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1 IntroductionInteractive proof systems were introduce by Goldwasser, Micali and Racko� [GMR89] in order tocapture the most general way in which one party can e�ciently verify claims made by another, morepowerful party.1 That is, interactive proof systems are two-party randomized protocols throughwhich a computationally unbounded prover can convince a probabilistic polynomial-time veri�er ofthe membership of a common input in a predetermined language. Thus, interactive proof systemsgeneralize and contain as a special case the traditional \NP-proof systems" (in which veri�cationis deterministic and \non-interactive").It is well-known that this generalization buys us a lot: The IP Characterization Theoremof Lund, Fortnow, Karlo�, Nisan and Shamir [LFKN92, Sha92] states that every language inPSPACE has an interactive proof system (and it is easy to see that only languages in PSPACEhave interactive proof systems).It is well-known that the strong expressive power of interactive proofs is largely due to thepresence of interaction. In particular, interactive proofs in which a single message is sent (like inNP-proofs) yield a complexity class (known asMA) that seems very close to NP. It is interestingto explore what happens between these extremes of unbounded interaction and no interaction. Thatis, what is the expressive power of interactive proofs that utilize a bounded, but nonzero, amount ofinteraction?1.1 Prior work regarding interactive proofs with bounded interactionInteractive Proofs with Few Messages. The earliest investigations of the above questionexamined the message complexity of interactive proofs, i.e., the number of messages exchanged.(Sometimes, we refer to rounds, which are a pair of veri�er-prover messages.) The Speedup Theoremof Babai and Moran [BM88] (together with [GS89]) shows that the number of messages in aninteractive proof can be always reduced by a constant factor (provided the number of messagesremains at least 2). On the other hand, there is a large gap between constant-round interactiveproofs and unrestricted interactive proofs. As mentioned above, all of PSPACE has a generalinteractive proof [LFKN92, Sha92]. In contrast, the class AM of problems with constant-roundinteractive proofs is believed to be relatively close toNP. Speci�cally, AM lies in the second level ofthe polynomial-time hierarchy [BM88], cannot contain coNP unless the polynomial-time hierarchycollapses [BHZ87], and actually equals NP under plausible circuit complexity assumptions [AK97,KvM99, MV99].Laconic Provers. A more re�ned investigation of the above question was initiated by Goldreichand H�astad [GH98], who gave bounds on the complexity of languages possessing interactive proofswith various restrictions on the number of bits of communication (and/or randomness) used. Oneof the restrictions they considered, and the main focus of our investigation, limits the number ofbits sent from the prover to the veri�er by some bound b. That is, what languages can be provenby \laconic" provers?Since the prover is trying to convey something to the veri�er, this seems to be the most inter-esting direction of communication. Moreover, for applications of interactive proofs (e.g., in cryp-1Arthur-Merlin games, introduced by Babai [Bab85], are a special type on interactive proofs in which the veri�eris restricted to send the outcome of each coin it tosses. Such proof systems are also called public coin, and are knownto be as expressive as general interactive proofs [GS89]. We warn that the latter assertion refers to the entire classbut not to re�ned complexity measures such as the total number of bits sent by the prover (considered below).2



tographic protocols), it models the common situation in which communication is more expensivein one direction (e.g., if the prover is a hand-held wireless device).On one hand, we know of interactive proofs for several \hard" problems (e.g., Quadratic Non-residuosity [GMR89], Graph Nonisomorphism [GMW91], and others [GK93, GG00, SV97]) inwhich the communication from the prover to the veri�er is severely bounded (in fact, to one bit).On the other hand, laconic provers exist only for problems in BPPNP (resp., BPP in case theproof system is of the public-coin type) [GH98]. Furthermore, it was conjectured thatNP-completeproblems cannot have general interactive proofs with laconic provers (but the results in [GH98] fallshort of supporting this conjecture). In this work, we provide strong support for this conjecture.1.2 New results regarding interactive proofs with bounded interactionOur main focus is on laconic provers; that is, on interactive proofs in