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Abstract

We further extend the study, recently initiated by De-Santis et. al. (ICALP98) of non-interactive
statistical zero-knowledge proofs. Our main focus is to compare the class NISZK of problems pos-
sessing such non-interactive proofs to the class SZK of problems possessing interactive statistical zero-
knowledge proofs. Along these lines, we first show that if statistical zero-knowledge is non-trivial then so
is non-interactive statistical zero-knowledge, where by non-trivial we mean that the class includes prob-
lems which are not solvable in probabilistic polynomial-time. (The hypothesis holds under various as-
sumptions, such as the intractability of the Discrete Logarithm Problem.) Furthermore, we show that
if NISZK is closed under complementation, then in fact SZK = NISZK, i.e. all statistical zero-
knowledge proofs can be made non-interactive.

The main tools in our analysis are two promise problems that are natural restrictions of promise prob-
lems known to be complete for SZK. We show that these restricted problems are in fact complete forNISZK, and using this relationship we derive our results comparing the two classes. The two problems
refer to the statistical difference, and difference in entropy, respectively, of a given distribution from the
uniform one. We also consider a weak form of NISZK, in which only requires that for every inverse
polynomial 1=p(n), there exists a simulator which achieves simulator deviation 1=p(n), and show that
this weak form of NISZK actually equalsNISZK.
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1 Introduction

Zero-Knowledge proofs, introduced by Goldwasser, Micali and Rackoff [23], are fascinating and extremely
useful constructs. Their fascinating nature is due to their seemingly contradictory nature; they are both con-
vincing and yet yield nothing beyond the validity of the assertion being proven. Their applicability in the
domain of cryptography is vast; they are typically used to force malicious parties to behave according to a
predetermined protocol (which requires parties to provide proofs of the correctness of their secret-based ac-
tions without revealing these secrets). Zero-knowledge proofs come in many flavors, and in this paper we
focus on two parameters: The first parameter is the underlying communication model, and the second is the
type of the zero-knowledge guarantee.

The communication model. When Goldwasser, Micali, and Rackoff proposed the definition of zero-knowledge
proofs, it seemed that interaction was crucial to achieving zero-knowledge – that the possibility of zero-
knowledge arose through the power of interaction. Indeed, it was not unexpected when [19] showed zero-
knowledge to be trivial (i.e., only exists for proofs of BPP statements) in the most straightforward non-
interactive models. Surprisingly, however, Blum, Feldman, and Micali [5], showed that by changing the
model slightly, it is possible to achieve zero-knowledge in a non-interactive setting (i.e. where only unidi-
rectional communication can occur). Specifically, they assume that both Prover and Verifier have access to a
shared truly random string, called the reference string. Aside from this assumption, all communication con-
sists of one message, the “proof,” which is generated by the Prover (based on the assertion being proved and
the reference string) and sent from the Prover to the Verifier.

Non-interactive zero-knowledge proofs, on top of being more communication-efficient by definition,
have several applications not offered by orndinary interactive zero-knowledge proofs. They have been used,
among other things, to build digital signature schemes secure against adaptive chosen message attack [3],
public-key cryptosystems secure against chosen-ciphertext attack [28, 13], and non-malleable cryptosys-
tems [13].

The zero-knowledge guarantee. For ordinary interactive zero-knowledge proofs, the zero-knoweldege
requirement is formulated by saying that the transcript of the Verifier’s interaction with the Prover can be sim-
ulated by the Verifier itself. Similarly, for the non-interactive setting described above, the zero-knowledge
condition is formulated by requiring that one can produce, knowing only the statement of the assertion, a ran-
dom reference string along with a “proof” that works for the reference string. More precisely, we require that
there exists an efficient procedure that on input a valid assertion produces a distribution which is “similar”
to the joint distribution of random reference strings and proofs generated by the Prover. The key parame-
ter is the interpretation of “similarity.” Two notions have been commonly considered in the literature (cf.,
[23, 18, 16, 6, 4]). Statistical zero-knowledge requires that these distributions be statistically close (i.e., the
statistical difference between them is negligible). Computational zero-knowledge instead requires that these
distributions are computationally indistinguishable (cf., [22, 35]). In this work, we focus on the stronger
security requirement of statistical zero-knowledge.

Until recently, most work on non-interactive zero-knowledge has focused on the computational type (cf.,
[5, 6, 15, 25]). The study of non-interactive statistical zero-knowledge has been recently initiated by De-
Santis et. al. [11].1 Their main result is the existence of a complete promise problem for the class of problems
possessing non-interactive statistical zero-knowledge proofs (hereafter denoted NISZK). This was simi-
lar to the work of [32], where a complete promise problem was given for the class of problems possessing
interactive statistical zero-knowledge proofs (denoted SZK).1Actually, [6] did define non-interactive perfect zero-knowledge proofs (which is a slightly stricter notion that statistical
zero-knowledge) and prove that a variant of Quadratic Residuosity has such proofs, and non-interactive statistical zero-
knowledge was considered in [4], but later works all focused on the computational version.

1



Our Contribution.

In this work, we seek to understand what, if any, additional power interaction gives in the context of statistical
zero-knowledge. Thus, we continue the investigation ofNISZK, focusing on the relationship between the
interactive and non-interactive variants of statistical zero-knowledge. Our first result is that the non-triviality
of SZK implies non-triviality of NISZK, where by non-trivial we mean that a class includes problems
which are not solvable in probabilistic polynomial-time. The hypothesis holds under various assumptions,
such as the intractability of Discrete Logarithm Problem [17] (or Quadratic Residuosity [23] or Graph Iso-
morphism [18]), but variants of these last two problems are already known to be inNISZK [6, 4]).

Furthermore, we show that ifNISZK is closed under complementation, then in fact SZK = NISZK
— i.e., all statistical zero-knowledge proofs can be made non-interactive. We note that [11] does in fact claim
that NISZK is closed under complementation; however, we were not able to verify this claim.

We also show the equivalence of a weakened form of NISZK and NISZK.

Complete Problems. Central to our methodology is the use of simple and natural complete problems to
understand classes with rather complicated definitions, such as SZK andNISZK. In particular, we exhibit
two natural promise problems and prove that they are complete for NISZK. The two problems refer to
the “distance” (in two different senses) of a given distribution from the uniform one. These two problems
are natural restrictions of two promise problems shown complete for SZK, in [32] and [21], respectively.
Indeed, our results about the relationship between SZK andNISZK come from relating the corresponding
complete problems. This general theme of using completeness to simplify the study of a class, rather than as
evidence for computational intractability (as is the traditional use ofNP-completeness) has been evidenced
in a number of recent works (cf., [18, 27, 34, 1, 2]) and has been particularly useful in understandingstatistical
zero-knowledge (cf., [32, 33, 11, 21]).

