
A Small Gap in the Gap Ampli�ation of AssignmentTesters∗Oded Goldreih† Or Meir‡28th Otober 2007AbstratAn important extension of the proof of the PCP theorem by Irit Dinur (J. ACM 54(3),also ECCC TR05-046) is a gap ampli�ation theorem for Assignment Testers. Spei�ally,this theorem states that the rejetion probability of an Assignment Tester an be ampli�edby a onstant fator, at the expense of inreasing the output size of the Assignment Tester bya onstant fator. We point out a gap in the proof of this theorem, and show that this gapan be �lled.In this note we disuss a gap in one of the proofs in the work of Dinur [D05, D07℄, and show how itan be �lled. The gap refers to the ampli�ation of Assignment Testers, and the underlying issuedoes not our in the ase of standard PCPs. We refer both to the journal version of the work[D07℄ and to the version posted on ECCC [D05℄, sine both of them are ited in the literature.1 BakgroundWe begin by realling the de�nition of [D05, D07℄ of the notions of Assignment Testers, also knownas PCPs of Proximity (see also [BGHSV04, DR06℄):De�nition 1 ([D05, De�nition 3.1℄, [D07, De�nition 2.8℄). An Assignment Tester with alphabet Σ0and rejetion probability ε > 0 is a polynomial-time transformation P whose input is a iruit Φ
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over Boolean variables X, and whose output is a onstraint graph G = 〈(V, E) , Σ0, C〉 suh that
X ⊆ V (where the elements of X are viewed both as variables and as verties), and suh that thefollowing hold. Let V ′ = V \X, and let a : X → {0, 1} be an assignment, then

• (Completeness) If a ∈ SAT(Φ), there exists b : V ′ → Σ0 suh that UNSATa∪b (G) = 0.
• (Soundness) If a a /∈ SAT(Φ) then for all b : V ′ → Σ0, UNSATa∪b(G) ≥ ε · dist (a, SAT (Φ))1.The main tehnial result of [D05, D07℄ is a gap ampli�ation theorem for PCPs. The followingimportant extension of this theorem to Assignment Testers is also provided in [D05, D07℄:Theorem 2 ([D05, Theorem 8.1℄, [D07, Theorem 9.1℄). There exists t ∈ N suh that given anassignment-tester with onstant-size alphabet Σ and rejetion probability ε, one an onstrut anassignment-tester with the same alphabet and rejetion probability at least min {2ε, 1/t}, suh thatthe output size of the new redution is bounded by at most by a onstant fator times the outputsize of the given redution.The assignment tester of Theorem 2 is onstruted in two steps: First, an intermediate assign-ment tester with alphabet Σdt/2 and rejetion probability p = Ω

(

min
{√

t · ε, 1/t
}) for a onstant

d ∈ N and an arbitrary t ∈ N is onstruted. Then, a omposition theorem of Dinur and Reingold[DR06℄ is applied to the intermediate assignment tester in order to redue its alphabet's size, result-ing in an assignment tester with alphabet Σ and rejetion probability Ω(p) = Ω
(

min
{√

t · ε, 1/t
}).The number t is then �xed to some su�iently large natural number that yields the desired reje-tion probability.The subjet of this note is a gap in the �rst step of the foregoing onstrution, namely, theonstrution of the intermediate assignment tester. Spei�ally, we show that under ertain ir-umstenes, the intermediate assignment tester has output size whih is quadrati in the outputsize of the input assignment tester, failing to establish Theorem 2. Suh an inrease in the outputsize an not be a�orded by the appliations of Theorem 2 presented in [D05℄ and [D07℄. We om-ment that those irumstenes do not seem to our in the appliations of Theorem 2 presented inof [D05℄. In this note we show that the proof of Theorem 2 an be orreted so the theorem holdsunder any irumstenes.We reall the way in whih the intermediate assignment tester is onstruted: Let Φ be a iruitover Boolean variables X.1. First, the intermediate assignment tester runs the input assignment tester on input Φ, yield-ing a onstraint graph G = 〈(V, E) , Σ, C〉. For any vertex v ∈ V , let degG (v) denote thedegree of v in G.1Note that [D07℄ denotes the relative Hamming distane by rdist, and therefore the foregoing inequality isphrased as UNSATa∪b(G) ≥ ε · dist (a, SAT (Φ)). 2



