How to Construct Pseudorandom Functions
Extracts from Foundations of Cryptography*

Oded Goldreich
Department of Computer Science
Weizmann Institute of Science
Rehovot, ISRAEL.

February 8, 2001

! This is Section 3.6 of the book Foundations of Cryptography. For further details on the book, see webpage
http://www.wisdom.weizmann.ac.il/~oded/foc.html.

3.6 Pseudorandom Functions

In this section we present definitions and constructions for pseudorandom functions (using any
pseudorandom generator as a building block). Pseudorandom functions will be instrumental to
some construction to be presented in Chapters 5 and 6.

Motivation: Recall that pseudorandom generators enable to generate, exchange and share a large
number of pseudorandom values at the cost of a much smaller number of random bits. Specifically,
poly(n) pseudorandom bits can be generated, exchanged and shared at the cost of n (uniformly
chosen bits). Since any efficient application uses only a polynomial number of random values, pro-
viding access to polynomially many pseudorandom entries seems sufficient for any such application.
The latter conclusion is too hasty, since it assumes implicitly that these entries (i.e., the addresses
to be accessed) are fixed beforehand. In some natural applications, one may need to access ad-
dresses that are determined “dynamically” by the application. For example, one may want to assign
random values to (poly(n)-many) n-bit long strings, produced throughout the application, so that
these values can be retrieved at latter time. Using pseudorandom generators the above task can be
achieved at the cost of generating n random bits and storing poly(n) many values. The challenge,
met in this section, is to achieve the above task at the cost of generating only n random bits and
storing only n bits. The key to the solution is the notion of pseudorandom functions. Intuitively,
a pseudorandom function shared by a group of users provides them with a function that appears
random to adversaries (outside of the group).

3.6.1 Definitions

Loosely speaking, pseudorandom functions are functions that cannot be distinguished from truly
random functions by any efficient procedure that can get the value of the function at arguments of
its choice. Hence, the distinguishing procedure may query the function being examined at various
points, depending possibly on previous answers obtained, and yet can not tell whether the answers
were supplied by a function taken from the pseudorandom ensemble (of functions) or from the
uniform ensemble (of function). Indeed, to formalize the notion of pseudorandom functions we
need to consider ensembles of functions. For sake of simplicity, we consider in the sequel ensembles
of length preserving functions, and the reader is encouraged to further simplify the discussion by
setting £(n) = n (below). Generalizations are discussed in Section 3.6.4.

Definition 3.6.1 (function ensembles): Let £ : N—N (e.g., £{(n) =n). An {-bit function ensemble
is a sequence F' = {F,, },en of random variables, so that the random variable F, assumes values in
the set of functions mapping £(n)-bit long strings to £(n)-bit long strings. The uniform {-bit function
ensemble, denoted H = {Hy, }nen, has Hy, uniformly distributed over the set of all functions mapping
£(n)-bit long strings to £(n)-bit long strings.

To formalize the notion of pseudorandom functions we use (probabilistic polynomial-time) oracle
machines (see Section ?77). We stress that our use of the term oracle machine is almost identical
to the standard one. One minor deviation is that the oracle machines we consider have a length
preserving function as oracle rather than a Boolean function (as is more standard in complexity
theory). Furthermore, we assume that on input 1™ the oracle machine only makes queries of length
¢(n). These conventions are not really essential (they merely simplify the exposition a little). We
let M7 denote the execution of the oracle machine M when given access to the oracle f.

Definition 3.6.2 (pseudorandom function ensembles): An (-bit function ensemble, F = {F,, },.cn,
15 called pseudorandom if for every probabilistic polynomial-time oracle machine M, every polyno-
mial p(-) and all sufficiently large n’s

IPr[M (1) =1] — Pr[MH~(1")=1]| < —

where H = {H,,} pen is the £-bit uniform function ensemble.

Using techniques similar to those presented in the proof of Proposition 7?7 (of Subsection ?7),
one can demonstrate the existence of pseudorandom function ensembles that are not statistically
close to the uniform one. However, to be of practical use, we require that the pseudorandom
functions can be efficiently computed. That is, functions in the ensemble should have succinct
representation that supports both selecting them and evaluating them. These aspects are captured
by the following definition, in which I is an algorithm selecting representations of functions (which
are associated to the functions themselves by the mapping ¢).

Definition 3.6.3 (efficiently computable function ensembles): An (-bit function ensemble, F =
{F.}nen, is called efficiently computable if the following two conditions hold

1. (efficient indexing): There exists a probabilistic polynomial time algorithm, I, and a mapping
from strings to functions, ¢, so that ¢(I(1™)) and F,, are identically distributed.

We denote by f; the function assigned to the string i (i.e., f; def #(i)).

2. (efficient evaluation): There exists a polynomial time algorithm, V', so that V (i,z) = fi(x),
for every i in the range of I(1™) and z € {0, 1}“”).

In particular, functions in an efficiently computable function ensemble have relatively succinct
representation (i.e., of polynomial (in n) rather than exponential (in n) length). It follows that
efficiently computable function ensembles may have only exponentially many functions (out of the
double-exponentially many possible functions; assuming £(n) = n).

