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Abstract

We further extend the study, recently initiated by De-Santis et. al. (ICALP98) of non-interactive
statistical zero-knowledge proofs. Our main focus is to compare the class NZS ZK of problems pos-
sessing such non-interactive proofsto the class S ZX of problems possessing interactive statistical zero-
knowledgeproofs. Alongtheselines, wefirst show that if statistical zero-knowledgeisnon-trivial then so
isnon-interactive statistica zero-knowledge, where by non-trivial we mean that the class includes prob-
lems which are not solvable in probabilistic polynomial-time. (The hypothesis holds under various as-
sumptions, such as the intractability of the Discrete Logarithm Problem.) Furthermore, we show that
if NZISZK isclosed under complementation, then infact SZK = NZSZK, i.e. dl satistica zero-
knowledge proofs can be made non-interactive.

Themain toolsin our analysis are two promise problemsthat are natural restrictionsof promise prob-
lems known to be complete for SZX. We show that these restricted problems are in fact complete for
NZIS8ZK, and using thisrel ationship we derive our results comparing thetwo classes. Thetwo problems
refer to the statistical difference, and difference in entropy, respectively, of a given distribution from the
uniform one. We also consider aweak form of NZSZ K, in which only requires that for every inverse
polynomial 1/p(n), there exists a simulator which achieves simulator deviation 1/p(n), and show that
thisweak form of NZSZK actudly equals NZISZK.
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1 Introduction

Zero-Knowledge proofs, introduced by Goldwasser, Micai and Rackoff [23], are fascinating and extremely
useful constructs. Their fascinating natureis dueto their seemingly contradictory nature; they are both con-
vincing and yet yield nothing beyond the validity of the assertion being proven. Their applicability in the
domain of cryptography isvast; they are typically used to force malicious parties to behave according to a
predetermined protocol (which requires partiesto provide proofs of the correctness of their secret-based ac-
tions without revealing these secrets). Zero-knowledge proofs come in many flavors, and in this paper we
focus on two parameters. Thefirst parameter isthe underlying communication model, and the second isthe
type of the zero-knowledge guarantee.

Thecommunicationmodel. When Goldwasser, Micali, and Rackoff proposed the definition of zero-knowledge
proofs, it seemed that interaction was crucia to achieving zero-knowledge — that the possibility of zero-
knowledge arose through the power of interaction. Indeed, it was not unexpected when [19] showed zero-
knowledge to be trivia (i.e., only exists for proofs of BPP statements) in the most straightforward non-
interactive models. Surprisingly, however, Blum, Feldman, and Micali [5], showed that by changing the
model slightly, it is possible to achieve zero-knowledge in a non-interactive setting (i.e. where only unidi-
rectional communication can occur). Specificaly, they assume that both Prover and Verifier have accessto a
shared truly random string, called the reference string. Aside from thisassumption, all communication con-
sistsof one message, the “proof,” which is generated by the Prover (based on the assertion being proved and

the reference string) and sent from the Prover to the Verifier.

Non-interactive zero-knowledge proofs, on top of being more communication-efficient by definition,
have several applicationsnot offered by orndinary interactive zero-knowledge proofs. They have been used,
among other things, to build digital signature schemes secure against adaptive chosen message attack [3],
public-key cryptosystems secure against chosen-ciphertext attack [28, 13], and non-malleable cryptosys-
tems[13].

The zero-knowledge guarantee. For ordinary interactive zero-knowledge proofs, the zero-knoweldege
requirement isformulated by saying that thetranscript of the Verifier’sinteraction with the Prover can be sim-
ulated by the Verifier itself. Similarly, for the non-interactive setting described above, the zero-knowledge
conditionisformulated by requiring that one can produce, knowing only the statement of the assertion, aran-
dom reference string along with a* proof” that worksfor the reference string. More precisel y, werequire that
there exists an efficient procedure that on input a valid assertion produces a distribution which is “similar”
to the joint distribution of random reference strings and proofs generated by the Prover. The key parame-
ter is the interpretation of “similarity.” Two notions have been commonly considered in the literature (cf.,
[23, 18, 16, 6, 4]). Satistical zero-knowledge requires that these distributions be statistically close (i.e., the
statistical difference between themisnegligible). Computational zero-knowl edge instead requires that these
distributions are computationally indistinguishable (cf., [22, 35]). In thiswork, we focus on the stronger
security requirement of statistical zero-knowledge.

Until recently, most work on non-interactive zero-knowledge has focused on the computational type (cf.,
[5, 6, 15, 25]). The study of non-interactive statistical zero-knowledge has been recently initiated by De-
Santiset. al. [11].} Their mainresult isthe existence of acomplete promise problemfor the class of problems
possessi ng non-interactive statistical zero-knowledge proofs (hereafter denoted A'ZS ZK). Thiswas simi-
lar to the work of [32], where a complete promise problem was given for the class of problems possessing
inter active statistical zero-knowledge proofs (denoted S Z ).

! Actually, [6] did define non-interactive perfect zero-knowledge proofs (which is a slightly stricter notion that statistical
zero-knowledge) and prove that a variant of Quadr ati ¢ Resi duosi ty has such proofs, and non-interactive statistical zero-
knowledge was considered in [4], but later works all focused on the computational version.



Our Contribution.

Inthiswork, we seek to understand what, if any, additional power interaction givesin the context of statistical
zero-knowledge. Thus, we continuethe investigation of N'ZS Z K, focusing on the rel ationship between the
interactive and non-interactivevariants of statistical zero-knowledge. Our first result isthat the non-triviality
of SZK implies non-triviaity of NZSZK, where by non-trivial we mean that a class includes problems
which are not solvable in probabilistic polynomial-time. The hypothesis holds under various assumptions,
such as the intractability of Discrete Logarithm Problem [17] (or Quadratic Residuosity [23] or Graph Iso-
morphism [18]), but variants of these last two problems are already knowntobein VZS ZK [6, 4]).

Furthermore, we show that if NZS ZK isclosed under complementation, theninfact SZK = NZISZK
—i.e., all statistical zero-knowledge proofs can be made non-interactive. We notethat [11] doesinfact claim
that A'ZS Z K isclosed under complementation; however, we were not able to verify thisclaim.

We also show the equival ence of aweakened form of NZSZK and NZSZK.

