
A Small Gap in the Gap Ampli�
ation of AssignmentTesters∗Oded Goldrei
h† Or Meir‡28th O
tober 2007Abstra
tAn important extension of the proof of the PCP theorem by Irit Dinur (J. ACM 54(3),also ECCC TR05-046) is a gap ampli�
ation theorem for Assignment Testers. Spe
i�
ally,this theorem states that the reje
tion probability of an Assignment Tester 
an be ampli�edby a 
onstant fa
tor, at the expense of in
reasing the output size of the Assignment Tester bya 
onstant fa
tor. We point out a gap in the proof of this theorem, and show that this gap
an be �lled.In this note we dis
uss a gap in one of the proofs in the work of Dinur [D05, D07℄, and show how it
an be �lled. The gap refers to the ampli�
ation of Assignment Testers, and the underlying issuedoes not o

ur in the 
ase of standard PCPs. We refer both to the journal version of the work[D07℄ and to the version posted on ECCC [D05℄, sin
e both of them are 
ited in the literature.1 Ba
kgroundWe begin by re
alling the de�nition of [D05, D07℄ of the notions of Assignment Testers, also knownas PCPs of Proximity (see also [BGHSV04, DR06℄):De�nition 1 ([D05, De�nition 3.1℄, [D07, De�nition 2.8℄). An Assignment Tester with alphabet Σ0and reje
tion probability ε > 0 is a polynomial-time transformation P whose input is a 
ir
uit Φ

∗This resear
h was partially supported by the Israel S
ien
e Foundation (grant No. 460/05).
†Department of Computer S
ien
e and Applied Mathemati
s, Weizmann Institute of S
ien
e, Rehovot 76100Israel. Email: oded.goldrei
h�weizmann.a
.il
‡Department of Computer S
ien
e and Applied Mathemati
s, Weizmann Institute of S
ien
e, Rehovot 76100Israel. Email: or.meir�weizmann.a
.il 1



over Boolean variables X, and whose output is a 
onstraint graph G = 〈(V, E) , Σ0, C〉 su
h that
X ⊆ V (where the elements of X are viewed both as variables and as verti
es), and su
h that thefollowing hold. Let V ′ = V \X, and let a : X → {0, 1} be an assignment, then

• (Completeness) If a ∈ SAT(Φ), there exists b : V ′ → Σ0 su
h that UNSATa∪b (G) = 0.
• (Soundness) If a a /∈ SAT(Φ) then for all b : V ′ → Σ0, UNSATa∪b(G) ≥ ε · dist (a, SAT (Φ))1.The main te
hni
al result of [D05, D07℄ is a gap ampli�
ation theorem for PCPs. The followingimportant extension of this theorem to Assignment Testers is also provided in [D05, D07℄:Theorem 2 ([D05, Theorem 8.1℄, [D07, Theorem 9.1℄). There exists t ∈ N su
h that given anassignment-tester with 
onstant-size alphabet Σ and reje
tion probability ε, one 
an 
onstru
t anassignment-tester with the same alphabet and reje
tion probability at least min {2ε, 1/t}, su
h thatthe output size of the new redu
tion is bounded by at most by a 
onstant fa
tor times the outputsize of the given redu
tion.The assignment tester of Theorem 2 is 
onstru
ted in two steps: First, an intermediate assign-ment tester with alphabet Σdt/2 and reje
tion probability p = Ω

(

min
{√

t · ε, 1/t
}) for a 
onstant

d ∈ N and an arbitrary t ∈ N is 
onstru
ted. Then, a 
omposition theorem of Dinur and Reingold[DR06℄ is applied to the intermediate assignment tester in order to redu
e its alphabet's size, result-ing in an assignment tester with alphabet Σ and reje
tion probability Ω(p) = Ω
(

min
{√

t · ε, 1/t
}).The number t is then �xed to some su�
iently large natural number that yields the desired reje
-tion probability.The subje
t of this note is a gap in the �rst step of the foregoing 
onstru
tion, namely, the
onstru
tion of the intermediate assignment tester. Spe
i�
ally, we show that under 
ertain 
ir-
umsten
es, the intermediate assignment tester has output size whi
h is quadrati
 in the outputsize of the input assignment tester, failing to establish Theorem 2. Su
h an in
rease in the outputsize 
an not be a�orded by the appli
ations of Theorem 2 presented in [D05℄ and [D07℄. We 
om-ment that those 
ir
umsten
es do not seem to o

ur in the appli
ations of Theorem 2 presented inof [D05℄. In this note we show that the proof of Theorem 2 
an be 
orre
ted so the theorem holdsunder any 
ir
umsten
es.We re
all the way in whi
h the intermediate assignment tester is 
onstru
ted: Let Φ be a 
ir
uitover Boolean variables X.1. First, the intermediate assignment tester runs the input assignment tester on input Φ, yield-ing a 
onstraint graph G = 〈(V, E) , Σ, C〉. For any vertex v ∈ V , let degG (v) denote thedegree of v in G.1Note that [D07℄ denotes the relative Hamming distan
e by rdist, and therefore the foregoing inequality isphrased as UNSATa∪b(G) ≥ ε · dist (a, SAT (Φ)). 2



