
How to Construct Pseudorandom FunctionsExtracts from Foundations of Cryptography1Oded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.February 8, 2001

1This is Section 3.6 of the book Foundations of Cryptography. For further details on the book, see webpagehttp://www.wisdom.weizmann.ac.il/�oded/foc.html.

3.6 Pseudorandom FunctionsIn this section we present de�nitions and constructions for pseudorandom functions (using anypseudorandom generator as a building block). Pseudorandom functions will be instrumental tosome construction to be presented in Chapters 5 and 6.Motivation: Recall that pseudorandom generators enable to generate, exchange and share a largenumber of pseudorandom values at the cost of a much smaller number of random bits. Speci�cally,poly(n) pseudorandom bits can be generated, exchanged and shared at the cost of n (uniformlychosen bits). Since any e�cient application uses only a polynomial number of random values, pro-viding access to polynomially many pseudorandom entries seems su�cient for any such application.The latter conclusion is too hasty, since it assumes implicitly that these entries (i.e., the addressesto be accessed) are �xed beforehand. In some natural applications, one may need to access ad-dresses that are determined \dynamically" by the application. For example, one may want to assignrandom values to (poly(n)-many) n-bit long strings, produced throughout the application, so thatthese values can be retrieved at latter time. Using pseudorandom generators the above task can beachieved at the cost of generating n random bits and storing poly(n) many values. The challenge,met in this section, is to achieve the above task at the cost of generating only n random bits andstoring only n bits. The key to the solution is the notion of pseudorandom functions. Intuitively,a pseudorandom function shared by a group of users provides them with a function that appearsrandom to adversaries (outside of the group).3.6.1 De�nitionsLoosely speaking, pseudorandom functions are functions that cannot be distinguished from trulyrandom functions by any e�cient procedure that can get the value of the function at arguments ofits choice. Hence, the distinguishing procedure may query the function being examined at variouspoints, depending possibly on previous answers obtained, and yet can not tell whether the answerswere supplied by a function taken from the pseudorandom ensemble (of functions) or from theuniform ensemble (of function). Indeed, to formalize the notion of pseudorandom functions weneed to consider ensembles of functions. For sake of simplicity, we consider in the sequel ensemblesof length preserving functions, and the reader is encouraged to further simplify the discussion bysetting `(n) = n (below). Generalizations are discussed in Section 3.6.4.De�nition 3.6.1 (function ensembles): Let ` : N!N (e.g., `(n) = n). An `-bit function ensembleis a sequence F = fFngn2N of random variables, so that the random variable Fn assumes values inthe set of functions mapping `(n)-bit long strings to `(n)-bit long strings. The uniform `-bit functionensemble, denoted H = fHngn2N, has Hn uniformly distributed over the set of all functions mapping`(n)-bit long strings to `(n)-bit long strings.To formalize the notion of pseudorandom functions we use (probabilistic polynomial-time) oraclemachines (see Section ??). We stress that our use of the term oracle machine is almost identicalto the standard one. One minor deviation is that the oracle machines we consider have a lengthpreserving function as oracle rather than a Boolean function (as is more standard in complexitytheory). Furthermore, we assume that on input 1n the oracle machine only makes queries of length`(n). These conventions are not really essential (they merely simplify the exposition a little). Welet Mf denote the execution of the oracle machine M when given access to the oracle f .1

De�nition 3.6.2 (pseudorandom function ensembles): An `-bit function ensemble, F = fFngn2N,is called pseudorandom if for every probabilistic polynomial-time oracle machine M , every polyno-mial p(�) and all su�ciently large n'sjPr[MFn(1n)=1]� Pr[MHn(1n)=1]j < 1p(n)where H = fHngn2N is the `-bit uniform function ensemble.Using techniques similar to those presented in the proof of Proposition ?? (of Subsection ??),one can demonstrate the existence of pseudorandom function ensembles that are not statisticallyclose to the uniform one. However, to be of practical use, we require that the pseudorandomfunctions can be e�ciently computed. That is, functions in the ensemble should have succinctrepresentation that supports both selecting them and evaluating them. These aspects are capturedby the following de�nition, in which I is an algorithm selecting representations of functions (whichare associated to the functions themselves by the mapping �).De�nition 3.6.3 (e�ciently computable function ensembles): An `-bit function ensemble, F =fFngn2N, is called e�ciently computable if the following two conditions hold1. (e�cient indexing): There exists a probabilistic polynomial time algorithm, I, and a mappingfrom strings to functions, �, so that �(I(1n)) and Fn are identically distributed.We denote by fi the function assigned to the string i (i.e., fi def= �(i)).2. (e�cient evaluation): There exists a polynomial time algorithm, V , so that V (i; x) = fi(x),for every i in the range of I(1n) and x 2 f0; 1g`(n).In particular, functions in an e�ciently computable function ensemble have relatively succinctrepresentation (i.e., of polynomial (in n) rather than exponential (in n) length). It follows thate�ciently computable function ensembles may have only exponentially many functions (out of thedouble-exponentially many possible functions; assuming `(n) = n).Another point worthy of stressing is that e�ciently computable pseudorandom functions aree�ciently evaluated at given points, provided that the function description is given as well. However,if the function (or its description) is not known then the value of the function at a point cannot beapproximated (even in a very liberal sense and) even if the values of the function at other pointsare also given.Terminology: In the rest of this book we consider only e�ciently computable pseudorandomfunction ensembles. Hence, in the sequel, whenever we talk of pseudorandom functions we actuallymean functions chosen at random from an e�ciently computable pseudorandom function ensemble.Observe that, without loss of generality, the sequence of coin tosses used by the indexing algo-rithm in De�nition 3.6.3 can serve as the function's description. Combining this observation withDe�nition 3.6.2 , we obtain the following alternative de�nition of e�ciently computable pseudoran-dom functions:De�nition 3.6.4 (e�ciently computable pseudorandom function ensembles { alternative formu-lation): A e�ciently computable pseudorandom function ensemble (pseudorandom function) is a setof �nite functions ffs : f0; 1g`(jsj) ! f0; 1g`(jsj)gs2f0;1g�where ` : N!N and the following two conditions hold2