Complete Problems. Central to our methodology is the use of simple and natural complete problems to
understand classeswith rather complicated definitions, suchas S ZK and NZS ZK. In particular, we exhibit
two natural promise problems and prove that they are complete for AZS ZK. The two problems refer to
the “distance” (in two different senses) of a given distribution from the uniform one. These two problems
are natural restrictions of two promise problems shown complete for SZKC, in [32] and [21], respectively.
Indeed, our results about the rel ationship between S Z K and N'ZS Z K come from rel ating the corresponding
complete problems. Thisgeneral theme of using completenessto simplify the study of aclass, rather than as
evidence for computational intractability (asis the traditional use of A/P-completeness) has been evidenced
inanumber of recent works(cf., [18, 27, 34, 1, 2]) and has been particul arly useful in understanding statistical
zero-knowledge (cf., [32, 33, 11, 21]).

1.1 Thenon-interactive model

Let us recall the definition of a non-interactive statistical zero-knowledge proof system from [6].2 We will
adapt the definition to promise problems. Notethat our definitionwill capture what [6] call a bounded proof
system, in that each shared reference string can only be used once. In contrast to non-interactive compu-
tational zero-knowledge (cf., [6, 19]), it is unknown whether any problem that has such a (bounded) non-
interactive statistical zero-knowledge proof system also has one in which the shared reference string can be
used an unbounded (polynomial) number of times.

A non-interactive statistical zero-knowl edge proof system for a promise problem 1I is defined by apoly-
nomial r(n), whichwill give the size of therandom reference string o, and atriple of probabilistic machines
P, 5, andV, where V' and S are polynomial-time, such that:

1. (Completeness:) For all = € Iy, the probability that V (o, z, P(x, o)) acceptsis at least 2/3.
2. (Soundness:) For dl = € 11, the probability that V (o, z, P(z, 0)) acceptsisat most 1/3.

3. (Zero-Knowledge:) For al = € 11y, the statistical deviation between the following two distributions
isat most 5(|z|):

(A) (o,p):0 {0, 1}T(|$|); p— P(z,0)
(B) S(x)

where 3(n ) isanegligiblefunction,? termed the simulator deviation, and the probabilitiesin Conditions1 and 2
are taken over the random coins of V' and P, and the choice of & uniformly from {0, 1}"("). Note that non-
interactive statistical zero-knowledgeis closed under parallel repetition, so the completeness and soundness

2 Actually, only non-interactive perfect and computational zero-knowledge proofs were defined in [6]. The definition we are
using, previously givenin [4, 11], is the natural non-interactive analogue of (interactive) statistical zero-knowledge [23].
®Recall that afunction is negligibleif it is eventually lessthan 1/g(») for any polynomial g.



errors (i.e. the probability of rejection (resp., acceptance) for YEs (resp., No) instances) can be made expo-
nentialy small in |z|.

We also define a weaker notion of zero-knowledge, known as a weak non-interactive statistical zero-
knowl edge proof system, wherewe ask only that for every polynomial g(n ), there existsaprobabilisticpolynomial-
timesimulator .5, (whose running time may depend on g¢), such that the simul ator deviation as defined above
isat most 1/¢(|x|). Thisisthe natural analogue of a notion defined in the interactive setting for statistical
zero-knowledge[12] aswell as concurrent zero-knowledge [ 14].

The class of promise problems that possess non-interactive statistical zero-knowledge proof systemsis
denoted N'ZS Z K, and we denote by weak-NZS ZK the class of promise problems that possess weak non-
interactive statistical zero-knowledge proof systems. Note that by definition, NZSZK C weak-NISZK.
De Santis et. al. [11] recently began investigating NZS ZK. They introduced a promise problem, called
| mage Density,andclaimedthatiscompletefor N'ZS Z K andthat thelatter classisclosed under OR and
complementation. We were ableto verify that some variantsof | mage Densi ty are N'ZS Z K-complete,
and indeed the ideas used towards thisgoal are important to our work. However, we were not able to verify
theclaimthat A'ZS Z K isclosed under OR and/or complementation, and for this reason, do not rely on this
claimin our work.

Inthispaper, inadditionto examining 'ZS Z K onitsown, we al so consider therel ationship non-interactive
statistical zero-knowledge proofs have with interactive statistical zero-knowledge proofs. In the context of
interactive zero-knowledge proofs, another issue that ari sesin the zero-knowledge condition is the behavior
of the verifier. The general definition of zero-knowledge requires that the zero-knowledge requirement hold
for any probabilistic polynomial-timeverifier. A weaker requirement, called honest verifier zero-knowledge,
requiresthe zero-knowledgeconditionto hold only if the verifier behaveshonestly. However, itisknownthat
these two conditions are equivalent for statistical zero-knowledge, in the sense that every statistical zero-
knowledge proof against the honest verifier can be transformed into one that is statistical zero-knowledge
against any verifier [20]. Thus, we write S Z X for the class of promise problems possessing statistical zero-
knowledge proofs (against any polynomial-time verifier or, equivaently, against just the honest verifier).

Notethat in the case of non-interactive zero-knowledge, theissue of honest verifiers does not arise since
the verifier does not interact with the prover. Also, notethat we can alwaystransform anon-interactive zero-
knowledge proof into an honest verifier zero-knowledge proof, sincewe could have the honest verifier supply
arandom string which can repl ace the common reference string required for non-interactive zero-knowledge.
Thatis, NZISZK C SZK (recaling the equivalence of S ZK with honest-verifier S ZX).

1.2 Our Reaults

The primary toolswe usein our investigation are promise problemsthat are completefor SZK or NIS ZK.
In[32], apromiseproblem called Statistical Difference (SD) wasintroduced and proved completefor S Z X,
providing the first completeness result for S Z K. Recently, it was shown in [21] that another natural prob-
lem, called Entropy Difference (ED), iscompletefor S ZK aswell. In thiswork, we show that “ one-sided”
versions of these problems, which we call Statistical Difference from Uniform (SDU) and Entropy Ap-
proximation (EA), are complete for N'ZS ZK. To define these problems more precisely, we first recall that
that statistical difference between two random variables X and Y on afinite set D, denoted A(X , Y), is
defined to be

A(X, Y)d_efmaX|Pr[X€S] Pr[Y € 5] Z|Pr —Pr[Y = 4.

All the promise problems we consider involve distributions which are encoded by circuits which sam-
ple from them. That is, if X isacircuit mapping {0, 1} to {0, 1}", we identify X with the probability
distributioninduced on {0, 1}" by feeding X the uniform distributionon {0, 1}™.

Definition 1.1 (Problemsinvolving statistical difference): The promise problem Statistical Difference, de-



noted SD = (SDygs, SDyo ), CONSiSts of
SDyss = {(X,Y):A(X,Y)<1/3}
SDwo ' {(X,V):AX,Y)>2/3)

where X and Y aredistributionsencoded as circuits which sample fromthem. The promise problem Statis-
tical Difference from Uniform, denoted SDU = (SDUyyg, SDUy, ), CONSists of

SDUyme = {X:A(X,U)<1-1/n}

SDUyo = {X:A(X,U)>1/n}
where X isa distribution encoded as a circuit outputing » bits, and U is the uniformdistribution on » bits.

