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Abstract

We show how to transform any interactive proof system which is
statistical zero-knowledgewith respect to the honest-verifier, into a
proof systemwhichisstatistical zero-knowledgewith respectto any
verifier. Thisis done by limiting the behavior of potentially cheat-
ing verifiers, without using computational assumptionsor even re-
ferringto the complexity of suchverifier strategies. (Previoustrans-
formations haveeither relied on computational assumptionsor were
applicable only to constant-round public-coin proof systems.)

Our transformation also appliesto public-coin (akaArthur-Merlin)
computational zero-knowledge proofs: We transform any Arthur-
Merlin proof system which is computational zero-knowledge with
respect to the honest-verifier, into an Arthur-Merlin proof system
which is computational zero-knowledge with respect to any proba-
bilistic polynomial-time verifier.

A crucial ingredient in our analysisis a new lemma regarding
2-universal hashing functions.

1 Introduction

Zero-K nowledge proofs, introduced by Goldwasser, Micali and Rack-
off [GMR89], arefascinating and extremely useful constructs. Their
fascinating nature is due to their seemingly contradictory nature;
they are both convincing and yet yield nothing beyond the valid-
ity of the assertion being proven. Their applicability in the domain
of cryptography is vast; they are typically used to force malicious
parties to behave according to a predetermined protocol (which re-
quires parties to provide proofs of the correctness of their secret-
based actions without revealing these secrets).

Zero-knowledge proofs come in many flavors. Arguably, the
most important parametersrefer to the strength of the zero-knowledge
(or simulability) condition. These are captured by two parameters:
The first parameter is the type of adversary which is supposed to
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learn nothing while verifying an assertion. The simplest typeis a
honest-verifier; that is, onewhich follows the protocol (and endsup
with thetranscript of theinteraction). Zero-knowledgewith respect
to an honest-verifier is already a fascinating notion from a concep-
tual aswell asacomplexity-theoretic point of view. However, cryp-
tographic applicationstypically require robustnessagainst arbitrary
(or arbitrary feasible) behavior which typically deviates from the
protocol. Thisisthegeneral (or standard) notion of zero-knowledge.
A major open problem in the area is whether honest-verifier zero-
knowledge equals general zero-knowledge. A positive answer to
this question may also lead the way to a useful methodology: First
construct a honest-verifier zero-knowledge proof to the problem at
hand, and next transform it to a general zero-knowledge proof. To
describe our contribution to the above open problem, we need first
to discuss a second major parameter of the zero-knowledge frame-
work — the notion of learning nothing.

The requirement that the verifier learns nothing from the proof
isformulated by saying that the transcript of its interaction with the
prover can be simulated by the verifier itself. That is, there exists
an efficient procedurethan oninput avalid assertion producesadis-
tribution which is “similar” to the distribution of transcripts of the
executions of the proof system on that assertion. The key param-
eter is the interpretation of “similarity”. Three notions have been
commonly considered in the literature (cf., [GMR89, For89]). Per-
fect Zero-Knowledge (PZK) requires that the two distributions be
identical. Statistical Zero-Knowledge(SZK) requiresthat these dis-
tributions be statistically close (i.e., the variation distance between
themisnegligible). Finally, Computational Zero-K nowledge(CzZK)
refers to the case that these distributions are computationally indis-
tinguishable (cf., [GM 84, Yao82]).

Assuming the existenceof one-way functions, any languagewhich
hasaninteractive proof, hasalso a Computational Zero-K nowledge
one(cf., [GMW91, 1Y87, BGG 88]). Thus, assumingthe existence
of one-way functions, the aboveproblem (i.e., of honest-verifier ZK
versus general ZK) is long resolved for the case of Computational
Zero-Knowledge. Still, itisopenwhether onecan provethat honest-
verifier CZK equals general CZK, without assuming the existence
of one-way functions. We resolve this problem for the special case
of public-coin (aka Arthur-Merlin) proof systems—

Theorem 1 Every language having an Honest-Verifier Computa-
tional Zero-Knowledgepublic-coin proof system, also hasageneral
Computational Zero-Knowledge (public-coin) proof system.

We note that it is known that the existence of honest-verifier CZK
for languagesoutside BPP yields aweak form of one-way functions
[OW93]. However, thisweak form of one-way functions doesNOT
seem to suffice for constructing general CZK proofs for the same
language (in general).



Themainfocusof thispaper isthe honest-verifier versusgeneral
verifier problem for Statistical Zero-Knowledge. We fully resolve
the problem in this case—

Theorem 2 Every language having an Honest-\erifier Statistical
Zero-Knowledgeproof system, also hasageneral (public-coin) Sta-
tistical Zero-Knowledge proof.

Resultsof similar naturewere previously achieved under intractabil-
ity assumptions(cf., [BMO90, OV'Y 93, Okad6]). A weaker uncon-
ditional result was claimed in [DOY 97]. All these are discussedin
detail below. But first we need to be somewhat more precise about
the notions and issues discussed above.

1.1 Formal Setting

Thebasic notionsof interactive proofs[GMR89] arerecalledin Ap-

pendix A. Throughout this subsection we fix alanguage 7, and an

interactive proof system, (P, V), forit.! Thebasic paradigm of zero-
knowledgeis that for every verifier of a certain class, there should

be an efficient non-interactive machine, called the simulator, which

isableto “simulatewell” the view of the verifierin real interactions

with the prescribed prover (i.e., P). The two main issues we con-

sider are (1) which verifiers should be simulated, and (2) the quality

of simulation.

Which verifiers should be simulated (or honest-verifier ver-
sus general zero-knowledge): Thetwo standard classesarethe
class consisting merely of the prescribed verifier V' (akathe honest-
verifier), and the class consisting of all probabilistic polynomial-
time interactive machines (i.e., feasible cheating strategies for the
verifier).

For the caseof statistical zero-knowledge, wewill consider even
awider (in fact the widest possible) class — the class of all possi-
ble verifier strategies (including non-computable ones). This will
make our result even stronger. But how can an efficient machine
(i.e., the simulator) simulate the behavior (let alone interaction) of
anon-computable verifier strategy? The clueis the familiar notion
of areduction, captured in this context by the notion of a black-box
simulator. The latter is a probabilistic polynomial-time oracle ma-
chinewhichisgiven oracle accessto theverifier strategy.> We com-
ment that the notion of black-box simulation was considered before
for other reasons (cf., [GO94, GK 96]).

The quality of simulation (or SZK versus CZK): When
defining statistical zero-knowledge (w.rt. aclass of verifiers), one
requires that for every verifier, V*, in the class there exists an effi-
cient simulator, S*, such that the following two distribution ensem-
bles are statistically close (i.e., the variation distance is eventually
smaller than 1/p(|z|) for every positive polynomial p):

L {(P,V*")(z) : z € L}, where (P, V"*)(z) denotes the view
of V* when interacting with P on common input =. Recall
that this view consistsof z, all internal cointossesof V*, and
all messagesreceived from P.

