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function F (x) applies the weak one-way f tostrings of length �(jxj). Our security pre-serving constructions yield e�cient pseudo-random generators and signatures based onany regular one-way function.1 IntroductionA central problem in the foundations of cryp-tography and other �elds is that of relatingvarious basic concepts and primitives such asone-way functions [Di�e, Hellman 76] pseudorandom generators [Blum Micali 82, Yao 82]and signature schemes [Goldwasser MicaliYao 83]. Recently, [Hastad Impagliazzo LevinLuby 90] and [Rompel 90], demonstrated theequivalence of these notions1. However, theconstructions used in these proofs are imprac-tical and yield an equivalence only in a weaksense to be discussed below. We attempt hereto present e�cient constructions which yielda strong equivalence.For simplicity, we continue the discussionwith respect to one-way permutations (i.e.,1See also [Levin 87, Goldreich Krawczyk Luby 88,Goldreich Levin 89] for constructing pseudo randomgenerators from one-way functions, and [GoldwasserMicali Rivest 84, Goldreich 87, Merkle 87, BellareMicali 88, Naor Yung 89] for signature schemes.1



length preserving 1-1 functions), though ourresults hold for a broader class.A polynomial-time computable permuta-tion is called weakly one-way if it is \infeasi-ble" to invert it on some polynomial fractionof its range (so the permutation may be easyto invert almost always). Such a permutationis called strongly one-way if it is \infeasible"to invert it on all but a negligible fractionof its range. [Yao 82] showed that these twonotions are equivalent, if \infeasible" meansnon-polynomial time. For this reason manypapers make no distinction between these twonotions. However, such an equivalence allowschanges in the degree of infeasibility by morethan any polynomial. Say, f is hard to in-vert on 1=n3 of the strings of length n. ThenF (x1; :::; xn4) = f(x1) � � � � � f(xn4) (wherejxij = n) is strongly one-way (proving thisis easy, but not trivial, see [Goldreich 89,pp. 20-24]). However, the di�culty of invert-ing F on inputs of length n5 is comparableto the di�culty of inverting f on inputs oflength n (not n5)! In this sense the equiva-lence is weak. This construction allows theresulting function be inverted by exhaustivesearch over smaller pieces for reasonable in-put lengths. In practical terms, this meansthat F is hard to invert only on huge (im-practical) inputs.Several di�erent resources determine thee�ciency of a one-way function. Of obvi-ous importance is its running time. How-ever, often the lengths of the inputs and out-puts needed to achieve this level of securityare of equal importance. The bottleneck incryptographic protocols is often memory orcommunication costs, rather than computa-tion costs. Consider a private-key encryptionsystem which uses a pseudo-random gener-ator. The two parties agree on a seed forthe generator in private, and use the pseudo-

random string generated from this seed as aone-time pad to send secret messages over apublic channel. Here, private communicationis at a premium; computation is only of sec-ondary importance. Even a relatively smallincrease in the input length can cause dra-matic problems here. Just to be immune fromattack by exhaustive search, at least 50 bits ofinput must be used. Using Yao's method on aweak 1n one-way function, 125,000 bits wouldbe required to achieve this minimal level of se-curity. Since fewer bits of message will likelybe sent between the parties, they might aswell agree on a truly random one-time padand not use any cryptography.Another situation with both input and out-put lengths crucial is in protocols (say, forzero-knowledge) which use one-way permu-tations for bit commitment. Here, each bitcommitted to might require sending the valueof the one-way function on a random input,and later revealing the input. Since the num-ber of bits committed during the protocolmight be large, the communication cost ofone commitment is very important. Our con-structions of strong one-way functions fromweak ones dramatically improves the lengthsinvolved to achieve a given level of securitywithout a�ecting the running time.This discussion can be further clari�ed byspecifying a lower bound (called security) onthe time considered infeasible2. [Yao 82]2Polynomial time is an excellent formalization offeasibility: high degree polynomials are rare and un-likely to be the intrinsic complexity of fundamen-tal problems. But super-polynomial time is an un-reasonable notion of infeasibility. Say, k(ln ln k)=3 isquite simple and may be the intrinsic complexity of afundamental problem (like primality). While super-polynomial, it is less than k2, for k up to the num-ber of particles in the Universe. Reductions shouldpreserve the security within a polynomial overheadrather than just preserve its super-polynomiality.2