For the two problems related to entropy, we recall that the (Shannon) entropy of a random variable X,
denoted H( X ), isdefined as

H(X) € STPr[X = a] - logy(1/ Pr[X = a])

Definition 1.2 (Problems involving entropy): The promise problem Entropy Difference, denoted ED =
(EDygs, EDyo ), CONSiSts of

EDyes = {(X,Y):H(X)>H(Y)+ 1}

EDyo = {(X,Y):H(Y)>H(X)+1}
The promise problem Entropy Approximation, denoted EA = (EAygs, EAyo ), COnsists of
Ehves = {(X,k):H(X)>k+1}
Ehvo = {(X,k):H(X)<k—1}

In these problems, £ is a positiveinteger and X and Y are distributions encoded as circuits which sample
from them.

Our first theorem, which is the starting point for our other results, is:
Theorem 1.3 (EA and SDU are V'ZS Z K-complete) The promiseproblemsEA and SDU arecompletefor VZS Z K.
Thatis,EA, SDU € NZSZK andfor every promiseproblemIl € N'ZS ZK, thereisa polynomial timemany-
to-onereduction from II to EA and another from 11 to SDU.

From the proof of thistheorem, we al so deduce the equivalence of A'ZS Z K with its weakened form.
Theorem 1.4 weak-NISZK = NISZK.

Armed with our compl ete problems, we then begin the work of comparing S ZK and ZS ZK. First we
show that the non-triviality of N'ZS ZK isequivalant to the non-triviaity of SZK. Thisisshown by giving
a Cook reduction from ED to EA.

Theorem 1.5 (non-trividity of NZSZK) SZK # BPP <— NISZK # BPP.



In this theorem (and throughout the paper), 577P denotes the class of promise problems solvable in proba-
bilitic polynomia time.

Infact, it turnsout that thetype of Cook reductionwe useisaspecial one, and by examiningit further, we
are able to shed more light onthe SZK vs. NZSZK question. Specifically, we observe that the reduction
we give from ED to EA isan ACP truth-tablereduction. That is, it is a nonadaptive Cook reductionin which
the postprocessingisdonein AC®. (Formal definitionsare givenin Section 4.2.) Further, we can provethat if
NISZK isclosed under complementation, then N'ZS Z K isclosed under ACY truth-tablereductions. Thus
we deduce that N'ZS Z K being closed under complementation impliesthat NZSZK = SZK. Infact, we
can show that closure under complementation and a number of other natural conditions are equivalent to
SZK =NISZK:

Theorem 1.6 (conditionsfor SZK = N'ZSZK) Thefollowing are equivalent:

1. SZK =NISZK.

2. NIS8ZK isclosed under complementation.

3. NZSZK isclosed under A'C! truth-tablereductions.

4. ED (resp., SD) Karp-reducesto EA (resp., SDU). (“ general versionsreduce to one-sided ones’)

5. EA (resp., SDU) Karp-reducestoitscomplement. (“ one-sided versionsreduceto their complements”)

Theorem 1.6 can beinterpreted as saying that if N'ZS ZK hasarelatively weak closure property (closure
under complementation), then the classis surprisingly rich (equals § ZK) and has a much stronger closure
property (closure under A'C? truth-tablereductions.) Moreover, thelast two conditionsin Theorem 1.6 show
that these questions about non-interactive versus interactive statistical zero-knowledge proofs are actually
equivalent to basic, intriguing questions about rel ationshi ps between natural computational problemswhose
definitionshaveno a priori relationshipto zero-knowl edge proofs. Recall that [11] claim that the second item
above holds, and consequently if thisclaimisvalid, then all items above hold. However, as stated above, we
were not able to verify thisclaim of [11].

The equality of SZK and N ZSZK has interesting consequences not just for NZSZ K, but also for
SZK. Currently, the best known generic protocol for $Z K requires a polynomial number of rounds [29,
21, 20]. For N'ZSZK, however, by [10, 20, it is known that every problem in AZS ZK has a constant
round statistical zero-knowledge proof system (against general, cheating verifiers) with inverse polynomial
soundness error. Whether every problem in S Z X has such a proof system is still an open question, which
would be resolved in the positiveif SZK = NZSZK.

1.3 A wider perspective

The study of non-interactive statistical (rather than computational) zero-knowledge proofs may be of inter-
est for two reasons. Firstly, statistical zero-knowledge proofs provide an amost absolute level of security,
whereas computational zero-knowledge proofs only provide security relative to computationa abilities (and
typically under complexity theoretic assumptions). Secondly, by analogy from the study of zero-knowledge
interactive proofs, we believe that techniques developed for the “cleaner” statistical model can be applied
or augmented to yield resultsfor computational zero-knowledge: The proof that one-way functions are nec-
essary for S ZK to be non-trivial [30] was later generalized to C ZK [31]. More recently, the transforma-
tions of honest-verifier zero-knowledge to general zero-knowledge, presented in [8, 10, 9, 20], apply both
to statistical and computational zero-knowledge (whereas the original motivation was the study of statistical
zero-knowledge). It is our hope that the current study of NZSZK will eventually lead to a better under-
standing of N'ZC Z K, where there are still important open questionssuch as the conditionsunder which NP
has NZC Z K proofs.



2 EAISINNISZK

In this section, we show that EA has a hon-interactive statistical zero-knowledge proof system. Our proof
essentially followsthe line of reasoning used by [11] to show that | nage Density isin NZSZK.

Lemma2.l EA € NZISZK. Moreover, there is a non-interactive statistical zero-knowledge proof system
for EA in which the completeness error, soundness error, and simulator deviation are all exponentially van-
ishing.

The transformation given by the following lemmawill be applied at the start of the proof system:

Lemma 2.2 Thereisa polynomial-time computable function that takes an instance (X, k) of EA and a pa-
rameter s (in unary) and produces a distribution Z on {0, 1}* (encoded by a circuit which samples fromit)
such that
1. IfH(X) > k + 1, then Z has statistical difference at most 2-(*) from the uniform distribution on
{0,1}*, and
2. If H(X) < k — 1, then the support of Z isat most a2~**(*) fraction of {0, 1}*.

The proof of Lemma 2.2, though somewhat technical, uses standard techniques which are implicit in
many works. For this reason, the proof is deferred to Appendix C. Given thistransformation, it is straight-
forward to give anoninteractive statistical zero-knowledge proof system for EA:

Non-interactive proof system for EA, on input (X, k)
1. Let Z be the distribution on {0, 1}* obtained from (X, k) asin Lemma 2.2 taking s to be the total
description length of (X, k) in bits. Let o € {0, 1}* be the reference string.
2. P selectsr uniformly among {#': Z(+') = ¢} and sendsr to V.
3. V acceptif Z(r) = o and rejects otherwise.