2. {S*(z):z€L}.

The variation distance between the two distribution ensembles is
called the simulator deviation . In casethere existsablack-qusim—
ulator, denoted .S, the second distribution ensemble is {SV () :

L All our results extend also to promise problems.

2 That is, assuming deterministic strategies, each query is parsed as a sequence of
prover messages representing aprefix of theinteraction, and theanswer isthe response
of thisverifier strategy to such a prefix. Probabilistic verifier strategies are considered
by first randomly selecting and fixing a deterministic strategy, and then proceedingas
above.

z € L}, where 5V () denotes the output distribution of 5 on in-
put =z and oracle accessto V'*.

When defining computational zero-knowledge (with respect to
aclass of verifiers), oneinstead requires that the two distributions
above are computationally indistinguishable (cf., [GM84, Yao82]).
That is, for every probabilistic polynomial-time algorithm, D, the
following quantity isnegligible(i.e., iseventually smaller than1/p(|z|)
for every polynomial p):

[Pr(D((P,V")(x)) = 1) = Pr(D(S" (2)) = 1)|

In our definitions of zero-knowledge, we require that the simu-
lators run in strict polynomial-time, asin [Gol95].

Notations: Let HVSZK (resp., S ZK) denote the class of lan-
guageshavinginteractive proofswhich are statistical zero-knowledge
with respect to the honest-verifier (resp., with respect to any proba-
bilistic polynomial-time verifier). The classes HVCZK and CZK
are defined analogously for computational zero-knowledge.

Public-coin (or Arthur-Merlin) proof systems. Aswere-
fer to this notion, let us recall that public-coin proof systemsare in-
teractive proof systemsin which the prescribed verifier's strategy
amounts to the following: In each round, the verifier tosses a pre-
determined number of coins and sends the outcome to the prover,
and at the end it decides whether to accept by applying a predicate
to the (full) sequenceof messagesit has sent and received. For each
of theclassesC above, wedenoteby C|.v the subclassof public coin
(or Arthur-Merlin) proof systems having the corresponding zero-
knowledge property.

1.2 Previous work

Clearly, SZK C HVSZK (resp., CZK C HVCZK), BPP
SZK C CZK (resp., HVSZK C HVCZK),andC|sm C C
ZP for each of thesefour ZK classes.

NN

1.2.1 On the complexity of various ZK classes.

The situation with respect to computational ZK is as follows.

Positivefor CZK: Assuming the existence of one-way functions,
CZK|am = IP (cf.,[GMWIL, 1Y87,BGG* 88, HILL, Nao91]),
and so under this assumption the status of all computational
zero-knowledge classesis resolved.

“Negative” for CZK: If one-way functions do not exist then only
“easy on the average languages’ have honest-verifier (com-
putational) zero-knowledge proofs [OW93]. This result al-
most complementsthe positive result above.

Open for CZK: Does HVCZK = CZK hold unconditionally?

(Or put otherwise, can it be proven without assuming the ex-
istence of one-way functions?)

Recall, this paper resolvesthis open problem for the case of public-
coin proof systems; that is, we show that HVC ZK|sm = CZK|am.
Asfor statistical ZK we have

Positivefor SZK: Several computational problems, believedto be
hard, areknown to have statistical zero-knowledge proof sys-
tems; for example, Quadratic Residuosity [GMR89], Graph
Isomorphism [GMW291], aproblemequivalentto the Discrete
Logarithm Problem [GK 93], Statistical Difference [SV97],
and a gap promise problem for lattices [ GG98].

Negativefor SZK: HVSZK C AM N coAM [For89, AH87].



InsideHVSZK: A key result regarding SZK is that any honest-
verifier statistical zero-knowledge proof can be transformed
into oneusingonly public-coins[Oka96]. Thatis, HVSZK =
HVS ZK|am. Itisaso knownthat HVS ZK is closed under
complement [Oka96, SV97].

Open for SZK: Does HVSZK = S ZK hold?

Recall, thispaper resolvesthis open problem, showingthat HVS ZK =

SZK (andinfact HVS ZK = S ZK| ).

1.2.2 Previous transformation of honest-verifier to gen-
eral ZK

Conditional results for SZK: Theproblemof relating HVS ZK
to S ZK wasfirst studied in [BMO90]. They showed that the two
classes coincide, provided that the Discrete Logarithm Problem is
hard. At the time, it seemed puzzling that computational assump-
tions can be used in the supposedly “information theoretic” context
of statistical zero-knowledge. However, a careful examination re-
vealsthat the standard class S Z K doesrefer to computational lim-
itations: It isrequired to simulate only all probabilistic polynomial-
time verifiers. The computational assumptionisthusused to restrict
the behavior of cheating verifiers. This approach was carried to its
climax in [Oka9g] (cf., [DGOW95, Part 2]): Using any bit com-
mitment scheme (and thus any one-way function [HILL, Nao91])
it was shown that HVS ZK|usm = SZK|sm. Combined with the
HVSZK = HVS Z K|\ result cited above, one getsthat the exis-
tence of one-way functionsimplies HYVS ZK = SZK (and in fact
HVSZK = SZK|am).

Unconditional results for constant-round ZK: Theonly un-

conditional transformationsof honest-verifier SZK (resp., CZK) known

before, referred to theclassof constant-round public-coin proof sys-
tems (cf., [Dam94, DGW94]). It wasshownthat if . hasaHVSZK
(resp., HVCZK) public-coin proof system of a constant number of
roundsthen L € SZK|.u (resp., L € CZK|am).

Weak SZK:
has an interactive proof, (P, V'), with the following non-standard
statistical zero-knowledge property: For every positive polynomial
p, and every probabilistic polynomial-time verifier V*, there exists
aprobabilistic polynomial-timesimulator .5, (with running-time de-
pending on p) so that the variation distance between the probability
ensembles, {(P,V*)(z) : € L} and {S;(z) : € L}, isat most

1/p(|2]).?

1.3 Restating our results

We obtain the first unconditional general transformation of honest-
verifier zero-knowledgeto general zero-knowledge.

Theorem 3 (main result): There exists an efficient transformation
of Honest-Verifier Satistical (resp., Computational) Zero-Knowledge
public-coin proof systems, into general Statistical (resp., Computa-
tional) Zero-Knowledge public-coin proof systems. Furthermore,

1. Theresulting proof systems has twice as many rounds as the
original one.

2. Theresulting prover strategy can be implemented in proba-
bilistic polynomail-time given oracle access to the original
prover strategy.