2. Next, the intermediate assignment tester onstruts the onstraint graph H = (prep(G))t.We denote the set of verties of H by VH . Reall that prep(G) is the graph in whih everyvertex v of G is replaed by an expander graph [v] of degG v verties, whose verties represent�opies� of v and whose edges orrespond to equality onstraints. Note that the X * VH ,sine eah x ∈ X was replaed by [x].3. Finally, the intermediate assignment tester onstruts and outputs a onstraint graph H ′,whose set of verties is VH ∪X and whose edges onsist of the edges of H and of �onsistenyedges� that hek onsisteny between VH and X. The edges are reweighted suh that theonsisteny edges form half of the edges of H ′. For every v ∈ VH ∪ X, let degH′ (v) denotethe degree of v in H ′.2 The gapThe gap in the proof arises in the way the onsisteny edges between X and VH are de�ned.Spei�ally, we show that if the graph G is highly non-regular, the onstrution of H ′ may ontaintoo many onsisteny edges. For simpliity, let us assume that t = 0, but note that the argumentholds for any value of t. For t = 0, it holds that H = prep (G) and that VH =
⋃

v∈V
[v], where [v]is the set of verties that represent �opies� of the vertex v of G.The work of [D05, D07℄ de�ned the onsisteny edges based on a randomized testing proedure.This proedure is given orale aess to an assignment A : VH ∪ X → Σ to H ′, and is allowed tomake two queries to A. The proedure then deides whether to aept or rejet A.The onsisteny edges are de�ned using the proedure as follows: For every possible oin tosses

ω, let vω
1 and vω

2 denote the verties that the proedure queries on oin tosses ω. For every possibleoin tosses ω, a onsisteny edge is plaed between vω
1 and vω

2 , and this edge aepts an assignment
A : VH ∪ X → Σ if and only if the proedure aepts on oin tosses ω when given orale aess to
A. Under the assumption that t = 0, the aforementioned proedure is as follows:1. Selet x ∈ X uniformly at random.2. Selet z ∈ [x] uniformly at random (reall that [x] is the set of verties in H that are opiesof x).3. Aept if and only if A(x) = A(z).Note that for every x ∈ X, the number degH′ (x) is equal to the number of onsisteny edgesonneted to x using the foregoing proedure. The problem is now as follows:
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• Sine the proedure hooses x ∈ X uniformly at random (at Step 1), it follows that everyvariable x ∈ X must have the same degree in H ′. That is, for every two variables x, y ∈ X,it holds that degH′ (x) = degH′ (y).
• Sine the proedure hooses z ∈ [x] uniformly at random (at Step 2), every variable x ∈ Xmust satisfy degH′ (x) ≥ |[x]| = degG (x).
• Combining the previous two items, it follows that the degree of every variable x ∈ X isat least maxx∈X {degG (x)}, and therefore the number of onsisteny edges added by theforegoing proedure is at least |X| · maxx∈X {degG (x)}.Now, suppose that |X| = Ω (size (G)) and that there exists x0 ∈ X for whih degG (x0) =

Ω (size (G)) (observe that this an be the ase if G is highly non-regular). In suh a ase,the number of onsisteny edges that will be added in the onstrution of H ′ will be at least
|X| · degG (x0) = Ω

(size (G)2), and therefore we will have size (H ′) = Ω
(size (G)2), ontraditingthe laim of Theorem 2. Note that this problem does not our if G is a regular graph, sine insuh ase we have that