It isimmediate from Lemma 2.2 that the compl eteness error and soundness error of thisproof system are
2-4(s), For zero-knowledgeness, we consider the following probabilistic polynomial-time simulator:

Simulator for EA proof system, on input (X, k)
1. Let Z be obtained from (X, k) asin the proof system.
2. Select aninput r to Z uniformly at randomand let o = Z(r).
3. Output (o, 7).

It follows from Part 1 of Lemma 2.2 that this simulator has statistical difference at most 2—(¢) from
the distribution of transcripts of (P, V). Thus, assuming Lemma 2.2, we have established Lemma 2.1. In
fact, we need not require that s be the length of (X, k). Instead, s can be taken to be an arbitrary security
parameter, and the compl eteness, soundness, and simulation error will be exponentialy small in s, whilethe
running time of the protocol only depends polynomially on s. We can use thisto provethe following, which
will be useful to uslater.

Proposition 1 If any promise problem II reduces to EA by a Karp (i.e. many-one) reduction (even if it is
length-reducing), then Il € NZSZK.

Proof: A noninteractive statistical zero-knowledge proof system for II can be given as follows: On an in-
stance z of II, both parties compute the image (X, ) of = under the reduction Il <x,,,EA and execute the
proof systemfor EA on (X, k), taking s to bethelength of |z|. Hence, the compl eteness and soundnesserrors
and simulator deviation of this proof system are exponentially small in |z| (rather than |( X, k)| which could
beshorterthanz). M



3 FEAand SDU are NZSZK-complete

In this section, we complete the proof of Theorem 1.3. First, we establish that SDU € N'ZS ZK by showing:
Lemma 3.1 SDU<g,, EA.

Proof: Let X bean instanceof SDU. We assumethat log(n) > 5, where n isthe output length of the circuit
X (otherwise, once can decide in probabilistic polynomial time whether X isavEs or No instance of SDU
by random sampling). Let U denote the uniform distribution on » bits. We claimthemap X — (X, n — 3)
is the reduction required by the lemma.

If X € SDUygs, thend = A(X, U) < 1/n, 50 X isvery closeto the uniform distribution, which has
entropy ». An argument given in Appendix B alows usto bound difference in entropy in terms of statistical
difference. Applying Fact B.1, weimmediately concludethat H( X ) > n — 2.

If X € SDUy, then A(X, U) > 1 — 1/n. By the definiton of statistical difference, thisimplies the
existenceof aset 5 C {0,1}" suchthat Pr[X € 5] — Pr[U € S] > 1 — 1/n. Thisimpliesthat

Pr(XeS]>1-1/n ad Pr[Ue€S]<1/n.

Thus, H(X) < Pr[X € 5]-log(|S])+Pr[X ¢ S]-n<1-(n—logn)+(1/n)-n < n—4,andwehave
tha (X,n_ 3) 6 EANO'

Now, we establish both Theorem 1.3 and Theorem 1.4 by showing that all promiseproblemsinweak-NZS ZK
(and henceall promise problemsin A'ZS Z K) are reducibleto SDU (and hence by the previouslemmato EA).

Lemma 3.2 For all promiseproblemsIl € weak-NZSZ K, we havethat 1T <g,,,SDU.

Proof: Let IT be any promise problem in weak-NZSZK. As weak-NISZK is preserved under parallel
repetition, we may assume that I has a weak-N'ZS ZK proof system ( P, V') with completeness and sound-
ness errors at most 2-" on inputs of length ». Let »(n) = poly(n) be the length of the random reference
stringin (P, V'), and let S be arandomized polynomial-time simulator .5 such that the statistical difference
between the output distribution of .5 and the distribution of true transcriptsof P isat most 1/(3r(n)). (Such
an S is guaranteed by the weak-NZS Z K property.) Let U denote the uniform distribution on r(n) bits.

Let  beaninstance of II. Define M. to be a circuit which does the following on input s:

M, (s): Simulate (2 ) with randomness s to obtain atranscript (o, p). If V (o, p) accepts, then output o, else
output 07 ("),

We claim that the map = — M, isthereduction required by thelemma. Suppose = € Ilygs. Inthiscase,
we know that the random reference string o in the output of .S has statistical difference less than 1/37(n)
from U. In addition, since the completeness error of protocol P isat most 2=, S(«) can output rejecting
transcripts with probability at most 1/(3r(n)) + 27" < 2/(3r(n)). Hence, A(M,, U) < 2/(3r(n)) +
1/(3r(n)) < 1/r(n),and M, € SDUygs.

Supposez € Il,. Sincethe soundnesserror of protocol P isbounded by 2~", for at mosta2~" fraction
of reference strings o doesthere exist an accepting transcript (o, p). Since M, only outputsreference strings
corresponding to accepting transcripts or 07", A(M,,, U) > 1 — (27" + 1/2°®) > 1 — 1/r(n). Thus,
M, € SDUy,. N

Clearly, Lemmas 2.1, 3.1, and 3.2 combineto prove Theorem 1.3. Lemmas 3.2 and 3.1 show that any promise
problem IT inweak-A"ZS Z K reducestoEA; by Proposition 1, thisimpliesthat IT € AN'ZS ZK and establishes
Theorem 1.4.

4 Comparing NZSZK and SZK

Now that we are armed with A"Z S Z K -compl etenessresults for promise problems so closely related to prob-
lems known to be complete for S Z K, we can quickly begin relating the two classes.
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4.1 Nontriviality of NISZK

First, we establish Theorem 1.5 by giving a Cook reduction from Entropy Difference (ED), complete for
S ZK, to Entropy Approximation (E4), complete for NZSZ K.

Lemma 4.1 Suppose(X,Y)isaninstanceof ED. Let X' = @*X (resp., Y’ = @*Y’) consist of 4 indepen-
dent copiesof X (resp., V'), and let n denote the maximum of the output sizes of X’ and Y. Then,

(X,Y) €EDyps — \n/ [(X',k) € EAvgs) A (Y, k) € EAyo)]
k=1

(X,Y) € EDyo = /n\ [(X',k) € EAyo) V ((Y', k) € Ehygs)]
k=1

Proof: Suppose(X,Y') € EDygg, SOthat H(X') > H(Y')+4. Letk = [H(X')|] — 2. Hence, H(X') >
k+1.Butk+3> H(X') > H(Y')+4,andhence H(Y') < k—1. Supposeinstead (X, Y") € EDy, sothat
H(Y')> H(X')+4. Thenfordl k > [H(X')]+1,wehave H(X') < k—1. Butforal k < [H(X')|+1,
wehavek +1 < H(X)+3< H(Y'). N

From thisreduction, we concludethat SZK # BPP <— NISZK # BPP,whichisTheorem 15.
Again, by BPP we mean the class of promise problems solvablein probabilistic polynomial time.