3. Thecompletenesserror of the resulting proof systemis expo-
nentially vanishing. In casetheoriginal proof systemhasper-
fect completeness, so doesthe resulting one.

3Thefirst author was unableto verify the claimsand arguments givenin [DOY 97].

In[DOY 97] itisclaimedthat any languagein HVS ZK

4. The soundnesserror of the resulting proof systemis bounded
aboveby1/p(|z|), wherep isan arbitrary polynomial deter-
mined by the transfor mation.

5. The resulting proof system has a black-box zero-knowledge
simulator.

6. Incaseof Statistical Zero-Knowledge, theresulting simulator
isstrong (i.e., it can handlearbitrary verifier strategies), and
its simulation error is at most poly(|z|) - () + 27D,
where e(z) isthe simulation error of the original system.

Theorems 1 and 2 follow, wherein caseof Statistical Zero-Knowledge
weuseOkamoto’sresult by which HYV S ZK = HVS Z K| 1 [Oka96,
Thm. 1].

We stress that, in contrast to the previously mentioned condi-
tional results, our result for (unbounded) statistical zero-knowledge
is unconditional and guarantees(black-box) simulation of all possi-
ble verifier strategies (not only polynomial-time ones). Theorem 3
also provides a transformation for a wide class of computational
zero-knowledgeproof systems—that is, the classof public-coin proof
systems. We view our result as a significant step towards showing
that HYCZK = CZK without relying on any intractability as-
sumptions.

Soundness error and number of rounds: Thetransformation
of Theorem 3 increases the number of rounds of the original proof
system only by a factor of 2. However, the resulting protocol has
noticeable soundnesserror. That is, for any positive polynomial p,
we can achieve a soundnesserror of 1/p(|«|). The soundness er-
ror may be further decreased, while preserving the zero-knowledge
property, by sequential repetition of the proof system. In partic-
ular, to achieve negligible soundness error it sufficesto use w(1)
sequential repetitions. This is unavoidable, unless NP C BPP,
since only BPP languages may have black-box simulation zero-
knowledge public-coin proofs with constant number of rounds and
negligible error probability [GK 96].*

Completeness error:
we may eliminate completeness error altogether (at the cost of at
most one additional round and not preserving the complexity of the
prover). (Recall that the transformation of [FGM * 89] increasesthe
simulation error by at most an exponentially vanishing amount.)

Corollaries: Many known results regarding the class HVS ZK
translateto theclass S Z K (and respectively resultsfor HVC ZK|am
translate to CZK|,u). For example, using known results regard-
ing HVS Z K, one obtains that S Z X is closed under complement,
equals S Z K| s, hasacomplete promise problem, etc. A somewhat
less straightforward corollary is the following.

Corollary 4 Everylanguagein S ZK hasa SZK proof systemwith
perfect completenessin which the soundnesserror and the simula-
tion deviation are exponentially vanishing.

Given Theorem 3 (and the discussion above), the only non-obvious
part in Corollary 4 isthe claim about the simulation error. Here we
rely on the result of [SV97] by which every languagein HVS ZK
has a 1-round interactive proof systemfor which the honest-verifier
can be simulated with exponentially vanishing simulation error. We

* Recall that if one-way functions exist then AP has constant-round public-coin
proofswith negligible soundness error which are honest-verifier computational zero-
knowledge[GMW91]. So, if Theorem3 wereto preserveall itsfeatureswhileresulting
in a proof system with negligible soundness error then A/P? C BPP would follow
(assuming that one-way functionsexist).

By first applying thetransformation of [FGM * 89],



also useacareful analysisof the HVS ZK to HVS Z K|, transfor-
mation of [Oka96] by which this transformation increases the sim-
ulation error by at most an exponentially vanishing amount. And
lastly, applying Theorem 3, we useits item 6.

1.4 Techniques

Theorem 3 is proven by modifying the transformation presented in
[DGW94]. Whereasthe proof systemsresulting from that transfor-
mation could be simulated only for a constant number of rounds,
our modified transformation can be simulated for any (polynomial)
number of rounds. Both transformations apply to honest-verifier
Arthur-Merlin zero-knowledge proofs (both statistical and compu-
tational).

In thetransformation of [DGW94], each ¢-bit long (random) mes-
sage sent by Arthur is replaced by an invocation of a 2-round Ran-
dom Selection protocol, for generating stringsin {0, 1}*. For any
fixed positive polynomial p, a Random Selection protocol with the
following two properties was presented [DGW94]:

1. AslongasArthur playsaccordingto the protocol, Merlin may
cause the outcome to deviate from uniform distribution over
{0, 1}* by at most 1/p(£). (That is, the variation distance is
atmost 1/p(£).)

2. AslongasMerlin playsaccordingto the protocol, Arthur may
not cause any ¢-bit string to appear asthe outcomewith prob-
ability greater than p(£)* - 27, In particular, when Arthur
applies a deterministic cheating strategy, the outcome of the

protocol isuniformly distributed over someset of % strings.
The proof system resulting from the above transformation is sim-
ulated in [DGW94] by running the honest-verifier simulator, and
hoping that all Arthur-messagesincludedin thetranscript fall inthe
sets mentioned in Item (2) above. If the proof system usesonly a
constant number of invocations of the Random Selection protocol,
then the above suffices for producing a black-box simulation with
respect to any cheating Arthur-strategy. This approach fails when
we have a non-constant number of rounds (Random Selection in-
vocations).

In this paper we modify the above transformation as follows.
Rather than selecting amessage, we use the Random Selection pro-
tocol to specify (in a succinct manner) a set of 2™ messages. Mer-
lin isthen supposed to select amessage for Arthur, uniformly from
this set. Animmediate concern is that this allows Merlin to select
a string which is advantageous for cheating. However, this only
increases Merlin’s cheating probability by a factor of 2" per each
round. (We can first make the original proof system have an even
smaller soundness error, so this should not scare us.) So the ques-
tion iswhat we gained by doing so. Intuitively, we gained not hav-
ing to simulate the Random Sel ection protocol for any possible out-
come. Rather than having to simulate an executionwhich resultsin
any specific £-bit output, «v, we only need to simulate an execution
which results in arandom set of strings containing «. The distinc-
tion isimportant since executions of the former type may exist only
foral/poly (¢) fraction of the possible a’s, whereas—aswe show —
executions of the latter type exists and can be efficiently generated
for all buta2~*(" fraction of the a’s. Proving the last statement is
amajor technical undertaking of the paper. It is reduced to proving
the following lemmawhich may be of independent interest:

Lemma5 (HashingLemma): Thereexistsa universal constant, ¢ >
0, so that the following holds, for everye, 6 > 0. Let D and T be
finite sets, H be a 2-universal family of hash functions from D to
T,ande € T. LetS C H suchthat|S| > é|H|,and X bea

randomvariableranging over a finite set D having collision prob-

ability at most 57 (e, 30, Pr[X = ¢]” < ). Thenthesta-

tistical difference between the following two randomprocessesis at

most ¢ - e!/¢6~°.

