
A Generic Hardcore Predicate for any One-Way FunctionExtracts from Foundations of Cryptography1Oded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.February 8, 2001

1This is Section 2.5 of the book Foundations of Cryptography. For further details on the book, see webpagehttp://www.wisdom.weizmann.ac.il/�oded/foc.html.

2.5 Hard-Core PredicatesLoosely speaking, saying that a function f is one-way implies that given y it is infeasible to �nd apreimage of y under f . This does not mean that it is infeasible to �nd out partial information aboutthe preimage of y under f . Speci�cally it may be easy to retrieve half of the bits of the preimage(e.g., given a one-way function f consider the function g de�ned by g(x; r) def= (f(x); r), for everyjxj= jrj). The fact that one-way functions do not necessarily hide partial information about theirpreimage limits their \direct applicability" to tasks as secure encryption. Fortunately, assumingthe existence of one-way functions, it is possible to construct one-way functions that hide speci�cpartial information about their preimage (which is easy to compute from the preimage itself). Thispartial information can be considered as a \hard core" of the di�culty of inverting f .2.5.1 De�nitionLoosely speaking, a polynomial-time predicate b, is called a hard-core of a function f if every e�cientalgorithm, given f(x), can guess b(x) only with success probability that is negligibly better thanone half.De�nition 2.5.1 (hard-core predicate): A polynomial-time computable predicate b : f0; 1g� !f0; 1g is called a hard-core of a function f if for every probabilistic polynomial-time algorithm A0,every positive polynomial p(�), and all su�ciently large n'sPr �A0(f(Un))=b(Un)� < 12 + 1p(n)Note that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obvious algorithmsthat guess b(Un) from f(Un) with success probability at least one half (e.g., the algorithm that,obliviously of its input, outputs a uniformly chosen bit). Also, if b is a hard-core predicate (forany function) then b(Un) must be almost unbiased (i.e., jPr[b(Un) = 0] � Pr[b(Un) = 1]j must be anegligible function in n).Since b itself is polynomial-time computable, the failure of e�cient algorithms to approximateb(x) from f(x) (with success probability non-negligibly higher than one half) must be due to eitheran information loss of f (i.e., f not being one-to-one) or to the di�culty of inverting f . For example,the predicate b(��) = � is a hard-core of the function f(��) def= 0�, where �2f0; 1g and �2f0; 1g�.Hence, in this case the fact that b is a hard-core of the function f is due to the fact that f losesinformation (speci�cally, the �rst bit �). On the other hand, in case f loses no information (i.e., fis one-to-one) hard-cores for f exist only if f is one-way (see Exercise ??). We will be interested inthe case where the hardness of approximating b(x) from f(x) is due to computational reasons andnot to information theoretic ones (i.e., information loss).Hard-core predicates for collections of one-way functions are de�ned in an analogous way. Typ-ically, the predicate may depend on the index of the function, and both algorithms (i.e., the onefor evaluating it as well as the one for predicting it based on the function value) are also giventhis index. That is, a polynomial-time algorithm B : f0; 1g� �f0; 1g� ! f0; 1g is called a hard-coreof the one-way collection (I;D; F) if for every probabilistic polynomial-time algorithm, A0, everypositive polynomial p(�), and all su�ciently large n'sPr �A0(In; fIn(Xn))=B(In;Xn)� < 12 + 1p(n)where In def= I(1n) and Xn def= D(In). 1