Another point worthy of stressing is that efficiently computable pseudorandom functions are
efficiently evaluated at given points, provided that the function description is given as well. However,
if the function (or its description) is not known then the value of the function at a point cannot be
approximated (even in a very liberal sense and) even if the values of the function at other points
are also given.

Terminology: In the rest of this book we consider only efficiently computable pseudorandom
function ensembles. Hence, in the sequel, whenever we talk of pseudorandom functions we actually
mean functions chosen at random from an efficiently computable pseudorandom function ensemble.

Observe that, without loss of generality, the sequence of coin tosses used by the indexing algo-
rithm in Definition 3.6.3 can serve as the function’s description. Combining this observation with
Definition 3.6.2 , we obtain the following alternative definition of efficiently computable pseudoran-
dom functions:

Definition 3.6.4 (efficiently computable pseudorandom function ensembles — alternative formu-
lation): A efficiently computable pseudorandom function ensemble (pseudorandom function) is a set
of finite functions

{fs : {Oa 1}Z(|SD - {07 1}“‘5')}56{0,1}*

where £ : N—N and the following two conditions hold

1. (efficient evaluation): There exists a polynomial time algorithm that on input s and v €
{0, 1}40D returns fo(z).

2. (pseudorandomness): The function ensemble F = {F,},en, defined so that F,, is uniformly
distributed over the multi-set { fs}seqo,1yn, 18 pseudorandom.

We comment that more general notions of pseudorandom functions can be defined and constructed
analogously; see Section 3.6.4.
3.6.2 Construction

Using any pseudorandom generator, we construct a (efficiently computable) pseudorandom function
ensemble (for £(n) =n).

Construction 3.6.5 Let G be a deterministic algorithm expanding inputs of length n into strings
of length 2n. We denote by Go(s) the |s|-bit long prefiz of G(s), and by G1(s) the |s|-bit long suffiz
of G(s) (i.e., G(s) = Go(s)G1(s)). For every s € {0,1}", we define a function fs:{0,1}"—{0,1}"
so that for every o1, ...,0, €{0,1}

fs(o1o2- - 00) = Go, (- -+ (Goy (Goy () -)

That is, on input s and x = o109 - - oy, the value fs(x) is computed as follows:

Lety=s. Fori=1ton doy— Gy (y).
Output y.

Let F,, be a random variable defined by uniformly selecting s € {0,1}" and setting F,, = fs. Finally,
let F = {F,}nen be our function ensemble.

Pictorially (see Figure 3.1), the function f, is defined by n-step walks down a full binary tree of
depth n having labels at the vertices. The root of the tree, hereafter referred to as the level 0
vertex of the tree, is labeled by the string s. If an internal vertex is labeled r then its left child
is labeled Gy(r) whereas its right child is labeled G(r). The value of fs(x) is the string residing
in the leaf reachable from the root by a path corresponding to the string . The random variable
F,, is assigned labeled trees corresponding to all possible 2" labelings of the root, with uniform
probability distribution.

A function, operating on n-bit strings, in the ensemble constructed above can be specified by n
bits. Hence, selecting, exchanging and storing such a function can be implemented at the cost of
selecting, exchanging and storing a single n-bit string.

Theorem 3.6.6 Let G and F be as in Construction 3.6.5, and suppose that G s a pseudorandom
generator. Then F s an efficiently computable ensemble of pseudorandom functions.

Combining Theorems ?? and 3.6.6, we immediately get:
Corollary 3.6.7 If there exist one-way functions then pseudorandom functions exist as well.

Also, combining Theorem 3.6.6 with the observation that, for £(n) > log,n, any pseudorandom
function (as in Definition 3.6.4) gives rise to a pseudorandom generator (see Exercise 77), we obtain:

We let sy = s and sqe = G5(54). The value of fs(o102- - 0n) = Sor09-00,
is obtained at the leaf reachable from the root (labeled s) by following the
path oio9 - oy,.

SiSu i

For example, f;(001) = spo1 = G1(s00) = G1(Go(s0)) = G1(Go(Go(s)))-

o

Figure 3.1: Counstruction 3.6.5, for n = 3.

Corollary 3.6.8 Pseudorandom functions (for super-logarithmic €) exist if and only if pseudoran-
dom generators exist.

Proof of Theorem 3.6.6: Clearly, the ensemble F' is efficiently computable. To prove that F is
pseudorandom we use the hybrid technique. The k' hybrid will be assigned a function that results
by uniformly selecting labels for the vertices of the k' (highest) level of the tree and computing the
labels of lower levels as in Construction 3.6.5. The 0-hybrid will correspond to the random variable
F,, (since a uniformly chosen label is assigned to the root), whereas the n-hybrid will correspond
to the uniform random variable H,, (since a uniformly chosen label is assigned to each leaf). It will
be shown that an efficient oracle machine distinguishing neighboring hybrids can be transformed
into an algorithm that distinguishes polynomially many samples of G(U,,) from polynomially many
samples of Uy,. Using Theorem ?7?, we derive a contradiction to the hypothesis (that G is a
pseudorandom generator). Details follows.

