored for (R�1)ij and the real value of that entry. Then we have j�ij j < 2�` forall i; j. When inverting the function, we apply the same procedure as above, but uses the matrixR0 def= R�1 +E instead of the matrix R�1 itself.Recall that the value of the function is c = Bv + e, where v is an integer vector and e is the\error vector". Thus the vector v0 computed by the inversion routine isv0 = T dR0cc = T �(R�1 + E)(Bv+ e)� = v+ T �R�1e+ E(Bv+ e)�where the last equality follows since R�1Bv is an integral vector so we can take it out of therounding operation and then we have TR�1Bv = v. Therefore, we invert correctly if and only if12

dR�1e+E(Bv+ e)c = �0, which means that all the entries in R�1e+E(Bv+ e) are less than a 12in absolute value. The size of the entries in the vector R�1e is analyzed in Section 3.2, so here weonly consider the vector E(Bv+ e).Recall that all the entries in E are less than 2�` in absolute value, and that the error vectore consists only of small entries (e.g., for our parameters, the entries in e are always less than 10).Thus the contribution of the vector Ee can be at most 10 � 2�` in each coordinate, so we might aswell ignore it. To evaluate the entries in EBv, assume that we represent each entry in the matrixB using k bits, and each entry in the vector v using m bits. Then, each entry in the vector EBvmust be smaller than n � 2k+m�` in absolute value.For example, if we work in dimension 200, use 16 bits for each entry in B and 16 bits for eachentry in v, and keep only the 64 most signi�cant bits of each entry in R�1 then the entries in EBvwill be bounded by 200 � 216+16�64 � 2�24. Thus, a su�cient condition for correct inversion is thateach entry in R�1e is less than 12 � 2�24 in absolute value (as opposed to less than 12 which we getwhen we store the exact values for R�1). Clearly, this has almost no e�ect on the probability ofinversion errors.3.5 Security AnalysisIn this section we provide some analysis for the security of the suggested trapdoor function byconsidering several possible attacks and trying to analyze their work-load. We start with evaluatingthe work-load of a brute-force attack.3.5.1 Brute-Force AttackAn obvious pre-processing step in every attack on this construction is to reduce the public basisB to get a better basis B0 which can then be used to invert the function. Notice that the onlyfeature of R which we used when we analyzed the error-probability is that the rows of R�1 havesmall Euclidean norm (in other words, R has a very small dual orthogonality defect). If we can�nd another basis with this property, then we can use it just as well. However, �nding a basis witha very low dual orthogonality defect is assumed to be a hard problem.Thus, we assume that even after the lattice reduction, the attacker still have a basis B0 with arather large dual orthogonality defect.3 For the sake of simplicity, we assume that the basis usedby the attacker is the public basis B. Trying to use the basis B for inverting the function in thesame manner as we use the basis R means that given the ciphertext c = Bv + e, we computeB�1c = v + B�1e. Then we can do an exhaustive search for the vector d def= B�1e. Below wegive an approximate analysis for the size of the search space that the attacker needs to go throughbefore it �nds the correct vector d.Denote the i'th entry in d and e by �i and �i respectively. The i'th row of B�1 by b̂i and the(i; j)'th element in B�1 by �ij. Using these notations we can write �i = b̂i � e = Pj �ij�j , andtherefore E[�i] = 0 and VAR[�i] =Xj �2ijE[�2j] = (�kb̂ik)2where kb̂ik is the Euclidean norm of the i'th row of B�1.To evaluate the size of this search space for d, we make the simplifying assumptions thateach entry �i in d is Gaussian, and that the entries are independent. Based on these simplifying3This will be the case, for example, if the public basis B is obtained by applying a \good lattice-reductionalgorithm" to the basis which was obtained by mixing the private basis R.13