(A) Select i uniformly in S, and let = be selected from X condi-
tioned on A(X') = e. Output (h, z).

(B) Letz — X, and k be selected uniformly among all h € H
satisfying (z) = e. Output (k, x).

Actually, a special case of thislemma, where X isuniform over D
(and |T| = ¢ - |D]) suffices for the current proof of Theorem 3.
Thus, only a proof of this special caseis givenin thisversion. The
stronger version was developed for an alternative proof, di scovered
first, which istotally superseded by the current proof.

2 Notation

Whenever we consider an interactive proof system, = will denote
the common input and » will bethe length of . For notational con-
venience, we will often hide dependenceon = or » whenit isclear.
For example, wewrite r instead of r(n).

If X and Y are random variables, we write | X — Y'|| for their
statistical difference (or variation distance), definedas|| X — Y| =
(>, |Pr[X =«]—Pr[Y =g]|). Bys — X, wemeantaking
asample z from randomvariable X . If Sisasetz €r S indicates
that z is chosen uniformly from S.

3 The starting proof system

Theorem 3 is proven by combining two transformations. The first
transformation is obtained by parallel repetition, and is stated with-
out proof below.” The protocols resulting from this transformation
are the starting point for our main transformation, stated i n the next
section.

Lemma3.1 Let L be a language having a honest-verifier statis-
tical (resp., computational) zero-knowledge public-coin proof sys-
tems of r rounds. Then L hassucha (r-round honest-verifier) zero-
knowledge (public-coin) proof systemin which

1. Theprover strategy canbeimplemented in probabilistic polynomial-

time given oracle accessto the original prover stategy.

2. Thecompletenesserror isexponentailly vanishing, andin case
the original proof system has perfect completeness so does
the resulting one.

3. Soundnesserror islessthan 2= ("+1)

4. For L € HVSZK: The simulator deviation is at most a
polynomial factor greater than the original one.

4 The transformation

Fix alanguage L in HVSZK or HVCZ K| and let (M, A) be
the proof system guaranteed by Lemma3.1. Let r = r(n) be the
number of roundsof (M, A) andlet £ = £(n) bethelength of A’s
messages. We may describe this proof system as follows:

5 Recall that honest-verifier zero-knowledgepropertiesare preservedunder parallel
repetition.



Original Proof System (M, A), on input z:
1 Inround: (:=1,2,...,7),
(@) A choosesamessagea; €x {0,1}¢ andsendsitto M.

(b) M sendsaresponse ; «— M (a1, B1, 02, B2, ..., o)
to A.

2. After round r, machine A deterministically decideswhether
to accept or reject.

Thereason such aprotocol could bezero-knowledgeagainst the hon-
est verifier but not against dishonest verifiers is that nothing pre-

vents A from choosing the «;’s maliciously rather than uniformly.

Theideaof our transformation isto replace A’srandom choiceswith

a Random Selection protocol (to be described in Section 5) which

guaranteesthat the «;’s are statistically closeto uniform, regardless
of how A behaves. Thenew protocol, denoted (M, A ), proceedsas
follows.

Transformed Proof System (M, A), on input z:
1 Instage: (:1=1,2,...,7),
(@ M and A usethe Random Selection protocol,
RS2nr(n) [(n)( ) toselector; € {0 1}Z
(b) M sendstheresponsed; — M (a1, B1, s, Ba, .. ., ;)
to A.

2. After stage r, machine A accepts or rejects as A would on
transcript (a1, f1, ..., ar, Br).

We will provethe following about the Transformed Proof Sys-
tem:

Lemma4.1 TheTransformedProof System(M, A ) hasthefollow-
ing properties:

1. Thenumber of roundsistwicethenumber of roundsin (44, A).

2. M canbeimplemented in probabilistic polynomial time given
oracleaccessto M.

3. The completeness error is exponentially vanishing. In case
(M, A) has perfect completeness, so does (M, A).

4. Soundnesserror 1/n.

5. When (M, A) is Honest-Verifier Statistical (resp., Computa-
tional) Zero-Knowledge, (M, A) is Statistical (resp., Com-
putational) Zero-Knowledge, and this zero-knowledge prop-
erty is exhibited by a black-box simulator.

6. In the case of Statistical Zero-Knowledge, the simulator de-
viation isat most 2~ (") greater than that of (M, A).

Theorem 3, follows immediately from Lemmas 3.1 and 4.1.°
Wenow informally explainwhy Lemma4.1 holds. All of theseprop-
erties depend on facts about our Random Selection protocol which
will be proven in subsequent sections. Property 1 follows from the
fact that our Random Selection Protocol consists of 2 rounds with
Merlin sending the last message. Property 2 is clear, given that the
Merlin's strategy in the Random Selection protocol can be imple-
mented in probabilistic polynomial time.

Property 3, the completeness error, follows from the fact that
(M, A) hasexponentially vanishing completenesserror and thefact
that when M behaves honestly in the Random Selection protocol,
the ’s will have only have a statistical difference of 2~ from
uniform. Itisobviousthat perfect completenessis preserved by our

S For ease of presentation, we only show how to obtain a soundnesserror of 1/n,
but this can be replaced with any inverse polynomial.

transformation. For soundness(Property 4, wewill show thatin our
Random Selection protocol, a cheating M cannot make the output
Iiein any set § C {0,1}* with probability greater that 2" - 151 +
2 . Thisgives M essentially an extra 2" factor of freedom (com-
pared to what M has) at each stage. Over r stages, we expect M to
succeed with probability 2"" times greater than M can. But since
theoriginal (M, A) protocol hassoundnesserror 2 ("1™ M still
hasonly an exponentially small chance of succeeding. The additive
error term of 1/2nr also accumulatesto give an additional additive
factor of 1/2n to the soundnesserror over r rounds, yielding atotal
soundnesserror lessthan 1/n. A more detailed proof of soundness
will be givenin the full version of the paper [GSV98].

The proof of zero-knowledgeness(Properties 5 and 6) isthema-
jor technical undertaking of the paper, and it too reducesto proper-
ties of our Random Selection protocol. We will demonstratethat no
matter what strategy the verifier follows, the «;’swill bedistributed
statistically closeto uniform. Moreover, wewill show that the Ran-
dom Selection protocol satisfiesa strong simulability property: Us-
ing the verifier algorithm as a black-box subroutineand givenaran-
dom o € {0,1}*, one can efficiently simulate the distribution of
Random Selection transcripts which yield «. Thus, a simulator for
the Transformed Proof System could operate as follows: Run the
honest verifier simulator for the original proof system to produce a
transcript of «;’sand j3;’s; then usethe strong simul ator for the Ran-
dom Selection protocol to “fill in” how the «;’s are chosen. These
intuitive arguments will be made precise in the next few sections.