Some natural candidates: Simple hard-core predicates are known for the RSA, Rabin, andDLP collections (presented in Subsection ??), provided that the corresponding collections are one-way. Speci�cally, the least signi�cant bit is a hard-core for the RSA collection, provided that theRSA collection is one-way. Namely, assuming that the RSA collection is one-way, it is infeasibleto guess (with success probability signi�cantly greater than half) the least signi�cant bit of xfrom RSAN;e(x) = xe mod N . Similarly, assuming the intractability of integer factorization, it isinfeasible to guess the least signi�cant bit of x 2 QN from RabinN (x) = x2 mod N , where N is aBlum integer (and QN denotes the set of quadratic residues modulo N). Finally, assuming thatthe DLP collection is one-way, it is infeasible to guess whether x < P2 when given DLPP;G(x) =Gx mod P . In the next subsection we present a general result of this type.2.5.2 Hard-Core Predicates for any One-Way FunctionActually, the title is inaccurate: we are going to present hard-core predicates only for (strong) one-way functions of a special form. However, every (strong) one-way function can be easily transformedinto a function of the required form, with no substantial loss in either \security" or \e�ciency".Theorem 2.5.2 Let f be an arbitrary strong one-way function, and let g be de�ned by g(x; r) def=(f(x); r), where jxj= jrj. Let b(x; r) denote the inner-product mod 2 of the binary vectors x and r.Then the predicate b is a hard-core of the function g.In other words, the theorem states that if f is strongly one-way then it is infeasible to guessthe exclusive-or of a random subset of the bits of x when given f(x) and the subset itself. Westress that the theorem requires that f is strongly one-way and that the conclusion is false if f isonly weakly one-way (see Exercise ??). Clearly, g is also strongly one-way. We point out that gmaintains other properties of f such as being length-preserving and being one-to-one. Furthermore,an analogous statement holds for collections of one-way functions with/without trapdoor etc.The rest of this section is devoted to proving Theorem 2.5.2. Again we use a reducibilityargument: here inverting the function f is reduced to guessing b(x; r) from (f(x); r). Hence, weassume (for contradiction) the existence of an e�cient algorithm guessing the inner-product withadvantage that is non-negligible, and derive an algorithm that inverts f with related (i.e., non-negligible) success probability. This contradicts the hypothesis that f is a one-way function.We start with some preliminary observations and a motivating discussion, and then turn to themain part of the actual proof. We conclude with more e�cient implementations of the reducibilityargument, which assert \higher levels of security".2.5.2.1 PreliminariesLet G be a (probabilistic polynomial-time) algorithm that on input f(x) and r tries to guess theinner-product (mod 2) of x and r. Denote by "G(n) the (overall) advantage of algorithm G inguessing b(x; r) from f(x) and r, where x and r are uniformly chosen in f0; 1gn. Namely,"G(n) def= Pr [G(f(Xn); Rn) = b(Xn; Rn)]� 12 (2.1)where here and in the sequel Xn and Rn denote two independent random variables, each uniformlydistributed over f0; 1gn. Assuming, to the contradiction, that b is not a hard-core of g means thatthere exists an e�cient algorithm G, a polynomial p(�) and an in�nite set N so that for every n2Nit holds that "G(n) > 1p(n) . We restrict our attention to this algorithm G and to n's in this set N .In the sequel we shorthand "G by ". 2

Our �rst observation is that, on at least an "(n)2 fraction of the x's of length n, algorithm G hasat least an "(n)2 advantage in guessing b(x;Rn) from f(x) and Rn. Namely,Claim 2.5.2.1: there exists a set Sn � f0; 1gn of cardinality at least "(n)2 � 2n such that for everyx 2Sn, it holds that s(x) def= Pr[G(f(x); Rn)=b(x;Rn)] � 12 + "(n)2Here the probability is taken over all possible values of Rn and all internal coin tosses of algorithmG, whereas x is �xed.Proof: The claim follows by an averaging argument. Namely, write E(s(Xn)) = 12 +"(n), and applyMarkov's Inequality. 2In the sequel we restrict our attention to x's in Sn. We will show an e�cient algorithm that onevery input y, with y= f(x) and x2Sn, �nds x with very high probability. Contradiction to the(strong) one-wayness of f will follow by recalling that Pr[Un2Sn] � "(n)2 .We start with a motivating discussion. The inverting algorithm, that uses algorithm G assubroutine, will be formally described and analyzed later.2.5.2.2 A motivating discussionConsider a �xed x 2 Sn. By de�nition s(x) � 12+ "(n)2 > 12+ 12p(n) . Suppose, for a moment, thats(x) > 34+ 12p(n) . Of course there is no reason to believe that this is the case, we are just doing amental experiment. Still, in this case (i.e., of s(x) > 34+ 1poly(jxj)) retrieving x from f(x) is quite easy.To retrieve the ith bit of x, denoted xi, we randomly select r 2 f0; 1gn, and compute G(f(x); r)and G(f(x); r � ei), where ei is an n-dimensional binary vector with 1 in the ith component and 0in all the others, and v�u denotes the addition mod 2 of the binary vectors v and u. (The processis actually repeated polynomially-many times, using independent random choices of such r's, andxi is determined by a majority vote.)If both G(f(x); r) = b(x; r) and G(f(x); r � ei) = b(x; r � ei), thenG(f(x); r)�G(f(x); r � ei) = b(x; r)� b(x; r � ei)= b(x; ei)= xiwhere the second equality usesb(x; r)� b(x; s) � nXi=1 xiri + nXi=1 xisi � nXi=1 xi(ri + si) � b(x; r � s) (mod 2) :The probability that both G(f(x); r)=b(x; r) and G(f(x); r�ei)=b(x; r�ei) hold, for a random r,is at least 1�2�(14 � 1poly(jxj)) > 12+ 1poly(jxj) . Hence, repeating the above procedure su�ciently manytimes and ruling by majority, we retrieve xi with very high probability. Similarly, we can retrieveall the bits of x, and hence invert f on f(x). However, the entire analysis was conducted under(the unjusti�able) assumption that s(x) > 34+ 12p(jxj) , whereas we only know that s(x) > 12+ 12p(jxj) .The problem with the above procedure is that it doubles the original error probability of algo-rithm G on inputs of the form (f(x); �). Under the unrealistic assumption, that G's average error onsuch inputs is non-negligibly smaller than 14 , the \error-doubling" phenomenon raises no problems.3