assumptions, the size of the e�ective search space is exponential in the di�erential entropy of theGaussian random vector d. Recall that the di�erential entropy of a Gaussian random variable xwith variance �2 is h(x) = 12 log(�e�2). Since we assume that the �i's are independent, then thedi�erential entropy of the vector d equals the sum of the di�erential entropies of the entries, so weget h(d) = 12Xi log(�e�2kb̂ik2) = n2 log(�e�2) +Xi log kb̂ikso the size of the search space is 2h(d) = (�e)n=2 ��n �Qi kb̂ik = (�e)n=2 ��n �orth-defect�(B)=det(B).Note that the term det(B) in the last expression depends only on the lattice and is independent ofthe actual basis B.Typical numeric values. In the experiments which we performed (in dimension 100 with � = 2)evaluating this last expression on the (LLL-reduced) public bases resulted in typical work-load ofabout 1070 � 2230.3.5.2 Other AttacksIn this section we discuss other possible lines of attack against the scheme. One rather obviousimprovement on the brute force attack which is described above is to use a better approximationalgorithm for the CVP. In particular, instead of using Babai's \Round-o�" algorithm we can usethe \Nearest-plane" algorithm which was also described in [Ba86]. On a high-level, the di�erencebetween the Round-o� and the Nearest-plane algorithms is that in the Nearest-plane, the roundingin the di�erent entries are done adaptively (rather that all at once).One way to describe the Nearest-plane algorithm (which is somewhat di�erent than the way it isdescribed in [Ba86]) is as follows: Given the point c and the (LLL reduced) basis B = fb1; � � � ;bng(in the order induced by the LLL reduction). We compute the representation of c as a linearcombination of the bi's, c =Pi �ibi, but we only look at the last coe�cient �n. We then replace cwith the point c0 = c�d�ncbn, and replace bn with a vector b�n which is orthogonal to all the otherbasis vectors. Denote the new basis by B0 = fb�n;b1; � � � ;bn�1. We then apply the same process toc0 and B0 (this time looking at the coe�cient of bn�1). We repeat this until we eliminate all thevectors from the original basis B. It is clear that if at each step we got the right coe�cient thenthe vector which is left at the end is just the error vector e.As was pointed to us by Don Coppersmith, this attack can be improved in practice in severaldi�erent ways:� Instead of picking the vectors by the order which was induced by LLL, we can pick themby the size of the Euclidean norm in the corresponding rows of B�1. As we showed in theanalysis of the brute-force attack, this choice maximizes the probability that the coe�cientsobtained by rounding are really the right coe�cients.� We can apply a lattice-reduction procedure to the remaining basis-vectors after each iteration(or once every few iterations). This improvement is particularly useful since the performanceof the lattice-reduction algorithm improves rapidly as the dimension decreases. Also, wecan round more than one coe�cient at a time (if there are several vectors for which thecorresponding rows of B�1 have small norm).� If all the rows in B�1 have a large Euclidean norm, we can apply an exhaustive search similarto our brute force attack to the few entries which has the smallest Euclidean norm. That is,14

we try to continue the same algorithm for each plausible setting of these entries. Since weonly a few entries (and we picked the ones with the smallest norm), we expect that the sizeof this exhaustive search will be rather small.To defeat this attack, we must make the dimension of the original lattice large enough so that allthe rows in B�1 will have large Euclidean norm. Although we did not perform extensive tests ofthis attack, the data that we have so far indicates that when using LLL as our lattice-reductionalgorithm, we need to do some exhaustive search even for dimension 120. It seems that whenusing LLL, this attack is infeasible for dimensions above 140. We still do not have data about theperformance of this attack using better lattice-reduction algorithms.4 Encryption SchemeOur public-key Encryption scheme is based on our candidate one way trapdoor function in the usualway. That is, to encrypt a message we embed it inside the argument to the function, compute thefunction and the result is the ciphertext. To decrypt, we use the trapdoor information to invertthe function and extract the message from the argument.Recall from Section 3 that, in high level, our one way trapdoor function takes a lattice vectorand adds to it a small error vector. In the context of an encryption scheme, we say that we `encrypta lattice vector' by adding to it a small error vector, and the resulting vector in Rn is the ciphertext.To encrypt arbitrary messages, we specify an (easily invertible) encoding which maps messages intolattice vectors which are then encrypted as above. Decrypting the ciphertext amounts to solving aparticular type of CVP instances which was discussed in Section 3. In a nutshell, the Encryptionscheme can be described as follows (using the algorithms Generate, Sample, Evaluate andInvert from the description of our trapdoor function).Generating Keys. On security parameter 1n, run algorithm Generate(1n) to get the triplet(B;R; �). We let the public key be (B; �) and the secret key to be (R�1; T) where T = B�1R.Encryption. On input message s and public key (B; �), we �rst apply some (randomized) en-coding function v Enc(s) to encode s as a vector v 2 Zn. We note that this encoding is infact the only component of the encryption scheme which is not directly implied by the trapdoorfunction construction. We discuss this encoding function in Section 4.2. (For now, we let Enc;Decdenote a pair of public and easy to compute functions such that Dec(Enc(s)) = s.)Once we computed v, we pick at random an \error-vector" e 2 Rn according to the distributioninduced by the Sample algorithm from Section 3. We then apply the function fB;� to v and e toget the ciphertext c fB;�(v; e) = Bv + e.The operations involved in encrypting a message are therefore: (1) Encoding it as a integervector; (2) Choosing a random vector; and (3) Performing one matrix-vector multiplication andone vector addition. Thus we have an O(n2) algorithm for encryption (where n is the dimensionwe work in).Decryption. To decrypt c we use the private key to invert the function fB;� by setting v T dR�1cc. We then extract the message s from the vector v by setting s = Dec(v). Decryptinga message amounts to two matrix-vector multiplications and one rounding operation on a vector.Thus we also have an O(n2) algorithm for decryption.15