For every k, 0 < k < n, we define a hybrid distribution H¥, assigned as values functions f :
{0,1}"™ — {0,1}", as follows. For every si,sy,...,s9¢ € {0,1}", we define a function fy,
{0,1}™—{0,1}" so that

»Sok "

fs1,...,s2k (0102 T) = Gan(o (ng+2(ng+1 (Sidx(ok---m))) o)

where idx(«) is the index of « in the standard lexicographic order of binary strings of length
|a|. Namely, fs, s, (z) is computed by first using the k-bit long prefix of x to determine one
of the s;’s, and next using the (n — k)-bit long suffix of « to determine which of the functions
Go and Gy to apply at each remaining stages (of Construction 3.6.5). The random variable HY is
uniformly distributed over the above (2”)21c possible functions (corresponding to all possible choices

of s1,89,...,89x € {0,1}"). Namely,

where U,sj)’s are independent random variables, each uniformly distributed over {0,1}".

At this point it is clear that H? is identical to F},, whereas H" is identical to H,. Again, as
usual in the hybrid technique, ability to distinguish the extreme hybrids yields ability to distinguish
a pair of neighboring hybrids. This ability is further transformed so that contradiction to the
pseudorandomness of G is reached. Further details follow.

We assume, in contradiction to the theorem, that the function ensemble F is not pseudorandom.
It follows that there exists a probabilistic polynomial-time oracle machine, M, and a polynomial
p(+) so that for infinitely many n’s

A(n) S Pr[M (1) =1] — PrM" (1) =1]] > ——
p(n)
Let t(-) be a polynomial bounding the running time of M (1™) (such a polynomial exists since M is
polynomial-time). It follows that, on input 1", the oracle machine M makes at most t(n) queries
(since the number of queries is clearly bounded by the running time). Using the machine M, we
construct an algorithm D that distinguishes the #(-)-product of the ensemble {G(U,)},en from the
t(-)-product of the ensemble {Us, },en as follows.

Algorithm D: On input as, ..., ap € {0,1}%" (with ¢ = ¢(n)), algorithm D proceeds as follows. First,
D selects uniformly k € {0,1,...,n — 1}. This random choice, hereafter called the checkpoint, is the
only random choice made by D itself. Next, algorithm D invokes the oracle machine M (on input
1™) and answers M’s queries as follows. The first query of machine M, denoted ¢, is answered by

Gon(' e (G0k+2 (P0k+1 (al))) e)

where g1 = o1 -+ 0y, and Py(«) (resp., Pi(«)) denotes the n-bit prefix of « (resp., the n-bit suffix
of). In addition, algorithm D records this query (i.e., g;). Subsequent queries are answered by
first checking if their k-bit long prefix equals the k-bit long prefix of a previous query. In case the
k-bit long prefix of the current query, denoted ¢;, is different from the k-bit long prefixes of all
previous queries, we associate this prefix a new input string (i.e., ;). Namely, we answer query g¢;
by

Pffk+1 (al))) e)

where ¢; = o01---0,. In addition, algorithm D records the current query (i.e., ¢;). The other
possibility is that the k-bit long prefix of the i*" query equals the k-bit long prefix of some previous
query. Let j be the smallest integer so that the k-bit long prefix of the i*" query equals the k-bit
long prefix of the j*" query (by hypothesis j < 7). Then, we record the current query (i.e., ¢;) but
answer it using the string associated with query ¢; (i.e., the input string «;). Namely, we answer

query g; by

ng(. .. (G

Uk+2(

Gdn(' e (G0k+2 (P0k+1 (O[]))) e)

where ¢; = 01 ---0,. Finally, when machine M halts, algorithm D halts as well and outputs the
same output as M.

Pictorially, algorithm D answers the first query by first placing the two halves of oy in the
corresponding children of the tree-vertex reached by following the path from the root corresponding
to o1 -+ - ok. The labels of all vertices in the subtree corresponding to oy --- o are determined by

the labels of these two children (as in the construction of F'). Subsequent queries are answered by
following the corresponding paths from the root. In case the path does not pass through a (k + 1)-
level vertex that has already a label, we assign this vertex and its sibling a new string (taken from
the input). For sake of simplicity, in case the path of the i*® query requires a new string we use the
i*" input string (rather than the first input string not used so far). In case the path of a new query
passes through a (k+ 1)-level vertex that has been labeled already, we use this label to compute the
labels of subsequent vertices along this path (and in particular the label of the leaf). We stress that
the algorithm does not compute the labels of all vertices in a subtree corresponding to i --- o
(although these labels are determined by the label of the vertex corresponding to oj ---oy), but
rather computes only the labels of vertices along the paths corresponding to the queries.

Clearly, algorithm D can be implemented in polynomial-time. It is left to evaluate its perfor-
mance. The key observation is the correspondence between D’s actions on checkpoint k£ and the
hybrids k¥ and k£ + 1:

e When the inputs are taken from the ¢(n)-product of Uy, (and algorithm D chooses k as the
checkpoint), the invoked machine M behaves exactly as on the k + 15* hybrid. This is so
because D places halves of truly random 2n-bit long strings at level k 41 (which is the same
as placing truly random n-bit long strings at level k + 1).

e On the other hand, when the inputs are taken from the ¢(n)-product of G(U,,) (and algorithm
D chooses k as the checkpoint) then M behaves exactly as on the k*" hybrid. Indeed, D does
not place the (unknown to it) corresponding seeds (generating these pseudorandom strings)
at level k; but putting the two halves of the pseudorandom strings at level k£ 4+ 1 has exactly
the same effect.