1.1 The non-interactive model

Let us recall the definition of a non-interactive statistical zero-knowledge proof system from [6].2 We will
adapt the definition to promise problems. Note that our definition will capture what [6] call a bounded proof
system, in that each shared reference string can only be used once. In contrast to non-interactive compu-
tational zero-knowledge (cf., [6, 15]), it is unknown whether any problem that has such a (bounded) non-
interactive statistical zero-knowledge proof system also has one in which the shared reference string can be
used an unbounded (polynomial) number of times.

A non-interactive statistical zero-knowledge proof system for a promise problem � is defined by a poly-
nomial r(n), which will give the size of the random reference string �, and a triple of probabilistic machinesP , S, and V , where V and S are polynomial-time, such that:

1. (Completeness:) For all x 2 �yes, the probability that V (�; x; P (x; �)) accepts is at least 2=3.

2. (Soundness:) For all x 2 �no, the probability that V (�; x; P (x; �)) accepts is at most 1=3.

3. (Zero-Knowledge:) For all x 2 �yes, the statistical deviation between the following two distributions
is at most �(jxj): (A) (�; p) : �  f0; 1gr(jxj); p P (x; �)(B) S(x)

where �(n) is a negligiblefunction,3 termed the simulatordeviation, and the probabilities in Conditions1 and 2
are taken over the random coins of V and P , and the choice of � uniformly from f0; 1gr(n). Note that non-
interactive statistical zero-knowledge is closed under parallel repetition, so the completeness and soundness2Actually, only non-interactive perfect and computational zero-knowledge proofs were defined in [6]. The definition we are
using, previously given in [4, 11], is the natural non-interactive analogue of (interactive) statistical zero-knowledge [23].3Recall that a function is negligible if it is eventually less than 1=g(n) for any polynomial g.
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errors (i.e. the probability of rejection (resp., acceptance) for yes (resp., no) instances) can be made expo-
nentially small in jxj.

We also define a weaker notion of zero-knowledge, known as a weak non-interactive statistical zero-
knowledge proof system, where we ask only that for every polynomial g(n), there exists a probabilisticpolynomial-
time simulator Sg (whose running time may depend on g), such that the simulator deviation as defined above
is at most 1=g(jxj). This is the natural analogue of a notion defined in the interactive setting for statistical
zero-knowledge [12] as well as concurrent zero-knowledge [14].

The class of promise problems that possess non-interactive statistical zero-knowledge proof systems is
denotedNISZK, and we denote by weak -NISZK the class of promise problems that possess weak non-
interactive statistical zero-knowledge proof systems. Note that by definition,NISZK � weak -NISZK.
De Santis et. al. [11] recently began investigating NISZK. They introduced a promise problem, called
Image Density, and claimed that is complete forNISZK and that the latter class is closed under OR and
complementation. We were able to verify that some variants of Image Density are NISZK-complete,
and indeed the ideas used towards this goal are important to our work. However, we were not able to verify
the claim thatNISZK is closed under OR and/or complementation, and for this reason, do not rely on this
claim in our work.

In this paper, in addition to examiningNISZK on its own, we also consider the relationship non-interactive
statistical zero-knowledge proofs have with interactive statistical zero-knowledge proofs. In the context of
interactive zero-knowledge proofs, another issue that arises in the zero-knowledge condition is the behavior
of the verifier. The general definition of zero-knowledge requires that the zero-knowledge requirement hold
for any probabilistic polynomial-time verifier. A weaker requirement, called honest verifier zero-knowledge,
requires the zero-knowledge condition to hold only if the verifier behaves honestly. However, it is known that
these two conditions are equivalent for statistical zero-knowledge, in the sense that every statistical zero-
knowledge proof against the honest verifier can be transformed into one that is statistical zero-knowledge
against any verifier [20]. Thus, we write SZK for the class of promise problems possessing statistical zero-
knowledge proofs (against any polynomial-time verifier or, equivalently, against just the honest verifier).

Note that in the case of non-interactive zero-knowledge, the issue of honest verifiers does not arise since
the verifier does not interact with the prover. Also, note that we can always transform a non-interactive zero-
knowledge proof into an honest verifier zero-knowledge proof, since we could have the honest verifier supply
a random string which can replace the common reference string required for non-interactive zero-knowledge.
That is,NISZK � SZK (recalling the equivalence of SZK with honest-verifier SZK).

1.2 Our Results

The primary tools we use in our investigation are promise problems that are complete for SZK orNISZK.
In [32], a promise problem called Statistical Difference (SD) was introduced and proved complete for SZK,
providing the first completeness result for SZK. Recently, it was shown in [21] that another natural prob-
lem, called Entropy Difference (ED), is complete for SZK as well. In this work, we show that “one-sided”
versions of these problems, which we call Statistical Difference from Uniform (SDU) and Entropy Ap-
proximation (EA), are complete for NISZK. To define these problems more precisely, we first recall that
that statistical difference between two random variables X and Y on a finite set D, denoted �(X ; Y ), is
defined to be�(X ; Y ) def= maxS�D jPr [X 2 S]� Pr [Y 2 S]j = 12 �X� jPr [X = �]� Pr [Y = �] j:

All the promise problems we consider involve distributions which are encoded by circuits which sam-
ple from them. That is, if X is a circuit mapping f0; 1gm to f0; 1gn, we identify X with the probability
distribution induced on f0; 1gn by feeding X the uniform distribution on f0; 1gm.

Definition 1.1 (Problems involving statistical difference): The promise problem Statistical Difference, de-
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noted SD = (SDyes; SDno), consists ofSDyes def= f(X; Y ) : �(X ; Y ) < 1=3gSDno def= f(X; Y ) : �(X ; Y ) > 2=3g
where X and Y are distributions encoded as circuits which sample from them. The promise problem Statis-
tical Difference from Uniform, denoted SDU = (SDUyes; SDUno), consists ofSDUyes def= fX : �(X ; U) < 1� 1=ngSDUno def= fX : �(X ; U) > 1=ng
where X is a distribution encoded as a circuit outputing n bits, and U is the uniform distribution on n bits.