However, in general (and even in the special case where G's error is exactly 14) the above procedureis unlikely to invert f . Note that the average error probability of G (which is averaged over allpossible inputs of the form (f(x); �)) can not be decreased by repeating G several times (e.g., Gmayalways answer correctly on three quarters of the inputs, and always err on the remaining quarter).What is required is an alternative way of using the algorithm G, a way that does not double theoriginal error probability of G. The key idea is to generate the r's in a way that requires applyingalgorithm G only once per each r (and i), instead of twice. Speci�cally, we will use algorithm Gto obtain a \guess" for b(x; r � ei), and obtain b(x; r) in a di�erent way. The good news is thatthe error probability is no longer doubled, since we only use G to get a \guess" of b(x; r� ei). Thebad news is that we still need to know b(x; r), and it is not clear how we can know b(x; r) withoutapplying G. The answer is that we can guess b(x; r) by ourselves. This is �ne if we only need toguess b(x; r) for one r (or logarithmically in jxj many r's), but the problem is that we need to know(and hence guess) the value of b(x; r) for polynomially many r's. An obvious way of guessing theseb(x; r)'s yields an exponentially vanishing success probability. Instead, we generate these polyno-mially many r's so that, on one hand they are \su�ciently random" whereas, on the other hand,we can guess all the b(x; r)'s with noticeable success probability. Speci�cally, generating the r's ina particular pairwise independent manner will satisfy both (seemingly contradictory) requirements.We stress that in case we are successful (in our guesses for all the b(x; r)'s), we can retrieve x withhigh probability. Hence, we retrieve x with noticeable probability.A word about the way in which the pairwise independent r's are generated (and the correspond-ing b(x; r)'s are guessed) is indeed in place. To generate m = poly(n) many r's, we uniformly (andindependently) select l def= log2(m + 1) strings in f0; 1gn. Let us denote these strings by s1; :::; sl.We then guess b(x; s1) through b(x; sl). Let us denote these guesses, which are uniformly (andindependently) chosen in f0; 1g, by �1 through �l. Hence, the probability that all our guesses forthe b(x; si)'s are correct is 2�l = 1poly(n) . The di�erent r's correspond to the di�erent non-emptysubsets of f1; 2; :::; lg. Speci�cally, we let rJ def= �j2Jsj. The reader can easily verify that the rJ 'sare pairwise independent and each is uniformly distributed in f0; 1gn. The key observation is thatb(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj)Hence, our guess for the b(x; rJ)'s is �j2J�j , and with noticeable probability all our guesses arecorrect.2.5.2.3 Back to the actual proofFollowing is a formal description of the inverting algorithm, denoted A. We assume, for simplicitythat f is length preserving (yet this assumption is not essential). On input y (supposedly in therange of f), algorithm A sets n def= jyj, and l def= dlog2(2n � p(n)2 + 1)e, where p(�) is the polynomialguaranteed above (i.e., �(n) > 1p(n) for the in�nitely many n's in N). Algorithm A proceeds asfollows:(1) Uniformly and independently selects s1; :::; sl 2 f0; 1gn, and �1; :::; �l 2 f0; 1g.(2) For every non-empty set J � f1; 2; :::; lg,computes a string rJ �j2Jsj and a bit �J �j2J�j .(3) For every i2f1; :::; ng and every non-empty J � f1; ::; lg,computes zJi �J �G(y; rJ � ei).(4) For every i2f1; :::; ng, sets zi to be the majority of the zJi values.(5) Outputs z = z1 � � � zn. 4

Remark: an alternative implementation. In an alternative implementation of the aboveideas, the inverting algorithm tries all possible values for �1; :::; �l, computes a string z for eachof these 2l possibilities, and outputs only one of the resulting z's, with an obvious preference toa string z satisfying f(z) = y. For later reference, this alternative algorithm is denoted A0. (Seefurther discussion in the next subsection.)Following is a detailed analysis of the success probability of algorithm A on inputs of the formf(x), for x 2 Sn, where n 2 N . One key observation, which is extensively used, is that forx; �; � 2 f0; 1gn, it holds that b(x; � � �) = b(x; �)� b(x; �)It follows that b(x; rJ) = b(x;�j2Jsj) = �j2Jb(x; sj). The main part of the analysis is showingthat, in case the �j 's are correct (i.e., �j = b(x; sj) for all j 2 f1; :::; lg), with constant probability,zi = xi for all i2f1; :::; ng. This is proven by bounding from below the probability that the majorityof the zJi 's equals xi, where zJi = b(x; rJ)�G(f(x); rJ�ei) (due to the hypothesis that �j = b(x; sj)for all j 2 f1; :::; lg).Claim 2.5.2.2: For every x 2 Sn and every 1� i�n,Pr ����nJ : b(x; rJ)�G(f(x); rJ � ei) = xio��� > 12 � (2l � 1)� > 1� 12nwhere rJ def= �j2Jsj and the sj's are independently and uniformly chosen in f0; 1gn.Proof: For every J , de�ne a 0-1 random variable �J , so that �J equals 1 if and only if b(x; rJ)�G(f(x); rJ � ei) = xi. Since b(x; rJ)� b(x; rJ � ei) = xi, it follows that �J = 1 if and only ifG(f(x); rJ � ei) = b(x; rJ � ei).The reader can easily verify that each rJ is uniformly distributed in f0; 1gn, and the same holdsfor each rJ � ei. It follows that each �J equals 1 with probability s(x), which by x2Sn, is at least12+ 12p(n) . We show that the �J 's are pairwise independent by showing that the rJ 's are pairwiseindependent. For every J 6= K, without loss of generality, there exist j 2 J and k 2 K �J . Hence,for every �; � 2 f0; 1gn, we havePr hrK=� ��� rJ=�i = Pr hsk=� ��� sj=�i= Pr hsk=�i= Pr hrK=�iand pairwise independence of the rJ 's follows. Let m def= 2l� 1 and � represent a generic �J (whichare all identically distributed). Using Chebyshev's Inequality (and m � 2n � p(n)2), we getPr "XJ �J � 12 �m# � Pr "�����XJ �J � �12+ 12p(n)� �m����� � 12p(n) �m#� m � Var[�]� 12p(n) �m�2= Var[�]� 12p(n)�2 � (2n � p(n)2)5