Thus,

Claim 3.6.6.1: Let n be an integer and ¢ At t(n). Let K be a random variable describing the random
choice of checkpoint by algorithm D (on input a t-long sequence of 2n-bit long strings). Then for
every k€{0,1,...,n — 1}

Pr [DGWUDY), ... GUM) =1 | K=k = Pr|[Mi(am)=1]
Pr[D(US), .. U =1| K=k] = Pr[M™" (1) =1]

(), (

where the Uy ’’s and Uzi)’s are independent random variables uniformly distributed over {0,1}"
and {0,1}%", respectively.

The above claim is quite obvious, yet a rigorous proof is more complex than one realizes at first
glance. The reason being that M’s queries may depend on previous answers it gets, and hence
the correspondence between the inputs of D and possible values assigned to the hybrids is less
obvious than it seems. To illustrate the difficulty consider an /N-bit string that is selected by a pair
of interactive processes, that proceed in N iterations. At each iteration the first party chooses a
new location (i.e., an unused 7 € {1,...,N}), based on the entire history of the interaction, and the
second process sets the value of this bit (i.e., the i*" bit) by flipping an unbiased coin. It is intuitively
clear that the resulting string is uniformly distributed, still a proof is required (since randomized
processes are subtle objects that often lead to mistakes). In our setting the situation is slightly
more involved. The process of determining the string is terminated after 7" < N iterations and
statements are made regarding the resulting string that is only partially determined. Consequently,
the situation is slightly confusing, and we feel that a detailed argument is required. However, the

argument provides no additional insights and may be skipped without significant damage (especially
by readers that are more interested in cryptography than in “probabilistic analysis”).

Proof of Claim 3.6.6.1: We start by sketching a proof of the claim for the extremely simple case
in which M’s queries are the first ¢ strings (of length n) in lexicographic order. Let us further
assume, for simplicity, that on input «i, ..., a4, algorithm D happens to choose checkpoint &
so that ¢ = 2¥*!. In this case the oracle machine M is invoked on input 1™ and access to the
function f517.,,732k+1, where s2; 11, = Py(a;) for every j < 2% and o € {0,1}. Thus, if the
inputs to D are uniformly selected in {0,1}?>" then M is invoked with access to the k + 1%
hybrid random variable (since in this case the s;’s are independent and uniformly distributed
in {0,1}"). On the other hand, if the inputs to D are distributed as G(U,,) then M is invoked
with access to the k** hybrid random variable (since in this case fs,.. s = fri,...,r,, Where
the r;’s are seeds corresponding to the a;’s). ’

For the general case we consider an alternative way of defining the random variable H]",
for every 0 <m <mn. This alternative way is somewhat similar to the way in which D answers
the queries of the oracle machine M. (We use the symbol m instead of k, since m does not
necessarily equal the checkpoint (denoted k) chosen by algorithm D.) This way of defining
H'" consists of the interleaving of two random processes, which together first select at random a
function ¢g:{0,1}"™— {0, 1}", that is later used to determine a function f:{0,1}™—{0,1}". The
first random process, denoted p, is an arbitrary process (“given to us from the outside”), that
specifies points in the domain of g. (The process p corresponds to the queries of M, whereas the
second process corresponds to the way A answers these queries.) The second process, denoted
¥, assigns uniformly selected n-bit long strings to every new point specified by p, thus defining
the value of g on this point. We stress that in case p specifies an old point (i.e., a point for
which ¢ is already defined) then the second process does nothing (i.e., the value of g at this
point is left unchanged). The process p may depend on the history of the two processes, and in
particular on the values chosen for the previous points. When p terminates, the second process
(i.e., ¥) selects random values for the remaining undefined points (in case such exist). We stress
that the second process (i.e., 1) is fixed for all possible choices of a (“first”) process p. The rest
of this paragraph gives a detailed description of the interleaving of the two random processes
(and may be skipped). We consider a randomized process p mapping sequences of n-bit strings
(representing the history) to single m-bit strings. We stress that p is not necessarily memoryless
(and hence may “remember” its previous random choices). Namely, for every fixed sequence
V1, ..., 0; €{0,1}", the random variable p(vy, ..., v;) is (arbitrarily) distributed over {0,1}™U{L}
where L is a special symbol denoting termination. A “random” function ¢:{0,1}™—{0,1}" is
defined by iterating the process p with the random process 1 defined below. Process v starts with

ok+1

g that is undefined on every point in its domain. At the i*" iteration 1 lets p; def p(v1, .., vi—1)

and, assuming p; # L, sets v; def v; if p; = p; for some j < 7, and lets v; be uniformly distributed
in {0,1}" otherwise. In the latter case (i.e., p; is new and hence g is not yet defined on p;),
P sets g(p;) ST (in fact g(p:) =g(p;) =v; =v; also in case p; = p; for some j <i). When p
terminates, i.e., p(vy,...,vp) = L for some T', process ¢ completes the function ¢ (if necessary)
by choosing independently and uniformly in {0, 1}™ values for the points at which ¢ is undefined
yet. (Alternatively, we may augment the process p so that it terminates only after specifying
all possible m-bit strings.)