|X| · max
x∈X

{degG (x)} =
∑

x∈X

degG (x) ≤ size (G)and therefore we will have size (H ′) = O (size (G)), as required.3 Filling the gapWe turn to desribe how the gap an be �lled. In order to �ll the gap, we modify the foregoingrandomized proedure as follows. For every x ∈ [x], �x [x]′ to be an arbitrary subset of [x] of size
min {|[x]| , size (H) / |X|}. The modi�ed proedure is the same as the original proedure, exeptfor that in Step 2, it hooses z uniformly at random from the set [x]′ instead of [x]. Observethat this modi�ation indeed solves the problem, sine now the degree of every variable x ∈ X in
H ′ is bounded by size (H) / |X|, and therefore the total number of onsisteny edges is at mostsize (H) = O(size (G)).The reason that the modi�ed proedure works is roughly as follows: Consider some givenassignment to X. Ideally, we would like that if a variable x ∈ X is assigned a value that isinonsistent with most of [x], then this variable violates Ω(1/ |X|)-fration of the edges of H ′.Suppose now that some variable x ∈ X is assigned a value that is inonsistent with most of theverties in [x]. Then, either that x is inonsistent with most of the set [x]′, or most of the set [x]′is inonsistent with most of the set [x]. In the �rst ase, at least Ω(1/ |X|)-fration of the edgesare violated, sine the modi�ed proedure hooses x with probability 1/ |X| and then hooses withprobability at least 1

2
a vertex z ∈ [x]′ that is inonsistent with x.4



The ase where x is onsistent with most of [x]′ is more problemati, sine the proedure is likelyto hoose z ∈ [x]′ that is onsistent with x. Not that suh a ase is only possible if [x]′ 6= [x] (sine
x is inonsistent with most of [x]), and therefore the set [x]′ is of size at least s = size (H) / |X|.Thus, there is a subset of [x] of size Ω (s) that is inonsistent with most of [x], and therefore bythe mixing properties of the expander [x], about Ω (s) inner edges of [x] are violated. It followsthat the fration of violated edges is at least

Ω (s)size (H ′)
=

Ω (s)

O (size (H))
= Ω

(

1

|X|

)as required. Below we give a rigorous proof of this argument.We desribe the modi�ed proedure for an arbitrary value of t (rather than just t = 0):1. Selet x ∈ X uniformly at random.2. Selet z ∈ [x]′ uniformly at random (reall that [x]′ is an arbitrary subset of [x] of size
min {|[x]| , size (H) / |X|}).3. Take a t/2-step random walk in prep (G) starting from z, and let w be the endpoint of thewalk. Aept if and only if A (w)

z
= A(x).We now use the proedure to de�ne the onsisteny edges as before, and then reweight the edgesof H ′ suh that the onsisteny edges form half of the edges of H ′. It is not hard to see that thismodi�ation solves the problem: Indeed, this onstrution requires plaing at most size (H) / |X|onsisteny edges on H ′ for every variable in X, whih sums up to only O (size (H)) = O (size (G))onsisteny edges.It remains to show that the intermediate assignment tester that uses the modi�ed randomizedproedure has rejetion probability Ω

(

min
{√

t · ε, 1/t
}). In order to do it, we prove a resultanalogous to [D05, Lemma 8.2℄ and [D07, Lemma 9.2℄. The reason that we prove again suh aresult is that [D05, D07℄ proves the result for her onstrution of H ′, while we prove it for themodi�ed version of this onstrution. The following lemma also di�ers from [D05, Lemma 8.2℄ and[D07, Lemma 9.2℄ in some (hidden) onstant fators.Lemma 3. Assume that ε < 1/t and �x an assignment a : X → {0, 1}. Then

• If a ∈ SAT(Φ) then there exists b : VH → Σdt suh that UNSATa∪b (H ′) = 0.
• If δ = dist (a, SAT (Φ)) > 0 then for every b : VH → Σdt it holds that UNSATa∪b (H ′) =

Ω(
√

t · ε) · δ. 5



Proof The �rst item of the lemma an be proved using the same proof as in [D05, D07℄. Turningto the seond item, assume that δ = dist (a, SAT (Φ)) > 0 and �x an assignment b : VH → Σdt to
H . We prove that UNSATa∪b (H ′) = Ω(

√
t · ε) · δ. As in [D05, D07℄, let b1 be the assignment toprep (G) deoded from b using a plurality vote, and let b0 the assignment to G deoded from b1using plurality vote. The ase where dist (b0|X , a) ≤ δ/2 an be proved using the same proof as in[D05, D07℄, whih roughly says as follows: If dist (b0|X , a) ≤ δ/2, then using the triangle inequalityit an be shown that dist (b0|X , SAT (Φ)) ≥ δ/2, and therefore by the de�nition of G it holds thatUNSATb0 (G) ≥ ε · δ/2. Thus, by the properties of preproessing and graph powering proved in[D05, D07℄, it holds that UNSATb (H) = Ω(
√