< 14� 12p(n)�2 � (2n � p(n)2)= 12nThe claim follows. 2Recall that if �j = b(x; sj), for all j's, then �J = �j2J�j = �j2Jb(x; sj) = b(x; rJ), for all non-empty J 's. In this case, with probability at least one half, the string z output by algorithm A equalsx. However, the �rst event (i.e., �j = b(x; sj) for all j's) happens with probability 2�l = 12n�p(n)2+1independently of the events analyzed in Claim 2.5.2.2. Hence, in case x2Sn, algorithm A invertsf on f(x) with probability at least 12 � 2�l = 14n�p(jxj)2+2 (whereas, the alternative algorithm, A0,succeeds with probability at least 12). Recalling that (by Claim 2.5.2.1) jSnj > 12p(n) �2n, we concludethat, for every n 2 N , algorithm A inverts f on f(Un) with probability at least 18n�p(n)3+4p(n) . Notingthat A is polynomial-time (i.e., it merely invokes G for 2n � p(n)2 = poly(n) times in addition tomaking a polynomial amount of other computations), a contradiction to our hypothesis that f isstrongly one-way follows.2.5.2.4 * More e�cient reductionsThe above proof actually establishes the followingProposition 2.5.3 Let G be a probabilistic algorithm with running-time tG : N!N and advantage"G : N ! [0; 1] in guessing b (cf. Eq. (2.1)). Then there exists an algorithm A that runs in timeO(n2="G(n)2) � tG(n) so that Pr[A(f(Un)) = Un] � "G(n)2 � "G(n)24nThe alternative implementation, A0, mentioned above (i.e., trying all possible values of the �j 'srather than guessing one of them), runs in time O(n3="G(n)4) � tG(n) and satis�esPr[A0(f(Un)) = Un] � "G(n)2 � 12Below, we provide a more e�cient implementation of A0. Combining it with a more re�ned averagingargument than the one used in Claim 2.5.2.1, we obtain:Proposition 2.5.4 Let G, tG : N!N and "G : N ! [0; 1] be as above, and de�ne `(n) def=log2(1="G(n)). Then there exists an algorithm A00 that runs in expected time O(n2 � `(n)3) � tG(n)and satis�es Pr[A00(f(Un)) = Un] =
("G(n)2)Thus, the time over success ratio of A00 is poly(n)="G(n)2, which (in some sense) is optimal up toa poly(n) factor; see Exercise ??.Proof Sketch: Let "(n) def= "G(n), and ` def= log2(1="(n)). Recall that E[s(Xn)] = 0:5+"(n), wheres(x) def= Pr[G(f(x); Rn)= b(x;Rn)] (as in Claim 2.5.2.1). We �rst replace Claim 2.5.2.1 by a morere�ned analysis. 6