Once a function g:{0,1}™ — {0,1}" is totally defined, we define a function f9:{0,1}" —
{0,1}™ by

J9(0102+-0) € Go, (- (Gaia (G (9(0m - 01))))

The reader can easily verify that f9 equals fyom),... g(1m) (as defined in the hybrid construction
above). Also, one can easily verify that the above random process (i.e., the interleaving of
with any p) yields a function g that is uniformly distributed over the set of all possible functions
mapping m-bit strings to n-bit strings. It follows that the above described random process
yields a result (i.e., a function) that is distributed identically to the random variable H".

Suppose now that the checkpoint chosen by D equals k£ and that D’s inputs are independently
and uniformly selected in {0,1}?". In this case the way in which D answers the M’s queries
can be viewed as placing independently and uniformly selected n-bit strings as the labels of the
(k + 1)-level vertices. It follows that the way in which D answers M’s queries corresponds to
the above described process with m = k + 1 (with M playing the role of p and A playing the
role of). Hence, in this case M is invoked with access to the k + 1°* hybrid random variable.

Suppose, on the other hand, that (again the checkpoint chosen by D equals k and that)
D’s inputs are independently selected so that each is distributed identically to G(U,). In this
case the way in which D answers the M’s queries can be viewed as placing independently and
uniformly selected n-bit strings as the labels of the k-level vertices. It follows that the way
in which D answers the M’s queries corresponds to the above described process with m = k.
Hence, in this case M is invoked with access to the k*" hybrid random variable. O

Combining Claim 3.6.6.1 and A(n) = Pr[M*n(1")=1] — Pr[M = (1")=1], it follows that

Pr[D(GWUY), .., G(UM) =1] = Pr DY), ..., U5 =1]

_ (lnzlpr [MHﬁ(ln):1]> _ (lnzl Pr [MH,'Hl(ln):l])
e " k=0

A(n)

n

which, by the contradiction hypothesis is greater than #(n), for infinitely many n’s. So it follows

that D (which is probabilistic polynomial-time) distinguishes polynomially many samples of G(Uy,,)
from polynomially many samples of Usy,. Using Theorem 7?7, we derive a contradiction to the
hypothesis (of the current theorem) that G is a pseudorandom generator, and the current theorem
follows.

3.6.3 Applications — A general methodology

Sharing a pseudorandom function allows parties to determine random-looking values depending
on their current views of the environment (which need not be known a priori). To appreciate the
potential of this tool, one should realize that sharing a pseudorandom function is essentially as good
as being able to agree, on the fly, on the association of random values to (on-line) given values,
where the latter are taken from a huge set of possible values. We stress that this agreement is
achieved without communication and synchronization: Whenever some party needs to associate a
random value to a given value, v € {0,1}", it will associate it the same random value r, € {0,1}".

As an illustrative example, consider the problem of identifying friend or foe, in which members
of a club sharing some secret wish to be able to identify one another as belonging to the club. A
possible solution is for the club members to share a secret function, defined over a huge domain,
and prove their membership in the club by answering a random challenge presented to them, with
the value of the secret function evaluated at the challenge. We claim that using a pseudorandom
function in the role of the secret function guarantees that it is infeasible for an adversary to
pass as a member, even after conducting polynomially-many interactions with members in which
the adversary may ask them to reply to challenges of its choice. To prove this claim, consider
what happens when the secret function is a truly random one. (We stress that this is merely a
mental experiment, since it is infeasible to share such a huge random object.) In such a case,
the random function’s values at new points (corresponding to a new challenge that the adversary
should answer) are uncorrelated to its values at any other point (corresponding to answers the

adversary has obtained by challenging legitimate members). Thus, the adversary will fail in such
an imaginary situation. It follows that the adversary must also fail in the actual situation (in which
the secret function is selected from a pseudorandom ensemble), or else we derive a distinguisher of
pseudorandom functions from truly random ones.

In general, the following two-step methodology is useful in many cases:

1. Design your scheme assuming that all legitimate users share a random function, f:{0,1}" —
{0,1}™. (The adversaries may be able to obtain, from the legitimate users, the values of f on
arguments of their choice, but do not have direct access to f itself.)! This step culminates
in proving the security of the scheme assuming that f is indeed uniformly chosen among all
possible such functions, while ignoring the question of how such an f can be selected and
handled.

2. Construct a real scheme by replacing the random function by a pseudorandom function.
Namely, the legitimate users will share a random/secret seed specifying such a pseudorandom
function, whereas the adversaries do not know the seed. As before, the adversaries may at
most obtain (from the legitimate users) the value of the function at arguments of their choice.
Finally, conclude that the real scheme (as presented above) is secure (since otherwise one
could distinguish a pseudorandom function from a truly random one).

We stress that the above methodology may be applied only if the legitimate users can share ran-
dom/secret information not known to the adversary (e.g., as is the case in private-key encryption
schemes).?