1. (e�cient evaluation): There exists a polynomial time algorithm that on input s and x 2f0; 1g`(jsj) returns fs(x).2. (pseudorandomness): The function ensemble F = fFngn2N, de�ned so that Fn is uniformlydistributed over the multi-set ffsgs2f0;1gn , is pseudorandom.We comment that more general notions of pseudorandom functions can be de�ned and constructedanalogously; see Section 3.6.4.3.6.2 ConstructionUsing any pseudorandom generator, we construct a (e�ciently computable) pseudorandom functionensemble (for `(n) = n).Construction 3.6.5 Let G be a deterministic algorithm expanding inputs of length n into stringsof length 2n. We denote by G0(s) the jsj-bit long pre�x of G(s), and by G1(s) the jsj-bit long su�xof G(s) (i.e., G(s) = G0(s)G1(s)). For every s 2 f0; 1gn, we de�ne a function fs :f0; 1gn!f0; 1gnso that for every �1; :::; �n2f0; 1gfs(�1�2 � � � �n) def= G�n(� � � (G�2(G�1(s)) � � �)That is, on input s and x = �1�2 � � � �n, the value fs(x) is computed as follows:Let y = s. For i = 1 to n do y G�i(y).Output y.Let Fn be a random variable de�ned by uniformly selecting s 2 f0; 1gn and setting Fn = fs. Finally,let F = fFngn2N be our function ensemble.Pictorially (see Figure 3.1), the function fs is de�ned by n-step walks down a full binary tree ofdepth n having labels at the vertices. The root of the tree, hereafter referred to as the level 0vertex of the tree, is labeled by the string s. If an internal vertex is labeled r then its left childis labeled G0(r) whereas its right child is labeled G1(r). The value of fs(x) is the string residingin the leaf reachable from the root by a path corresponding to the string x. The random variableFn is assigned labeled trees corresponding to all possible 2n labelings of the root, with uniformprobability distribution.A function, operating on n-bit strings, in the ensemble constructed above can be speci�ed by nbits. Hence, selecting, exchanging and storing such a function can be implemented at the cost ofselecting, exchanging and storing a single n-bit string.Theorem 3.6.6 Let G and F be as in Construction 3.6.5, and suppose that G is a pseudorandomgenerator. Then F is an e�ciently computable ensemble of pseudorandom functions.Combining Theorems ?? and 3.6.6, we immediately get:Corollary 3.6.7 If there exist one-way functions then pseudorandom functions exist as well.Also, combining Theorem 3.6.6 with the observation that, for `(n) > log2 n, any pseudorandomfunction (as in De�nition 3.6.4) gives rise to a pseudorandom generator (see Exercise ??), we obtain:3

We let s� = s and s�� = G�(s�). The value of fs(�1�2 � � � �n) = s�1�2����nis obtained at the leaf reachable from the root (labeled s) by following thepath �1�2 � � � �n.
0s1 s1

s0
s1

s01s00

s101

s

1

0 1

0 1 0 1

0 0 0 0 1111

s s s s s s111011 110s100000 001 010For example, fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s))).Figure 3.1: Construction 3.6.5, for n = 3.Corollary 3.6.8 Pseudorandom functions (for super-logarithmic `) exist if and only if pseudoran-dom generators exist.Proof of Theorem 3.6.6: Clearly, the ensemble F is e�ciently computable. To prove that F ispseudorandom we use the hybrid technique. The kth hybrid will be assigned a function that resultsby uniformly selecting labels for the vertices of the kth (highest) level of the tree and computing thelabels of lower levels as in Construction 3.6.5. The 0-hybrid will correspond to the random variableFn (since a uniformly chosen label is assigned to the root), whereas the n-hybrid will correspondto the uniform random variable Hn (since a uniformly chosen label is assigned to each leaf). It willbe shown that an e�cient oracle machine distinguishing neighboring hybrids can be transformedinto an algorithm that distinguishes polynomially many samples of G(Un) from polynomially manysamples of U2n. Using Theorem ??, we derive a contradiction to the hypothesis (that G is apseudorandom generator). Details follows.For every k, 0 � k � n, we de�ne a hybrid distribution Hkn, assigned as values functions f :f0; 1gn ! f0; 1gn, as follows. For every s1; s2; :::; s2k 2 f0; 1gn, we de�ne a function fs1;:::;s2k :f0; 1gn!f0; 1gn so thatfs1;:::;s2k (�1�2 � � � �n) def= G�n(� � � (G�k+2(G�k+1(sidx(�k ����1))) � � �)where idx(�) is the index of � in the standard lexicographic order of binary strings of lengthj�j. Namely, fs1;:::;s2k (x) is computed by �rst using the k-bit long pre�x of x to determine oneof the sj's, and next using the (n � k)-bit long su�x of x to determine which of the functionsG0 and G1 to apply at each remaining stages (of Construction 3.6.5). The random variable Hkn isuniformly distributed over the above (2n)2k possible functions (corresponding to all possible choices4