Claim 2.5.4.1: There exists an i 2 f1; :::; `g and a set Sn � f0; 1gn of cardinality at least (2i�1 �"(n)) � 2n such that for every x 2Sn, it holds thats(x) = Pr[G(f(x); Rn)=b(x;Rn)] � 12 + 12i+1 � `Proof: Let Ai def= fx : s(x) � 12 + 12i+1`g. For any non-empty set S � f0; 1gn, we let a(S) def=maxx2Sfs(x) � 0:5g, and a(;) def= 0. Assuming to the contradiction that the claim does not hold(i.e., jAij < (2i�1 � "(n)) � 2n for i = 1; :::; `), we getE[s(Xn)� 0:5] � Pr[Xn 2 A1] � a(A1) + X̀i=2 Pr[Xn 2 (Ai nAi�1)] � a(Ai n Ai�1)+Pr[Xn 2 (f0; 1gn n A`)] � a(f0; 1gn n A`)< "(n) � 12 + X̀i=2(2i�1 � "(n)) � 12i` + 1 � 12`+1`= "(n)2 + (`� 1) � "(n)2` + 2�`2` = "(n)which contradicts E[s(Xn)� 0:5] = "(n). 2Fixing any i that satis�es Claim 2.5.4.1, we let � def= 2�i�1=`, and consider the correspondingset Sn def= fx : s(x) � 0:5 + �g. By suitable setting of parameters, we obtain that for every x 2 Sn,algorithm A0 runs in time O(n3=�4) � tG(n) and retrieves x from f(x) with probability at least 1=2.Our next goal is to provide a more e�cient implementation of A0; speci�cally, one running in timeO(n2=�2) � (tG(n) + log(n=�)).The modi�ed algorithm A0 is given input y = f(x) and a parameter �, and sets l = log((n=�2)+1). In the actual description (presented below), it will be more convenient to use arithmetic of realsinstead of that of Boolean. Hence, we denote b0(x; r) = (�1)b(x;r) and G0(y; r) = (�1)G(y;r). Theveri�cation of the following facts is left as an exercise:Fact 1: For every x it holds that E[b0(x;Un) � G0(f(x); Un + ei)] = s0(x) � (�1)xi , where s0(x) def=2 � (s(x)� 12). (Note that, for x 2 Sn, we have s0(x) � 2�.)Fact 2: Let R be a uniformly chosen l-by-n Boolean matrix. Then, for every v 6= u 2 f0; 1gl n f0gl,it holds that vR and uR are pairwise independent and uniformly distributed in f0; 1gn.Fact 3: For every x 2 f0; 1gn and v 2 f0; 1gl, it holds that b0(x; vR) = b0(xRT ; v).Using these facts, we obtainClaim 2.5.4.2: For any x 2 Sn and a uniformly chosen l-by-n Boolean matrix R, there exists� 2 f0; 1gl so that, with probability at least 12 , for every 1� i� n, the sign of Pv2f0;1gl b0(�; v) �G0(f(x); vR + ei)) equals the sign of (�1)xi .Proof: Let � = xRT . Combining the above facts, for every v 2 f0; 1gl n f0gl, we have E[b0(xRT ; v) �G0(f(x); vR+ei)] = s0(x) �(�1)xi . Thus, for every such v, it holds that Pr[b0(xRT ; v) �G0(f(x); vR+ei) = (�1)xi] = 1+s0(x)2 = s(x). Using Fact 2, l = log((2n=�2) + 1) and Chebyshev's Inequality, theclaim follows. 2 7

A last piece of notation: Let B be an 2l-by-2l matrix with the (�; v)-entry being b0(�; v), and let gibe an 2l-dimensional vector with the vth entry equal G0(f(x); vR + ei). Thus, the �th entry in thevector Bgi equals Pv2f0;1gl b0(�; v) �G0(f(x); vR + ei)).E�cient implementation of algorithm A0. On input y = f(x) and a parameter �, the invertingalgorithm A0 sets l = log((n=�2) + 1), and proceeds as follows:(1) For i = 1; :::; n, computes the 2l-dimensional vector gi (as de�ned above).(2) For i = 1; :::; n, computes zi Bgi.Let Z be an 2l-by-n real matrix in which the ith column equals zi.Let Z 0 be an 2l-by-n Boolean matrix representing the signs of the elements in Z:speci�cally, the (i; j)th entry of Z 0 equals 1if and only if the (i; j)th entry of Z is negative.(3) Scanning all rows of Z 0, output the �rst row z so that f(z) = y.By Claim 2.5.4.2, for x 2 Sn, with probability at least 1=2, the above algorithm retrieves x fromy = f(x). The running time of the algorithm is dominated by Steps (1) and (2), which can beimplemented in time n � 2l � O(tG(n)) = O((n=�)2 � tG(n)) and n � O(l � 2l) = O((n=�)2 � log(n=�)),respectively.1Finally, we de�ne algorithm A00. On input y = f(x), the algorithm selects j 2 f1; :::; `g withprobability 2�2j+1 (and halts with no output otherwise). It invokes the above implementation ofalgorithm A0 on input y with parameter � def= 2�j�1=`, and returns whatever A0 does. The expectedrunning time of A00 isX̀j=1 2�2j+1 �O n2(2�j�1=`)2! � (tG(n) + log(n � 2j+1`)) = O(n2 � `3) � tG(n)(Assuming tG(n) =
(` log n).) Letting i � ` be an index satisfying Claim 2.5.4.1 (and Sn be thecorresponding set), we consider the case in which j (selected by A00) is greater or equal to i. ByClaim 2.5.4.2, in such a case and for x 2 Sn, algorithm A0 inverts f on f(x) with probability atleast one half. Using i � ` (= log2(1="(n))), we getPr[A00(f(Un)) = Un] � Pr[Un 2 Sn] � Pr[j � i] � 12� 2i�1"(n) � 2�2i+1 � 12� "(n) � 2�` � 12 = "(n)22The proposition follows.1 Using the special structure of matrix B, one may show that given a vector w, the product Bw can be computedin time O(l � 2l). Hint: B (known as the Sylvester matrix) can be written recursively asSk = � Sk�1 Sk�1Sk�1 Sk�1 �where S0 = +1 and M means
ipping the +1 entries of M to �1 and vice versa. So� Sk�1 Sk�1Sk�1 Sk�1 �� w0w00 � = � Sk�1w0 + Sk�1w00Sk�1w0 � Sk�1w00 �Thus, letting T (k) denote the time using in multiplying Sk by an 2k-dimensional vector, we have T (k) = 2 � T (k �1) +O(2k), which solves to T (k) = O(k2k). 8