which the total number ofbits sent by the prover is bounded.Laconic Provers. Consider interactive proofs in which the prover sends at most b = b(n) bits tothe veri�er on inputs of length n. Goldreich and H�astad [GH98, Thm. 4] placed such languages inBPTIMENP(T ), where T = poly(n) � 2poly(b), which clearly implies nothing for languages in NP.In contrast, we show that the complements of such languages have constant-round interactive proofsof complexity T (i.e., the veri�er's computation time and the total communication is bounded byT ). In particular, NP-complete problems cannot have interactive proofs in which the prover sendspoly-logarithmically many bits to the veri�er, unless coNP is in the quasi-polynomial analogueof AM. In fact, assuming NP has constant-round interactive proofs with logarithmic prover-to-veri�er communication we conclude coNP � AM. As mentioned above, this is highly unlikely.We obtain stronger results in two special cases:1. We show that if a language has an interactive proof of perfect completeness (i.e., zero errorprobability on yes instances) in which the prover sends at most b(n) bits, then it is incoNTIME(T ), where T (n) = 2b(n) � poly(n). Thus, unless NP = coNP, NP-completelanguages cannot have interactive proof systems of perfect completeness in which the proversends logarithmically many bits.2. We show that if a language has an interactive proof in which the prover sends a single bit (withsome restrictions on the error probabilities), then it has a statistical zero-knowledge interactiveproof; that is, is in the class SZK. This is a stronger conclusion than our main result becauseSZK � AM\coAM, as shown by Fortnow [For89] and Aiello and H�astad [AH91]. Recallingthat Sahai and Vadhan [SV97] showed that any language in SZK has an interactive proofin which the prover sends a single bit, we obtain a surprising equivalence between these twoclasses.Interactive Proofs with Few Messages. We obtain one (apparently) new result regardingmessage complexity. A question that is left open by the results mentioned earlier is what happens\in between" constant rounds and polynomially many rounds. Phrased di�erently, can the SpeedupTheorem of Babai and Moran be improved to show that m(n)-message interactive proofs can beemulated by (and hence are no more powerful than) m0(n)-message interactive proofs for somem0 = o(m)? By combining careful parameterizations of [LFKN92, Sha92] and [BM88], we observethat such an improvement speedup is unlikely. More precisely, for every nice function m, we show3



that there is a language which has an m(n)-message interactive proof but not an o(m(n))-messageone, provided that #SAT is not contained in the sub-exponential analogue of coAM.1.3 Additional related workWe note that Goldreich and H�astad [GH98] have presented signi�cantly stronger results regardinginteractive proofs with laconic provers when further restrictions are imposed on the interactiveproof. In particular, they obtain an upper bound of BPTIME(T ) (rather than BPTIMENP(T )),with T = 2poly(b) � poly(n), for languages possessing either of the following kinds of interactiveproofs: (1) public-coin proofs in which the prover sends at most b bits, (2) proofs in which thecommunication in both directions is bounded by b.Multi-prover interactive proofs and PCP. The expressive power of multi-prover interactiveproofs (MIP's) and probabilistically checkable proofs (PCP's) with low communication has beenthe focus of extensive research. Much of this research is motivated by the importance of thecommunication parameter in the applications of MIP/PCP to inapproximability. In particular,Bellare, Goldreich, and Sudan [BGS98] give negative results about the expressive power of \laconic"PCP's and MIP's. Since one-query PCP's are equivalent to interactive proofs in which the proversends a single message, our results provide bounds on the former.Knowledge complexity of interactive proofs. Our work is also related to work on knowledgecomplexity. Knowledge complexity, proposed by [GMR89], aims to measure how much \knowl-edge" is leaked from the prover to the veri�er in an interactive proof. Several measures of knowl-edge complexity were proposed by Goldreich and Petrank [GP99], and series of works providedupper bounds on the complexity of languages having interactive proofs with low knowledge com-plexity (see [GOP98, PT96] for results regarding the main notion of knowledge complexity and[GP99, ABV95, SV97] for results regarding alternative notions). These results are related to, butincomparable to ours.For example, Petrank and Tardos [PT96] showed that languages having knowledge complexityk = O(log n) are contained in AM \ coAM. While it is true that the knowledge complexity ofan interactive proof is bounded by the amount of prover-to-veri�er communication, their resultdoes not yield anything interesting for laconic interactive proofs. The reason is that their resultonly applies to interactive proofs with error probabilities signi�cantly smaller than 2�k, and it iseasy to see that interactive proofs with prover-to-veri�er communication k = O(log n) and errorprobability noticeably smaller than 2�k only capture BPP (and hence are uninteresting). Incontrast, our results apply even for constant error probabilities.Sahai and Vadhan [SV97] (improving [GP99]) showed that languages with logarithmic knowl-edge complexity in the \hint sense" collapse to SZK, and their result applies even if the errorprobabilities are constant. However, this is also incomparable to ours, because the \hint sense"is the one measure of knowledge complexity which is not bounded by the prover-to-veri�er com-munication. (Indeed, the \hint sense" formulation was dismissed as a satisfactory de�nition ofknowledge complexity by Goldreich and Petrank [GP99] because of the above and related issues.Still knowledge complexity in the \hint sense" yields an interesting extension of zero-knowledge.)Computationally-sound interactive proofs. Finally, it is important to note that the situa-tion is dramatically di�erent for argument systems [BCC88] (also known as computationally sound4



proofs). These are like interactive proofs, but the soundness condition is restricted to polynomial-time provers. Kilian [Kil92] showed that NP has laconic argument systems if strong collision-resistant hash functions exist. Speci�cally, under a strong enough (but still plausible) assumption,NP has public-coin arguments in which the veri�er's randomness and the communication in bothdirections is polylogarithmic. Combined with [GH98], this provides a strong separation betweenthe e�ciency of arguments versus interactive proofs for NP. Our results extend this separation tothe case that only the prover-to-veri�er communication is counted (and the interactive proof is notrequired to be public coin).1.4 Organization and techniquesIn Section 2 we recall some relevant de�nitions, notations and results of prior work. Using thesenotations, in Section 3, we state our results and compare them to prior work. Directions for furtherresearch are suggested in Section 9.In Sections 4 and 5, we study laconic provers who send only one message (or even a single bit).The main technical contribution of these sections is a sequence of reductions among various formsof proof systems with the end result being a statistical zero-knowledge proof system.In Section 6 we consider laconic provers of perfect completeness. We reduce the analysis of suchproof systems to a classical result in game theory.The main result of this paper is proven in Section 7. The main technical contribution is a proofsystem for proving a (quite tight) lower bound on the sum of exponentially many (e.g., 2n) quanities,where each quantity is easily veri�able. The basic idea is to cluster these quantities according totheir approximate magnitude, randomly select a few clusters (with probability proportional to thecluster's \weight") and sample each selected cluster via an adequate protocol. We stress that thenovelty of this proof system is in establishing quite tight lower bounds (e.g., tight up to a factor of1� o(1)) rather than lower bounds that may be o� by a much larger factor (e.g., a factor of n).In Section 8, we present a message complexity hierarcy (based on a reasonable conjecture re-garding#SAT). The result follows immediately from re�ned versions of known results; speci�cally,the interactive proof for #SAT of Shamir [Sha92] (following [LFKN92]) and the Speedup Theoremof Babai and Moran [BM88].2 PreliminariesWe assume that the reader is familiar with the basic concepts underlying interactive proofs (andpublic-coin interactive proofs); see, e.g., [Sip97, Gol99, Vad00]. Throughout, we work with inter-active proofs for promise problems rather than languages. A promise problem � = (�Y ;�N ) isa pair of disjoint sets of strings, corresponding to yes and no instances, respectively. In otherwords, a promise problem is simply a decision problem in which some inputs are excluded. Thede�nition of interactive proofs is extended to promise problems in the natural way: we require thatwhen the input is a yes instance, the prover convinces the veri�er to accept with high probability(completeness); and when the input is a no instance, the veri�er accepts with low probability nomatter what strategy the prover follows (soundness). Working with promise problems rather thanlanguages only makes our results stronger (except for one direction of Theorem 4.5).2.1 NotationWe denote by IP(b;m) (resp., AM(b;m)) the class of problems having interactive proofs (resp.,public-coin interactive proofs) in which the prover sends a total of at most b bits, and the total5