of s1; s2; :::; s2k 2 f0; 1gn). Namely, Hkn def= fU(1)n ;:::;U(2k)nwhere U (j)n 's are independent random variables, each uniformly distributed over f0; 1gn.At this point it is clear that H0n is identical to Fn, whereas Hnn is identical to Hn. Again, asusual in the hybrid technique, ability to distinguish the extreme hybrids yields ability to distinguisha pair of neighboring hybrids. This ability is further transformed so that contradiction to thepseudorandomness of G is reached. Further details follow.We assume, in contradiction to the theorem, that the function ensemble F is not pseudorandom.It follows that there exists a probabilistic polynomial-time oracle machine, M , and a polynomialp(�) so that for in�nitely many n's�(n) def= jPr[MFn(1n)=1]� Pr[MHn(1n)=1]j > 1p(n)Let t(�) be a polynomial bounding the running time of M(1n) (such a polynomial exists since M ispolynomial-time). It follows that, on input 1n, the oracle machine M makes at most t(n) queries(since the number of queries is clearly bounded by the running time). Using the machine M , weconstruct an algorithm D that distinguishes the t(�)-product of the ensemble fG(Un)gn2N from thet(�)-product of the ensemble fU2ngn2N as follows.Algorithm D: On input �1; :::; �t 2 f0; 1g2n (with t = t(n)), algorithm D proceeds as follows. First,D selects uniformly k 2 f0; 1; :::; n� 1g. This random choice, hereafter called the checkpoint, is theonly random choice made by D itself. Next, algorithm D invokes the oracle machine M (on input1n) and answers M 's queries as follows. The �rst query of machine M , denoted q1, is answered byG�n(� � � (G�k+2(P�k+1(�1))) � � �)where q1 = �1 � � � �n, and P0(�) (resp., P1(�)) denotes the n-bit pre�x of � (resp., the n-bit su�xof �). In addition, algorithm D records this query (i.e., q1). Subsequent queries are answered by�rst checking if their k-bit long pre�x equals the k-bit long pre�x of a previous query. In case thek-bit long pre�x of the current query, denoted qi, is di�erent from the k-bit long pre�xes of allprevious queries, we associate this pre�x a new input string (i.e., �i). Namely, we answer query qiby G�n(� � � (G�k+2(P�k+1(�i))) � � �)where qi = �1 � � � �n. In addition, algorithm D records the current query (i.e., qi). The otherpossibility is that the k-bit long pre�x of the ith query equals the k-bit long pre�x of some previousquery. Let j be the smallest integer so that the k-bit long pre�x of the ith query equals the k-bitlong pre�x of the jth query (by hypothesis j < i). Then, we record the current query (i.e., qi) butanswer it using the string associated with query qj (i.e., the input string �j). Namely, we answerquery qi by G�n(� � � (G�k+2(P�k+1(�j))) � � �)where qi = �1 � � � �n. Finally, when machine M halts, algorithm D halts as well and outputs thesame output as M .Pictorially, algorithm D answers the �rst query by �rst placing the two halves of �1 in thecorresponding children of the tree-vertex reached by following the path from the root correspondingto �1 � � � �k. The labels of all vertices in the subtree corresponding to �1 � � � �k are determined by5