For the two problems related to entropy, we recall that the (Shannon) entropy of a random variable X ,
denoted H(X), is defined as H(X) def= X� Pr [X = �] � log2(1=Pr [X = �])
Definition 1.2 (Problems involving entropy): The promise problem Entropy Difference, denoted ED =(EDyes; EDno), consists of EDyes def= f(X; Y ) : H(X) > H(Y ) + 1gEDno def= f(X; Y ) : H(Y ) > H(X) + 1g
The promise problem Entropy Approximation, denoted EA = (EAyes; EAno), consists ofEAyes def= f(X; k) : H(X) > k + 1gEAno def= f(X; k) : H(X) < k � 1g
In these problems, k is a positive integer and X and Y are distributions encoded as circuits which sample
from them.

Our first theorem, which is the starting point for our other results, is:

Theorem 1.3 (EA andSDU areNISZK-complete) The promise problemsEA andSDU are complete forNISZK.
That is, EA; SDU 2 NISZK and for every promise problem� 2 NISZK, there is a polynomial time many-
to-one reduction from � to EA and another from � to SDU.

From the proof of this theorem, we also deduce the equivalence ofNISZK with its weakened form.

Theorem 1.4 weak -NISZK = NISZK.

Armed with our complete problems, we then begin the work of comparing SZK andNISZK. First we
show that the non-triviality ofNISZK is equivalant to the non-triviality of SZK. This is shown by giving
a Cook reduction from ED to EA.

Theorem 1.5 (non-triviality of NISZK) SZK 6= BPP () NISZK 6= BPP.
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In this theorem (and throughout the paper), BPP denotes the class of promise problems solvable in proba-
bilitic polynomial time.

In fact, it turns out that the type of Cook reduction we use is a special one, and by examining it further, we
are able to shed more light on the SZK vs. NISZK question. Specifically, we observe that the reduction
we give from ED to EA is an AC0 truth-table reduction. That is, it is a nonadaptive Cook reduction in which
the postprocessing is done inAC0. (Formal definitions are given in Section 4.2.) Further, we can prove that ifNISZK is closed under complementation, thenNISZK is closed underAC0 truth-table reductions. Thus
we deduce that NISZK being closed under complementation implies that NISZK = SZK. In fact, we
can show that closure under complementation and a number of other natural conditions are equivalent toSZK = NISZK:

Theorem 1.6 (conditions for SZK = NISZK) The following are equivalent:

1. SZK = NISZK.

2. NISZK is closed under complementation.

3. NISZK is closed underNC1 truth-table reductions.

4. ED (resp., SD) Karp-reduces to EA (resp., SDU). (“general versions reduce to one-sided ones”)

5. EA (resp., SDU) Karp-reduces to its complement. (“one-sided versions reduce to their complements”)

Theorem 1.6 can be interpreted as saying that ifNISZK has a relatively weak closure property (closure
under complementation), then the class is surprisingly rich (equals SZK) and has a much stronger closure
property (closure underNC1 truth-table reductions.) Moreover, the last two conditions in Theorem 1.6 show
that these questions about non-interactive versus interactive statistical zero-knowledge proofs are actually
equivalent to basic, intriguing questions about relationships between natural computational problems whose
definitions have no a priori relationship to zero-knowledge proofs. Recall that [11] claim that the second item
above holds, and consequently if this claim is valid, then all items above hold. However, as stated above, we
were not able to verify this claim of [11].

The equality of SZK and NISZK has interesting consequences not just for NISZK, but also forSZK. Currently, the best known generic protocol for SZK requires a polynomial number of rounds [29,
21, 20]. For NISZK, however, by [10, 20], it is known that every problem in NISZK has a constant
round statistical zero-knowledge proof system (against general, cheating verifiers) with inverse polynomial
soundness error. Whether every problem in SZK has such a proof system is still an open question, which
would be resolved in the positive if SZK = NISZK.

1.3 A wider perspective

The study of non-interactive statistical (rather than computational) zero-knowledge proofs may be of inter-
est for two reasons. Firstly, statistical zero-knowledge proofs provide an almost absolute level of security,
whereas computational zero-knowledge proofs only provide security relative to computational abilities (and
typically under complexity theoretic assumptions). Secondly, by analogy from the study of zero-knowledge
interactive proofs, we believe that techniques developed for the “cleaner” statistical model can be applied
or augmented to yield results for computational zero-knowledge: The proof that one-way functions are nec-
essary for SZK to be non-trivial [30] was later generalized to CZK [31]. More recently, the transforma-
tions of honest-verifier zero-knowledge to general zero-knowledge, presented in [8, 10, 9, 20], apply both
to statistical and computational zero-knowledge (whereas the original motivation was the study of statistical
zero-knowledge). It is our hope that the current study of NISZK will eventually lead to a better under-
standing ofNICZK, where there are still important open questions such as the conditions under whichNP
has NICZK proofs.
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2 EA is in NISZK
In this section, we show that EA has a non-interactive statistical zero-knowledge proof system. Our proof
essentially follows the line of reasoning used by [11] to show that Image Density is in NISZK.

Lemma 2.1 EA 2 NISZK. Moreover, there is a non-interactive statistical zero-knowledge proof system
for EA in which the completeness error, soundness error, and simulator deviation are all exponentially van-
ishing.

The transformation given by the following lemma will be applied at the start of the proof system:

Lemma 2.2 There is a polynomial-time computable function that takes an instance (X; k) of EA and a pa-
rameter s (in unary) and produces a distributionZ on f0; 1g` (encoded by a circuit which samples from it)
such that

1. If H(X) > k + 1, then Z has statistical difference at most 2�
(s) from the uniform distribution onf0; 1g`, and

2. If H(X) < k � 1, then the support of Z is at most a 2�
(s) fraction of f0; 1g`.
The proof of Lemma 2.2, though somewhat technical, uses standard techniques which are implicit in

many works. For this reason, the proof is deferred to Appendix C. Given this transformation, it is straight-
forward to give a noninteractive statistical zero-knowledge proof system for EA:

Non-interactive proof system for EA, on input (X; k)
1. Let Z be the distribution on f0; 1g` obtained from (X; k) as in Lemma 2.2 taking s to be the total

description length of (X; k) in bits. Let � 2 f0; 1g` be the reference string.
2. P selects r uniformly among fr0:Z(r0) = �g and sends r to V .
3. V accept if Z(r) = � and rejects otherwise.