Detecting decryption errors. One property of the above decryption procedure is that althoughthere is a probability of error, it is still possible to verify when the message is decrypted correctly.This enables the legitimate user to identify decryption errors, so that it can take measures tocorrect them. Recall that we encrypt the lattice point p by adding to it a small error vector e,thus obtaining the ciphertext c = p+ e. When we decrypt c and �nd a lattice point p0 (which wehope is the same as p), we can verify that this is the right lattice point by checking that the errore0 = c � p0 is indeed small. For example, if we pick the error vector so that it never contains anyentry larger than �, then we can check that �i � � in each component. Thus we getFact 4.1: If the underlying lattice does not contain any non-zero vector with L1 � 2� thendecryption errors can always be detected.Plaintext Awareness. It seems that our scheme enjoys some weak notion of \plaintext aware-ness" in that there is no obvious way to generate from scratch a valid ciphertext (i.e., one whichthe decryption algorithm can decrypt) without knowing the corresponding lattice point. Still thisplaintext awareness is limited, since after seeing one valid ciphertext c, it is possible to generateother valid ciphertexts without knowing the corresponding lattice-points (simply by adding anylattice point to c).4.1 Partial Information AttacksIn addition to the attacks on the underlying trapdoor function which were outlined in Section 3.5,there are types of attacks which only make sense in the context of encryption scheme. Namely,rather than trying to recover the original message itself, the attacker can instead try to extractfrom the ciphertext some partial information about the message (e.g., the value of a speci�c bit init). On way in which such partial information attacks can be mounted against this scheme is asfollows:Recall that the ciphertext is computed as c = Bv + e and therefore B�1c = v + d, where d isde�ned d def= B�1e. Thus, the i'th entry of (B�1c) is equal to �i + �i (�i; �i are the i'th entries inv;d respectively). We saw in Section 3.2 that if the Euclidean norm of the row b̂i in B�1 is small,then the variance of �i will also be small (notice that the dual-orthogonality-defect of B may stillbe large because of other rows in B�1 that have much larger Euclidean norm). In particular, if� � kb̂ik < 1 then there is a reasonable probability that j�ij < 1=2, in which case �i is just the i'thentry of the rounded vector [B�1c].Thus, an attacker could just focus on the rows of B�1 which have low Euclidean norm, and tryto compute the corresponding entries in v. Knowing some of the entries in v may - in turn - givesome partial information about the message s. More generally, the adversary may view the i'thentry of B�1c as an estimate for �i (which is probably accurate up to �kb̂ik), and use this partialknowledge about the entries in v to obtain some partial knowledge about s.Somewhat surprisingly, for the purpose of this attack - reducing the basis B does not seemto help (of course, as long as the resulting basis is not \reduced enough" to break the underlyingtrapdoor function). To see why, consider the unimodular transformation T 0 between the originalbasis B and the reduced basis B0 (T 0 = (B0)�1B). Since c is computed using the original matrixB, then when trying to extract partial information using B0 we computev0 = (B0)�1c = (B0)�1(Bv + e) = (B0)�1Bv + (B0)�1e = T 0v+ (B0)�1eIf (B0)�1 has rows with small Euclidean norm, then the attacker may be able to learn the corre-sponding entries in T 0v, but this still does not seem to yield an estimate about any entry in v. It16

follows that in this encryption scheme, it may be useful to publish public basis which is not LLLreduced.In any case, foiling the partial information attacks requires a careful design of the encodingscheme v Enc(s), so that partial information that can be revealed about v will not yield partialinformation about s. This is discussed next.4.2 Encoding messages as vectors in ZnIn this section we discuss ways to encode messages as vectors in Zn. As we mentioned above, wewould like to have an encoding scheme such that knowing a few entries in v exactly and knowingsome rough estimate on all the other entries still yields \almost no information" about s.In choosing an encoding function, there are other parameters (besides security) which need tobe considered. Perhaps the most important of them is to obtain high bandwidth: Since for everyencryption operation we end up sending the vector c = Bv + e, we would like to use as much ofthis bandwidth as possible for message bits.The Trapdoor Function Paradigm: Using hard bits. The �rst approach is a generic one.Since we have a candidate for a trapdoor one-way function, we may use hard-core bits of thisfunction as the message bits. In particular, we can use the general construction of Goldreich-Levin,[GL84]) which shows how and where to hide hard core bits in a pre-image of any one-way function.(This construction enables hiding logn bits in one function evaluation.)This approach has the advantage of being able to prove that it is impossible to even distinguish inpolynomial time between any two messages, under the assumption that we started with a trapdoorfunction. The major drawback is in terms bandwidth, since we can only send logn bits at a timefor one function evaluation. Moreover, since this approach is generic, it doesn't provide us withany insight which we may exploit to increase the bandwidth.Using the low-order bits in v. Another approach is to embed the bits of s directly in thevector v. Since an attacker can get an estimate for the entries in v, then it is clear that we needto embed s in the least signi�cant bits of these entries. Also, the fact that the attacker may beable to learn exactly some of the entries in v implies that we should not put any bits of s in thoseentries. Note that we know in advance which are the \weak entries", since these correspond to therows in B�1 with small Euclidean norm.We start by examining the simple case in which we only use the least-signi�cant-bit of eachentry (except for the \weak entries"). and pick all the other bits at random. Then, given anestimate ~�i = �i + �i for the entry �i, the attacker should decide whether the number in that entrywas even or odd (that is, whether the message bit is a 0 or 1).If we assume that each entry in ~�i can be approximated by a Gaussian random variable withmean �i and variance �2kb̂ik2 (which is reasonable since ~�i is a sum of n independent randomvariable which are all \more or less the same", then given the experimental value ~�i, the statisticaladvantage jPr[�i is even j ~�i]� Pr[�i is odd j ~�i]j is exponentially small in �kb̂ik. Thus, if theEuclidean norm of b̂i is large enough, then the attacker, who knows ~�i, gets only a small statisticaladvantage in guessing the corresponding bit of s. If we have a row of B�1 with very high Euclideannorm, then we may be able to use the corresponding entry of v for ` message-bits. It can beshown that the statistical advantage in guessing any of these bits is at most exponentially small in�kb̂ik=2`. If the Euclidean norm of each individual row in B�1 is too small, we can represent each17