3.6.4 * Generalizations

We present generalizations of the notion of a pseudorandom function, first to the case where the
function is not length preserving, and next to the case where the function is defined over the set
of all strings. These generalizations offer greater flexibility in using pseudorandom functions in
applications.

3.6.4.1 Functions that are not length preserving

Departing from Definition 3.6.4, we present the following generalization of the notion of a pseudo-
random function ensemble.

Definition 3.6.9 (pseudorandom function ensembles — generalization): Let d,r : N—N. We say
that

{fs 40, 13900 — f0, 130D} o 4

is an efficiently computable generalized pseudorandom function ensemble (generalized pseudorandom
function) if the following two conditions hold

1. (efficient evaluation): There exists a polynomial time algorithm that on input s and v €
{0, 1}40D) returns fo(zx).

! This is different from the Random Oracle Model, where the adversary has a direct access to a random oracle
(that is later “implemented” by a function, the description of which is given also to the adversary).

% In contrast, the Random Oracle Methodology refers to a situation in which the adversary is also given the
description of the function, which replaces the random oracle to which it has direct access (as discussed in Footnote 1).
We warn that, in contrast to the methodology presented in the main text (above), the Random Oracle Methodology
is a heuristics. See further discussion in Section 77.

2. (pseudorandomness): For every probabilistic polynomial-time oracle machine M, every poly-
nomial p(+) and all sufficiently large n’s

1
Pr(M*(1")=1] — PriM " (1")=1]| < —
PriM ™ (1) =1] = Pr[M ™" (1") =1]| o)
where Fy 1s a random variable uniformly distributed over the multi-set {fs}se{071}n, and Hy,
is uniformly distributed among all functions mapping d(n)-bit long strings to r(n)-bit long
strings.

Clearly, » : N—N must be upper bounded by a polynomial. Definition 3.6.4 is obtained as a
special case (of Definition 3.6.9) by letting the functions d and r equal the function ¢. Similarly to
Construction 3.6.5, for any d,r : N—N where r(n) is computable in poly(n)-time from n, we can
construct general pseudorandom functions using any pseudorandom generator. Specifically:

Construction 3.6.10 Let G, Gy and Gy be as in Construction 3.6.5. Let d,r : N—N, and let
G’ be a deterministic algorithm mapping n-bit long inputs into r(n)-bit outputs. Then, for every
s € {0,11", we define a function fy:{0,1}%") —{0,1}"(") so that for every oy, e T4(n) €10, 1}

def

f5(0102 T Ud(n)) = G,(Gad(n)(' e (GUQ(GM (5)) t))

Construction 3.6.5 is regained from Construction 3.6.10 by letting d(n) = r(n) = n and using the
identity function in role of G'. By extending a little the proof of Theorem 3.6.6, we obtain:

Theorem 3.6.11 Let G, G’ and the fs’s be as in Construction 3.6.10, and suppose that G is
a pseudorandom generator. Further suppose that G' is polynomial-time computable and that the
ensemble {G'(Uy)}nen is pseudorandom,® as defined in Definition 7?7. Then {fstseqo,1y- 18 an
efficiently computable ensemble of generalized pseudorandom functions.

Proof: In case G' is the identity transformation (and r(n) = n), the proof is almost identical to
the proof of Theorem 3.6.6. To deal with the general case, we use a hybrid argument. Specifi-
cally, we use a single intermediate hybrid (i.e., a single hybrid of the function ensemble {f;} and a
truly random function): for every n, we consider the (random) function g : {0,1}4 ™ — {0,1}"(®)
defined by letting g(z) = G'(h/(x)), where h' is uniformly selected among all functions mapping
d(n)-bit long strings to n-bit strings. The theorem follows by showing that this hybrid ensem-
ble is indistinguishable from both the uniform function ensemble and the function ensemble of
Construction 3.6.10.

Below, we denote by H,, (resp., H!)) a random variable uniformly distributed over the set of
all functions mapping d(n)-bit long strings to r(n)-bit (resp., n-bit) long strings. Recall that the
hybrid distribution, denoted G’ o H},, is obtained by functional composition of the fixed function
G’ and the random function distribution H. As usual, F,, denotes a random variable uniformly
distributed over the multi-set {fs}scq0,1)n-

Claim 3.6.11.1: For every probabilistic polynomial-time oracle machine M, every polynomial p(-)
and all sufficiently large n’s
! 1 1
IPr[ME e (1) =1] — Pr[M (1") =1]| < ——
p(n)

% In case 7(n) > n (for all n’s), what we require is that G’ be a pseudorandom generator. But otherwise, this
cannot be required since G’ is not expanding. Still the other features of a pseudorandom generator (i.e., efficient
computability and pseudorandomness of the output) are always required here.

10

Proof Sketch: Intuitively, an oracle access to G' o H], is equivalent to being given multiple inde-
pendent samples from the distribution G’(U,,), whereas oracle access to H,, is equivalent to being
given multiple independent samples from the distribution U,(,). Using the pseudorandomness of
{G"(Up) }nen, the claim follows.

In the actual proof we transform the oracle machine M into an ordinary machine M’ that gets
a sequence of samples, and emulates an execution of M while using its input sequence in order to
emulate some related oracle for M. Specifically, on input a1, ..., @y, machine M’ invokes M, and
answers its i'! distinct query with a;. (Without loss of generality, one may assume that M never
issues the same query twice.)