It is immediate from Lemma 2.2 that the completeness error and soundness error of this proof system are2�
(s). For zero-knowledgeness, we consider the following probabilistic polynomial-time simulator:

Simulator for EA proof system, on input (X; k)
1. Let Z be obtained from (X; k) as in the proof system.
2. Select an input r to Z uniformly at random and let � = Z(r).
3. Output (�; r).
It follows from Part 1 of Lemma 2.2 that this simulator has statistical difference at most 2�
(s) from

the distribution of transcripts of (P; V ). Thus, assuming Lemma 2.2, we have established Lemma 2.1. In
fact, we need not require that s be the length of (X; k). Instead, s can be taken to be an arbitrary security
parameter, and the completeness, soundness, and simulation error will be exponentially small in s, while the
running time of the protocol only depends polynomially on s. We can use this to prove the following, which
will be useful to us later.

Proposition 1 If any promise problem � reduces to EA by a Karp (i.e. many-one) reduction (even if it is
length-reducing), then � 2 NISZK.

Proof: A noninteractive statistical zero-knowledge proof system for � can be given as follows: On an in-
stance x of �, both parties compute the image (X; k) of x under the reduction ��KarpEA and execute the
proof system for EA on (X; k), taking s to be the length of jxj. Hence, the completeness and soundness errors
and simulator deviation of this proof system are exponentially small in jxj (rather than j(X; k)jwhich could
be shorter than x).
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3 EA and SDU areNISZK-complete

In this section, we complete the proof of Theorem 1.3. First, we establish that SDU 2 NISZK by showing:

Lemma 3.1 SDU�KarpEA.

Proof: Let X be an instance of SDU. We assume that log(n) > 5, where n is the output length of the circuitX (otherwise, once can decide in probabilistic polynomial time whether X is a yes or no instance of SDU
by random sampling). Let U denote the uniform distribution on n bits. We claim the map X 7! (X; n� 3)
is the reduction required by the lemma.

If X 2 SDUyes, then � = �(X ; U) < 1=n, so X is very close to the uniform distribution, which has
entropy n. An argument given in Appendix B allows us to bound difference in entropy in terms of statistical
difference. Applying Fact B.1, we immediately conclude that H(X) > n� 2.

If X 2 SDUno, then �(X ; U) � 1 � 1=n. By the definiton of statistical difference, this implies the
existence of a set S � f0; 1gn such that Pr [X 2 S]� Pr [U 2 S] > 1� 1=n: This implies thatPr [X 2 S] > 1� 1=n and Pr [U 2 S] < 1=n:
Thus, H(X) � Pr [X 2 S] � log(jSj)+ Pr [X =2 S] � n < 1 � (n� log n) + (1=n) � n < n� 4, and we have
that (X; n� 3) 2 EAno.

Now, we establishboth Theorem 1.3 and Theorem 1.4 by showing that all promise problems in weak-NISZK
(and hence all promise problems inNISZK) are reducible to SDU (and hence by the previous lemma to EA).

Lemma 3.2 For all promise problems � 2 weak -NISZK, we have that ��KarpSDU.

Proof: Let � be any promise problem in weak -NISZK. As weak -NISZK is preserved under parallel
repetition, we may assume that � has a weak -NISZK proof system (P; V ) with completeness and sound-
ness errors at most 2�n on inputs of length n. Let r(n) = poly(n) be the length of the random reference
string in (P; V ), and let S be a randomized polynomial-time simulator S such that the statistical difference
between the output distribution of S and the distribution of true transcripts of P is at most 1=(3r(n)). (Such
an S is guaranteed by the weak -NISZK property.) Let U denote the uniform distribution on r(n) bits.

Let x be an instance of �. Define Mx to be a circuit which does the following on input s:Mx(s): Simulate S(x)with randomness s to obtain a transcript (�; p). If V (�; p) accepts, then output �, else
output 0r(n).

We claim that the map x 7! Mx is the reduction required by the lemma. Suppose x 2 �yes. In this case,
we know that the random reference string � in the output of S has statistical difference less than 1=3r(n)
from U . In addition, since the completeness error of protocol P is at most 2�n, S(x) can output rejecting
transcripts with probability at most 1=(3r(n)) + 2�n � 2=(3r(n)). Hence, �(Mx ; U) < 2=(3r(n)) +1=(3r(n)) � 1=r(n), and Mx 2 SDUyes.

Supposex 2 �no. Since the soundness error of protocol P is bounded by 2�n, for at most a 2�n fraction
of reference strings � does there exist an accepting transcript (�; p). Since Mx only outputs reference strings
corresponding to accepting transcripts or 0r(n), �(Mx ; U) � 1 � (2�n + 1=2r(n)) > 1 � 1=r(n). Thus,Mx 2 SDUno.

Clearly, Lemmas 2.1, 3.1, and 3.2 combine to prove Theorem 1.3. Lemmas 3.2 and 3.1 show that any promise
problem� in weak-NISZK reduces to EA; by Proposition 1, this implies that� 2 NISZK and establishes
Theorem 1.4.

4 ComparingNISZK and SZK
Now that we are armed withNISZK-completeness results for promise problems so closely related to prob-
lems known to be complete for SZK, we can quickly begin relating the two classes.
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4.1 Nontriviality ofNISZK
First, we establish Theorem 1.5 by giving a Cook reduction from Entropy Difference (ED), complete forSZK, to Entropy Approximation (EA), complete forNISZK.

Lemma 4.1 Suppose (X; Y ) is an instance of ED. Let X 0 = 
4X (resp., Y 0 = 
4Y ) consist of 4 indepen-
dent copies of X (resp., Y ), and let n denote the maximum of the output sizes of X 0 and Y 0. Then,(X; Y ) 2 EDyes =) n_k=1 ��(X 0; k) 2 EAyes� ^ �(Y 0; k) 2 EAno��(X; Y ) 2 EDno =) n̂k=1 ��(X 0; k) 2 EAno� _ �(Y 0; k) 2 EAyes��
Proof: Suppose (X; Y ) 2 EDyes, so that H(X 0) > H(Y 0) + 4. Let k = bH(X 0)c � 2. Hence, H(X 0) >k+1. But k+3 > H(X 0) > H(Y 0)+4, and henceH(Y 0) < k�1. Suppose instead (X; Y ) 2 EDno, so thatH(Y 0) > H(X 0)+4. Then for all k > dH(X 0)e+1, we haveH(X 0) < k�1. But for all k � dH(X 0)e+1,
we have k + 1 < H(X 0) + 3 < H(Y 0).
From this reduction, we conclude that SZK 6= BPP () NISZK 6= BPP, which is Theorem 1.5.
Again, by BPP we mean the class of promise problems solvable in probabilistic polynomial time.