the labels of these two children (as in the construction of F). Subsequent queries are answered byfollowing the corresponding paths from the root. In case the path does not pass through a (k+1)-level vertex that has already a label, we assign this vertex and its sibling a new string (taken fromthe input). For sake of simplicity, in case the path of the ith query requires a new string we use theith input string (rather than the �rst input string not used so far). In case the path of a new querypasses through a (k+1)-level vertex that has been labeled already, we use this label to compute thelabels of subsequent vertices along this path (and in particular the label of the leaf). We stress thatthe algorithm does not compute the labels of all vertices in a subtree corresponding to �1 � � � �k(although these labels are determined by the label of the vertex corresponding to �1 � � � �k), butrather computes only the labels of vertices along the paths corresponding to the queries.Clearly, algorithm D can be implemented in polynomial-time. It is left to evaluate its perfor-mance. The key observation is the correspondence between D's actions on checkpoint k and thehybrids k and k + 1:� When the inputs are taken from the t(n)-product of U2n (and algorithm D chooses k as thecheckpoint), the invoked machine M behaves exactly as on the k + 1st hybrid. This is sobecause D places halves of truly random 2n-bit long strings at level k+1 (which is the sameas placing truly random n-bit long strings at level k + 1).� On the other hand, when the inputs are taken from the t(n)-product of G(Un) (and algorithmD chooses k as the checkpoint) then M behaves exactly as on the kth hybrid. Indeed, D doesnot place the (unknown to it) corresponding seeds (generating these pseudorandom strings)at level k; but putting the two halves of the pseudorandom strings at level k + 1 has exactlythe same e�ect.Thus,Claim 3.6.6.1: Let n be an integer and t def= t(n). Let K be a random variable describing the randomchoice of checkpoint by algorithm D (on input a t-long sequence of 2n-bit long strings). Then forevery k2f0; 1; :::; n � 1gPr hD(G(U (1)n); :::; G(U (t)n))=1 j K=ki = Pr hMHkn(1n)=1iPr hD(U (1)2n ; :::; U (t)2n)=1 j K=ki = Pr hMHk+1n (1n)=1iwhere the U (i)n 's and U (j)2n 's are independent random variables uniformly distributed over f0; 1gnand f0; 1g2n, respectively.The above claim is quite obvious, yet a rigorous proof is more complex than one realizes at �rstglance. The reason being that M 's queries may depend on previous answers it gets, and hencethe correspondence between the inputs of D and possible values assigned to the hybrids is lessobvious than it seems. To illustrate the di�culty consider an N -bit string that is selected by a pairof interactive processes, that proceed in N iterations. At each iteration the �rst party chooses anew location (i.e., an unused i 2 f1; :::; Ng), based on the entire history of the interaction, and thesecond process sets the value of this bit (i.e., the ith bit) by ipping an unbiased coin. It is intuitivelyclear that the resulting string is uniformly distributed, still a proof is required (since randomizedprocesses are subtle objects that often lead to mistakes). In our setting the situation is slightlymore involved. The process of determining the string is terminated after T < N iterations andstatements are made regarding the resulting string that is only partially determined. Consequently,the situation is slightly confusing, and we feel that a detailed argument is required. However, the6

argument provides no additional insights and may be skipped without signi�cant damage (especiallyby readers that are more interested in cryptography than in \probabilistic analysis").Proof of Claim 3.6.6.1: We start by sketching a proof of the claim for the extremely simple casein which M 's queries are the �rst t strings (of length n) in lexicographic order. Let us furtherassume, for simplicity, that on input �1; :::; �t, algorithm D happens to choose checkpoint kso that t = 2k+1. In this case the oracle machine M is invoked on input 1n and access to thefunction fs1;:::;s2k+1 , where s2j�1+� = P�(�j) for every j � 2k and � 2 f0; 1g. Thus, if theinputs to D are uniformly selected in f0; 1g2n then M is invoked with access to the k + 1sthybrid random variable (since in this case the sj 's are independent and uniformly distributedin f0; 1gn). On the other hand, if the inputs to D are distributed as G(Un) then M is invokedwith access to the kth hybrid random variable (since in this case fs1;:::;s2k+1 = fr1;:::;r2k wherethe rj 's are seeds corresponding to the �j 's).For the general case we consider an alternative way of de�ning the random variable Hmn ,for every 0�m�n. This alternative way is somewhat similar to the way in which D answersthe queries of the oracle machine M . (We use the symbol m instead of k, since m does notnecessarily equal the checkpoint (denoted k) chosen by algorithm D.) This way of de�ningHmn consists of the interleaving of two random processes, which together �rst select at random afunction g :f0; 1gm!f0; 1gn, that is later used to determine a function f :f0; 1gn!f0; 1gn. The�rst random process, denoted �, is an arbitrary process (\given to us from the outside"), thatspeci�es points in the domain of g. (The process � corresponds to the queries ofM , whereas thesecond process corresponds to the way A answers these queries.) The second process, denoted , assigns uniformly selected n-bit long strings to every new point speci�ed by �, thus de�ningthe value of g on this point. We stress that in case � speci�es an old point (i.e., a point forwhich g is already de�ned) then the second process does nothing (i.e., the value of g at thispoint is left unchanged). The process � may depend on the history of the two processes, and inparticular on the values chosen for the previous points. When � terminates, the second process(i.e.,) selects random values for the remaining unde�ned points (in case such exist). We stressthat the second process (i.e.,) is �xed for all possible choices of a (\�rst") process �. The restof this paragraph gives a detailed description of the interleaving of the two random processes(and may be skipped). We consider a randomized process � mapping sequences of n-bit strings(representing the history) to single m-bit strings. We stress that � is not necessarily memoryless(and hence may \remember" its previous random choices). Namely, for every �xed sequencev1; :::; vi2f0; 1gn, the random variable �(v1; :::; vi) is (arbitrarily) distributed over f0; 1gm[f?gwhere ? is a special symbol denoting termination. A \random" function g :f0; 1gm!f0; 1gn isde�ned by iterating the process � with the random process de�ned below. Process starts withg that is unde�ned on every point in its domain. At the ith iteration lets pi def= �(v1; :::; vi�1)and, assuming pi 6= ?, sets vi def= vj if pi = pj for some j < i, and lets vi be uniformly distributedin f0; 1gn otherwise. In the latter case (i.e., pi is new and hence g is not yet de�ned on pi), sets g(pi) def= vi (in fact g(pi) = g(pj) = vj = vi also in case pi = pj for some j < i). When �terminates, i.e., �(v1; :::; vT) = ? for some T , process completes the function g (if necessary)by choosing independently and uniformly in f0; 1gn values for the points at which g is unde�nedyet. (Alternatively, we may augment the process � so that it terminates only after specifyingall possible m-bit strings.)Once a function g : f0; 1gm!f0; 1gn is totally de�ned, we de�ne a function fg : f0; 1gn!f0; 1gn by fg(�1�2 � � ��n) def= G�n(� � � (G�m+2(G�m+1(g(�m � � ��1))) � � �)The reader can easily verify that fg equals fg(0m);:::;g(1m) (as de�ned in the hybrid constructionabove). Also, one can easily verify that the above random process (i.e., the interleaving of with any �) yields a function g that is uniformly distributed over the set of all possible functionsmapping m-bit strings to n-bit strings. It follows that the above described random processyields a result (i.e., a function) that is distributed identically to the random variable Hmn .7