bit of s using several entries by making that bit the XOR of the least signi�cant bit in all thoseentries.Reducing mod 2 Notice that using only the least signi�cant bits for the bits of s is really alinear operation, since we can write v = s+ 2r, where s is the f0; 1g vector with the message bitsand r is a random integer vector. Therefore, when using this encoding we should consider attack inwhich all the matrices involved are reduced modulo 2, and the attacker tries to compute the vectorv mod 2.Namely, we have c = Bv + e = Bs + 2Br+ e, so when reduce the last equation mod 2 we getc = Bs + e (mod 2). We can now compute the inverse of B mod 2 over Z2. If such an inverseexists then denote it by B�12 . In this case we get B�12 c = s + B�12 e (mod 2). Notice, however,that e mod 2 is a random binary vector which is 1 with probability �2, and so - for each entry �i ofd = B�12 e mod 2 - the statistical di�erence jPr[�i = 0]� Pr[�i = 1]j is exponentially small with n.5 Signature schemeIn this section we describe a slight modi�cation of our trapdoor function which is more suitable fora signature scheme, and provide an initial assessment of its properties. In this signature scheme,just like in the encryption scheme, the user uses its private basis B to �nd lattice points which areclose to some given vectors in Rn. In this scheme, we \sign a vector in Rn" by providing a latticepoint which is \rather close" to that vector. The public key for the signature scheme contains apublic basis B for the lattice, and a threshold � > 0 which de�nes how close should the latticepoint be to the given vector. The choice of � is discussed in Section 5.3.1.5.1 OperationThe key-generation procedure amounts to the generation of two bases (as in the Generate pro-cedure of the trapdoor function) and to the determination of the threshold � .Signature. To sign a message s, we �rst need to interpret s as a vector in Rn. For this we usesome encoding function to get u Enc(s) (see Section 5.3.2). Then, using the private key (R�1; T)we apply the exact same procedure as for decrypting a message, namely compute v T dR�1uc.The vector v is the signature on s. The signing time is O(n2) just like for encryption, providedthat the encoding time is so bounded.Notice that v is an integral vector, which we view as a representation of the lattice pointp = Bv. The reason that we expect p to be \rather close" to u is that the representation of uas a linear combination of the columns of R is R�1u, while the representation of p as a linearcombination of the columns of R is dR�1uc, and these two representations di�er by at most a halfin each coordinate. We discuss this further in Section 5.3.1.Veri�cation. To verify a signature v on message s w.r.t. the public key (B; �), we compute thevectors u Enc(s); p Bv, and check that the Euclidean distance between them is less than� . Namely, the veri�cation process consists of checking the inequality kEnc(s)� Bvk < � . Thisprocess too takes time O(n2), provided again that the encoding time is so bounded.18

5.2 On the analog nature of the schemeWe note that because of its \analog nature", our scheme has some properties which are very di�erentthan those of other known signature schemes. In particular, notice that if u;u0 are two vectors inRn which are very close to each other (much closer than the threshold �), then it is very likelythat a signature on u will also be a signature on u0. This \metric preserving" property suggestsdi�erent signing procedures for digital versus analog data.If we are signing digital data then we should make sure that a signature on one message couldnot be used to obtain a signature on another message. This can be achieved by the use of a \goodhash function" to hash the message before we interpret it as a vector in Rn (or, alternatively, asthe means to map messages to such vectors). If indeed the hash function is good enough, it willensure that even if two messages to be signed are close to each other at the outset, they will befar apart after being hashed and thus be mapped to di�erent signatures. Note that the hashingand signing paradigm is what is necessary and in fact done in practice when using the RSA andDSA signature schemes. The reason is to ensure the di�culty of forging the signature of messagesrelated to those messages signed previously by a legitimate user { a forgery which is otherwise easyin both the case of \bare" RSA and DSA.On the other hand, the \metric preserving" property may useful when signing analog datasuch as music, speech, images etc. In employing a traditional digital signature scheme to such data,the natural procedure is to �rst sample the data so as to obtain digital representation of it, andnext to apply the signature scheme to this digital representation. This procedure has the disad-vantage of potentially mapping close analog signals to di�erent (yet close) digital representations.In particular, minor changes in the either the sampling process or in the analog signal itself, mayresult in a di�erent digital representation. Consequently, the signature may not be valid when theanalog signal changes a little. Thus, a method such as ours, where the analog signal may be signeddirectly have an advantage of supplying signatures which remain valid (or at least meaningful)under small changes of the analog signal.Note that the above discussion depends on the encoding of data as vectors in Rn. Each of thetwo settings calls for a di�erent type of encoding. In the \digital" setting we wish the encodingto scramble messages so to destroy any structure (e.g., related messages should yield unrelatedencoding). In the \analog" setting we want the encoding to preserve the metric of the data space(e.g., close analog signals should yield close encoding in Rn). For further details see Section 5.3.2.5.3 Various choicesIn addition to the choices made for the process of selecting the private and public bases (discussed inSection 3), there are two important choices to be made: Firstly, we need to determine the thresholdparameter � , and secondly we need to determine the method of encoding data as vectors in Rn.5.3.1 Choosing the thresholdIn this section we show how the threshold � should be chosen so that the signature algorithm issuccessful with high probability, and in Section 5.4 we examine the e�ects of the choise of thesecurity of the signature scheme.In the analysis below we use the following notations. Let A be a basis for some lattice inRn. We denote by RoundA(u) the lattice point which is generated from u by considering therepresentation of u as a linear combination of the vectors in B and rounding the coe�cients to thenearest integers. That is, RoundA(u) def= A dA�1uc.19