Proof of Theorem 1.5. By definition, NISZK � SZK (recall that SZK equals honest-verifier SZK
[20]). Hence if SZK = BPP, then NISZK = BPP.

Now suppose NISZK = BPP, so in particular there is a probabilistic polynomial-time machine M
which decides EA (with exponentially small error probability). To show SZK = BPP, it suffices to show
that ED 2 BPP since ED is SZK-complete. We now describe how to decide instances of ED: Let (X; Y )
be an instance of ED. Letting X 0 and Y 0 be as stated in Lemma 4.1, we run M(X 0; k) and M(Y 0; k) for allk 2 [1; n]. If for some k, we see that M(X 0; k) = 1 and M(Y 0; k) = 0, we output 1. Otherwise, we output
0. By Lemma 4.1, this is a correct BPP algorithm for deciding ED. .

4.2 Conditions under which NISZK = SZK
Although the reduction given in Lemma 4.1 is a Cook reduction, it is a very special type of Cook reduction,
which we call an AC0 truth-table reduction. We use the special properties of this reduction to show that ifNISZK is closed under complement, then in factNISZK = SZK. We now precisely define the types of
reductions we are using, taking care how we define them for promise problems.

Definition 4.2 (truth-table reduction [26]): We say a promise problem � truth-table reduces to a promise
problem �, written ��tt�, if there exists a (deterministic) polynomial-time computable function f , which
on input x produces a tuple (x1; x2; : : : ; xk) and a circuit C, such that

1. If x 2 �yes then for all valid settings of b1; b2; : : : ; bk, C(b1; b2; : : : ; bk) = 1, and

2. If x 2 �no then for all valid settings of b1; b2; : : : ; bk, C(b1; b2; : : : ; bk) = 0.

where a setting for bi is considered valid when bi = 1 if xi 2 �yes and bi = 0 if xi 2 �no (and bi is
unrestricted when xi violates the promise).

In other words, a truth-table reduction for promise problems is a non-adaptive Cook reduction which is
allowed to make queries which violate the promise, but must be able to tolerate both yes and no answers in
response to queries that violate the promise. We further consider the case where we restrict the complexity
of computing the output of the reduction from the queries:
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Definition 4.3 (AC0 and NC1 truth-table reductions): A truth-table reduction f between promise problems
is an AC0 (resp., NC1) truth-table reduction if the circuit C produced by the reduction on input x has depth
bounded by a constant cf independent of x (resp., has depth bounded by cf log jxj). If there is anAC0 (resp.,NC1) truth-table reduction from � to �, we write ��AC0�tt� (resp., ��NC1�tt�).

With this definition, we observe that Lemma 4.1 in fact shows that ED�AC0�ttEA, since the formula given
in the lemma can be expressed as an AC0 circuit, and the statement of the lemma shows that the reduction
has the robustness properties against promise violations that are required in Definition 4.3.

We say that a class C of promise problems is closed under a class of reductions �� if ���� and � 2C implies that � 2 C. By the above, if NISZK is closed under AC0 truth-table reductions, then ED 2NISZK and hence NISZK = SZK. Thus, we would like to capture the minimal conditions necessary
for a promise class to be closed under AC0 truth-table reductions. Here, care must be taken to because of
the possibility of promise violations. Keeping this in mind, we define the following operator on promise
problems to capture the notion of an unbounded fan-in AND gate for promise problems:

Definition 4.4 (unbounded AND): For any promise problem�, we define AND(�) to be the promise problem:ANDyes(�) def= f(x1; x2; : : : ; xk) : k � 0; 8i 2 [1; k]xi 2 �yesgANDno(�) def= f(x1; x2; : : : ; xk) : k � 0; 9i 2 [1; k]xi 2 �nog
We say a class of promise problems C is closed under unbounded AND if for all� 2 C, one has AND(�) 2 C.

We have defined AND so that it has the weakest promise condition possible to remain well-defined. In
particular, we see that ANDno(�) is defined to include xi’s that violate �’s promise, as long as just one of
them is in �no. � 2 C, AND(�) 2 C. We also need a way of combining two promise problems:

Definition 4.5 (disjoint union): For any pair of promise problems � and �, we define the disjoint union of� and � to be the promise problem DisjUn(�;�) defined as follows:DisjUnyes(�;�) def= f0g � �yes [ f1g � �yesDisjUnno(�;�) def= f0g � �no [ f1g � �no
We say a class of promise problems C is closed under selection if for all�;� 2 C, one has DisjUn(�;�) 2 C.

With these definitions, we can give the following lemma which gives some conditions sufficient to give
closure under AC0 truth-table reductions.

Lemma 4.6 A promise class C is closed underAC0 truth-table reductions if the following conditions hold:
1. C is closed under Karp (i.e., many-one) reductions.

2. C is closed under unbounded AND.

3. C is closed under selection.

4. C is closed under complementation.

Lemma 4.6 can be proven by a straightforward induction on the depth of the circuits. Details are in Ap-
pendix E. Which of the conditions of Lemma 4.6 does NISZK satisfy? We argue that Conditions 1, 2,
and 3 are satisfied by NISZK:

Lemma 4.7 NISZK is closed under Karp reductions.

Proof: Suppose � 2 NISZK, and ��Karp�. Since EA is complete for NISZK, we have ��KarpEA. By
composing reductions, we see that ��KarpEA. By Lemma 2.1 and Proposition 1, � 2 NISZK.
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Lemma 4.8 NISZK is closed under unbounded AND.

Proof: First, we argue that AND(EA) 2 NISZK by describing a NISZK proof system for AND(EA): Let((X1; k1); : : : ; (Xm; km)) be an instance of AND(EA), and say ` is the total length of the instance. Artificially
pad each circuitXi to be of description size ` (by adding unused gates) and let Yi be the resulting circuit. Now
execute theNISZK proof system for EA given by Lemma 2.1 on each pair (Yi; ki) in parallel, and have theAND(EA)-verifier accept if the EA-verifier would have accepted on each pair.

If every pair (Xi; ki) is a yes instance of EA, the AND(EA) verifier will accept with probability at least1�m � 2�
(`) = 1� 2�
(`), as the completeness error of the EA proof system is at most 2�
(`). Similarly,
running the simulator for the EA proof systemm times independently will give a simulation for the AND(EA)
proof system with simulator deviationm � 2�
(`) = 2�
(`). Finally, if just one pair (Xi; ki) is a no instance
of EA (even if the others violate the promise), the verifier will accept with probability at most 2�
(`) in thei’th execution of the EA protocol, and so the AND(EA) verifier will accept with probability at most 2�
(`).