5 Random Selection

Let ¢ and £ beany polynomials. In thissection, we describean Arthur-
Merlin protocol RS, ¢(n) = (Mrs, Ars)(n) for randomly se-
lecting a string in {0, 1}™). The protocol employs the Random
selection protocol DGW ,4(n) = (Mp, Ap) of [DGW94] as a
subprotocol, and the following presentationis adapted from that pa-
per.

For notational convenience, we will write ¢ to mean ¢(r) and
£ to mean £(n). Let H be the space of affine linear functions from
{0,1}*to {0,1}*~",i.e. h € Hisof theform h(z) = Az + b for
some appropriately sized matrix A and vector . For o € {0,1}¥,
we write Hq, for {h € H:h(a) = 0}. Lets = £- (£ —n) +
(£—n)andt = s —4log,(3¢s). Notethat elementsof {0,1}° can
be viewed as elements from . The protocol DGW , . utilizes a
space of functions F from {0, 1}° to {0, 1}" satisfying the follow-
ing properties:

1. Each f € F hasadescription of size poly(n).

2. Thereisapoly (n)-time algorithm that, oninput f € F and

h € {0,1}°, outputs f(&).

3. Thereisapoly(n)-time algorithm that, oninput f € F,y €
{0,1}", listsall theelementsof £~ (y). Inparticular, | f~ (y)| <
p(n) for some polynomial p.

4. Foreveryy € {0,1}* and f € F, f~*(y) is nonempty.

5. Fisafamily of almost s-wiseindependent hashingfunctions
inthefollowing sense: For every s distinctpointshy, ..., k. €
({0,1}*\ {0, 1}*0°~"), for auniformly chosen f € F, the
randomvariables f(h1), . .., f(h.) areindependently and uni-
formly distributed in {0, 1}*. (This property is used only for
the proof of the soundnesscondition of the protocol, foundin
[DGW94].)

7Any 2-universal family for which the required computations are feasible can be
used; we use this particular family for simplicity and ease of presentation.



The DGW Random Selection Protocol

Our Random Selection Protocol

An explicit construction of such afamily isgivenin [DGW94]. We

canview each f € F asdefining apartition of {0, 1}° into 2* cells

of the form £~ (y), each of size poly(»). For notational conve-

nience, we will sometimeswrite cell y to refer to the cell £~ (y).
We now describe the protocol of [DGW94]:

1. Ap selects f €r F, and sendsitto Mp (i.e, Ap selectsa
random partition).

2. Mp selectsy € {0,1}", and sendsitto Ap (i.e., Mp uni-
formly selectsacell).

3. Ap selectsh €r f~'(y) (i.e. Ap uniformly selectsan ele-
ment of the cell).

4. Output k.

If, at any step, Ap or M p do not select an object from the appro-
priate set, whatever messagethey sendis interpreted as a canonical
element of that set. In [DGW94], it was shown that the above pro-
tocol hasthe following properties (roughly speaking):

1. (Soundness) For any Merlin strategy M 7, the output distri-
butionon’H = {0,1}° of (M}, Ap) deviatesfrom uniform
by at most 1/¢ (in statistical difference).

2. (Simulability) Let A7 be any strategy for Arthur. At least
al/poly(n) fraction of the ~’sin {0, 1}° occur as possible
outputs of the interaction (Mp, A ) and given such an &,
one can simulate in poly (n)-time A},’s view of an interac-
tion resulting in k.

Themain hindrancein applying the protocol asused by [DGW94]
is that the simulator is only guaranteed to work for a 1/poly(n)
fraction of the 2’s. The new technique of this paper is to interpret
the output & € H of the DGW protocol as a set of strings (namely
k™1 (0)), fromwhich asinglestring « israndomly selected by Mer-
lin. Itisthis«, rather than £, that isthe output of the Random Selec-
tion protocol. Thus, we only needto simulate the Random Selection
protocol for arandom « rather than arandom k. For agiven «, there
are exponentially many hash functions z such that 2(«) = 0. Be-
causethis spaceof A’sissolarge and coversthe o’s near-uniformly,
we are able to perform the simulation for a1 — 2~ fraction of
the o’s.

A full description of our Random Selection protocol follows.

Rquz = (MRs, ARs)(n):
1-3. Asin DGW 4 4(n).
4. Mpsselectsa €r h71(0). (If A71(0) = @ then« isdefined
to be 0¢.)
5. Output o.

Aswith the DGW protocal, if Ars or M rs do not select an object
from the appropriate set at any step, whatever message they send is
interpreted as acanonical element of that set. The properties of this
protocol are described in the following Proposition.

Proposition 1 For any polynomials¢ and ¢, the Random Selection
protocol RS ¢ isa 2-round protocol with the following properties:

1. (Efficiency) Both M r< and A rs canbeimplementedin time
poly (r) and the protocol is public-coin for both parties.

2. (Soundness) For all Merlin strategies M 1, and all sets.S C
{0, 1}*, the probability that the output of (M}s, Ars)(n)
liesin S isat most

5]

on . 21
2 +
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3. (Strong Smulability) Thereexists a black-box simulator Sr s
runningintime poly (), suchthat for all deterministic® Arthur
strategies A%<, the statistical difference between the follow-
ing distributionsis 2~"):

(1) Execute (A%s, Mrs)(n), leta € {0,1}¢ bethe output
of the protocol, and let v be A%, ;s view of the interac-
tion (i.e,, v isatranscript (f, y, k, )).’ .

(1) Choosea uniformlyfrom{o, 1}*. Output(Sl’ggS (@), a).

Remark. The «'s are included in the outputs of Distributions
(I) and (1) aboveto force the simulator to produce a transcript for
an externally specified « (rather than an « which it generateson its
own while producing the transcript.)

Proof: Efficiency is immediate from the description of the pro-
tocol and the properties of the families F and H. For Soundness,
let M} < be any cheating Merlin strategy and consider an execu-
tion of the protocol (M 15, Ars). Notice that that the probability
that the output « liesin some set S is bounded above by the prob-
ability that »~'(0) contains an element of S. Now, for » chosen
uniformly from H (instead of by the protocol), the probability that
R~'(0) contains an element of S is at most

5]
3 i) = 0= 5
In our protocol, & is chosen using the DGW protocol. It shownin
[DGW94, Prop. 1] that a cheating Merlin can causeat most al/q
statistical difference from the uniform distribution on H, and so the
Soundness property follows.