2. Next, the intermediate assignment tester 
onstru
ts the 
onstraint graph H = (prep(G))t.We denote the set of verti
es of H by VH . Re
all that prep(G) is the graph in whi
h everyvertex v of G is repla
ed by an expander graph [v] of degG v verti
es, whose verti
es represent�
opies� of v and whose edges 
orrespond to equality 
onstraints. Note that the X * VH ,sin
e ea
h x ∈ X was repla
ed by [x].3. Finally, the intermediate assignment tester 
onstru
ts and outputs a 
onstraint graph H ′,whose set of verti
es is VH ∪X and whose edges 
onsist of the edges of H and of �
onsisten
yedges� that 
he
k 
onsisten
y between VH and X. The edges are reweighted su
h that the
onsisten
y edges form half of the edges of H ′. For every v ∈ VH ∪ X, let degH′ (v) denotethe degree of v in H ′.2 The gapThe gap in the proof arises in the way the 
onsisten
y edges between X and VH are de�ned.Spe
i�
ally, we show that if the graph G is highly non-regular, the 
onstru
tion of H ′ may 
ontaintoo many 
onsisten
y edges. For simpli
ity, let us assume that t = 0, but note that the argumentholds for any value of t. For t = 0, it holds that H = prep (G) and that VH =
⋃

v∈V
[v], where [v]is the set of verti
es that represent �
opies� of the vertex v of G.The work of [D05, D07℄ de�ned the 
onsisten
y edges based on a randomized testing pro
edure.This pro
edure is given ora
le a

ess to an assignment A : VH ∪ X → Σ to H ′, and is allowed tomake two queries to A. The pro
edure then de
ides whether to a

ept or reje
t A.The 
onsisten
y edges are de�ned using the pro
edure as follows: For every possible 
oin tosses

ω, let vω
1 and vω

2 denote the verti
es that the pro
edure queries on 
oin tosses ω. For every possible
oin tosses ω, a 
onsisten
y edge is pla
ed between vω
1 and vω

2 , and this edge a

epts an assignment
A : VH ∪ X → Σ if and only if the pro
edure a

epts on 
oin tosses ω when given ora
le a

ess to
A. Under the assumption that t = 0, the aforementioned pro
edure is as follows:1. Sele
t x ∈ X uniformly at random.2. Sele
t z ∈ [x] uniformly at random (re
all that [x] is the set of verti
es in H that are 
opiesof x).3. A

ept if and only if A(x) = A(z).Note that for every x ∈ X, the number degH′ (x) is equal to the number of 
onsisten
y edges
onne
ted to x using the foregoing pro
edure. The problem is now as follows:
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• Sin
e the pro
edure 
hooses x ∈ X uniformly at random (at Step 1), it follows that everyvariable x ∈ X must have the same degree in H ′. That is, for every two variables x, y ∈ X,it holds that degH′ (x) = degH′ (y).
• Sin
e the pro
edure 
hooses z ∈ [x] uniformly at random (at Step 2), every variable x ∈ Xmust satisfy degH′ (x) ≥ |[x]| = degG (x).
• Combining the previous two items, it follows that the degree of every variable x ∈ X isat least maxx∈X {degG (x)}, and therefore the number of 
onsisten
y edges added by theforegoing pro
edure is at least |X| · maxx∈X {degG (x)}.Now, suppose that |X| = Ω (size (G)) and that there exists x0 ∈ X for whi
h degG (x0) =

Ω (size (G)) (observe that this 
an be the 
ase if G is highly non-regular). In su
h a 
ase,the number of 
onsisten
y edges that will be added in the 
onstru
tion of H ′ will be at least
|X| · degG (x0) = Ω