This shows that AND(EA) 2 NISZK. Now let � be any promise problem in NISZK. Since EA is
complete forNISZK, there is a Karp reduction f from � to EA. This induces a Karp reduction from AND(�)
to AND(EA) in the obvious way (i.e. (x1; : : : ; xk) 7! (f(x1); : : : ; f(xk))). As AND(EA) is in NISZK andNISZK is closed under Karp reductions, AND(�) 2 NISZK.

Lemma 4.9 NISZK is closed under disjoint union.

Proof: Clearly, DisjUn(EA; EA)�KarpEA (by dropping the extra bit.) Now, for any two promise problem �
and � in NISZK, the Karp reductions f0 from � to EA and f1 from � to EA induce a Karp reduction fromDisjUn(�;�) toDisjUn(EA; EA) given by (�; x) 7! f�(x). UsingDisjUn(�;�)�KarpDisjUn(EA; EA)�KarpEA 2NISZK, and applying closure under Karp reductions, we get DisjUn(�;�) 2 NISZK.

Combining everything, we can give a condition under which SZK = NISZK.

Proposition 2 If NISZK is closed under complementation, then SZK = NISZK.

Proof: Suppose NISZK is closed under complementation. Combining this with Lemmas 4.6, 4.7, 4.8,
and 4.9, it follows that NISZK is closed under AC0 truth-table reductions. Applying Lemma 4.1 and
Lemma 2.1, we conclude that ED 2 NISZK. Since ED is complete for SZK [21] and NISZK is closed
under Karp reductions, we have SZK � NISZK. As NISZK � SZK is true from the definition ofNISZK, we conclude that NISZK = SZK.

Finally, we deduce Theorem 1.6, which gives a number of conditions equivalent to NISZK = SZK.

Proof of Theorem 1.6:
1) 3. This follows from the result of [33] that SZK is closed underNC1 truth-table reductions.
3) 2) 1. The first is trivial and the second is Proposition 2.
1, 4. This follows from Theorem 1.3 (which asserts that that EA and SDU are complete for NISZK), the
fact that ED and SD are complete for SZK [32, 21], and Lemma 4.7 (that NISZK is closed under Karp
reductions).
1, 5. This follows from Theorem 1.3 (that EA and SDU are complete for NISZK) and Lemma 4.7 (thatNISZK is closed under Karp reductions).
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A Definitions

Following [17], we extend the standard definition of interactive proof systems to promise problems –

Definition A.1 (Interactive Proof systems – IP [23]): Let c; s : N 7! [0; 1] be polynomial-time computable
functions so that for some positive polynomial p and all positive integers n’s, c(n) + s(n) < 1� (1=p(n)).
An interactive proof system with two-sided error (c; s) for a promise problem � = (�yes;�no) is a two-
party game, between a verifier executing a probabilistic polynomial-time strategy (denoted V ) and a prover
which executes a computationally unbounded strategy (denoted P ), satisfying� Completeness: For every x 2 �yes, the verifier V with probability at least 1 � c(jxj) accepts after

interacting with the prover P on common input x.� Soundness: For every x 2 �no and every potential strategyP �, the verifier V accepts with probability
at most s(jxj), after interacting with P � on common input x.

In such a case, we say that the proof system has completeness error c and soundness error s. The error
of the proof system is defined as maxfc; sg.

We are mainly concerned with interactive proof systems having the following zero-knowledge prop-
erty [23]:

Definition A.2 (Statistical zero-knowledge — SZK):� The view of an interactive machine consists of the common input, its internal coin tosses, and all mes-
sages it has received. We denote by hP; V i(x) the view of the verifier V while interacting with P on
common input x.� A function � : N 7! [0; 1] is called negligible if for every positive polynomial p and all sufficiently
large n 2 N, �(n) < 1=p(n).� An interactive proof system (P; V ) for a promise problem � = (�yes;�no) is (general) statistical
zero-knowledge if for every probabilisticpolynomial-timeV �, there exists a probabilisticpolynomial-
time machine (called a simulator), S, and a negligible function � : N 7! [0; 1] (called the simulator
deviation) so that for every x 2 �yes the statistical difference between S(x) and hP; V �i(x) is at most�(jxj).� SZK denotes the class of promise problems having statistical zero-knowledge interactive proof sys-
tems.
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Honest-verifier statistical zero-knowledge proof systems are such where the zero-knowledge requirement is
only required to hold for the prescribed/honest verifier V , rather than for every polynomial-time computableV �. every honest-verifier statistical zero-knowledge proof system can be transformed into a general statisti-
cal zero-knowledge proof system (actually meeting an even stronger zero-knowledge requirement) [20].

B Statistical Inequalities

Fact B.1 For any two random variables, X and Y , ranging over a domain D it holds thatjH(X)�H(Y )j � log(jDj � 1) � � + H2(�)
where � def= �(X ; Y ).
This fact can be inferred from Fano’s Inequality (cf., [7, Thm. 2.11.1]). A more direct proof follows.

Proof: Assume � > 0 or else the claim is obvious. Let p(x) def= Pr [X = x] and q(x) def= Pr [X = x]. Definem(x) def= minfp(x); q(x)g. Then
Px2Dm(x) = 1� �. Define random variables Z 0, X 0 and Y 0 so thatPr �Z 0 = x� = m0(x) def= 11� � �m(x)Pr �X 0 = x� = p0(x) def= 1� � (p(x)�m(x))Pr �Y 0 = x� = q0(x) def= 1� � (q(x)�m(x))

Think of X (resp., Y ) as being generated by picking Z0 with probability 1� � and X 0 (resp., Y 0) otherwise.
Then H(X) � (1� �) �H(Z0) + � �H(X 0) + H2(�)H(Y ) � (1� �) �H(Z0)
Observing that Pr [X 0 = x] = 0 on at least one x 2 D, it follows that H(X 0) � log(jDj � 1), and the fact
follows.

Comment: The above bound is tight. Let e 2 D and consider X which is identically e, and Y which
with probability 1 � � equals e and otherwise is uniform over D n feg. Clearly, �(( ; X); Y ) = � andH(Y )�H(X) = � log(jDj � 1) + H2(�)� 0.