We now describe the simulator which will be used to establish
Strong Simulability. Recall that p is polynomial bound on the size
of f~!(y) forany f € F, s isthe description length for elements
of ‘H, and functionsin F map {0, 1}* to {0, 1}*, wheret = s —
4log,(3¢s).

The simulator Sggs, on input o € {0,1}%, proceeds as
follows:

Sl. Let f € F bethefirst messagesentby A% .
S2. Repeat the following upto n - 2(3s¢)* - p times:

(@ Chooseh' uniformly from H,, (Recall that Ho = {h: k() =

0}.
(b) Lety = f(®') (i.e, y isthecell containing &"). Com-

putek = | £~ (y) N Ha|. With probability 1 — L, pro-
ceed to next iteration of Step S2. (Otherwise continue.)

(c) Leth = A% <(y), that is, the element (hereafter called
thecell representative) of cell y that A% s givesin Step 3
after being sent y in Step 2.

(d) If A(a) = 0, output ((f,y, k, @), ) and terminate the
simulation. Otherwise, proceedto nextiteration of Step S2.

S3. If the simulator failed to produce output so far, output fail.

8The restriction to deterministic Arthur strategiesis only for ease of presentation,
as asimulator for randomized Arthur strategies can uniformly select and fix Arthur’s
coinsand then use thesimulator for deterministic strategi es. When we usethe Random
Selection simulator as a subroutinein the simulator for the Transformed Protocol in
Section 6, the coins of Arthur will have already been fixed by the outer simulator.

?In Section 1.1, we defined the Verifier's view to consist of his random coins and
theProver’smessages. Here, wedo not includerandom coins, asthey areirrelevant for
deterministic strategies. We also include Arthur’s messages — this is unnecessary as
they arefunctionsof Merlin’smessages, but it will be convenientfor our presentation.



From the various properties of the families F and ‘H, such as
the fact that f~'(y) can be enumerated in time poly (), and the
fact that s, ¢, andp are al poly(n), we see immediately that the

running time of SR? ispoly(n).

Let us now show that Distributions (1) and (I1) in Proposition 1
havestatistical difference2 (") Each producesoutput of theform
((f,y,h,a),a). Inboth cases, f is the (deterministically chosen)
first messageof A%g andy = f(h), soit sufficesto show that the
distributions restricted to their (k, o) components are statistically
close. We therefore define the Distributions (I') and (1) to be the
Distributions (I) and (I1) restricted to their (A, o) components. To
analyze these distributions, we make use of the following Lemma,
the proof of whichisin Section7. (As stated in theintroduction, we
can also prove a much more general form of this lemma. The proof
isomitted in this abstract.)

Lemma5.1 Thereexistsa universal constantc > 0, sothat thefol-
lowing holds: Let H be the family of affine-linear mapsfrom D =
{0,1}*t0T = {0,1}" ,i.e. h € Hisof theformh(z) = Az + b
for some matrix A and vector . Let S C H be suchthat |.S| >

_ Il
6|M|. Lete = [ZL Then

Part 1: The statistical difference between the following two distri-
butionsisat most (¢ - e'/°67°):

(A) Chooseh €r S. Letz €r ™' (0). Output (h, z).
(B) Choosez €r D. Leth €r SN H,. Output (h, z).

Part 2: Foratleastal — (c-<'/°67°) fractionof = € D,

|S N H
> 6/0.
Il

When we apply the lemma, wetake ' = ¢ — n,e = 27", and
S = {Agxs(y):y € {0,1}"}. In other words, S isthe set all possi-
ble cell representativesthat A%, s can sendin Step 3 of the protocol
(Mrs, ARs). Notice that

s déf ﬂ _ z — 2—410g2(35q) — ;
[H| ~ 2 (3s9)*

and so, ¢ - e'/¢67¢ = 27%(") Now, observe that the protocol
(Mrs, ARs) selects h uniformly from S. (Recall that A% isde-
terministic.) Thus, Distribution (I") is exactly Distribution (A) of
Lemma5.1. Now we will show that the Distribution (11') is statis-
tically closeto Distribution (B).

Let us consider a single iteration of Step S2 in s;_i:gS. In such
an iteration, A’ is chosen uniformly from H,, andy = f(k'). We
write f(H.,) to denotethe set of images of elementsof H., under f
(i.e, f(Ha) = {f(h): h € Ha}). Inotherwords, f(Ha) istheset
of cellsintersecting H.. We want to establish that the distribution
of k’s produced by the simulator will be uniform in .S N Ha. In
order for thisto happen, y must be uniformly selectedfrom f(H.).
If f waschosenhonestly by A%<, we would expect it to be one-to-
oneon the set H,, since H, isavanishingly small fraction of the
domain. However, f is chosen adversarially, so we must do some
work to ensure uniformity:

Notice that for any yo € f(H
yo Whenuniformly selectingh’ €
In Step S2b, any suchchoiceismaintained with probability 1/|HaN
£ (y0)|- Thusthe probability that y = yo after Steps S2aand S2b
in Sgrs is exactly 1/|Ha|. Thisis independent of yo, and there-
fore y is a uniformly chosen element of f(H.) — that is, a uni-
formly chosen cell intersecting H... (These probabilities sum up to

«), the probability that f(A') =

Ho isexactly |Haf ™ (yo)|/| Hal-

| f(Ha)|/|Ha|, which may be less than 1; this is due to the possi-
bility that the iteration ends prematurely in Step S2b.)

Now, since, in Step S2c, h = Ak s(y) istaken to be the repre-
sentative of cell y, the function & is uniformly distributed over the
representatives of cellswhich intersect H... In Step S2d, we aban-
don any k not in H., so the resulting distribution on & is uniform
over cell representativesin ‘H,, that is, uniform over SN "H,. Thus
asingleiteration of the loop producesan A uniformly chosen from
S N H,, if it manages to produce output at all. This is identical
to how h ischosenin Distribution (B) of Lemma5.1. So, to show
that the Distribution (II') is statistically close to Distribution (B),
we need only to show that the probability that the repeat loop fails
to produce output in all its poly (n) iterationsis 274" for at least
a1 — 274" fraction of the a’sin {0, 1}*. We do this by showing
that each iteration produces output with probability at least » times
the reciprocal of the number of iterations.

Therearetwo placesin which aniteration can be exited, causing
it to fail to produce output — Steps S2b and S2d. Observethat the
simulator never exits in Step S2d if A’ chosen in Step S2a liesin
S, becausethen k will equal A’. This occurswith probability |S N
Ho|/|Ha|. By Lemma5.1, for at least a1 — 27" fraction of
o € {0,1}¢, thisquantity is at least §/2 = 1/2(3s¢)*.