transforms a weakly one-way f with securitys(n), into a strong one-way function F withsecurity s(n"), 0<"<1, which is smaller thanany constant power of s.Our main result gets a strong one-way per-mutation with security s(n)=nO(1) out of anyweak one-way permutation with comparablesecurity s(n + O(log s(n))). The result ex-tends to regular one-way functions (de�nedin Section 5). Our simple techniques yielde�cient pseudo random generators and sig-nature schemes from any regular one-wayfunction. Only ine�cient constructions wereknown before.We use random walks on expanders, as in[Ajtai Komlos Szemeredi 87, Cohen Wigder-son 89, Impagliazzo Zuckerman 89], andhence rely on their explicit constructions (see[Margulis 73, Gabber Galil 81, Lubotsky Sar-nak Philips 86]). Expanders have foundapplications in many concrete algorithms.[Levin 88] noticed that expanders yield gen-eral results in the theory of computation aswell. This paper provides further evidence ofthis.2 ResultsDe�nition 1 (one-wayness) : A polyno-mial time computable function f is �(n)-one-way (OW) with security s(n) if every random-ized algorithm inverts f in time t(jxj)jxjO(1)on fraction < 1��+ t=s of inputs f(x) andinternal coin ips. Security is strict if the de-gree of the above polynomial nO(1) is �xed(normally to 0).Taking the fraction � of hard instances asn�O(1); 1=2, or 1, we get weak, frequent orstrong OW, respectively.Security reects the time required to verifyby sampling the frequency of hard instances.

Since we ignore polynomial factors in the def-inition of security, the underlying machinemodel is not crucial.Permutations are length preserving 1-1(one-to-one) functions.We call s(n) and s(n)�(1) comparable. Wetake the security function to be monotoneand smooth: s(n+1) = O(s(n)) or s(2n) =s(n)O(1). Then, s(n) is the same security ass(n + O(log n)) and comparable to s(�(n)).These smoothness conditions are unnecessarybut natural and simplify the statement of ourmain results:Theorem 1 (weak!frequent): For anyn�O(1)-OW permutation f , there exists a 1=2-OW permutation F with the same security.Theorem 2 (frequent!strong): For any1=2-OW permutation f with security s(n) =s0(n + 10 log s(n)), there exists a 1-OW per-mutation with security s0(n).Note that for non-increasing log s(n)=pn,s(n+O(log s(n))) = O(s(n)).We generalize the above result to reg-ular one-way functions used in [GoldreichKrawczyk Luby 88] for constructing pseudo-random generators. Many known candidatesfor one-way functions are regular: each pointin the range of the function has the samenumber of inverses.If a property holds for all except�1=s frac-tion of instances, we say it holds almost every-where (abbreviated a.e.). We relax the de�ni-tion of regular functions: one-way f is regularif there is a polynomial time computable up-perbound m(x) such that jf�1(f(x))j � 2m(x)a.e. and jf�1(f(x))j � 2m(x)=s(jxj)o(1), on apolynomial fraction of hard-instances3.3There is an optimal (within constant factor) in-version algorithm and hard-instances are those onwhich it runs slowly. (See [Levin 85])3