Consider now a random vector u 2 Rn and we try to evaluate the distance between u andRoundR(u), where R is the private basis. Recall that conceptually, the lattice point RoundR(u)is the signature on the vector u (though the actual signature is the representation of that pointw.r.t. the public basis B). De�ne the \error vector"e def= [R�1u]� R�1uthat is, the i'th entry �i in e is the di�erence between the i'th coe�cient in the representation of uas a linear combination of the vectors in R and the nearest integer. Then the distance between uand RoundR(u) is just the Euclidean norm of the vector Re. Clearly, we have j�ij � 1=2 for all i,since this is just the di�erence between some real number and the nearest integer. This immediatelygives usClaim 5.1: Let R be the private basis used for signing and denote the maximum L1 norm of anyrow in R by
. If we set � =
pn=2 then the signing algorithm always succeeds (with probability1).Proof: Denote d def= Re. We can write the i'th entry in d as �i =Pj �ij�j where �ij is the i; j'thentry in R and �j is the j'th entry in e. Therefore j�ij �Pj j�ij�j j � 12Pj j�ijj � 12
 and sokdk =vuut nXi=1 �2i �vuut nXi=1 �12
�2 =
pn=2As for the trapdoor function, we may choose to set a lower value for � to get a better security.We now describe an \approximate analysis" which enables us to estimate the failure probabilityfor lower values of � .(As opposed to the situation with the trapdoor function, however, even these approximateestimates are not very good. Experimentally, we found that we can set the value of � to be abouthalf the value which we get from the analysis below.)Recall that the distance between u and RoundR(u) is the Euclidean norm of the vector Rewhere j�ij � 1=2 for all i. Moreover, if u is chosen uniformly at random from a large enough boxin Rn then the distribution induced over the vector e is close to the uniform distribution over(�12 ;+12]n.To see that, notice that if we choose u uniformly from the parallelepiped fPi
iri : 0 �
i < 1g(where ri is the i'th column of R) then the induced distribution on e is exactly the uniformdistribution. Moreover, every large enough box in Rn can be viewed as union of many disjointparallelepipeds like that, plus some \left over" volume. As the volume of the box increases, thefraction of this \left over" volume decreases. Thus, the induced distribution of the vector e getscloser to the uniform distribution.Thus, to evaluate the distance between u and RoundR(u) when u is uniform in some large boxin Rn, we need to evaluate the Euclidean norm of the vector Re when e is uniform in (�12 ;+12]n.We can write each entry in this vector as �i =Pj �ij�j where �ij is the i; j'th entry in R and �j isthe j'th entry in e.Denote the largest entry in R by �max, then each of the random variables �ij�j is distributedin the interval [��max2 ;+�max2] and has zero mean. Using Hoe�ding bound we conclude that for any� > 0 Pr[j�ij > �n] < 2 � exp��2�2n�2max�20