Proof of Theorem 1.5. By definition, NZSZK C SZK (recal that SZK equas honest-verifier SZK
[20]). Henceif SZK = BPP, then NISZK = BPP.

Now suppose NZSZK = BPP, soin particular there is a probabilistic polynomial-time machine M
which decides EA (with exponentialy small error probability). To show SZX = BPP, it suffices to show
that ED € BPP sinceED is S ZK-complete. We now describe how to decide instances of ED: Let (X, Y')
be aninstance of ED. Letting X’ and Y’ be as stated in Lemma 4.1, werun M (X', k)and M (Y’, k) for al
k € [1,n]. If for somek, weseethat M (X', k) = 1 and M(Y’, k) = 0, we output 1. Otherwise, we output
0. By Lemma4.1, thisisacorrect BPP algorithmfor decidingED. WL

4.2 Conditionsunder which NZSZK = SZK

Although the reduction givenin Lemma4.1 isa Cook reduction, it isavery special type of Cook reduction,
which we call an ACY truth-table reduction. We use the special properties of this reduction to show that if
NZIS8ZK isclosed under complement, theninfact VZSZK = SZK. Wenow precisely define the types of
reductions we are using, taking care how we define them for promise problems.

Definition 4.2 (truth-table reduction [26]): We say a promise problem II truth-table reduces to a promise
problem T', written IT<,.T", if there exists a (deterministic) polynomial-time computable function f, which
oninput 2 producesatuple (z1, z2, ..., x;) and acircuit C', such that

1. If 2 € Ilygs then for all valid settingsof by, b, . . ., b, C(b1,bs,...,b;) = 1,and
2. If 2 € 1l then for all valid settingsof b1, bo, . . ., bg, C'(b1,b2,...,br) = 0.

where a setting for b; is considered validwhen b; = 1ifz; € I'ygsandb; = 0ifz; € T'yo (and b; is
unrestricted when x; violates the promise).

In other words, a truth-table reduction for promise problemsis a non-adaptive Cook reduction whichis
allowed to make queries which violate the promise, but must be able to tolerate both yes and no answersin
response to queries that violate the promise. We further consider the case where we restrict the complexity
of computing the output of the reduction from the queries:



Definition 4.3 (AC® and A'C! truth-tablereductions): A truth-tablereduction f between promise problems
isan ACY (resp., NC!) truth-tablereduction if the circuit C' produced by the reduction on input 2 has depth
bounded by a constant ¢ ; independent of = (resp., has depth bounded by ¢ log |z|). If thereisan AC® (resp.,
NCY) truth-tablereduction fromIT to T', we write IT< 4o, I (resp., 1< ot ).

Withthisdefinition, we observethat Lemma4.1 infact showsthat ED< 4.0_ . EA, sincetheformulagiven
in the lemma can be expressed as an ACY circuit, and the statement of the lemma shows that the reduction
has the robustness properties against promise violationsthat are required in Definition 4.3.

We say that aclass C of promise problemsis closed under a class of reductions <., if II<,I"and " €
C impliesthat II € C. By the above, if NZSZK is closed under ACY truth-table reductions, then ED €
NISZK andhence NISZK = SZK. Thus, wewould like to capture the minimal conditions necessary
for a promise class to be closed under ACY truth-table reductions. Here, care must be taken to because of
the possibility of promise violations. Keeping thisin mind, we define the following operator on promise
problems to capture the notion of an unbounded fan-in AND gate for promise problems:

Definition 4.4 (unbounded AND): For any promiseproblemIl, wedefine AND(IT) to be the promise problem:
ANDyps(1) %0 {(21,29,. .., 24) k> 0,¥i € [1, K]w; € Hygs}
ANDyo(T1) %" {(ay, 29, 20) 1k > 0,3i € [1, kla; € Tyo}

We say a class of promiseproblems( isclosed under unbounded AND if for all II € C, onehasAND(1I) € C.

We have defined AND so that it has the weakest promise condition possible to remain well-defined. In
particular, we see that ANDy(1I) is defined to include z;’s that violate II's promise, as long as just one of
themisinlly.. II € C, AND(II) € C. We aso need away of combining two promise problems:

Definition 4.5 (digoint union): For any pair of promise problems1l and I", we define the disjoint union of
IT'and I' to be the promise problemDisjUn(1I, I') defined as follows:

def
= {0} X HYES U {1} X FYES

def
= {0} X HNO U {1} X FNO

DisjUnyg (1L, T)
DisjUn,,(IL, 1)
We say a classof promiseproblemsC isclosed under selectioniffor all II, I € C, onehasDisjUn(1l, I') € C.

With these definitions, we can give the foll owing lemma which gives some conditionssufficient to give
closure under AC® truth-table reductions.

Lemma 4.6 A promiseclass( isclosed under AC® truth-table reductionsif the following conditions hold:
1. Cisclosed under Karp (i.e., many-one) reductions.
2. C isclosed under unbounded AND.
3. C isclosed under selection.
4. C isclosed under complementation.

Lemma 4.6 can be proven by a straightforward induction on the depth of the circuits. Detailsare in Ap-
pendix E. Which of the conditions of Lemma 4.6 does NZS ZK satisfy? We argue that Conditions 1, 2,
and 3 are satisfied by NZS ZK:

Lemma4.7 NISZK isclosed under Karp reductions.

Proof: SupposeI’ € NISZK, and I1<g,,,I'. Since EA is completefor NZS ZK, we have I'<g,,,EA. By
composing reductions, we see that 11 <x,,,EA. By Lemma2.1 and Proposition1, I e NZSZK. WA
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Lemma4.8 NZSZK isclosed under unbounded AND.

Proof: First, we argue that AND(EA) € NZSZK by describinga N ZS ZK proof system for AND(EA): Let
((X1,k1),...,(Xm, km)) beaninstance of AND(EA), and say ¢ isthetotal length of theinstance. Artificially
pad each circuit X; to be of descriptionsize ¢ (by adding unused gates) andlet Y; betheresultingcircuit. Now
executethe N'ZS Z K proof system for EA given by Lemma 2.1 on each pair (Y;, k;) in paralel, and havethe
AND(EA)-verifier accept if the EA-verifier would have accepted on each pair.