Let Hn;m denote a class of universal hashfunctions [Carter, Wegman 79] mapping n-bit strings into m-bit strings. It is impor-tant for our use that each h 2 Hn;m has adescription (denoted h) of length O(n + m)and h(x) is polynomial time computable oninput h and x. An example of such a classis the set of all m-by-n Toeplitz matrices onGF (2) (a Toeplitz matrix A= fai;jg satis�esai;j= ai+1;j+1 and is speci�ed by its �rst rowand �rst column).We take our regular functions to be lengthpreserving within a constant factor. Other-wise, one can make them so using hashing asfollows: f(x; h) = h(f(x)); h. We call a one-way function f with security s almost lengthpreserving if jf(x)j= jxj+O(log s(n)).Theorem 3 If a regular n�O(1)-OW functionof security s(n)=s0(n+�(log(s(n)))2) exists,then there is a 1-OW a.e. one-to-one functionof security comparable to s0.Note that s(n+O(log s(n))2) = s(n)O(1),when log s(n)<pn.Corollaries: Given a regular one-way func-tion, one can construct a pseudo-random gen-erator of comparable security. Similarly usingthe results of [Naor Yung 89] one can con-struct an e�cient signature scheme.3 The ConstructionWe use constructive expanders, i.e. a familyof �xed (say, d) degree expander graphs on anexponential size vertex set with a polynomial-time algorithm that on input a node out-puts its adjacency list. Also, we require thatthe ordering of these incident lists induces d(disjoint) perfect matchings of the expander.Such expander families do exist. For simplic-ity, assume that the expander has 2n nodes.

These explicit constructions enable us toperform a random walk on the expander.Such random walks rapidly (i.e. within O(n)steps) reach a nearly uniform distribution onthe vertices. The key property we need is thatthe adjacency matrix of the expanders havetheir second eigenvalue at most cd, for someconstant c<1 (see [Alon 86]). If we add a self-loop at each node, the second largest (in abso-lute value) eigenvalue will be well-separatedfrom the �rst. We can achieve any constantratio between the second eigenvalue and �rst,simply by raising the adjacency matrix to anappropriate power.To amplify a one-way function f we wouldlike to apply it iteratively many times. Thiswill not help if easy instances for the invert-ing algorithm keep being mapped to them-selves. The idea is to use randomization be-tween successive applications of f . One maytry using universal2 hash functions as in [Gol-dreich Krawcyk Luby 88]. If one applies thesame hash function between successive ap-plications, the random path induced is notguaranteed to reach uniformly distributed lo-cations and the same holds if a �xed num-ber of random universal2 hash functions areapplied4. Instead we randomize the argu-ments to the di�erent iterations of the one-way permutation by taking one random stepon an expander. Namely, we associate the do-main of the given one-way permutation withthe vertex set of the expander. Our construc-tion alternatively applies the one-way permu-tation and moves at random from the nodereached to one of its neighbors. This requiresvery little randomization. A key observationis that the composition of an expander withany permutation on its vertex set yields an4Proving that in general (i.e. on every d-regulargraph), such a path reaches uniform distributionwould imply that Rlogspace=Dlogspace [Naor 89].4



expander (with the same eigenvalues). Us-ing a Random Walk Lemma and a simula-tion argument, the construction is showed toamplify the one-wayness of the given permu-tation while preserving security.Let G be an explicit undirected d-regularexpander with vertex set f0; 1gn with thesecond largest (in absolute value) eigenvalue�2 < d=2. For example, [Lubotsky PhilipsSarnak 86] proposed an expander family withd=18, �2�2p17 for some graph sizes. Otherexpander families exist, for graphs of size n2.Consider a labeling of the edges incidentto each node (using the labels 1; 2; :::; d) sothat the mapping corresponding to each la-bel induces a permutation on the vertex set.Let g(x; l) be the node reachable from xby following the edge labeled l. For anypermutation f on f0; 1gn and every k �1, x 2 f0; 1gn, �1; :::; �k 2 f1; 2; :::; dg, letFk(x; �1:::�k)def= �1 � Fk�1(g(f(x); �1); �2:::�k)(and F0(x; ;) def= x) and Gf be the expanderinduced by gf (x; l)=g(f(x); l).4 ProofsProposition 1 : Let Gf be an expander asabove, �(n) � 1=2 and f be 1� �(n)-OWwith strict security s(n)= s0(n + k(n) log2 d).Then, Fk(n) is (1��k=2)-OW with strict secu-rity s0(n)=k(n).Proof of Theorems 1 and 2: Theorem1 follows by applying this proposition iter-atively l=O(log n) times: Use k(n) = O(1)length walks such that each iteration convertsa (1��(n))-OW function to a 1��k-OW func-tion. Note that the �nally resulting functionis 1��kl -OW. Each iteration adds O(1) tothe input length and multiplies the time ofcomputation and inverting time by �(1).