Now supposethat &' has been chosenin S. The probability of
not exiting in Step S2bisat least 1/|f~* (y)|, whichisat least 1/p
by the propertiesof thefamily . Thus, for a1 — 2" fraction of
the a’s, asingle iteration produces output with probability at least
1/(2(3sq)* - p). Sincethere are (2(3sq)* - p) - n iterations, output
is produced with probability 1 — 27"

We have shown that Distribution (I’) isidentical to Distribution
(A) in Lemmab5.1 and Distribution (11") has a statistical difference
of 2=%(") from Distribution (B). So, by Lemma 5.1, we conclude
that Distributions (1) and (I1) have statistical difference 2~ and
Strong Simulability is established.

6 Simulating the Transformed Protocol

In this section, we describe the simulator for the protocol (M, A)
of Section 4. Let S be the simulator for the honest verifier in the
original protocol (M, A). We will give a universal simulator S for
(M, A) which uses any verifier strategy A* asablack-box.

The simulator SA*, on input z:
1. Uniformly chooseand fix random coins ¢ for A* to obtain a
deterministic strategy A" .
2. Runtheoriginal honest-verifier simulator to obtain atranscript
(a1, f1,...,ap, fr) — S(z).
3. For: = 1 tor, do the following:

(a8 Runthe strong simulator for the Random Selection pro-
tocol, on input «; with Arthur strategy A", to obtain a
simulated transcript ¢; of the Random Selection proto-
col (e, ti — SAY (o).

(b) Let ACHD pe the state of A(*) after additional history
ti, o, B,

4. output (t1, a1, B1, ..., tr, oy, fBr; C).

To provethat the above simulator hasthe desired properties, we
first consider its output distribution in the casethat the original honest-

verifier simulator S is perfect: Let S pethe output distribution
of A7 if the output of S in Step 2 is replaced with a true sample
(a1, f1, ..., ar, By) of the protocol (M, A). By aninduction ar-
gument using the strong simulability property of the Random Se-
lection protocol, it is easy to show the following:



Claim 6.1 §A*(x) and (M, A*)(z) have statistical difference at

most 2 ("),

The proof of Claim 6.1 can be found in the full version of the
paper [GSV98]. Now we deduce Lemma 4.1, Parts 5 and 6, from
Claim 6.1.

Statistical Zero-Knowledge. Usingtheoutput of S instead of a
true samplefrom (A, A) canincreasethe simulator deviation by at
most ||.S(z)— (M, A)(z)]|, whichisexactly thesimulator deviation
for the protocol (M, A).

Computational Zero-Knowledge. We claim that the probabil-

ity ensembles X; < {(M, A*)(z)}sez and X> ' {SA7 (2)}aer

are computationally indistinguishablefor any probablllstic polynomial-

time A*. Considertheensemble X, ' {S (z)}zer. ByClam6.1,
X, and X are statistically close and therefore computationally in-
distinguishable. We claim that X, and X are computationally in-
distinguishable, for any probabilistic polynomial-time A *. Thisholds
becauseany distinguisher D between X, and X5 can betransformed
into adistinguisher D' between {(M, A)(z)}sez and{S(z)}zer,
which are computationally indistinguishableby hypothesis. The new
distinguisher D’ operates as follows: Given a transcript 7' of ei-
ther of thelatter two ensembles, perform the procedure specified by
sA”, replacing the execution in Step 2 with 7', and feed the output
of SA” to . When T is selected accordingto {(M, A)(z)}zer,
D isfed with ensemble X3, whereaswhen T’ is selected according
to {S(z)}zcz, D isfed with ensemble X.

Remark. The above proof actually showsthat, for any (not just
probabilistic polynomial-time) verifier A*, if (M, A*) and sA”
can be distinguished by algorithm 1, then there is an algorithm no
more powerful than A* and D (i.e., aprobabilistic polynomial time
machine with oracle accessto A* and D) that can distinguish the
original honest-verifier proof system (M, A) from its simulator S.
So, if the honest-verifier simulator producestranscriptsi ndistinguish-
ablefrom (M, A) by any machinerunningin, say, quasi-polynomial
time, then the new protocol (M, A) is zero-knowledge against all
quasi-polynomial time verifiers.

7 Proof of Hashing Lemma

Here we provide a proof of the Hashing Lemma used to establish
the main result of this paper. We restate the lemma here:

Lemma 7.1 (Hashing Lemma) There exists a universal constant
¢ > 0, sothat the following holds: Let H be the family of affine-
linear mapsfromD = {0,1}to T = {0,1}",ie h € His
of theformh(z) = Az + b for some matrix A and vector b. Let

S C Hbesuchthat |S| > 6|H|. Lete = {T}. Then
Part 1: The statistical difference between the following two distri-
butionsisat most ¢ - e/¢57:

A= (Ap,Ax): LetherS. Letz€rh™'(0). Output (&, z).

B = (B, Bx): Letzer D. Let her SNH,,. Output (h, =).

Part 2: For atleastal — (c-e!/°67°) fractionof x € D,

|.S N Hy|
Il

Proof: We define a perfect hash function & € H to be one of the
form h(z) = Az + b, wherethe matrix A isfull rank (and hence h
issurjective). Note that a straightforward calculation showsthat at
most an ¢ fraction of the functionsin ‘H are not perfect.

We first establish Part 1 of the Hashing Lemmafor the special
case of perfect hash functions.

Sublemma 7.2 Part 1 of the Hashing Lemma holds when S con-
tains only perfect hash functions.

Proof:  First, we consider the relationship between distributions
fix'and Bx.

1/3

Claim 7.3 ||Ax — Bx| < 252

Proof: Note Bx isuniform over D. To establishthe claim, it suf-
ficesto show that for all C' C D,

1] < 351/3.
[D] g

Pr[Ax € C]—

Note

D] D]
it sufficesto consider sets C' suchthat ||1C7|| > 1. Fromthedefinition
of A, we observe:

Pridx € C)— g} = |Prlax e (D\ )] - 537 0

lhi
Pr[AxeC] = |5|Z o] 0)NC|

hes

PR

hes

wherethelast equality is dueto our assumptionthat every k € S'is
perfect, and hence |~ (0)] = 1/e.