C Proof of Lemma 2.2

C.1 Flat distributions and the Leftover Hash Lemma

Here, we discuss some standard notions and techniques that will be useful in the proof of Lemma 2.2. We
use the clean formulations of these tools given in [21].

A distributionX is called flat if all strings in the support of X have the same probability. Notice that ifX
is flat, then by the definition of entropy, Pr [X = x] = 2�H(X) for every x in the support of X . We quantify
deviation from flatness as follows:

Definition C.1 (heavy, light and typical elements): Let X be a distribution, x an element possibly in its
support, and� a positive real number. We say thatx is�-heavy (resp., �-light) ifPr [X = x] � 2��2�H(X)
(resp., Pr [X = x] � 2�� � 2�H(X)). Otherwise, we say that x is �-typical.
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A natural relaxed definition of flatness follows. The definition links the amount of slackness allowed in “typ-
ical” elements with the probability mass assigned to non-typical elements.

Definition C.2 (flat distributions): A distributionX is called �-flat if for every t > 0, the probability that
an element chosen from X is t ��-typical is at least 1� 2�t2+1.

By straightforward application of Hoefding Inequality (cf., Appendix D), we have

Lemma C.3 (flattening lemma): Let X be a distribution, k a positive integer, and 
kX denote the distri-
bution composed of k independent copies of X . Suppose that for all x in the support of X it holds thatPr [X = x] � 2�m. Then 
kX is

pk �m-flat.

The key point is that the entropy of 
kX grows linearly with k, whereas its deviation from flatness grows
significantly slower (i.e., linear in

pk) as a function of k. The other main tool we will use is:

Lemma C.4 (Leftover Hash Lemma [24]) LetH be a 2-universal family of hash functionsmapping a domainD to a range R. Suppose X is a distribution on D such that with probability at least 1� � over x selected
from X , Pr [X = x] � "=jRj. Then the statistical difference between the following two distributions is at
most O(� + "1=3):

(A) Choose h uniformly fromH and x according to X . Output (h; h(x)).
(B) Choose h uniformly fromH and y uniformly from R. Output (h; y).

In particular, notice that if X is a �-flat distribution, then for any parameters s; t > 0, X satisfies the
hypothesis of the Leftover Hash Lemma with jRj = 2H(X)�t��s, � = 2�t2+1, and " = 2�s. As we will be
applying Lemma C.4 to sets of strings, we define, for any pair of positive integers ` and k, H`;k to be one
of the standard 2-universal families of hash functions mapping f0; 1g` to f0; 1gk (e.g., affine GF(2)-linear
transformations).

C.2 Overview of the transformation

The transformation proceeds in four stages, which are roughly described below:

1. Let X 0 consist of many copies of X so that the entropy gap between yes and no instances increases,
and the distribution becomes quite flat relative to its entropy.

2. HashX 0 so thatyes instances become close to the uniform distribution while no instances have much
smaller entropy than the uniform distribution. That is, let Y be of the form (h; h(X 0)), where h is
uniformly distributed in a 2-universal family with appropriate parameters.

3. Let Y 0 consist of many copies of Y so that for no instances, the entropy deficiency (as compared to the
uniform distribution) becomes large and yet Y 0 becomes quite flat relative to its entropy; while yes
instances remain close to uniform.

4. Hash the inputs to Y 0 so that no instances have small support (rather than just small entropy), while
keeping yes instances close to uniform. That is, let Z be of the form (Y 0(r); h; h(r))where h is uni-
formly distributed in a 2-universal family with appropriate parameters.

C.3 The formal construction and proof

Let (X; k) be an instance of EA, let m (resp., n) denote the number of input and output gates to X , and let s
be the extra parameter in the transformation. By increasing s if necessary, we may assume that s is greater
than the total description length of (X; k). Thus, all the intermediate circuits we build will be of size poly(s).
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Many copies I. The first step is to take many copies of each distribution; this has the effect of increasing the
entropy gap between yes and no instances relative to X’s deviation from flatness. Namely, let q = 4sm2
and let X 0 = 
qX . Then H(X 0) = q � H(X) and, by Lemma C.3, X 0 is �-flat for � = 2ps � m2. In
particular, we have established

Claim C.5
1. If H(X) > k + 1, then H(X 0) > qk + q � qk +ps�+ s.

2. If H(X) < k � 1, then H(X 0) < qk � q < qk.

Hashing I. Now consider the distribution Y on pairs (h; h(x)) induced by choosing h uniformly fromHqn;qk+1 and x according to X 0. Say that elements of Hqn;qk+1 take ` � poly(qn; qk) � poly(s) bits to
represent. Then Y has inputs (resp., outputs) of length m0 = ` + qm (resp., n0 = ` + qk + 1). Y satisfies
the following properties.

Claim C.6
1. If H(X) > k + 1, then Y has statistical difference at most 2�
(s) from the uniform distribution onf0; 1gn0.
2. If H(X) < k � 1, then the entropy of Y is less than n0 � 1.

Proof: Part 1 follows from the �-flatness of X and the Leftover Hash Lemma. Part 2 follows from the
fact that the entropy of Y is at most the entropy of X 0 (which is less than qk) plus the entropy of the uniform
distribution on H (which is `).
Many copies II. We now take many copies of Y , so that the entropy deficiency of no instances becomes
large relative to the flatness while yes instances remain close to uniform. Specifically, let q0 = 4s � (m0)2
and let Y 0 = 
q0Y , so that Y 0 has M = m0q0 input gates, N = n0q0 output gates, and Y 0 is �0-flat for�0 = 2ps � (m0)2. Then we immediately have the following:

Claim C.7
1. If H(X) > k + 1, then Y 0 has statistical difference at most q0 � 2�
(s) = 2�
(s) from the uniform

distribution on f0; 1gN .

2. If H(X) < k � 1, then H(Y 0) < N � q0 � N �p3s ��0 � s.

Hashing II. The final step is to make a distribution which, for no instances, has small support (rather than
just low entropy) in the case of no instances, while yes instances remain close to uniform.

Consider a distribution Z which takes as input r 2 f0; 1gM and a hash function h 2 HM;M�N�s and
outputs (Y 0(r); h; h(r)). Then,

Claim C.8 Z satisfies the requirements of Lemma 2.2.

The intuition for this is the following: In the case of yes instances, Y 0 is close to the uniform distribution
on f0; 1gN , so for almost all y 2 f0; 1gN , there will be about 2M�N values of r such that Y 0(r) = y. Thus,
hashing r down to M �N � s bits will still result in a uniform distribution.