To prove Theorem 2, apply the propositionwith k(n)=2 log s(n).Proposition 1 is based on the followingLemma 1 (Random walk): Let G be an ex-pander graph with �2 � d=2. Let W be asubset of measure � � 1=2 of the expander'snodes. Then fraction � �k=2 of random walksof length k on G are contained in W .Lemma 1 generalizes the statement appear-ing in [Ajtai Komlos Szemeredi 86]. A proofof Lemma 1 is given in the Section 6.The performance of any inversion algo-rithm A(!; y) has two aspects: the runningtime TA(!; y) and the probability of successin �nding an inverse. We now combine thesetwo measures into a single one:W.l.o.g, now we consider and call invertersalgorithms A(!; x) which for every x, run inexpected (over its internal coin ips !) poly-nomial time. (We assume this includes thetime required to compute f on the result tocheck that the inversion is correct.) Any algo-rithm can be modi�ed to satisfy this require-ment. For this purpose, A can use its powerof ipping coins to abort its computation sothat for each x it runs 2t steps with probabil-ity, say, 2�t=t2. This will decrease the proba-bility of success nearly proportionally to A'soriginal running time.Then probability of inversion by this al-gorithm accounts for both running time andprobability of success: A runs t steps onlywith probability n�O(1)=t and the followingare equivalent:1. f is 1��-OW with security s.2. Every inverter A has a set H of mea-sure 1��, s.t. the fraction of f(!; x) :f(A(!; x)) = x 2 Hg, is < 1=s.5



We will now use the second form of this def-inition and for strict security require a �xeddegree (e.g., 0) of the polynomial expectedrunning time of the inverters.Now let H� be the set of paths (x; p) whichintersect with H. By lemma 1, the measureof H� is 1� �k=2.Proof of Proposition 1 : For contradic-tion, let A(!; y; p) be an inverter for F . Thenan Inverter a for f is as follows: To invert at agiven point x choose at random i 2 f1 � � � kg,and a random walk p = �1 � � � �k of length k.Compute the path (y; p) so that x is in po-sition i in the path (and y is the last point).Compute z = A(y; p). Tracing the path fromz compute f�1(x).We show that H� a hard set for A, if His a hard set for a. Indeed, let A succeed ininverting with probability k=s0 for instancesin H�. With 1=k chance i will point to ahard point in the path. So, a succeeds withprobability 1=s0 for instances in H.5 Regular functionsLemma 2 (regular ! a.e. 1 � 1) For anyregular �(n)-one-way function f there ex-ists an almost everywhere 1-1, �(n)-one-wayfunction g with comparable security.Proof Outline: Let g(x; h)=h(x) � h � f(x)where h2Hn;m(n)+" log s. Clearly, g is a.e. 1-1.Using a simulation argument the security canbe shown to be as stated.Lemma 3 Let f be an a.e. 1-1 �-OW func-tion with security s(n) and jf(x)j = �(jxj).Then there is an almost length preserving a.e.1-1 �-OW function with security s(�(n)).Proof outline: Let g(x; h) = h(f(x)) � h,where h2Hjf(x)j;n+logs.

Proof of Theorem 3 : By Lemma 3, wecan assume w.l.o.g. that f is a.e. 1-1. Weneed to modify the construction of Section 3in two respects.First if jf(x)j � 2jxj modify f accordingto Lemma 3 to make it almost length pre-serving. Second make �i 2 f1; : : : ; dglog s(n)rather than �i 2 f1; : : : ; dg in the de�nitionof F , so that log s(n) random expander stepsare taken between every two applications off (instead of one random step).This gives a modi�cation of Proposition1, where the argument to F has length n +�(k(n) � log s(n)) (instead of n+�(k(n))).Now Theorem 3 follows by iterating themodi�ed Proposition 1 similar to derivationof Theorems 1 and 2.It seems redundant to increase the lengthat every iteration of f . Also it seems possibleto use O(j log �j) rather than O(log s) ran-dom walks in these constructions. We shallexplore this in the journal version.E�cient construction of pseudorandomgenerators: W.l.o.g. let f be a.e. 1-1,strong one-way of security s(n) and jf(x)j=O(jxj). The following pseudo-random gener-ator has security s�(1) and produces �(log s)extra bits per evaluation: f 0(x; h1; h2) =h1(x); h2(f(x)); h1; h2, where jxj= n, 0<"<1, h1 2 Hn;2" log s, h2 2 Hjf(x)j;n�" log s. Thisgenerates a pseudorandom string, slightlylonger than the random seed. Constructionof a pseudo-random generator which dou-bles the length of the seed from one whichis just length increasing, and the pseudo-random function construction of [GoldreichGoldwasser Micali 86] are then used. Theseconstructions preserve security.6