If every pair (X;, k;) isaYEs instance of EA, the AND(EA) verifier will accept with probability at least
1—m-27%0) =1 - 2= asthe completeness error of the EA proof systemisat most 2=, Similarly,
running the simulator for the EA proof system m timesindependently will give asimulation for the AND(EA)
proof systemwith simulator deviation . - 29 = 2=%(“)_ Finally, if just one pair (X, k;) isaNo instance
of EA (even if the others violate the promise), the verifier will accept with probability at most 2~4() in the
i’th execution of the EA protocol, and so the AND(EA) verifier will accept with probability at most 2=%(9),

This shows that AND(EA) € NZSZK. Now let IT be any promise problem in NZSZK. SinceEA is
completefor N'ZS Z K, thereisaKarpreduction f from IT toEA. ThisinducesaKarp reductionfrom AND(1T)
to AND(EA) in the obviousway (i.e. (z1,...,25) — (f(z1),..., f(zr))). ASAND(EA) isin NZSZK and
NTISZK isclosed under Karp reductions, AND(IT) € NZSZK. B

Lemma4.9 NISZK isclosed under disjoint union.

Proof: Clearly, DisjUn(EA, EA) <., EA (Dy dropping the extrabit.) Now, for any two promise problem 11

and ' in NVZS ZK, the Karp reductions f, from II to EA and f; from T to EA induce a Karp reduction from
DisjUn(Il,I')toDisjUn(EA,EA) givenby (o, z) — f,(2). UsingDisjUn(1l, I')<g.,pDis jUn(EA, EA)<g., EA €
NZSZK, and applying closure under Karp reductions, weget DisjUn(Il,T') € NZSZK. W

Combining everything, we can give a condition under which SZK = NZSZK.
Proposition 2 If NZSZK isclosed under complementation, then SZK = NZISZK.

Proof: Suppose NZSZK is closed under complementation. Combining this with Lemmas 4.6, 4.7, 4.8,
and 4.9, it follows that NZSZK is closed under AC° truth-table reductions. Applying Lemma 4.1 and
Lemma 2.1, we concludethat ED € NZSZK. SinceED iscompletefor SZK [21] and NZSZK isclosed
under Karp reductions, we have SZK ¢ NZSZK. ASNISZK C SZK istrue from the definition of
NISZK,weconcludethaa NZSZK =SZK. B

Finally, we deduce Theorem 1.6, which gives a number of conditionsequivaentto NZSZK = SZK.

Proof of Theorem 1.6:

1= 3. Thisfollowsfrom the result of [33] that SZ K is closed under A'C! truth-tablereductions.

3= 2= 1. Thefirstistrivia and the second is Proposition 2.

1 < 4. Thisfollowsfrom Theorem 1.3 (which asserts that that EA and SDU are complete for NZS ZK), the
fact that ED and SD are complete for SZK [32, 21], and Lemma 4.7 (that NZSZK is closed under Karp
reductions).

1 & 5. Thisfollows from Theorem 1.3 (that EA and SDU are complete for NZS ZK) and Lemma 4.7 (that
NZSZK isclosed under Karp reductions).
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A Definitions

Following [17], we extend the standard definition of interactive proof systemsto promise problems—

Definition A.1 (Interactive Proof systems—IP[23]): Let ¢, s : N — [0, 1] be polynomial-time computable
functions so that for some positive polynomial p and all positiveintegersn’s, ¢(n) + s(n) < 1 — (1/p(n)).
An interactive proof system with two-sided error (¢, s) for apromise problem Il = (1lygs, Ilyo ) isatwo-
party game, between a verifier executing a probabilistic polynomial -timestrategy (denoted V') and a prover
which executes a computationally unbounded strategy (denoted P), satisfying

o Completeness: For every z € Ilygg, the verifier V' with probability at least 1 — ¢(]z|) accepts after
interacting with the prover P on common input x.

¢ Soundness: For every x € Il and every potential strategy P*, theverifier V' acceptswith probability
at most s(|z|), after interactingwith £* on common input z.

In such a case, we say that the proof system has completeness error ¢ and soundness error s. The error
of the proof systemis defined asmax{c, s}.

We are mainly concerned with interactive proof systems having the following zero-knowledge prop-
erty [23]:

Definition A.2 (Statistical zero-knowledge — S ZK):

¢ Theview of an interactive machine consists of the common input, itsinternal coin tosses, and all mes-

sagesit has received. We denote by (P, V')(z) the view of the verifier V' while interactingwith £ on
common input z.

e Afunctionp : N — [0, 1] is called negligible if for every positive polynomial p and all sufficiently
largen € N, pu(n) < 1/p(n).

¢ An interactive proof system (P, V') for a promise problemIl = (Ilygs, Ilxo) is(general) statistical
zero-knowledge if for every probabilisticpolynomial-timel *, there existsa probabilisticpolynomial -
time machine (called a simulator), 5, and a negligible function iz : N — [0, 1] (called the simulator
deviation) so that for every = € 1l the statistical difference between S(z) and (P, V*)( ) isat most

p(]z]).-

¢ SZK denotes the class of promise problems having statistical zero-knowledge interactive proof sys-
tems.
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Honest-verifier statistical zero-knowledge proof systems are such where the zero-knowledge requirement is
only required to hold for the prescribed/honest verifier V', rather than for every polynomial-time computable
V. every honest-verifier statistical zero-knowledge proof system can be transformed into a general statisti-
cal zero-knowledge proof system (actually meeting an even stronger zero-knowledge requirement) [20].

B Statistical Inequalities
Fact B.1 For any two randomvariables, X and Y, ranging over a domain D it holdsthat

[H(X) - H(Y)| < log(|D[-1)-6 + Ha(6)

where § &' A(X,Y).
Thisfact can beinferred from Fano’s Inequality (cf., [7, Thm. 2.11.1]). A more direct proof follows.
Proof: Assumeé > 0 or elsetheclaimisobvious. Let p(z) e py [X =z]andg(z) Ll py [X = z]. Define

m(z) ef min{p(x),q(z)}. Then}" cpm(x) =1 — 6. Definerandom variables 7/, X' and Y’ so that

Pr(Z' =z] = m'(2) def ﬁ -m(z)
PrX'=a] = )% () - mlx)
Py =] = ¢(@)% 5 (alr) - mlx)

Think of X (resp., Y) asbeing generated by picking 7’ with probability 1 — 6 and X’ (resp., Y’) otherwise.
Then
H(X)
H(Y')

(1-6)-H(Z)+ 6 H(X') + Ha(8)

<
> (1-8)-H(Z')

Observing that Pr [ X' = 2] = Oonat least onex € D, it followsthat H(X') < log(]D| — 1), and the fact
follows. W

Comment: The above bound istight. Let e € D and consider X which isidentically e, and Y which
with probability 1 — ¢ equals e and otherwise is uniform over D \ {e}. Clearly, A((, X ),Y) = 6 and
H(Y)—H(X)=dlog(|D| — 1)+ Hz(6) — 0.