In the case of a no instance, Y 0 has large entropy deficiency and is nearly flat. From this, we know thatY 0 lands in some small subset T of the domain with very high probability. Thus, points y =2 T must have
very low probability under Y 0, i.e. there are very few inputs r such that Y 0(r) = y. So, for each y =2 T ,
the pairs (h; h(r)) will only hit a small subset of the possible values. Therefore, (Y 0(r); h; h(r)) has small
support, because either the first component lands in a small set (namely T ) or the last two components land
in a small set.
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Proof: SupposeH(X) > k+1. From the fact that Y 0 has statistical difference at most 2�
(s) from uniform
it follows that with probability at least 1� 2�
(s) over y selected according to Y 0,Pr �Y 0 = y� � 12 � 12N : (1)

Fix any y satisfying Inequality 1. Conditioned on Y 0(r) = y, r is selected uniformly from fr: Y 0(r) = yg,
which by Equation 1 is a set of size at least 2M�N�1. Thus, by the Leftover Hash Lemma, conditioned onY 0(r) = y, the distribution of (h; h(r)) has statistical difference at most 2�
(s) from uniform. Therefore the
total statistical difference of Z from uniform is 2�
(s).

Now suppose H(X) < k � 1. We want to show that the support S of Z is a small fraction of D =f0; 1gN � H � f0; 1gM�N�s. To do this, we divide S into three parts, depending on the probability mass
given to the y component byY 0. Recall that a “typical”y forY 0 has probabilitymass� 2�H(Y 0) � 2�N+p3s��+s.S1 = f(y; h; z) 2 S: Pr [Y 0 = y] � 2�N�2sg (“much too light”)S2 = f(y; h; z) 2 S: 2�N�2s < Pr [Y 0 = y] � 2�N+sg (“too light, but not much too light”)S3 = f(y; h; z) 2 S: 2�N+s < Pr [Y 0 = y]g (“not too light”)

Clearly, S = S1[S2[S3. We will show that jSij=jDj � 2�s for i = 1; 2; 3, and so jSj=jDj � 3 �2�s =2�
(s).
First we bound jS1j. For any y such that Pr [Y 0 = y] � 2�N�2s, there are at most 2M�N�2s values of r

such that Y 0(r) = y. Thus, for any such y and any h, the set of z such that (y; h; z) 2 S1 is of size at most2M�N�2s (i.e., is at most a 2�s fraction of f0; 1gM�N�s). This implies that S1 is at most a 2�s fraction ofD.
Now we bound jS2j. We show that the setA of y such that 2�N�2s < Pr [Y 0 = y] � 2�N+s is at most a2�s fraction of f0; 1gN . From this, it follows that S2 is at most a 2�s fraction ofD. Every y 2 A is

p3s ��0-
heavy (sinceY 0 has entropy at mostN�s�p3s��0). By the�0-flatness of Y 0,Pr [Y 0 2 A] is at most 2�3s+1.
Since every y in A has probability mass at least 2�N�2s under Y 0, jAj is at most 2�3s+1=2�N�2s = 2N�s,
as desired.

Finally, we bound jS3j. Clearly, there can be at most 2N�s values of y such that Pr [Y 0 = y] � 2�N+s.
From this it follows that jS3j=jDj � 2�s.
D Proof of the Flattening Lemma

For every x in the support of X , we let w(x) = � log Pr [X = x]. Then w maps the support of X , denotedD, to [0; m]. Let X1; :::; Xk be identical and independent copies of X . The lemma asserts that for every tPr"����� kXi=1w(Xi)� k �H(X)����� > t �mpk# < 2�t2
Observe that E(w(Xi)) = PxPr [X = x]w(x) = H(X), for every i. Thus, the lemma follows by a
straightforward application of Hoefding Inequality: Specifically, define random variables �i = w(Xi), let� = E(�i) and � = tm=pk, and usePr"�����Pki=1 �ik � ������ > �# < 2 � exp �2�2m2 � k!= 2 � exp ��2t2�
The lemma follows.
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E Proof of Lemma 4.6

First note that any unbounded fan-in circuit can be efficiently converted into a circuit with only unbounded
fan-in NAND gates (allowing also unary NAND gates), with only a constant factor blowup in depth. to such
a circuit with only a constant factor blowup in depth. So, as a first step, we observe that C is closed under

unbounded NAND. That is, for any promise problem �, NAND(�) def= AND(�) 2 C, by closure under un-
bounded AND and complementation. To generalize this to constant depth circuits with unbounded fan-in
NAND gates, we define

Definition E.1 For any promise problem �, and for all natural numbers d � 0 we define Depthd(�) to be
the promise problem whose instances are tuples (C; (x1; x2; : : : ; xk)), where C is a circuit of depth at mostd (using unbounded fan-in NAND gates only). The yes instances are those such that for all valid settings
of b1; b2; : : : ; bk, C(b1; b2; : : : ; bm) = 1; whereas the no instances are those tuples such that for all valid
settings of b1; b2; : : : ; bk, C(b1; b2; : : : ; bk) = 0. Here, a setting for bi is considered valid when bi = 1 ifxi 2 �yes and bi = 0 if xi 2 �no (and bi is unrestricted when xi violates the promise).

Using the fact that every AC0 circuit can be efficiently transformed into one with only NAND gates, we
see that��AC0�tt�means that there exists some d such that� � Depthd(�) under a Karp reduction. Hence
if we can show that for all d � 0 and promise problems �, Depthd(�) 2 C, the lemma will be established.
We will prove this by induction.

First, observe that a depth 0 circuit is simply a variable (we can ignore constants as trivial). Hence,Depth0(�) = � 2 C. Now assume that Depthd(�) 2 C. Observe that a depth d + 1 circuit is simply
a NAND of some number of depth d circuits. Using this observation, we will argue that thatDepthd+1(�)�DisjUn(Depthd(�); NAND(Depthd(�)))
; by the closure properties of C, this implies that Depthd+1(�) 2 C. The reduction works as follows. The
input to the reduction is a tuple (C; �x) where �x = (x1; x2; : : :xk). If C is actually a depth d circuit, then it
simply outputs (0; (C; �x)). If not, then it extracts from C the circuits C1; C2; : : : ; Cs that provide input to
the topmost NAND gate. Then the reduction outputs (1; (m; (C1; �x); (C2; �x); : : : ; (Cs; �x))). It is clear that
map gives a Karp reduction from Depthd+1(�)�DisjUn(Depthd(�); NAND(Depthd(�))), completing the
induction step and the proof.
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