which implies thatPr �kdk2 > �2n3� � Pr �9 i s:t: �2i > �2n2� � 2n � exp��2�2n�2max�Therefore, to make the error probability less than " it is su�cient to set � > (�max � ln(2n=")=2n),which means that the threshold is set to� = p�2n3 � �max2 ln(2n=")pn (2)Typical numeric values. The value of the threshold which we obtain from Equation 2 with" = 2�30 and n = 140 is � = �max2 ln(280 � 230)p140 � 156�maxIn our experiments we typically have �max = 4, which implies that � � 625. If we are willing tosettle for " = 10�4 the we can make � � 350. As we said above, we found that experimentallywe can actually use threshold value which is about half of what we get from these bounds. Inparticular, for the setting above we can set � = 200 to get the error probability below 10�4.5.3.2 Encoding messages as vectors in RnRecall that in the above scheme, a lattice-point p is considered a valid signature on a vector v ifthe two vectors are \close enough". This means that the same lattice point p is valid with respectto many di�erent vectors (in fact, all the vectors in a sphere of radius � centered at p). This facthas two implications: On one hand, we can allow many \slightly di�erent" representations of thesame \logical datum" without e�ecting the validity of the signature. On the over hand, vectorswhich represent di�erent \logical datum" must be very di�erent from one another.Signing analog data. As a simple example of an analog data, consider attaching a digitalsignature to a FAX document (say, by printing a bar-code containing the signature on the documentitself). Clearly, in this case we cannot expect that the senders digital representation of the documentwill be identical to the representation obtained by the receiver after the document is printed.However, suppose that we could represent the \contents" of the FAXed document using some smallset of parameters, in such a way that� Printing and re-scanning the document does not change its parameters very much; and� Documents which contains di�erent contents are represented by very di�erent sets of param-eters.If we have such representation, we could use these sets of parameters to represent a document asa vector in Rn. Consequently, it will be very likely that a digital signature on some representationof the document will still be valid even after the document was printed and re-scanned. We willneed to assume that such a representation will be su�ciently rich in the sense that documents ofinterest will results in representations in a su�ciently large box of Rn. (Clearly, signatures areeasy to forge if documents of interest are all mapped to a small region of Rn { and carrying theargument to an extreme, we de�nitely do not want all documents to be mapped to within distance� of the same lattice point.) Furthermore, it should be infeasible to obtain a meaningful documentwhich matches a random vector in this large box of Rn.21

Signing digital data. When signing digital data, we do not have the \multiple representation"problem as above { there is a unique binary string which represents the logical datum. What weneed is an encoding of binary strings as \random" points in Rn. We may assume, without lossof generality, that the string has length n, since shorter and longer strings can be handled usingwell-known methods (such as padding and collision-free hashing, respectively). So what we need isa mapping of f0; 1gn to Rn which does not map two di�erent strings too close to one another (i.e.,to within proximity �). This is very easy to do. However, we want the range of this mapping to besu�cient \random" so that �nding a close lattice point will be hard for these mapping-images.5.4 Security of the Signature SchemeTo get some initial indication for the security of this scheme, we consider what happens whenwe try to execute the signing algorithm using the public basis B. Here we do not even have anapproximate analysis. Instead we conducted experiments to evaluate how close to the thresholdwe can get when using the public basis for signing. For the same setting as the \typical numericvalues" in Section 5.3.1, (n = 140, max-entry in R = 4), we got distances which were all above 520(we tried 5 di�erent LLL-reduced bases, 10000 \signatures" for each basis). This suggests that forthese parameters, picking the threshold at � = 200 may be good enough to counter this attack, atleast when using LLL as our lattice-reduction algorithm.6 Experimental ResultsWe performed several experiments in order to measure the e�ect of various parameters in the basisgeneration process on the security of our scheme. Since, as we described in Section 3.5, the securityof the scheme is related to the dual-orthogonality-defect of the bases involved, we view the ratiobetween the dual-orthogonality-defect of the public and private bases as our \measure of security".Testing methods. For our experiments we used an implementation of the LLL lattice reductionalgorithm due to the LiDIA group [Li95]. In each experiment, we chose a private and public bases-pair and evaluated the ratio between their dual-orthogonality-defects. We generated the publicbasis from the private one by mixing it (as described in Section 3.3) and LLL-reducing the result.To gain some con�dence in our results, we repeated this experiment several times for each settingof the parameters.� For each private basis, we generated �ve public bases and used the ratio between the minimumdual-orthogonality-defect of these public bases and the dual-orthogonality-defect of the privatebasis as the \security-level" of this private basis.� For each setting of the parameters, we generated seven private bases with these setting andconsidered the median \security-level" of these seven bases.Parameters. The parameters which we tested are1. The dimension of the lattice, denoted by n. We performed most of the tests in dimensions80-120.2. The range of integers (f�l; � � � ;+lg) from which we choose the entries in the private basis.Below we refer to this range as the `l-parameter' of the private basis.22