Comment: Using an additional trick,2 one may save a factor of �(n) in the running time, re-sulting in expected running-time of O(n � log3(1="G(n))) � tG(n).2.5.3 * Hard-Core FunctionsWe have just seen that every one-way function can be easily modi�ed to have a hard-core predicate.In other words, the result establishes one bit of information about the preimage that is hardto approximate from the value of the function. A stronger result may say that several bits ofinformation about the preimage are hard to approximate. For example, we may want to say that aspeci�c pair of bits is hard to approximate, in the sense that it is infeasible to guess this pair withprobability non-negligibly larger than 14 . Actually, in general, we take a slightly di�erent approach,and require that the true value of these bits be hard to distinguish from a random value. Thatis, a polynomial-time function, h, is called a hard-core of a function f if no e�cient algorithm candistinguish (f(x); h(x)) from (f(x); r), where r is a random string of length jh(x)j. For furtherdiscussion of the notion of e�cient distinguishability the reader is referred to Section ??. Weassume for simplicity that h is length regular (see below).De�nition 2.5.5 (hard-core function): Let h : f0; 1g� ! f0; 1g� be a polynomial-time computablefunction, satisfying jh(x)j = jh(y)j for all jxj = jyj, and let l(n) def= jh(1n)j. The function h is calleda hard-core of a function f if for every probabilistic polynomial-time algorithm D0, every positivepolynomial p(�), and all su�ciently large n's���Pr �D0(f(Xn); h(Xn))=1�� Pr hD0(f(Xn); Rl(n))=1i��� < 1p(n)where Xn and Rl(n) are two independent random variables the �rst uniformly distributed overf0; 1gn, and the second uniformly distributed over f0; 1gl(n),For l � 1, De�nition 2.5.5 is equivalent to De�nition 2.5.1; see discussion following Lemma 2.5.8.See also Exercise ??.Simple hard-core functions with logarithmic length (i.e., l(n) = O(log n)) are known for theRSA, Rabin, and DLP collections provided that the corresponding collections are one-way. Forexample, the function which outputs logarithmically many least signi�cant bit is a hard-core func-tion for the RSA collection, provided that the RSA collection is one-way. Namely, assuming thatthe RSA collection is one-way, it is infeasible to distinguish, given RSAN;e(x) = xe mod N , theO(log jN j) least signi�cant bit of x from a uniformly distributed O(log jN j)-long bit string. (Similarstatements hold for the Rabin and DLP collections.) A general result of this type follows.Theorem 2.5.6 Let f be an arbitrary strong one-way function, and let g2 be de�ned by g2(x; s) def=(f(x); s), where jsj = 2jxj.3 Let bi(x; s) denote the inner-product mod 2 of the binary vectors x2 We further modify algorithm A0 by setting 2l = O(1="2) (rather than 2l = O(n="2)). Under the new setting,with constant probability, we recover correctly a constant fraction of the bits of x (rather than all of them). If xwere an codeword under an asymptotically good error-correcting code (cf., [?]), this would su�ce. To avoid thisassumption, we modify algorithm A0 so that it tries to recover certain xors of bits of x (rather than individual bits ofx). Speci�cally, we use an asymptotically good linear code (i.e., having constant rate, correcting a constant fractionof errors and having e�cient decoding algorithm). Thus, the modi�ed A0 recovers correctly a constant fraction of thebits in the encoding of x, under such a code, and using the decoding algorithm { recovers x.3 In fact, we may use jsj = jxj + l(jxj) � 1, where l(n) = O(log n). In the current description, s1 as well assn+l(n)+1; :::; s2n are not used. However, the current formulation allows not to to specify l when de�ning g2.9