Suppose now that the checkpoint chosen byD equals k and thatD's inputs are independentlyand uniformly selected in f0; 1g2n. In this case the way in which D answers the M 's queriescan be viewed as placing independently and uniformly selected n-bit strings as the labels of the(k + 1)-level vertices. It follows that the way in which D answers M 's queries corresponds tothe above described process with m = k + 1 (with M playing the role of � and A playing therole of). Hence, in this case M is invoked with access to the k + 1st hybrid random variable.Suppose, on the other hand, that (again the checkpoint chosen by D equals k and that)D's inputs are independently selected so that each is distributed identically to G(Un). In thiscase the way in which D answers the M 's queries can be viewed as placing independently anduniformly selected n-bit strings as the labels of the k-level vertices. It follows that the wayin which D answers the M 's queries corresponds to the above described process with m = k.Hence, in this case M is invoked with access to the kth hybrid random variable. 2Combining Claim 3.6.6.1 and �(n) = Pr[MH0n(1n)=1]� Pr[MHkn(1n)=1], it follows thatPr hD(G(U (1)n); :::; G(U (t)n))=1i � Pr hD(U (1)2n ; :::; U (t)2n)=1i= 1n n�1Xk=0Pr hMHkn(1n)=1i!� 1n n�1Xk=0Pr hMHk+1n (1n)=1i!= �(n)nwhich, by the contradiction hypothesis is greater than 1n�p(n) , for in�nitely many n's. So it followsthat D (which is probabilistic polynomial-time) distinguishes polynomially many samples of G(Un)from polynomially many samples of U2n. Using Theorem ??, we derive a contradiction to thehypothesis (of the current theorem) that G is a pseudorandom generator, and the current theoremfollows.3.6.3 Applications { A general methodologySharing a pseudorandom function allows parties to determine random-looking values dependingon their current views of the environment (which need not be known a priori). To appreciate thepotential of this tool, one should realize that sharing a pseudorandom function is essentially as goodas being able to agree, on the y, on the association of random values to (on-line) given values,where the latter are taken from a huge set of possible values. We stress that this agreement isachieved without communication and synchronization: Whenever some party needs to associate arandom value to a given value, v 2 f0; 1gn, it will associate it the same random value rv 2 f0; 1gn.As an illustrative example, consider the problem of identifying friend or foe, in which membersof a club sharing some secret wish to be able to identify one another as belonging to the club. Apossible solution is for the club members to share a secret function, de�ned over a huge domain,and prove their membership in the club by answering a random challenge presented to them, withthe value of the secret function evaluated at the challenge. We claim that using a pseudorandomfunction in the role of the secret function guarantees that it is infeasible for an adversary topass as a member, even after conducting polynomially-many interactions with members in whichthe adversary may ask them to reply to challenges of its choice. To prove this claim, considerwhat happens when the secret function is a truly random one. (We stress that this is merely amental experiment, since it is infeasible to share such a huge random object.) In such a case,the random function's values at new points (corresponding to a new challenge that the adversaryshould answer) are uncorrelated to its values at any other point (corresponding to answers the8

adversary has obtained by challenging legitimate members). Thus, the adversary will fail in suchan imaginary situation. It follows that the adversary must also fail in the actual situation (in whichthe secret function is selected from a pseudorandom ensemble), or else we derive a distinguisher ofpseudorandom functions from truly random ones.In general, the following two-step methodology is useful in many cases:1. Design your scheme assuming that all legitimate users share a random function, f :f0; 1gn!f0; 1gn. (The adversaries may be able to obtain, from the legitimate users, the values of f onarguments of their choice, but do not have direct access to f itself.)1 This step culminatesin proving the security of the scheme assuming that f is indeed uniformly chosen among allpossible such functions, while ignoring the question of how such an f can be selected andhandled.2. Construct a real scheme by replacing the random function by a pseudorandom function.Namely, the legitimate users will share a random/secret seed specifying such a pseudorandomfunction, whereas the adversaries do not know the seed. As before, the adversaries may atmost obtain (from the legitimate users) the value of the function at arguments of their choice.Finally, conclude that the real scheme (as presented above) is secure (since otherwise onecould distinguish a pseudorandom function from a truly random one).We stress that the above methodology may be applied only if the legitimate users can share ran-dom/secret information not known to the adversary (e.g., as is the case in private-key encryptionschemes).23.6.4 * GeneralizationsWe present generalizations of the notion of a pseudorandom function, �rst to the case where thefunction is not length preserving, and next to the case where the function is de�ned over the setof all strings. These generalizations o�er greater exibility in using pseudorandom functions inapplications.3.6.4.1 Functions that are not length preservingDeparting from De�nition 3.6.4, we present the following generalization of the notion of a pseudo-random function ensemble.De�nition 3.6.9 (pseudorandom function ensembles { generalization): Let d; r : N!N . We saythat ffs : f0; 1gd(jsj) ! f0; 1gr(jsj)gs2f0;1g�is an e�ciently computable generalized pseudorandom function ensemble (generalized pseudorandomfunction) if the following two conditions hold1. (e�cient evaluation): There exists a polynomial time algorithm that on input s and x 2f0; 1gd(jsj) returns fs(x).1 This is di�erent from the Random Oracle Model, where the adversary has a direct access to a random oracle(that is later \implemented" by a function, the description of which is given also to the adversary).2 In contrast, the Random Oracle Methodology refers to a situation in which the adversary is also given thedescription of the function, which replaces the random oracle to which it has direct access (as discussed in Footnote 1).We warn that, in contrast to the methodology presented in the main text (above), the Random Oracle Methodologyis a heuristics. See further discussion in Section ??. 9