(size (G)2), and therefore we will have size (H ′) = Ω
(size (G)2), 
ontradi
tingthe 
laim of Theorem 2. Note that this problem does not o

ur if G is a regular graph, sin
e insu
h 
ase we have that

|X| · max
x∈X

{degG (x)} =
∑

x∈X

degG (x) ≤ size (G)and therefore we will have size (H ′) = O (size (G)), as required.3 Filling the gapWe turn to des
ribe how the gap 
an be �lled. In order to �ll the gap, we modify the foregoingrandomized pro
edure as follows. For every x ∈ [x], �x [x]′ to be an arbitrary subset of [x] of size
min {|[x]| , size (H) / |X|}. The modi�ed pro
edure is the same as the original pro
edure, ex
eptfor that in Step 2, it 
hooses z uniformly at random from the set [x]′ instead of [x]. Observethat this modi�
ation indeed solves the problem, sin
e now the degree of every variable x ∈ X in
H ′ is bounded by size (H) / |X|, and therefore the total number of 
onsisten
y edges is at mostsize (H) = O(size (G)).The reason that the modi�ed pro
edure works is roughly as follows: Consider some givenassignment to X. Ideally, we would like that if a variable x ∈ X is assigned a value that isin
onsistent with most of [x], then this variable violates Ω(1/ |X|)-fra
tion of the edges of H ′.Suppose now that some variable x ∈ X is assigned a value that is in
onsistent with most of theverti
es in [x]. Then, either that x is in
onsistent with most of the set [x]′, or most of the set [x]′is in
onsistent with most of the set [x]. In the �rst 
ase, at least Ω(1/ |X|)-fra
tion of the edgesare violated, sin
e the modi�ed pro
edure 
hooses x with probability 1/ |X| and then 
hooses withprobability at least 1

2
a vertex z ∈ [x]′ that is in
onsistent with x.4



The 
ase where x is 
onsistent with most of [x]′ is more problemati
, sin
e the pro
edure is likelyto 
hoose z ∈ [x]′ that is 
onsistent with x. Not that su
h a 
ase is only possible if [x]′ 6= [x] (sin
e
x is in
onsistent with most of [x]), and therefore the set [x]′ is of size at least s = size (H) / |X|.Thus, there is a subset of [x] of size Ω (s) that is in
onsistent with most of [x], and therefore bythe mixing properties of the expander [x], about Ω (s) inner edges of [x] are violated. It followsthat the fra
tion of violated edges is at least

Ω (s)size (H ′)
=

Ω (s)

O (size (H))
= Ω

(

1

|X|

)as required. Below we give a rigorous proof of this argument.We des
ribe the modi�ed pro
edure for an arbitrary value of t (rather than just t = 0):1. Sele
t x ∈ X uniformly at random.2. Sele
t z ∈ [x]′ uniformly at random (re
all that [x]′ is an arbitrary subset of [x] of size
min {|[x]| , size (H) / |X|}).3. Take a t/2-step random walk in prep (G) starting from z, and let w be the endpoint of thewalk. A

ept if and only if A (w)

z
= A(x).We now use the pro
edure to de�ne the 
onsisten
y edges as before, and then reweight the edgesof H ′ su
h that the 
onsisten
y edges form half of the edges of H ′. It is not hard to see that thismodi�
ation solves the problem: Indeed, this 
onstru
tion requires pla
ing at most size (H) / |X|
onsisten
y edges on H ′ for every variable in X, whi
h sums up to only O (size (H)) = O (size (G))
onsisten
y edges.It remains to show that the intermediate assignment tester that uses the modi�ed randomizedpro
edure has reje
tion probability Ω

(

min
{√

t · ε, 1/t
}). In order to do it, we prove a resultanalogous to [D05, Lemma 8.2℄ and [D07, Lemma 9.2℄. The reason that we prove again su
h aresult is that [D05, D07℄ proves the result for her 
onstru
tion of H ′, while we prove it for themodi�ed version of this 
onstru
tion. The following lemma also di�ers from [D05, Lemma 8.2℄ and[D07, Lemma 9.2℄ in some (hidden) 
onstant fa
tors.Lemma 3. Assume that ε < 1/t and �x an assignment a : X → {0, 1}. Then

• If a ∈ SAT(Φ) then there exists b : VH → Σdt su
h that UNSATa∪b (H ′) = 0.
• If δ = dist (a, SAT (Φ)) > 0 then for every b : VH → Σdt it holds that UNSATa∪b (H ′) =

Ω(
√

t · ε) · δ. 5



Proof The �rst item of the lemma 
an be proved using the same proof as in [D05, D07℄. Turningto the se
ond item, assume that δ = dist (a, SAT (Φ)) > 0 and �x an assignment b : VH → Σdt to
H . We prove that UNSATa∪b (H ′) = Ω(