number of messages exchanged (in both directions) is at most m. Note that b and m are integerfunctions of the common input length, denoted n. When b is not polynomial in n, it will beunderstood that we talk of a generalization in which the veri�er is allowed time polynomial in b andn (rather than just in n). Unless speci�ed di�erently, we refer to proof systems with completenessprobability 2=3 and soundness probability 1=3.We denote IP(b) = IP(b; 2b); that is, making only the trivial bound on the number of messagesexchanged. We denote by IP+ the analogue of IP when the proof system has perfect completeness(i.e., completeness probability 1). The class of problems with constant-round interactive proofs isdenoted AMdef=AM(poly(n); 2) = IP(poly(n); O(1)). (The second equality is by Thms 2.3 and 2.4below.) When we wish to specify the completeness probability c = c(n) and soundness probabilitys = s(n) we will use subscripts: IPc;s and AMc;s. Unless otherwise speci�ed, we always assumethat c(n) > s(n) + 1=poly(n).2.2 Interactive proofs with bounded interactionUsing the above notations, we recall some results that are relevant to our study.Our starting point. The main results of Goldreich and H�astad, are the starting point (andpoint of reference) for our work.Theorem 2.1 ([GH98]) AM(b;m) � BPTIME(poly(2b;mm; n))Theorem 2.2 ([GH98]) IP(b;m) � BPTIME(poly(2b;mm; n))NPTheorem 2.1 is stated merely for sake of perspective. Our results relate to and improve uponTheorem 2.2 (which relates to general interactive proofs rather than to public-coin ones). We stressthat the transformation from general interactive proofs to public-coin ones (see Theorem 2.4) doesnot preserve the total number of bits sent by the prover. In fact, very laconic provers (i.e., in whichthe prover sends a single bit) are known for several problems that are widely believed not to bein BPP. (Examples of such problems include Quadratic Nonresiduosity [GMR89], GraphNonisomorphism [GMW91], and the Discrete Logarithm Problem [GK93].)Results used. We will use some (parameterized) extensions of known results. Except for thesecond inclusion in Theorem 2.3 (which is justi�ed in Appendix B), all the extensions (or parame-terized versions) are straightforward from the corresponding original work.Theorem 2.3 (Speedup Theorem [BM88])AM(b;m) � AM(b2 � poly(m); dm=2e) � AM((b �m)O(m); 2) :Theorem 2.4 (AM emulation of IP [GS89]) IP(b;m) � AM(poly(b; n);m+ 1).Theorem 2.5 ([BHZ87]) If coNP � AM(b; 2), then �2 � �2(poly(n; b)). In particular, ifcoNP � AM, then the polynomial-time hierarchy collapses to PH = �2 = �2.Above and throughout the paper, �i(t(n)) (resp., �i(t(n))) denotes the class of problems acceptedby t(n)-time alternating Turing machines with i alternations beginning with an existential (resp.,universal) quanti�er. Thus, �i def= �i(poly(n)) and �i def= �i(poly(n)) comprise the i'th level of thepolynomial-time hierarchy. 6



2.3 Statistical Zero Knowledge (SZK)We will also consider SZK, the class of problems possessing statistical zero-knowledge interactiveproofs. Rather than reviewing the de�nition of SZK here, we will use a recent characterizationof SZK in terms of complete problems. For distributions X and Y , let �(X;Y ) denote theirstatistical di�erence (or variation distance, i.e., �(X;Y ) = maxS jPr [X 2 S] � Pr [Y 2 S] j). Weconsider distributions speci�ed by circuits which sample from them. More precisely, a circuit withm input gates and n output gates can be viewed as a sampling algorithm for the distribution onf0; 1gn induced by evaluating the circuit on m random input bits. Statistical Difference isthe promise problem SD = (SDY ;SDN ), whereSDY = f(X;Y ) : �(X;Y ) � 2=3gSDN = f(X;Y ) : �(X;Y ) � 1=3g ;where X and Y are probability distributions speci�ed by circuits which sample from them. Moregenerally, for any 1 � � > � � 0, we will consider variants SD�;�, where the thresholds of 2=3 and1=3 are replaced with � and � respectively.Theorem 2.6 (Complete Problem for SZK [SV97]) For any constants 1 > �2 > � > 0, theproblem SD�;� is complete for SZK. That is, SD�;� is in SZK, and every problem in SZK isreducible to SD�;� via a polynomial-time (many-one) reduction.Thus, instead of placing certain problems in the class SZK (resp., showing that SZK has cer-tain interactive proofs), we may reduce these problems to SD (resp., show that SD has such aninteractive proof).2Other