1. Indeed, on input a sequence of samples from distribution G’(U,,), machine M’ emulates an
execution of MC °Hn(1™).
(The key observation is that the responses of oracle G' o H to a sequence gy, ..., ¢; of distinct
queries are G'(sq,), ..., G'(sq,), where the s¢,’s are uniformly and independently distributed in

{0,13".)

2. On the other hand, on input a sequence of samples from distribution U, ,), machine M’
emulates an execution of M= (1").

(The key observation is that the responses of oracle H,, to a sequence ¢i,...,q; of distinct
queries are uniformly and independently distributed in {0,1}7(").)

Thus, if M violates the statement of the claim then M’ violates the pseudorandomness of {G'(Up,) }nen,
in contradiction to the theorem’s hypothesis. O

Claim 3.6.11.2: For every probabilistic polynomial-time oracle machine M, every polynomial p(-)
and all sufficiently large n’s

! !].
PriA@oHn (1) =1] — PriM '™ (1") =1]| < —
|Pr| (1")=1] = PriM™" (1) =1]] o)
Proof Sketch: Any function fs (as defined in Construction 3.6.10) can be written as fs(z) =
G'(fl(x)), where f! is defined by

1102 0au) S Gy -+ (Goy (G (5))) (3.1)
We have already established above that {f!} is a generalized pseudorandom function ensemble (i.e.,
fL corresponds to the case where G’ is the identity), and so incorporating G’ in the distinguisher —
the claim follows.
In the actual proof we transform the oracle machine M into an oracle machine M’ that emulates
M while using its own oracle in order to emulate some related oracle for M. Specifically, when M
issues a query ¢, machine M’ forwards ¢ to its own oracle, applies G’ to the answer that it has
received, and forwards the result to M.

1. Indeed, when given oracle access to h', machine M’ emulates an execution of MM (17).
(The reason being that, in this case, M’ responds to query ¢ (made by M) with G'(h'(q)) =
(G" o h')(q).) Thus, when given oracle access to H/,, machine M’ emulates an execution of
MG’OH:L(]_n)‘

2. On the other hand, when given oracle access to f!, machine M’ emulates an execution of
M7s(1™). (The reason being that, in this case, M’ responds to query ¢ (made by M) with
G'(fl(q)) = fs(¢).) Thus, for uniformly selected s € {0,1}", when given oracle access to f!,
machine M’ emulates an execution of M= (17).

11

Thus, if M violates the statement of the claim then M’ violates the pseudorandomness of {f!},
which contradicts what we have already established. O

Combining Claims 3.6.11.1 and 3.6.11.2, the theorem follows. [

Comment: One major component of the proof of Theorem 3.6.11 is proving the following propo-
sition:

Let {f!: {0,1}4sh) — {0, 1}|5‘}SE{071}* be a generalized pseudorandom function ensem-

ble, and G' as in the theorem’s hypothesis. Then, the generalized function ensemble

{fs £ 0,390 — {0,137 DY o1y, defined by fo(z) =

The proof of Claim 3.6.11.2 actually establishes this proposition, and then applies it to { fg}scqo,1}+
as defined in Eq. (3.1).

G'(fi(x)), is pseudorandom.

3.6.4.2 Functions defined on all strings

So far we have only considered function ensembles in which each function is finite (i.e., maps a
finite domain to a finite range). Using such functions requires a-priori knowledge of an upper
bound on the length of the inputs to which the function is to be applied. (Shorter inputs can
always be encoded as inputs of some longer and predetermined length.) However, it is preferable
not to require such an a-priori known upper bound (e.g., since such a requirement may rule out
some applications). It is thus useful to have a more flexible notion of a pseudorandom function
ensemble, allowing to apply individual functions to inputs of varying and a-priori unknown length.
Such ensembles are defined and constructed next.

Definition 3.6.12 (pseudorandom function ensembles with unbounded inputs): Let r : N—N.
We say that

{fs:{0,13* = {0,170V} g 13-

is an efficiently computable unbounded-input pseudorandom function ensemble (unbounded-input
pseudorandom function) if the following two conditions hold

1. (efficient evaluation): There ezists a polynomial time algorithm that on input s and x € {0,1}*
returns fs(x).

2. (pseudorandomness): For every probabilistic polynomial-time oracle machine M, every poly-
nomial p(-) and all sufficiently large n’s

|Pr[M = (1")=1] — Pr[M = (1")=1]| < —
where F,, is a random variable uniformly distributed over the multi-set {fs}se{071}n, and H,

is uniformly distributed* among all functions mapping arbitrary long strings to r(n)-bit long
strings.

* Since the running-time of M is a-priori bounded by some polynomial, it follows that for some polynomial d and
all n’s it holds that, on input 1", machine M makes only queries of length at most d(n). Thus, H, can be defined as
the uniform distribution over all functions mapping strings of length up-to d(n) to 7(n)-bit long strings. This resolve
the technical problem of what is meant by a uniform distribution over an infinite set (i.e., the set of all functions
mapping arbitrary long bit strings to r(n)-bit long strings).