C Proof of Lemma?2.2

C.1 Flat distributionsand the L eftover Hash Lemma

Here, we discuss some standard notions and techniques that will be useful in the proof of Lemma 2.2. We
use the clean formulations of these toolsgivenin [21].

A distribution X iscaledflatif all stringsinthe support of X havethe same probability. Noticethat if X
isflat, then by the definition of entropy, Pr [X = 2] = 2~H(X) for every « in the support of X . We quantify
deviation from flatness as follows:

Definition C.1 (heavy, light and typical elements): Let X be a distribution, » an element possibly in its

support, and A a positivereal number. Wesaythat z isA-heavy (resp., A-light) if Pr [X = z] > 24.2-H(&)
(resp., Pr[X = z] < 24 . 27 H(X)), Otherwise, we say that = is A-typical.
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A natural relaxed definition of flatnessfollows. The definition linksthe amount of slacknessallowed in “typ-
ical” elements with the probability mass assigned to non-typical elements.

Definition C.2 (flat distributions): A distribution X is called A-flat if for every ¢ > 0, the probability that
an element chosen from X is¢ - A-typical isat least 1 — 2" +1.

By straightforward application of Hoefding Inequality (cf., Appendix D), we have

Lemma C.3 (flattening lemma): Let X be a distribution, k a positive integer, and ©* X denote the distri-
bution composed of & independent copies of X. Suppose that for all x in the support of X it holds that
Pr[X = z] > 2~™. Then @* X isvk - m-flat.

The key point is that the entropy of @* X grows linearly with &, whereas its deviation from flatness grows
significantly slower (i.e., linear in v/k) asafunction of k. The other main tool we will useis:

Lemma C.4 (Leftover HashLemma[24]) Let H bea 2-universal family of hash functionsmapping a domain
D toarange R. Suppose X isadistribution on D such that with probability at least 1 — ¢ over z selected
from X, Pr[X = z] < ¢/|R|. Then the statistical difference between the following two distributionsis at
most O(é + ¢'/3):

(A) Choose i uniformly from and = according to X . Output (4, h(z)).

(B) Choose i uniformly from and y uniformly from R. Output (h, y).

In particular, notice that if X isa A-flat distribution, then for any parameters s,¢ > 0, X satisfiesthe
hypothesisof the Leftover Hash Lemmawith |R| = 2H(X)=tA=s § — 9=t"+1 and = 2-5. Aswe will be
applying Lemma C.4 to sets of strings, we define, for any pair of positiveintegers ¢ and &, H,  to be one
of the standard 2-universal families of hash functions mapping {0, 1}* to {0, 1}* (e.g., affine GF(2)-linear
transformations).

C.2 Overview of thetransformation
The transformation proceedsin four stages, which are roughly described bel ow:

1. Let X’ consist of many copies of X so that the entropy gap between yEs and No instancesincreases,
and the distribution becomes quite flat relativeto its entropy.

2. Hash X’ sothat vEs instancesbecome close to the uniform distributionwhile N o instances have much
smaller entropy than the uniform distribution. That is, let Y be of the form (h, h(X')), where h is
uniformly distributed in a 2-universal family with appropriate parameters.

3. Let Y’ consist of many copiesof Y sothat for No instances, the entropy deficiency (as compared to the
uniform distribution) becomes large and yet Y’ becomes quite flat relative to its entropy; while YEs
instances remain close to uniform.

4. Hashtheinputsto Y’ so that No instances have small support (rather than just small entropy), while
keeping YEs instances closeto uniform. That is, let Z be of theform (Y'(r), k, h(r)) where i isuni-
formly distributed in a 2-universal family with appropriate parameters.

C.3 Theformal construction and proof

Let (X, k) beaninstanceof EA, let m (resp., n) denote the number of input and output gatesto X, and let s
be the extra parameter in the transformation. By increasing s if necessary, we may assume that s is greater
than thetotal descriptionlengthof (X, ). Thus, al theintermediatecircuitswe buildwill beof sizepoly(s).
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Many copiesl. Thefirst stepistotake many copiesof each distribution; thishasthe effect of increasing the
entropy gap between vEs and No instances relative to X ’s deviation from flatness. Namely, let ¢ = 4sm?
andlet X' = @?X. Then H(X') = ¢ - H(X) and, by Lemma C.3, X' is A-flat for A = 2,/s - m?. In
particular, we have established

Claim C.5
1L IfH(X)> k4 1,thenH(X') > gk 4+ ¢ > gk + \/SA + s.
2. IfH(X) < k—1,then H(X') < ¢k — ¢ < qk.

Hashing I.  Now consider the distribution Y on pairs (h, h(z)) induced by choosing £ uniformly from
Hyn,qh+1 and 2 according to X’. Say that elements of H,,, ;441 take ¢ < poly(gn, gk) < poly(s) bitsto
represent. Then' Y hasinputs (resp., outputs) of length m’ = ¢ + gm (resp., n’ = { + gk + 1). Y satisfies
the following properties.

Claim C.6
1. IfH(X) > k + 1, then Y has statistical difference at most 2-¥(*) from the uniform distribution on
{0, 1}
2. IfH(X) < k — 1, thentheentropy of Y islessthann’ — 1.

Proof: Part 1 follows from the A-flatness of X and the Leftover Hash Lemma. Part 2 follows from the
fact that the entropy of Y isat most the entropy of X’ (whichislessthan ¢k) plusthe entropy of the uniform
distributionon H (whichis/¢). W

Many copiesll. We now take many copies of Y, so that the entropy deficiency of No instances becomes
large relative to the flatness while v Es instances remain close to uniform. Specificaly, let ¢ = 4s - (m’)?
andletY’ = @4V, sothat Y’ has M = m/¢ input gates, N = n’q’ output gates, and Y’ is A/-flat for
A’ = 2,/s-(m')?. Then weimmediately have the following:

ClaimC.7
1. IfH(X) > k + 1, then Y/ has statistical difference at most ¢’ - 2-%() = 2-%() from the uniform
distributionon {0, 1},

2. fH(X)<k—1,thenH(Y')< N —¢ <N —3s-A' —s.

Hashingll. Thefinal stepisto makeadistributionwhich, for No instances, has small support (rather than
just low entropy) in the case of No instances, while YEs instances remain close to uniform.

Consider adistribution Z which takes asinput » € {0, 1}M and a hash function 4 € Hasv—n—, and
outputs(Y'(r), h, h(r)). Then,

Claim C.8 7 satisfiesthe requirementsof Lemma 2.2.