3. How \cube-like" is the private basis. Namely, we generated the private basis as R = k � I +rand(�l) for several values of k. (Where I is the identity matrix and rand(�l) is a randommatrix with entries in f�l; � � � ;+lg.) Below we refer to this parameter as the `k-parameter'of the private basis.4. How many \mixing steps" are used to generate the public basis from the private one.6.1 Generating the Private BasisWe �rst measured the e�ects of the parameters involved in choosing the private basis, namelylattice dimension (n), range of integers (l) and \cube-likeness" (k). For each setting of k; l, wetested dimensions 80 through 120 (in increments of 10).Entry size (l). We tested the l-parameter settings of 1, 4 and 10, working with both \randomlattices" (k = 0) and \cube-like lattices" (k = l d1 +pne). The results of these experiments aresummarized in Figure 1. In all these experiments, we applied 2n \elementary mixing mixing-steps"to the private bases and LLL-reduced the result to obtain the public basis (See Section ??. As canbe seen from these results, the l-parameter had no e�ect on the \security-level" of the bases whichwe obtained.\Cube-like" parameter (k). The settings of the k-parameter which we tested are k = 0; k =12 l d1 +pne and k = l d1 +pne. The reason that we express k in \units" of lpn is that theexpected length of a random vector in f�l � � �+ lgn is O(lpn). We tested these settings with l = 1and l = 4. The results are summarized in Figure 2. Varying the value of k had the following e�ects� Increasing the value of k increases the dimensions in which LLL can recover the private basis.For example, LLL could recover the private basis in dimension 80 when we set k = l d1 +pne,but failed for the smaller values of k.� When the dimensions increase beyond some threshold, the ratio of the dual-orthogonality-defect becomes much larger for large values of k. The reason is that the dual-orthogonality-defect of the private basis becomes smaller (since the private basis is more \cube-like"). Infact, for k = l d1 +pne, the dual-orthogonality-defect of the private basis is already veryclose to one. On the other hand, the dual-orthogonality-defect of the corresponding publicbasis is not a�ected by this change (since beyond some threshold dimension, LLL fails totake advantage of the \cube-likeness" of the lattice). Thus, the ratio between the dual-orthogonality-defect of the public and private basis increases considerably.6.2 How Many Mixing StepsWe also tested the number of \elementary mixing steps" which we apply to the private basis inorder to get the public basis. In each elementary mixing step, we pick one of the basis vectors andadd to it a random integral linear combination of the other vectors. In our experiments we chosethe coe�cients of this linear combination from f�1; 0; 1g with Pr[1] = Pr[�1] = 1=7. To make surethat we replace all the vectors in the private basis, we must make at least n mixing steps. To makesure that we hit them all, we chose a random permutation over f1; � � �ng and picked the vectorsaccording to the order in that permutation.To evaluate how \secure" is the resulting public basis, we LLL-reduced it and compared thedual-orthogonality-defect of the result with that of the private basis. In our experiments we tried23

80 85 90 95 100 105 110 115 120
10

20

10
40

10
60

10
80

10
100

10
120

10
140

Dimension (n)

du
al

-o
rt

ho
go

na
lit

y-
de

fe
ct

 r
at

io

R = rand(+-L). Applying 2*n mixing steps to get B

"*" - L = 4

"o" - L = 1

80 85 90 95 100 105 110 115 120
10

0

10
50

10
100

10
150

10
200

10
250

Dimension (n)

du
al

-o
rt

ho
go

na
lit

y-
de

fe
ct

 r
at

io

R = L*(sqrt(n)+1)*I + rand(+-L). Applying 2*n mixing steps to get B

"o" - L = 1

"*" - L = 4

"+" - L = 10

Figure 1: The e�ect of varying the entry size l for k = 0 (upper �gure) and k = d1 +pne � l (lower�gure). 24

80 85 90 95 100 105 110
10

0

10
20

10
40

10
60

10
80

10
100

10
120

10
140

10
160

10
180

10
200

Dimension (n)

du
al

-o
rt

ho
go

na
lit

y-
de

fe
ct

 r
at

io

R = k*I + rand(+-1). Applying 2*n mixing steps to get B

"*" - k = 1+sqrt(n)

"o" - k = 0

80 85 90 95 100 105 110 115 120
10

0

10
50

10
100

10
150

10
200

10
250

Dimension (n)

du
al

-o
rt

ho
go

na
lit

y-
de

fe
ct

 r
at

io

R = k*I + rand(+-4). Applying 2*n mixing steps to get B

"+" - k = 4*(1+sqrt(n))

"*" - k = 2*(1+sqrt(n))

"o" - k = 0

Figure 2: The e�ect of varying the parameter k for l = 1 (upper �gure) and l = 4 (lower �gure).We tessted the values k = 0; k = 12 l d1 +pne and k = l d1 +pne.25

80 85 90 95 100 105 110 115 120
10

0

10
20

10
40

10
60

10
80

10
100

10
120

10
140

Dimension (n)

du
al

-o
rt

ho
go

na
lit

y-
de

fe
ct

 r
at

io

R = k*I + rand(+-4). Applying n mixing steps to get B

"*" - k = 4*(1+sqrt(n))

"o" - k = 0

Figure 3: Making only n mixing-steps. Notice that for a cube-like lattice, we were able to recoverthe private basis in all the dimensions.
26