12

A few comments regarding Definition 3.6.12 are in place. Firstly note that the fact that the length
of the input to fs is not a-priori known raises no problems in Item 1, since the running-time of the
evaluating algorithm may depend (polynomially) on the length of the input to f;. Regarding Item 2,
the fact that M has a-priori bounded (polynomial) running-time, upper bounds the length of the
queries made to the oracle. The latter fact resolves a technical problem that arises in the above
definition (see Footnote 4). In typical applications, one uses 7(n) = n (or r(n) that is polynomially
related to n). Another special case of interest is the case where r = 1; that is, of pseudorandom
Boolean functions.

Similarly to Constructions 3.6.5 and 3.6.10, for any r : N—N so that r(n) is computable
in poly(n)-time from n, we can construct unbounded-input pseudorandom functions using any
pseudorandom generator. Specifically:

Construction 3.6.13 Let G be a deterministic algorithm expanding inputs of length n into strings
of length 2n + r(n). We denote by Gy(s) the |s|-bit long prefix of G(s), by Gi(s) the next |s| bits
in G(s), and by Ga(s) the r(|s|)-bit long suffiz of G(s) (i.e., G(s) = Go(s)G1(s)Ga(s)). Then, for
every s € {0,1}", we define a function f:{0,1}* —{0,1}7() so that for every non-negative integer
d and every oy,...,04€{0,1}

fo(o102 -+ 04) € Ga(Goy(- (Goy(Goy (5)))

Pictorially the function fs is defined by walks down an infinite ternary tree having labels at the
vertices. Internal vertices have |s|-bit long labels, and leaves have r(|s|)-bit long labels. The root
of the tree, hereafter referred to as the level 0 vertex of the tree, is labeled by the string s. If an
internal vertex is labeled s’ then its leftmost child is labeled Gy(s'), its middle child is labeled G (),
and its rightmost child is labeled Ga(s’). The first two children of each internal vertex are internal
vertices, whereas the rightmost child of an internal vertex is a leaf. The value of fy(oy---0q4) is the
string residing in the leaf reachable from the root by “following the path oy, ...,04,2”, when the
root is labeled by s. Again, by extending a little the proof of Theorem 3.6.6, we obtain:

Theorem 3.6.14 Let G and the fs’s be as in Construction 3.6.13, and suppose that G is a pseu-
dorandom generator. Then {fs}se{o,l}* s an efficiently computable ensemble of unbounded-input
pseudorandom functions.

Proof Sketch: We follow the proof method of Theorem 3.6.6. That is, we use the hybrid technique,
where the k" hybrid will be assigned a function that results by uniformly selecting labels for the
vertices of the highest k41 levels of the tree, and computing the labels of lower levels as in Construc-
tion 3.6.13. Specifically, the &*® hybrid is defined as equal function fs1,. :{0,1}* — {0, 1}T(”),

defined below, where sq, ..., sor € {0,1}2*17(") are uniformly and independently distributed.

o def PQ(SidX(Qk—d.g—d...g—l))) ifd <k
fsl,...,sgk (0'10'2 Ud) { G2(ng(. .. (G0k+2 (G0k+1 (Sidx((rk---tfl))) ..)) otherwise

..,S3k

where idx(«) is the index of « in the standard lexicographic order of ternary strings of length |a|,
and P,() is the r(n)-bit long suffix of £.

Note that (unlike in the proof of Theorem 3.6.6), for every m, there are infinitely many hy-
brids, since here k£ may be any non-negative integer (rather £ € {0,1,...,n} as in the proof of
Theorem 3.6.6). Still, since we consider an (arbitrary) probabilistic polynomial-time distinguisher,
denoted M, there exists a polynomial d so that on input 1™ the oracle machine M only makes

13

queries of length at most d(n) — 1. Thus, giving M oracle access to the d(n)*™™ hybrid is equivalent
to giving M oracle access to the uniform random variable H,, (where H,, is as in Definition 3.6.12),
since a uniformly chosen label is assigned to each i-level leaf for i < d(n). On the other hand,
the 0-hybrid corresponds to the random variable F;, (where F), is as in Definition 3.6.12), since a
uniformly chosen label is assigned to the root. Thus, if M can distinguish {F},} from {H,} then it
can distinguish a (random) pair of neighboring hybrids (i.e., the & — 1" and k' hybrids, where k
is uniformly selected in {1,...,d(n)}). As in the proof of Theorem 3.6.6, the latter assertion can be
shown to violate the pseudorandomness of G. Specifically, we can distinguish multiple independent
samples taken from the distribution Uy, () and multiple independent samples taken from the
distribution G(U,): Given a sequence of (2n + r(n))-bit long strings, we use these strings in order
to label vertices in the k+ 1 highest levels of the tree (by breaking each string into three parts, and
using these parts as labels of the three children of some i — 1°* level node, for i < k). In case the
strings are taken from Uy, (), we emulate the k™™ hybrid; whereas, in case the strings are taken
from G(U,), we emulate the & — 15" hybrid. The theorem follows. O

Comment: Unbounded-input (and generalized) pseudorandom functions can be constructed di-
rectly from (ordinary) pseudorandom functions; see Section ?7.

14