√
t · ε) · δ. As in [D05, D07℄, let b1 be the assignment toprep (G) de
oded from b using a plurality vote, and let b0 the assignment to G de
oded from b1using plurality vote. The 
ase where dist (b0|X , a) ≤ δ/2 
an be proved using the same proof as in[D05, D07℄, whi
h roughly says as follows: If dist (b0|X , a) ≤ δ/2, then using the triangle inequalityit 
an be shown that dist (b0|X , SAT (Φ)) ≥ δ/2, and therefore by the de�nition of G it holds thatUNSATb0 (G) ≥ ε · δ/2. Thus, by the properties of prepro
essing and graph powering proved in[D05, D07℄, it holds that UNSATb (H) = Ω(
√

t · ε) · δ. Finally, sin
e the edges of H form half ofthe edges of H ′, it follows that UNSATa∪b (H ′) = Ω(
√

t · ε) · δ, as required.We turn to handle the 
ase where dist (b0|X , a) > δ/2. Assume that dist (b0|X , a) > δ/2. Weprove that in su
h 
ase it holds that UNSATa∪b (H ′) = Ω(δ), whi
h implies the required result.Let b′0 be an assignment for G 
onstru
ted as follows: For every v ∈ V , the value b′0 (v) is de
ideda

ording to a plurality vote among the values assigned by b1 to the verti
es in [v]′, i.e., b′0 (v)is the value that maximizes the probability Pru∈[v] [b1(u) = b′0(v)]. Re
all that, in 
ontrast, b0 isde�ned by plurality vote in among [v]. We 
onsider two possible 
ases: dist (b0|X , b′0|X) ≤ δ/4 anddist (b0|X , b′0|X) > δ/4.
• Suppose that dist (b0|X , b′0|X) ≤ δ/4. We show that in su
h 
ase a∪ b violates at least δ/16 ofthe 
onsisten
y edges of H ′, by 
onsidering the a
tion of the modi�ed randomized pro
edurede�ned above. Using the triangle inequality, it holds that dist(b′0|X , a) > δ/4. It follows thatwith probability at least δ/4, the pro
edure 
hooses in Step 1 a vertex x ∈ [x] su
h that

b′0(x) 6= a(x). The value b′0(x) is de�ned to be the most popular value assigned by b1 tothe verti
es of [x]′, and therefore with probability at least 1
2
the pro
edure 
hooses in Step2 a vertex z ∈ [x] su
h that b1(z) 6= a(x). Similiarly, 
onditioned on b1(z) 6= a(x), withprobability at least 1

2
the pro
edure 
hooses in Step 3 a vertex w su
h that b(w)z 6= a(x).Thus, it follows that in this 
ase the randomized pro
edure reje
ts a ∪ b with probability atleast δ

4
· 1

2
· 1

2
= δ/16, and therefore UNSATa∪b (H ′) = Ω(δ), as required.

• Suppose that dist (b0|X , b′0|X) > δ/4. We show that in su
h 
ase UNSATb (H) = Ω(δ), dueto the violation of the equality 
onstraints of prep (G). Re
all that prep (G) is 
onstru
tedby repla
ing every vertex v of G with a set of 
opies [v] of size degG (v), pla
ing the edgesof an expander on [v] and asso
iating those edges with equality 
onstraints. Observe thatthe inequality b0(x) 6= b′0(x) 
an only hold for variables x ∈ X for whi
h [x]′ 6= [x], sin
e forother variables x the de�nitions of b0 (x) and b′0 (x) 
oin
ide. Thus, for every x ∈ X su
hthat b0(x) 6= b′0(x), it holds that ∣

∣[x]′
∣

∣ = size (H) / |X|, by de�nition of [x]′.Now, observe for every x ∈ X that satis�es b0(x) 6= b′0(x), it holds that Ω(
∣

∣[x]′
∣

∣) = Ω (size (H) / |X|)equality edges of [x] are violated by b1, due to the mixing properties of the expander thatwas used for the 
onstru
tion of prep (G). It follows that in this 
ase the number of edges of6



prep (G) that are violated by b1 is at least
(dist (b0|X , b′0|X) · |X|) · Ω

(size (H)

|X|

)

= Ω (δ · size (H))The latter equality implies that UNSATb (H) = Ω(δ), and therefore UNSATa∪b (H ′) = Ω (δ),as required.Referen
es[BGHSV04℄ E. Ben-Sasson, O. Goldrei
h, P. Harsham, M.Sudan and S. Vadhan, Robust PCPs ofProximity, Shorter PCPs and Appli
ations to Coding, SIAM Journal of Computing36(4), 2006, pages 889-974. Preliminary version in STOC 2004, pages 120-134.[D05℄ Irit Dinur, The PCP theorem by gap ampli�
ation, ECCC TR05-046.[D07℄ Irit Dinur, The PCP theorem by gap ampli�
ation, Journal of ACM 54(3), 2007.Preliminary version in STOC 2006, pp. 241-250.[DR06℄ I. Dinur and O. Reingold, Assignment testers: Towards 
ombinatorial proofs of thePCP theorem, SIAM Journal of Computing 36(4), 2006, pp. 975-1024. Preliminaryversion in FOCS 2004, pp. 155-164.
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