to make n and 2n mixing steps before the LLL-reduction. The results for 2n mixing steps (withvarious parameters of the private basis) are presented in Figures 1 and 2. The results we get whenwe only make n mixing steps (for l = 4 and k = 0; k = l d1 +pne) are summarized in Figure 3.It can be seen that when making only n mixing steps on a cube-like lattice, LLL was alwaysable to recover the private basis. Another problem with making so few mixing steps (which is notre
ected in Figure 3) is that the variance which we get for each setting of the parameters is muchlarger than what we get for 2n mixing steps. In fact, although the median results for k = 0 seemto increase exponentially with the dimension, the minimum results are very close to one even indimension 120.Acknowledgments.The authors thank Dan Boneh, Don Coppersmith, Claus Schnorr and Jacques Stren for severalenlightening conversations.References[Aj96] M. Ajtai. Generating hard instances of lattice problems. In Proceedings of the 28thAnnual ACM Symposium on Theory of Computing, pages 99-108, Philadelphia, PA,1996.[Ba86] L. Babai, On Lov�asz lattice reduction and the nearest lattice point problem. in Combi-natorica, vol. 6, 1986, pp. 1-13.[BG84] M. Blum and S. Goldwasser. An E�cient Probabilistic Public-Key Encryption Schemewhich Hides All Partial Information. in Proceedings of CRYPTO '84, Springer-Verlag,1985, pp. 289-299.[Bo81] P. van Emde Boas, AnotherNP-complete problem and the complexity of computing shortvectors in a lattice. Reprot 81-04, Mathematische Instituut, University of Amsterdam,1981.[BL96] D. Boneh and R. Lipton, Algorithms for Black-Box Fields and Their Application toCryptography. in Proccedings of CRYPTO '96, Lecture Notes in Computer Science No.1109, Springer-Verlag, 1996. pp. 283-297.[DSS] Digital Signature Standard (DSS). FIPS PUB 186, 1994.[DH76] W. Di�e and M.E. Hellman. New Directions In Cryptography. IEEE Transactions onInformation Theory, Vol IT-22, 1976, pp. 644-654.[El85] T. El-Gamal. A Public Key Cryptosystem and a Signature Scheme Based on DiscreteLogarithms. IEEE Trans. Information Theory, vol. 31, 1985, pp. 469-472[G86] O. Goldreich. Two Remarks Concerning the Goldwasser-Micali-Rivest Signature Scheme.in Proceedings CRYPTO 86, Lecture Notes in Computer Science No. 263. Springer-Verlag,1987. pp. 104-110.[GKL] O. Goldreich, H. Krawczyk and M. Luby. On the existence of pseudorandom generators.SIAM J. on Computing, Vol. 22(6), 1993. pp. 1163-117527

[GL84] O. Goldreich and L.A. Levin A Hard-Core Predicate for All One-Way Functions Pro-ceedings of the 21st ACM Symposium on Theory of Computing, 1989, pp. 25-32[GM82] Goldwasser, S. and Micali, S., Probabilistic Encryption. Journal of Computer and SystemSciences, Vol. 28, 1984, pp. 270-299.[GMR85] S. Goldwasser, S. Micali and R.L. Rivest. A Digital Signature Scheme Secure AgainstAdaptive Chosen Message Attack. SIAM Journal on Computing, Vol. 17, no. 2, 1988,pp. 281-308. See comment regarding e�ciency in [G86].[IN89] R. Impagliazzo and M. Naor. E�cient cryptographic schemes provably as secure as subsetsum. In 30th Annual Symposium on Foundations of Computer Science, IEEE. 1989. pp.236-241[IR88] S. Rudich and R. Impagliazzo, Limits on the Provable consequences of One-Way Permuta-tions. in Proceedings of CRYPTO '88, S. Goldwasser, editor. Lecture Notes in ComputerScience, volume 403, Springer-Verlag, 1988. pp. 8-26[Ka] R. Kannan. Unpublished manuscript.[Li95] The LiDIA project software-package and user-manual. Available fromftp://crypt1.cs.uni-sb.de/pub/systems/LiDIA[LLL] A.K. Lenstra, H.W. Lenstra, L. Lov�asz. Factoring polynomials with rational coe�cients.Mathematische Annalen 261, 515-534 (1982).[Mc79] R.J. McEliece, A Public-Key Cryptosystem Based on Algebraic Coding Theory. DSNProgress Report 42-44, Jet Propulsion Laboratory[NY89] M. Naor, and M. Yung, Universal One-Way Hash Functions and their CryptographicApplications. in Proc. 21st ACM Symp. on Theory of Computing, 1989, pp. 33-43[Ra79] M.O. Rabin, Digital Signatures and Public-Key Functions as Intractable as Factorization.Technical Report MIT/LCS/TR-212, M.I.T., 1978.[Ro90] J. Rompel. One-way functions are necessary and su�cient for secure signatures. InProceedings of the Twenty Second Annual ACM Symposium on Theory of Computing,1990, pp. 387-394.[RSA] R.L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures andPublic-Key Cryptosystems. Communications of the ACM, Vol. 21, 1978, pp. 120-126.[Sc87] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. inTheoretical Computer Science, vol. 53, 1987, pp. 201-224[Sc95] C.P. Schnorr and H.H. Horner, Attacking the Chor-Rivest Cryptosystem by ImprovedLattice Reduction. in Proceedings of EUROCRYPT '95, Louis C. Guillou and Jean-Jacques Quisquater, editors. Lecture Notes in Computer Science, volume 921, Springer-Verlag, 1995. pp. 1-12[Wi84] H.C. Williams, Some Public Key Crypto-Functions as Intractable as Factorization. inProceedings of CRYPTO 84, G. R. Blakley and D. C. Chaum, editors. Lecture Notes inComputer Science, volume 196, Springer-Verlag, 1985. Pages 66-70.28

[Ya82] A.C. Yao. Theory and Applications of Trapdoor Functions. in Proceedings of the 23rdIEEE Symposium on Foundations of Computer Science, 1982, pp. 80-91.

29