6 Proof of Lemma 1Modify the the adjacency matrix of G bydividing the entries by d (the degree) andlet A be the resulting N -by-N matrix. Let�1��2 : : :��n and e1; e2; : : : ; en be its eigen-values and corresponding eigenvectors. ByPerron-Frobenius Theorem, non-negative Ahas �1=1. By our assumptions on A, 1=2��2�j�nj. The space V0 spanned by e2; : : : ; eNis orthogonal to the space V1 spanned bye1=(1; 1; : : : ; 1) , and A leaves invariant thesesubspaces of RN . AnyX 2RN can be writtenasX=X0+X1 whereX02V0 and X12V1. LetkXk be the L2 (Euclidean) norm and kXk1the L1 norm (sum of the absolute values). Itis well known that kAX0k��2kX0k.Let P be a projection matrix such thatPX=Y with Yi=Xi, if i 2W and zero oth-erwise. Then P 2=P and kPY k � kY k (forevery Y ).We show below thatkPAXk��1=2kXk:From this it follows that if Y=(PA)2kX thenkY k��kkXk. Note that for X = e1=N , theith component of Y is the probability thatafter 2k steps, the random walk ends up at iwithout ever leavingW . Thus the total prob-ability that the random walk never visits anelement outside of W in 2k steps is kY k1�pNkY k�pN�kke1=Nk=�k :It is left to show that kPAXk � �1=2kXk.To do this, let X = X0 + X1, so kXk =(kX0k2 + kX1k2)1=2. The basic idea is thatA will reduce the norm of X0, and P will re-duce the norm of X1. However, PX1 is nolonger perpendicular to X0 (or AX0), so wemust bound the angle between these vectors.Using P 2 = P and AX1 =X1, kPAXk=kP (AX0 + PX1)k� kAX0 + PX1k: Observe

that AX0 and X1 are perpendicular, and let �denote the angle between X1 and PX1. Thencos �= X1 � PX1kX1kkPX1k= �NpNp�N=p�:Now if we put the vector PX1 at the tailof the vector AX0 in order to form the sumAX0 + PX1, then the angle between thesevectors (where they meet) is at most �=2+ �.Therefore, using the law of cosines and that�cos(�=2 + �) = sin �=p1�cos2 �=p1��,we have kAX0 + PX1k2�kAX0k2+kPX1k2�2kAX0kkPX1k cos(�=2+�)=kAX0k2+ kPX1k2+2kAX0kkPX1kq1����22kX0k2+�2kX1k2+ 2�2�q1��kX0kkX1k:But because the geometric mean is always atmost the arithmetic mean for non-negativenumbers, 2�2kX0k�p1��kX1k � �22kX0k2+�2(1��)kX1k2: Substituting in above and us-ing �2 + �2(1��)��, we deducekAX0 + PX1k2�2�22kX0k2 + �kX1k2�max(2�22; �)kXk2:Using �2� 1=2 and �� 1=2 yields kPAXk��1=2kXk and the lemma.AcknowledgementsOded Goldreich would like to thank AmirHerzberg for collaboration in the early stagesof this work, and Nati Linial, David Pe-leg, Eli Upfal and Avi Wigderson for discus-sions concerning random walks on expanders.R.Venkatesan thanks Raf Ostrovsky for valu-able discussions.7
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