results used. The following results about SZK are also relevant to us:Theorem 2.7 ([For89, AH91]) SZK � AM \ coAM.Theorem 2.8 ([Oka00]) SZK is closed under complement.Theorem 2.9 ([SV97]) SZK � IP1�2�n;1=2(1).2.4 Probabilistically Checkable Proofs (PCP)As stated in the introduction, some of our results can be viewed in terms of probabilistically check-able proofs. Loosely speaking, a probabilistically checkable proof system consists of a probabilisticpolynomial-time veri�er having access to an oracle which represents a proof in redundant form.Typically, the veri�er accesses only few of the oracle bits, and these bit positions are determinedby the outcome of the veri�er's coin tosses. For completeness and soundness bounds c and s, itis required that the veri�er accepts any yes instance x with probability at least c(jxj) (i.e., whengiven access to an adequate oracle), whereas it accepts any no instance x with probability at mosts(jxj) no matter which oracle is used. Whenever this holds and if the veri�er uses at most r(jxj)random bits and makes at most q(jxj) boolean queries, we say that the problem is in PCPc;s(r; q).For logarithmically bounded q, we will also say that the problem has amortized query complexityqlog2(c=s) , and denote the class of problems having amortized query complexity q (and randomnesscomplexity r) by PCP(r; q). (For further discussion of these notions, see [BGS98].) It will beinteresting to contrast our results with the following known results:2Here we use the fact that SZK is closed under many-one reductions [SV97].7



Theorem 2.10 (Sec. 10.2 in [BGS98])1. PCPc;s(poly(n); 1) � AM, for any functions c; s.2. PCP(O(log n); 1� �) � P, for every constant � > 0.We also consider free-bit complexity of PCP systems. Loosely speaking, here one distinguishesqueries for which the veri�er compares the answer against a value determined by previously obtainedanswers, from queries in which the veri�er only records the answer for future usage. The latterqueries are called free (as the \acceptable answers" to them are not determined). By FPCPc;s(r; f)we denote the class of problems having a PCPc;s(r; q)-system in which at most f � q queries arefree.Theorem 2.11 (Sec. 10.3 in [BGS98]) FPCP1;s(poly(n); 0) � coNP, for any function s < 1.3 Formal Statement of ResultsWe improve over Theorem 2.2, and address most of the open problems suggested in [GH98, Sec. 3].Our main results are listed below.3.1 On provers that send only one bitFor one bit of prover-to-veri�er communication, we obtain a collapse to SZK.Theorem 3.1 For every pair of constants c; s such that 1 > c2 > s > c=2 > 0, IPc;s(1) = SZK.Viewed in terms of PCP systems, this says that PCPc;s(poly(n); 1) = SZK, for any 1 > c2 >s > c=2 > 0. For this range of c and s, the latter improves over the bound provided by Part 1 ofTheorem 2.10. Combining Theorems 3.1 and 2.8, we get:Corollary 3.2 For every c; s as in Thm. 3.1, IPc;s(1) is closed under complement.Theorem 3.1 can be generalized to non-constant completeness and soundness as follows.Theorem 3.3 For every constant � > 0, and every pair of functions c; s such that c(n)2+� > s(n),IPc;s(1) � SZK. In fact, this holds even for non-constant � = 
(1= log n).3.2 On provers that send only one messageWe are sometimes able to reduce proof systems with a laconic prover that sends a single messageto the above case (of provers that send only one bit).Theorem 3.4 For every b = b(n) = O(log n), c = c(n), and s = s(n) satisfying s < 2�b=2,IPc;s(b; 2) � IPc;s0(1) where s0 = 1� exp ��O �s2b=(1� s22b)��.Applying Theorem 3.3, this gives:Corollary 3.5 IPc;s(b; 2) � SZK, provided the following conditions hold:1. b = O(log n) and s < 2�b=2. 8



2. s2b=(1� s22b) = O(log n).3. c > 1� exp ���s2b=(1� s22b)�, where � is a universal constant.(Condition 2 guarantees that 1�s0 = exp(�O(s2b=(1�s22b))) is at least 1=poly(n), and Condition 3guarantees that c2 > s0.) In particular, the above conditions are satis�ed in the following two cases:1. b � O(log n), s = O(2�b) and c = 1� o(1).2. b � 2 log2 log2 n, s = (1� 