To analyzethe expressionabove, whichrefersto asumover k €
S, wefirst consider the behaviour of thesumover all » € H. Here,
we can use Chebyshev’sinequality. Consider the probability space
uniform over H, and define, for every =z € C, an indicator random
variable:

1ifh(z)=0
Xa(h) = { 0 'othe(rv&se
LetWe(h) = e - |R7H0)NC| = Z x=(h). Since H is

a 2-universal family of hash functions, the Xm s are pairwise inde-
pendent with Prypen[x.(h) = 1] = & = . Thus, we have

[ e
that:
C
Enen[We(h)] =¢- Z Enerx=(h)] = H
zeC
C
Varpen[We (k)] = 2. Z Varper[xz(h)] < e- H
zeC
By Chebyshev’sinequality,
HWC |C| ‘ > PRIAN m] 4VM[WC] 2
neh T D] E (2 1)
D]
61/3|D| 1/
< 2e
cr -

where the last inequality is because|C| > [D|/2. Since {5} > 5,
we can apply the aboveto the probability spaceuniform over .S and
conclude,

1/3
Py [ 2e
hes

5

.
|D|

We(h) —

1/3 |C|]
|D|



Recall,
PrlAx € C] = Z
15T &=
Hence, for all but at most <— 25 - 15| termsin the sum, we have
that ‘Wc |C|‘ < gl/? |C| . Since for every A it is true that

0< Wc(h) < 1, we have,

|C| < 1/3@_1_251/3 361/3
5§ — 5

Pr[Ax € C
[ =15 Bl

Andtheclamisproved. W

We are now ready to complete the proof of this sublemma. For
dlz € Dandal b € S suchthat k(z) = 0, we have, by Bayes
Law:

Pr[Ax = a|Ar = h]-Pr[An = h

Prldy = hlAx = o] = LEAX erFAX:]x]I[ 7 = h]
B et ()] Y ) e

- PriAx =2] = Pr[Ax = 1]

where the last step is because for all perfect b, |R~1(0)| = 1/e.
Note that this value has no dependenceon k. Hence, for every z,
given Ax = =z, thedistribution A3 isuniform over {h € S :
h(z) = 0}. Note that for all =, given Bx = &, B isaso uni-
form over the same set. Thus, conditioned on the value of z, the
distributions A4; and By areidentical.

Hence||A — B|| = ||Ax — Bx]|| < €1, and the sublemmais
established.

Before we argue Part 1 of the Hashing Lemma in general, we
will show how Part 2 follows from Sublemma 7.2. In the sequel,
it will be convenient to introduce the following notation: For any
subset I C 'H, we will write I, to denotetheset {h € I : h(z) =
0}.

In order to apply Sublemma?.2, wewill consider thesubset S’ C
S of al perfect hashfunctionsin S. Sincelessthan an ¢ fraction of
al hashfunctionsare not perfect, |S'| > (1— £)|S| > (6 —<)-|H|.
Similarly, we definethefollowing two modificationsof the distribu-
tions A and B, using S’ instead of S:

A= (A}, A%): Leth€r S'. Letz €rh™(0). Output (&, =).
B' = (B3, B%): Letzer D. Let her S'NH,. Output (k, z).
The following claim establishes Part 2 of the Hashing Lemma:

Claim 7.4 Let ¢y & 22

reD, o 2 8/2.

. For atleasta (1 — /e1) fraction of

Proof: By the definition of Ay,

where the last equality follows because|h ™ (0)| = 1/e foral k €
S'. However, by the Sublemma, || Ay — B || < €1. Notethat B
isuniform over D, sofora(1 — \/e1) fraction of # € D, it must be
that

15 . 1
fion = Priak =a] > (1= va) -
Thus,
S| o IS:] 15| 15|

L 2 T = YA g = V) g

where thelast equality followsfrome - |D| = |T| and |T| - |H| =
S S
|'H|. Using the fact that ||H|| >(1-%)- ||H||,We have, fora (1 —
V€1) fraction of & € D,
| Sz € 5
> — (1 = > 2
i, = UoVe)i-g)ezg

Notethat the final inequality follows becausewe can safely assume

that \/e1 + £ < %. Thisis becausewe can freely assumethat c -

e'/e§7° < 1, since otherwise the statement of the Hashing Lemma
becomestrivially satisfied. Since /e1 + 5 is upper bounded by & -
«'/*§=* for someconstant k, our assumption can be madeto imply
that \/ex + = < £ by choosingc > 2k.

Finally, we establish Part 1 of the Hashing Lemmain general by
showing that the presence of imperfect hash functions will not dis-
turb our computations. First, we see immediately that since | S| >
(1 — £)|S|, the statistical difference between A and A’ can be at
most . To see that the statistical difference between B’ and B is
sufficiently small, it sufficesto show that for almost all =, the proba-
bility that B, outputs animperfect hashfunction, giventhat Bx =
z, issmall. First we argue:

Claim 7.5 For everyz € D,tht [hisimperfect] < e
EHe

Proof: Observethat for any z € D, H, consistsexactly of those
functions h(y) = Ay + b whereb = — Ax. Thus, there is exactly
one function in H, for every matrix A. Hence, the fraction of im-
perfect functionsin H. is precisely the fraction of matrices A that
do not have full rank, which is at most .

Forany « € D, the probability that B+, outputs an imperfect
hash function giventhat Bx = z is

. |
hggx[h isimperfect] Shgﬁ [k isimperfect] - | |

Using Claim 7.4 and Claim 7.5 above, we havethat for at leasta(1—
def

V/€1) fraction of ¢ € D, this probability isat most e2 = ¢ - (2/6).
Thus, ||B — B'|| < (1 — \/e1) - €2 + /e1 < €2 + /e1. We have
already observed that || A’ — A|| < £, and Sublemma 7.2 showed
that || B’ — A'|| < e1. Hence||A — B|| < e1 + 5 + €2 + /€1, and
the Hashing Lemmais established. W
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A Definitions

Definition 6 (Interactive Proofs—IP) [GMR89]: Aninteractive proof
system with completeness error ¢ : N — N and soundness error
s : N+— N for alanguage I is a two-party game, between a veri-
fier executinga probabilistic polynomial-time strategy (denoted V)
and a prover which executesa computational ly unbounded strategy
(denoted P), satisfying
¢ Completeness: For every ¢ € L, the verifier V' rejectswith
probability at most c(|z|), after interacting with the prover P
on common input .

e Soundness: For every z ¢ L and every potential strategy
P, theverifier V acceptswith probability at most s(|«|), af-
ter interacting with P* on common input z.

In case ¢ = 0 we say that the interactive proof has perfect com-
pleteness.

Unless specified differently, an interactive proof system meansone
in which both the completenessand soundnesserrors are negligible
(i.e., eventually smaller than 1/p(-), for any polynomial p). Recall
that compl etenessand soundnesserrors can be decreased by parallel
repetitions of the proof system. Thus, a proof system with sound-
ness and completeness errors which sum-up to a function bounded
away from 1 (i.e, c(n) 4+ s(n) < 1 — 1/poly(n)), can be trans-
formed into a proof system of the same number of rounds having
exponentially decreasing completeness and soundnesserrors. This
transformation preserves honest-verifier statistical (resp., computa-
tional) zero-knowledge. (Recall that zero-knowledge with respect
to any verifier is not preserved, in general, under parallel repetition
[GK96].)