t · ε) · δ. Finally, sine the edges of H form half ofthe edges of H ′, it follows that UNSATa∪b (H ′) = Ω(
√

t · ε) · δ, as required.We turn to handle the ase where dist (b0|X , a) > δ/2. Assume that dist (b0|X , a) > δ/2. Weprove that in suh ase it holds that UNSATa∪b (H ′) = Ω(δ), whih implies the required result.Let b′0 be an assignment for G onstruted as follows: For every v ∈ V , the value b′0 (v) is deidedaording to a plurality vote among the values assigned by b1 to the verties in [v]′, i.e., b′0 (v)is the value that maximizes the probability Pru∈[v] [b1(u) = b′0(v)]. Reall that, in ontrast, b0 isde�ned by plurality vote in among [v]. We onsider two possible ases: dist (b0|X , b′0|X) ≤ δ/4 anddist (b0|X , b′0|X) > δ/4.
• Suppose that dist (b0|X , b′0|X) ≤ δ/4. We show that in suh ase a∪ b violates at least δ/16 ofthe onsisteny edges of H ′, by onsidering the ation of the modi�ed randomized proedurede�ned above. Using the triangle inequality, it holds that dist(b′0|X , a) > δ/4. It follows thatwith probability at least δ/4, the proedure hooses in Step 1 a vertex x ∈ [x] suh that

b′0(x) 6= a(x). The value b′0(x) is de�ned to be the most popular value assigned by b1 tothe verties of [x]′, and therefore with probability at least 1
2
the proedure hooses in Step2 a vertex z ∈ [x] suh that b1(z) 6= a(x). Similiarly, onditioned on b1(z) 6= a(x), withprobability at least 1

2
the proedure hooses in Step 3 a vertex w suh that b(w)z 6= a(x).Thus, it follows that in this ase the randomized proedure rejets a ∪ b with probability atleast δ

4
· 1

2
· 1

2
= δ/16, and therefore UNSATa∪b (H ′) = Ω(δ), as required.

• Suppose that dist (b0|X , b′0|X) > δ/4. We show that in suh ase UNSATb (H) = Ω(δ), dueto the violation of the equality onstraints of prep (G). Reall that prep (G) is onstrutedby replaing every vertex v of G with a set of opies [v] of size degG (v), plaing the edgesof an expander on [v] and assoiating those edges with equality onstraints. Observe thatthe inequality b0(x) 6= b′0(x) an only hold for variables x ∈ X for whih [x]′ 6= [x], sine forother variables x the de�nitions of b0 (x) and b′0 (x) oinide. Thus, for every x ∈ X suhthat b0(x) 6= b′0(x), it holds that ∣

∣[x]′
∣

∣ = size (H) / |X|, by de�nition of [x]′.Now, observe for every x ∈ X that satis�es b0(x) 6= b′0(x), it holds that Ω(
∣

∣[x]′
∣

∣) = Ω (size (H) / |X|)equality edges of [x] are violated by b1, due to the mixing properties of the expander thatwas used for the onstrution of prep (G). It follows that in this ase the number of edges of6



prep (G) that are violated by b1 is at least
(dist (b0|X , b′0|X) · |X|) · Ω

(size (H)

|X|

)

= Ω (δ · size (H))The latter equality implies that UNSATb (H) = Ω(δ), and therefore UNSATa∪b (H ′) = Ω (δ),as required.Referenes[BGHSV04℄ E. Ben-Sasson, O. Goldreih, P. Harsham, M.Sudan and S. Vadhan, Robust PCPs ofProximity, Shorter PCPs and Appliations to Coding, SIAM Journal of Computing36(4), 2006, pages 889-974. Preliminary version in STOC 2004, pages 120-134.[D05℄ Irit Dinur, The PCP theorem by gap ampli�ation, ECCC TR05-046.[D07℄ Irit Dinur, The PCP theorem by gap ampli�ation, Journal of ACM 54(3), 2007.Preliminary version in STOC 2006, pp. 241-250.[DR06℄ I. Dinur and O. Reingold, Assignment testers: Towards ombinatorial proofs of thePCP theorem, SIAM Journal of Computing 36(4), 2006, pp. 975-1024. Preliminaryversion in FOCS 2004, pp. 155-164.

7