2. (pseudorandomness): For every probabilistic polynomial-time oracle machine M , every poly-nomial p(�) and all su�ciently large n'sjPr[MFn(1n)=1] � Pr[MHn(1n)=1]j < 1p(n)where Fn is a random variable uniformly distributed over the multi-set ffsgs2f0;1gn , and Hnis uniformly distributed among all functions mapping d(n)-bit long strings to r(n)-bit longstrings.Clearly, r : N!N must be upper bounded by a polynomial. De�nition 3.6.4 is obtained as aspecial case (of De�nition 3.6.9) by letting the functions d and r equal the function `. Similarly toConstruction 3.6.5, for any d; r : N!N where r(n) is computable in poly(n)-time from n, we canconstruct general pseudorandom functions using any pseudorandom generator. Speci�cally:Construction 3.6.10 Let G, G0 and G1 be as in Construction 3.6.5. Let d; r : N!N , and letG0 be a deterministic algorithm mapping n-bit long inputs into r(n)-bit outputs. Then, for everys 2 f0; 1gn, we de�ne a function fs :f0; 1gd(n)!f0; 1gr(n) so that for every �1; :::; �d(n)2f0; 1gfs(�1�2 � � � �d(n)) def= G0(G�d(n)(� � � (G�2(G�1(s)) � � �))Construction 3.6.5 is regained from Construction 3.6.10 by letting d(n) = r(n) = n and using theidentity function in role of G0. By extending a little the proof of Theorem 3.6.6, we obtain:Theorem 3.6.11 Let G, G0 and the fs's be as in Construction 3.6.10, and suppose that G isa pseudorandom generator. Further suppose that G0 is polynomial-time computable and that theensemble fG0(Un)gn2N is pseudorandom,3 as de�ned in De�nition ??. Then ffsgs2f0;1g� is ane�ciently computable ensemble of generalized pseudorandom functions.Proof: In case G0 is the identity transformation (and r(n) = n), the proof is almost identical tothe proof of Theorem 3.6.6. To deal with the general case, we use a hybrid argument. Speci�-cally, we use a single intermediate hybrid (i.e., a single hybrid of the function ensemble ffsg and atruly random function): for every n, we consider the (random) function g : f0; 1gd(n) ! f0; 1gr(n)de�ned by letting g(x) = G0(h0(x)), where h0 is uniformly selected among all functions mappingd(n)-bit long strings to n-bit strings. The theorem follows by showing that this hybrid ensem-ble is indistinguishable from both the uniform function ensemble and the function ensemble ofConstruction 3.6.10.Below, we denote by Hn (resp., H 0n) a random variable uniformly distributed over the set ofall functions mapping d(n)-bit long strings to r(n)-bit (resp., n-bit) long strings. Recall that thehybrid distribution, denoted G0 � H 0n, is obtained by functional composition of the �xed functionG0 and the random function distribution H 0n. As usual, Fn denotes a random variable uniformlydistributed over the multi-set ffsgs2f0;1gn .Claim 3.6.11.1: For every probabilistic polynomial-time oracle machine M , every polynomial p(�)and all su�ciently large n'sjPr[MG0�H0n(1n)=1]� Pr[MHn(1n)=1]j < 1p(n)3 In case r(n) > n (for all n's), what we require is that G0 be a pseudorandom generator. But otherwise, thiscannot be required since G0 is not expanding. Still the other features of a pseudorandom generator (i.e., e�cientcomputability and pseudorandomness of the output) are always required here.10