Theintuitionfor thisisthefollowing: Inthecase of YEs instances, Y’ iscloseto the uniformdistribution
on {0, 1}V, soforamostal y € {0, 1}V, therewill be about 2~V values of r suchthat Y'(r) = 5. Thus,
hashing » downto M — N — s bitswill still result in a uniform distribution.

In the case of ano instance, Y’ haslarge entropy deficiency and is nearly flat. From this, we know that
Y’ lands in some small subset 7' of the domain with very high probability. Thus, pointsy ¢ T must have
very low probability under Y, i.e. there are very few inputs » such that Y'(r) = y. So,foreachy ¢ T,
the pairs (h, h(r)) will only hit asmall subset of the possible values. Therefore, (Y'(r), h, h(r)) has small
support, because either the first component landsin a small set (namely T') or the last two componentsland
inasmall set.
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Proof: SupposeH(X) > k+ 1. Fromthefact that Y/ has statistical difference at most 2~%(*) from uniform
it followsthat with probability at least 1 — 2~%(*) over y selected accordingto Y7,

1

SN D)

PrlY' =vy| >
r| w2353

N | —

Fix any y satisfying Inequality 1. Conditionedon Y'(r) = y, r is selected uniformly from {r: Y'(r) = y},
which by Equation 1 isaset of size at least 2/ ~N—-1. Thus, by the L eftover Hash Lemma, conditioned on
Y'(r) = y, thedistribution of (4, h(r)) has statistical difference at most 2-*(*) from uniform. Thereforethe
total statistical difference of Z from uniformis2—(*),

Now suppose H(X ) < k£ — 1. We want to show that the support S of Z is asmall fraction of D =
{0, 13N x H x {0,13M~-N=2_To do this, we divide S into three parts, depending on the probability mass
giventothey component by Y. Recall that a“typical” y for Y hasprobability massa 2-HO) > o—N+V3s-A+s,

S1 = {(y.h,z)€ S:Pr[Y' =y] <27N-2} (“much too light”)
Sy = {(y,h,2)€ 5:27N=25 < Pr[Y' = y] < 27N+°} (“too light, but not much too light”)
Sy = {(y,h,z)€ §:27Nts < Pr[Y’ =y} (“not too light”)

Clearly, S = S1US; U S5. Wewill show that | 5;]/|D| < 27*fori =1,2,3,andso|5|/|D| < 3-27° =
27 %s),

First we bound | S;|. For any y suchthat Pr [V’ = y] < 27V=2%, there are at most 2~V =25 values of r
such that Y'(r) = y. Thus, for any such y and any h, the set of = such that (y, h, z) € 51 isof sizeat most
2M-N=25 (j e, isat most a2~* fraction of {0, 1}M~N=%), Thisimpliesthat 5, isat most a2~ fraction of
D.

Now we bound | S5|. We show that theset A of y suchthat2=V=25 < Pr[Y’ = y] < 2-N+s isatmost a
27 fractionof {0, 1}V. Fromthis, it followsthat S5 isat most a2~ fractionof D. Every y € Aisy/3s-A’-
heavy (sinceY’ hasentropy a most N —s—+v/3s-A’). By the A’-flatnessof Y/, Pr [V’ € A]isatmost2~35+1,
Since every y in A has probability mass at least 27V ~2% under Y, | A| isat most 2735+1 /2= N=2s — 9N—s
as desired.

Finally, we bound | S5|. Clearly, there can be at most 2™V —* values of y such that Pr[Y’ = y] > 2= N+>,
From thisit followsthat |S5|/| D] < 27°. W

D Proof of the Flattening Lemma

For every = in the support of X, welet w(z) = —log Pr[X = z]. Then w maps the support of X', denoted
D,to[0,m]. Let X1, ..., X beidentical and independent copiesof X . The lemma asserts that for every ¢

.

Observe that F(w(X;)) = >, Pr[X =z]w(z) = H(X), for every i. Thus, the lemma follows by a
straightforward application of Hoefding Inequality: Specifically, define random variables §; = w( X)), let

p=E(&) and§ = tm/vk, and use
2
< 2-exp (—%k)
m

Pr H 2%1 & "
= 2-exp (—2152)

k

> w(X;) - k- H(X)

=1

>t-mvk| < o—t*

> 6

Thelemmafollows. W
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E Proof of Lemma4.6

First note that any unbounded fan-in circuit can be efficiently converted into a circuit with only unbounded
fan-in NAND gates (allowing also unary NAND gates), with only aconstant factor blowup in depth. to such

acircuit with only a constant factor blowup in depth. So, as afirst step, we observe that C is closed under

unbounded NAND. That is, for any promise problem TI, NAND(IT) ef AND(II) € C, by closure under un-

bounded AND and complementation. To generalize this to constant depth circuits with unbounded fan-in
NAND gates, we define

Definition E.1 For any promise problem I, and for all natural numbersd > 0 we define Depth?(1I) to be
the promise problemwhose instances aretuples (C, (1, z2, . . ., 1)), where C' isa circuit of depth at most
d (using unbounded fan-in NAND gates only). The YEs instances are those such that for all valid settings
of by,ba,...,bk, C(b1,bs,...,b,) = 1; whereas the No instances are those tuples such that for all valid
settings of by, ba, . .., bk, C(b1,ba,...,b;) = 0. Here, a setting for b; is considered valid when b; = 1 if
x; € Hygs @and b; = 0 if x; € Il (and b; is unrestricted when x; violatesthe promise).

Using the fact that every .AC circuit can be efficiently transformed into one with only NAND gates, we
seethat 1< 4.0, I’ meansthat thereexistssomed suchthat IT < Depth?(T") under aK arp reduction. Hence
if we can show that for all ¢ > 0 and promise problems II, Depth?(1I) € C, the lemmawill be established.
We will prove this by induction.

First, observe that a depth 0 circuit is simply a variable (we can ignore constants as trivial). Hence,
Depth’(IT) = II € C. Now assume that Depth?(Il) € C. Observethat a depth d + 1 circuit is simply
aNAND of some number of depth d circuits. Using this observation, we will argue that that

Depth?™!(I1)<DisjUn(Depth®(Il), NAND(Depth?(Il)))

; by the closure properties of C, thisimplies that Depth?*!(11) € C. The reduction works as follows. The
input to thereduction isatuple (C', z) where = (21, 9, ...2x). If C isactualy adepth d circuit, then it
simply outputs (0, (C, z)). If not, then it extracts from C' the circuits C1, Cy, . .., C, that provide input to
the topmost NAND gate. Then the reduction outputs (1, (m, (C1, %), (Cs, ), ..., (Cs, 2))). Itisclear that
map gives a Karp reduction from Depth®*!(11)<DisjUn(Depth?(Il), NAND(Depth?(II))), completing the
induction step and the proof.
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