and (si+1; :::; si+n), where s = (s1; :::; s2n). Then, for any constant c > 0, the function h(x; s) def=b1(x; s) � � � bl(jxj)(x; s) is a hard-core of the function g2, where l(n) def= minfn; dc log2 neg.The proof of the theorem follows by combining a proposition that capitalizes on the structure ofthe speci�c function h and a general lemma concerning hard-core functions. Loosely speaking,the proposition \reduces" the problem of approximating b(x; r) given g(x; r) to the problem ofapproximating the exclusive-or of any non-empty set of the bits of h(x; s) given g2(x; s), where band g are the hard-core and the one-way function presented in the previous subsection. Since weknow that the predicate b(x; r) cannot be approximated from g(x; r), we conclude that no exclusive-or of the bits of h(x; s) can be approximated from g2(x; s). The general lemma implies that, forevery \logarithmically shrinking" function h0 (i.e., h0 satisfying jh0(x)j = O(log jxj)), the functionh0 is a hard-core of a function f 0 if and only if the exclusive-or of any non-empty subset of the bitsof h0 cannot be approximated from the value of f 0. Following are the formal statements and proofsof both claims.Proposition 2.5.7 Let f , g2, l and the bi's be as in Theorem 2.5.6. Let fIn � f1; 2; :::; l(n)ggn2Nbe an arbitrary sequence of non-empty sets, and let bIjxj(x; s) def= �i2Ijxjbi(x; s). Then, for everyprobabilistic polynomial-time algorithm A0, every positive polynomial p(�), and all su�ciently largen's Pr �A0(In; g2(U3n)) = bIn(U3n)� < 12 + 1p(n)where U3n is a random variable uniformly distributed over f0; 1g3n.Proof: The proof is by a reducibility argument. Let Xn, Rn and S2n be independent randomvariable, uniformly distributed over f0; 1gn, f0; 1gn, and f0; 1g2n, respectively. We show that theproblem of approximating b(Xn; Rn) given (f(Xn); Rn) is reducible to the problem of approximatingbIn(Xn; S2n) given (f(Xn); S2n). The underlying observation is that, for every jsj = 2 � jxj and everyI � f1; :::; l(n)g, bI(x; s) = �i2Ibi(x; s) = b(x;�i2Isubi(s))where subi(s1; :::; s2n) def= (si+1; :::; si+n). Furthermore, the reader can verify that for every non-empty I � f1; :::; l(n)g, the random variable �i2Isubi(S2n) is uniformly distributed over f0; 1gn,and that given a string r 2 f0; 1gn and such a set I one can e�ciently select a string uniformly inthe set fs : �i2Isubi(s) = rg. Veri�cation of both claims is left as an exercise.4Now, assume to the contradiction, that there exists an e�cient algorithm A0, a polynomial p(�),and an in�nite sequence of sets (i.e., In's) and n's so thatPr �A0(In; g2(U3n)) = bIn(U3n)� � 12 + 1p(n)We �rst observe that for n's satisfying the above inequality we can easily �nd a set I satisfyingpI def= Pr �A0(I; g2(U3n)) = bI(U3n)� � 12 + 12p(n)4 Given any non-empty I and any r= r1 � � � rn 2f0; 1gn, consider the following procedure, where k is the largestelement in I. First, uniformly select s1; :::; sk; sk+n+1; :::; s2n 2 f0; 1g. Next, going from i = 1 to i = n, determinesk+i so that �j2Isi+j = ri (i.e., sk+i ri � (�j2Infkgsj+i), where the relevant si+j 's are already determined, sincej < k). This process determines a string s1 � � � s2n uniformly among 2n strings s that satisfy �i2Isubi(s) = r. Sincethere are 2n possible r's, both claims follow. 10