Proof Sketch: Intuitively, an oracle access to G0 � H 0n is equivalent to being given multiple inde-pendent samples from the distribution G0(Un), whereas oracle access to Hn is equivalent to beinggiven multiple independent samples from the distribution Ur(n). Using the pseudorandomness offG0(Un)gn2N, the claim follows.In the actual proof we transform the oracle machine M into an ordinary machine M 0 that getsa sequence of samples, and emulates an execution of M while using its input sequence in order toemulate some related oracle for M . Speci�cally, on input �1; :::; �T , machine M 0 invokes M , andanswers its ith distinct query with �i. (Without loss of generality, one may assume that M neverissues the same query twice.)1. Indeed, on input a sequence of samples from distribution G0(Un), machine M 0 emulates anexecution of MG0�H0n(1n).(The key observation is that the responses of oracle G0 �H 0n to a sequence q1; :::; qt of distinctqueries are G0(sq1); :::; G0(sqt), where the sqi 's are uniformly and independently distributed inf0; 1gn.)2. On the other hand, on input a sequence of samples from distribution Ur(n), machine M 0emulates an execution of MHn(1n).(The key observation is that the responses of oracle Hn to a sequence q1; :::; qt of distinctqueries are uniformly and independently distributed in f0; 1gr(n).)Thus, ifM violates the statement of the claim thenM 0 violates the pseudorandomness of fG0(Un)gn2N,in contradiction to the theorem's hypothesis. 2Claim 3.6.11.2: For every probabilistic polynomial-time oracle machine M , every polynomial p(�)and all su�ciently large n'sjPr[MG0�H0n(1n)=1] � Pr[MFn(1n)=1]j < 1p(n)Proof Sketch: Any function fs (as de�ned in Construction 3.6.10) can be written as fs(x) =G0(f 0s(x)), where f 0s is de�ned byf 0s(�1�2 � � � �d(n)) def= G�d(n)(� � � (G�2(G�1(s)) � � �) (3.1)We have already established above that ff 0sg is a generalized pseudorandom function ensemble (i.e.,f 0s corresponds to the case where G0 is the identity), and so incorporating G0 in the distinguisher {the claim follows.In the actual proof we transform the oracle machineM into an oracle machineM 0 that emulatesM while using its own oracle in order to emulate some related oracle for M . Speci�cally, when Missues a query q, machine M 0 forwards q to its own oracle, applies G0 to the answer that it hasreceived, and forwards the result to M .1. Indeed, when given oracle access to h0, machine M 0 emulates an execution of MG0�h0(1n).(The reason being that, in this case, M 0 responds to query q (made by M) with G0(h0(q)) =(G0 � h0)(q).) Thus, when given oracle access to H 0n, machine M 0 emulates an execution ofMG0�H0n(1n).2. On the other hand, when given oracle access to f 0s, machine M 0 emulates an execution ofMfs(1n). (The reason being that, in this case, M 0 responds to query q (made by M) withG0(f 0s(q)) = fs(q).) Thus, for uniformly selected s 2 f0; 1gn, when given oracle access to f 0s,machine M 0 emulates an execution of MFn(1n).11

Thus, if M violates the statement of the claim then M 0 violates the pseudorandomness of ff 0sg,which contradicts what we have already established. 2Combining Claims 3.6.11.1 and 3.6.11.2, the theorem follows.Comment: One major component of the proof of Theorem 3.6.11 is proving the following propo-sition:Let ff 0s : f0; 1gd(jsj) ! f0; 1gjsjgs2f0;1g� be a generalized pseudorandom function ensem-ble, and G0 as in the theorem's hypothesis. Then, the generalized function ensembleffs : f0; 1gd(jsj) ! f0; 1gr(jsj)gs2f0;1g� , de�ned by fs(x) def= G0(f 0s(x)), is pseudorandom.The proof of Claim 3.6.11.2 actually establishes this proposition, and then applies it to ff 0sgs2f0;1g�as de�ned in Eq. (3.1).3.6.4.2 Functions de�ned on all stringsSo far we have only considered function ensembles in which each function is �nite (i.e., maps a�nite domain to a �nite range). Using such functions requires a-priori knowledge of an upperbound on the length of the inputs to which the function is to be applied. (Shorter inputs canalways be encoded as inputs of some longer and predetermined length.) However, it is preferablenot to require such an a-priori known upper bound (e.g., since such a requirement may rule outsome applications). It is thus useful to have a more exible notion of a pseudorandom functionensemble, allowing to apply individual functions to inputs of varying and a-priori unknown length.Such ensembles are de�ned and constructed next.De�nition 3.6.12 (pseudorandom function ensembles with unbounded inputs): Let r : N!N .We say that ffs : f0; 1g� ! f0; 1gr(jsj)gs2f0;1g�is an e�ciently computable unbounded-input pseudorandom function ensemble (unbounded-inputpseudorandom function) if the following two conditions hold1. (e�cient evaluation): There exists a polynomial time algorithm that on input s and x 2 f0; 1g�returns fs(x).2. (pseudorandomness): For every probabilistic polynomial-time oracle machine M , every poly-nomial p(�) and all su�ciently large n'sjPr[MFn(1n)=1] � Pr[MHn(1n)=1]j < 1p(n)where Fn is a random variable uniformly distributed over the multi-set ffsgs2f0;1gn , and Hnis uniformly distributed4 among all functions mapping arbitrary long strings to r(n)-bit longstrings.4 Since the running-time of M is a-priori bounded by some polynomial, it follows that for some polynomial d andall n's it holds that, on input 1n, machine M makes only queries of length at most d(n). Thus, Hn can be de�ned asthe uniform distribution over all functions mapping strings of length up-to d(n) to r(n)-bit long strings. This resolvethe technical problem of what is meant by a uniform distribution over an in�nite set (i.e., the set of all functionsmapping arbitrary long bit strings to r(n)-bit long strings).12

A few comments regarding De�nition 3.6.12 are in place. Firstly note that the fact that the lengthof the input to fs is not a-priori known raises no problems in Item 1, since the running-time of theevaluating algorithm may depend (polynomially) on the length of the input to fs. Regarding Item 2,the fact that M has a-priori bounded (polynomial) running-time, upper bounds the length of thequeries made to the oracle. The latter fact resolves a technical problem that arises in the abovede�nition (see Footnote 4). In typical applications, one uses r(n) = n (or r(n) that is polynomiallyrelated to n). Another special case of interest is the case where r � 1; that is, of pseudorandomBoolean functions.Similarly to Constructions 3.6.5 and 3.6.10, for any r : N!N so that r(n) is computablein poly(n)-time from n, we can construct unbounded-input pseudorandom functions using anypseudorandom generator. Speci�cally:Construction 3.6.13 Let G be a deterministic algorithm expanding inputs of length n into stringsof length 2n + r(n). We denote by G0(s) the jsj-bit long pre�x of G(s), by G1(s) the next jsj bitsin G(s), and by G2(s) the r(jsj)-bit long su�x of G(s) (i.e., G(s) = G0(s)G1(s)G2(s)). Then, forevery s 2 f0; 1gn, we de�ne a function fs :f0; 1g�!f0; 1gr(n) so that for every non-negative integerd and every �1; :::; �d2f0; 1gfs(�1�2 � � � �d) def= G2(G�d(� � � (G�2(G�1(s)) � � �))Pictorially the function fs is de�ned by walks down an in�nite ternary tree having labels at thevertices. Internal vertices have jsj-bit long labels, and leaves have r(jsj)-bit long labels. The rootof the tree, hereafter referred to as the level 0 vertex of the tree, is labeled by the string s. If aninternal vertex is labeled s0 then its leftmost child is labeled G0(s0), its middle child is labeled G1(s0),and its rightmost child is labeled G2(s0). The �rst two children of each internal vertex are internalvertices, whereas the rightmost child of an internal vertex is a leaf. The value of fs(�1 � � � �d) is thestring residing in the leaf reachable from the root by \following the path �1; :::; �d; 2", when theroot is labeled by s. Again, by extending a little the proof of Theorem 3.6.6, we obtain:Theorem 3.6.14 Let G and the fs's be as in Construction 3.6.13, and suppose that G is a pseu-dorandom generator. Then ffsgs2f0;1g� is an e�ciently computable ensemble of unbounded-inputpseudorandom functions.Proof Sketch: We follow the proof method of Theorem 3.6.6. That is, we use the hybrid technique,where the kth hybrid will be assigned a function that results by uniformly selecting labels for thevertices of the highest k+1 levels of the tree, and computing the labels of lower levels as in Construc-tion 3.6.13. Speci�cally, the kth hybrid is de�ned as equal function fs1;:::;s3k : f0; 1g�!f0; 1gr(n),de�ned below, where s1; :::; s2k 2 f0; 1g2n+r(n) are uniformly and independently distributed.fs1;:::;s3k (�1�2 � � � �d) def= (P2(sidx(2k�d��d����1))) if d � kG2(G�d(� � � (G�k+2(G�k+1(sidx(�k ����1))) � � �)) otherwisewhere idx(�) is the index of � in the standard lexicographic order of ternary strings of length j�j,and P2(�) is the r(n)-bit long su�x of �.Note that (unlike in the proof of Theorem 3.6.6), for every n, there are in�nitely many hy-brids, since here k may be any non-negative integer (rather k 2 f0; 1; :::; ng as in the proof ofTheorem 3.6.6). Still, since we consider an (arbitrary) probabilistic polynomial-time distinguisher,denoted M , there exists a polynomial d so that on input 1n the oracle machine M only makes13

queries of length at most d(n)� 1. Thus, giving M oracle access to the d(n)th hybrid is equivalentto giving M oracle access to the uniform random variable Hn (where Hn is as in De�nition 3.6.12),since a uniformly chosen label is assigned to each i-level leaf for i � d(n). On the other hand,the 0-hybrid corresponds to the random variable Fn (where Fn is as in De�nition 3.6.12), since auniformly chosen label is assigned to the root. Thus, if M can distinguish fFng from fHng then itcan distinguish a (random) pair of neighboring hybrids (i.e., the k � 1st and kth hybrids, where kis uniformly selected in f1; :::; d(n)g). As in the proof of Theorem 3.6.6, the latter assertion can beshown to violate the pseudorandomness of G. Speci�cally, we can distinguish multiple independentsamples taken from the distribution U2n+r(n) and multiple independent samples taken from thedistribution G(Un): Given a sequence of (2n+ r(n))-bit long strings, we use these strings in orderto label vertices in the k+1 highest levels of the tree (by breaking each string into three parts, andusing these parts as labels of the three children of some i � 1st level node, for i � k). In case thestrings are taken from U2n+r(n), we emulate the kth hybrid; whereas, in case the strings are takenfrom G(Un), we emulate the k � 1st hybrid. The theorem follows. 2Comment: Unbounded-input (and generalized) pseudorandom functions can be constructed di-rectly from (ordinary) pseudorandom functions; see Section ??.

14