Speci�cally, we may try all possible I's and estimate pI for each of them (via random experiments),picking an I for which the estimate is highest. (Note that using poly(n) many experiments, wemay approximate each of the possible 2l(n) � 1 = poly(n) many pI 's up-to an additive deviation of1=4p(n) and error probability of 2�n.)We now present an algorithm for approximating b(x; r), from y def= f(x) and r. On input y andr, the algorithm �rst �nds a set I as described above (this stage depends only on n def= jxj whichequals jrj). Once I is found, the algorithm uniformly selects a string s so that �i2Isubi(s) = r,and returns A0(I; (y; s)).Note that for uniformly distributed r 2 f0; 1gn, the string s selected by our algorithm is uni-formly distributed in f0; 1g2n, and b(x; r) = bI(x; s). Evaluation of the success probability of thisalgorithm is left as an exercise.The following lemma provides a generic transformation of algorithms distinguishing between (f(Xn); h(Xn))and (f(Xn); Rl(n)) to algorithms that given f(Xn) and a random non-empty subset I of f1; :::; l(n)gpredict the XOR of the bits of Xn at locations I.Lemma 2.5.8 (Computational XOR Lemma): Let f and h be arbitrary length regular functions,and let l(n) def= jh(1n)j. Let D be any algorithm, and denotep def= Pr [D(f(Xn); h(Xn)) = 1] and q def= Pr hD(f(Xn); Rl(n)) = 1iwhere Xn and Rl are independent random variable uniformly distributed over f0; 1gn and f0; 1gl(n),respectively. We consider a speci�c algorithm, denoted G def= GD, that uses D as a subroutine.Speci�cally, on input y, S � f1; :::; l(n)g (and l(n)), algorithm G selects r = r1 � � � rl(n) uniformlyin f0; 1gl(n), and outputs D(y; r)� 1� (�i2Sri). Then,Pr [G(f(Xn); Il; l(n))=�i2Il(hi(Xn))] = 12 + p� q2l(n) � 1where Il is a randomly chosen non-empty subset of f1; :::; l(n)g and hi(x) denotes the ith bit ofh(x).It follows that, for logarithmically shrinking h's, the existence of an e�cient algorithm that dis-tinguishes (with a gap that is not negligible in n) the random variables (f(Xn); h(Xn)) and(f(Xn); Rl(n)) implies the existence of an e�cient algorithm that approximates the exclusive-orof a random non-empty subset of the bits of h(Xn) from the value of f(Xn) with an advantagethat is not negligible. On the other hand, it is clear that any e�cient algorithm, that approximatesan exclusive-or of a random non-empty subset of the bits of h from the value of f , can be easilymodi�ed to distinguish (f(Xn); h(Xn)) from (f(Xn); Rl(n)). Hence, for logarithmically shrinkingh's, the function h is a hard-core of a function f if and only if the exclusive-or of any non-emptysubset of the bits of h cannot be approximated from the value of f .Proof: All that is required is to evaluate the success probability of algorithm G (as a function ofp� q). We start by �xing an x 2 f0; 1gn and evaluating Pr[G(f(x); Il; l) = �i2Il(hi(x))], where Ilis a uniformly chosen non-empty subset of f1; :::; lg and l def= l(n). The rest is an easy averaging(over the x's).Let C denote the set (or class) of all non-empty subsets of f1; :::; lg. De�ne, for every S 2C, arelation �S so that y �S z if and only if �i2Syi = �i2Szi, where y=y1 � � � yl and z=z1 � � � zl. Note11

that for every S 2 C and z 2 f0; 1gl, the relation y �S z holds for exactly 2l�1 of the y's. Recallthat by de�nition of G, on input (f(x); S; l) and random choice r= r1 � � � rl 2 f0; 1gl, algorithm Goutputs D(f(x); r)� 1� (�i2Sri). The latter equals �i2S(hi(x)) if and only if one of the followingtwo disjoint events occurs:event1: D(f(x); r) = 1 and r �S h(x);event2: D(f(x); r) = 0 and r 6�S h(x);By the above discussion and elementary manipulations, we gets(x) def= Pr[G(f(x); Il; l) = �i2Il(hi(x))]= 1jCj �XS2C Pr[G(f(x); S; l) = �i2S(hi(x)]= 1jCj �XS2C (Pr[event1] + Pr[event2])= 12 � jCj �XS2C (Pr[�(Rl)=1 jRl �S h(x)] + Pr[�(Rl)=0 jRl 6�S h(x)])where Rl is uniformly distributed over f0; 1gl (representing the random choice of algorithm G), and�(r) is a shorthand for the random variable D(f(x); r). The rest of the analysis is straightforwardbut tedious, and can be skipped with little loss.s(x) = 12 + 12jCj �XS2C (Pr[�(Rl)=1 jRl �S h(x)] � Pr[�(Rl)=1 jRl 6�S h(x)])= 12 + 12jCj � 12l�1 �0@XS2C Xr�Sh(x)Pr[�(r)=1] �XS2C Xr 6�Sh(x)Pr[�(r)=1]1A= 12 + 12l � jCj �0@Xr XS2EQ(r;h(x))Pr[�(r)=1]�Xr XS2NE(r;h(x))Pr[�(r)=1]1Awhere EQ(r; z) def= fS 2 C : r �S zg and NE(r; z) def= fS 2 C : r 6�S zg. Observe that for everyr 6= z it holds that jNE(r; z)j = 2l�1 (and jEQ(r; z)j = 2l�1� 1). On the other hand, EQ(z; z) = C(and NE(z; z) = ;) holds for every z. Hence, we gets(x) = 12 + 12ljCj Xr 6=h(x) �(2l�1 � 1) � Pr[�(r) = 1]� 2l�1 � Pr[�(r) = 1]�+ 12ljCj � jCj � Pr[�(h(x)) = 1]= 12 � 12ljCj Xr 6=h(x)Pr[�(r) = 1] + � 1jCj � 12ljCj� � Pr[�(h(x)) = 1]where the last equality uses jCj = 2l � 1 (i.e., 12l = 1jCj � 12ljCj). Re-arranging the terms andsubstituting for �, we gets(x) = 12 + 1jCj � Pr[�(h(x)) = 1]� 12ljCjXr Pr[�(r) = 1]= 12 + 1jCj � (Pr[D(f(x); h(x)) = 1]� Pr[D(f(x); Rl) = 1])12

Finally, taking the expectation over the x's, we getE[s(Xn)] = 12 + 1jCj � (Pr[D(f(Xn); h(Xn)) = 1]� Pr[D(f(Xn); Rl) = 1])= 12 + 12l � 1 � (p� q)and the lemma follows.

13