(1)) � 2�b=2, and c � 1� exp(�!(2b=2)).Viewed in terms of PCP systems, the above results refer to a generalization of PCP in which non-boolean queries are allowed. Speci�cally, the above results refer to a PCP system in which a singlequery is made and is answered by a b-bit long string. The amortized query complexity of such ascheme may be viewed as blog2(c=s) , and so the setting in Item 2 asserts that 1-query PCP with poly-nomial randomness, constant (or even double-logarithmic) answer size, perfect completeness, andamortized query complexity below 2 is in SZK. This is slightly related to Part 2 of Theorem 2.10that refers to amortized query complexity below 1 but in a di�erent PCP model (which, one hand,allows many Boolean queries and arbitrary completeness bound, but on the other hand allows onlylogarithmic randomness).3.3 On provers that send a bounded number of bitsFor more bits of communication, we �rst obtain the following result for interactive proofs withperfect completeness (denoted by IP+):Theorem 3.6 IP+(b) � coNTIME(2b � poly(n)). In particular, IP+(O(log n)) � coNP.In the general case (i.e., with imperfect completeness), we prove:Theorem 3.7 IP(b;m) � coAM(2b � poly(mm; n); O(m)). In particular,IP(O(log n);m) � coAM(poly(n); O(m)), for m = O(log n= log log n),The above theorems provide �rst evidence that NP-complete problems cannot have interactiveproof systems in which the prover sends very few bits. Further evidence toward this claim isobtained by applying Theorems 2.3 and 2.5:Corollary 3.8 IP(b;m) � coAM(poly(2b;mm; n)m; 2). In particular, IP(O(log n); O(1)) � coAMand IP(polylog n) � cogAM.Corollary 3.9 NP 6� IP(O(log n); O(1)) unless the polynomial-time hierarchy collapses (to �2 =�2). NP 6� IP(polylog n) unless �2 � e�2.Above, cogAM and e�2 denote the quasipolynomial-time (2polylog n) analogues of coAM and �2.3.4 On provers that send a bounded number of messagesFinally, we mention our result on message complexity. (A more precise statement is contained inSection 8.)Theorem 3.10 Let m(n) � n= log n be any \nice" growing function and suppose that #SAT =2AM(2o(n); 2). Then AM(poly(n);m(n)) 6= AM(poly(n); o(m(n)).Note that, by Theorem 2.4, it is irrelevant whether we use IP or AM in this theorem.9



4 On Extremely Laconic Provers (Saying Only One Bit)In this section, we prove Theorem 3.1. The proof is based on the following lemma, along withprevious results.Lemma 4.1 For every two constants c; s, every problem in IPc;s(1) reduces to SDc;s.Proof: Let (P; V ) be an interactive proof for some problem so that the prover sends a single bitduring the entire interaction. Thus, on input x and internal coin tosses r, the veri�er �rst sendsa message, denoted y = Vx(r), the prover answers with a bit, denoted � 2 f0; 1g, and the veri�erdecides whether to accept or reject by evaluating the predicate Vx(r; �) 2 f0; 1g.A special case | unique (acceptable) answers. To demonstrate the main idea, we consider�rst the natural case in which for every pair (x; r) there exists exactly one � such that Vx(r; �) = 1.(Note that otherwise, the interaction on input x and veri�er's internal coin tosses r is redundant,because the veri�er's �nal decision is una�ected by it.) For this special case (which we refer to asunique answers), we will prove the following:Claim 4.2 If a problem has an IPc;s(1) proof system with unique answers, then it reduces toSD2c�1;2s�1.Note that the hypothesis can be satis�ed only if s � 1=2.Proof: Let �x(r) denote the unique � satisfying Vx(r; �) = 1. The prover's ability to convincethe veri�er is related to the amount of information regarding �x(r) that is revealed by Vx(r). Forexample, if for some x and random r, the value of �x(r) is determined by Vx(r) then the provercan convince the veri�er to accept x with probability 1 (by replying with �x(r)). If, on the otherhand, for some x and random r, the value of �x(r) is statistically independent of Vx(r) (andunbiased), then there is no way for the prover to convince the veri�er to accept x with probabilityhigher than 1/2. This suggests the reduction x 7! (C1x; C2x), where C1x(r) def= (Vx(r); �x(r)) andC2x(r) def= (Vx(r); �x(r)), where b denotes the complement of a bit b.Now we relate the statistical di�erence between the distributions sampled by C1x and C2x tothe maximum acceptance probability of the veri�er. Since the �rst components of C1x and C2x aredistributed identically, their statistical di�erence is exactly the average over the �rst componentVx(r) of the statistical di�erence between the second components conditioned on Vx(r). That is,�(C1x; C2x) = Ey Vx [� (�xjy; �xjy)] ;where �xjy denotes the distribution of �x(r) when r is uniformly distributed among fr0 : Vx(r0) = yg.For any y and b 2 f0; 1g, let qbjy denote the probability that �xjy = b. Then, for any �xed y,� (�xjy; �xjy) = jq1jy � q0jyj = 2qy � 1, where qy def= maxb2f0;1gfqbjyg � 12 . So, we have:�(C1x; C2x) = Ey Vx [2qy � 1] :On the other hand, the optimal prover strategy in (P; V ) is: upon receiving y, respond with b thatmaximizes qbjy. When the prover follows this strategy, we havePr[V accepts x] = Ey Vx [qy] :10



Putting the last two equations together, we conclude that �(C1x; C2x) = 2 � Pr[V accepts x] � 1.3Thus if the proof system has completeness and soundness error bounds c and s, respectively, thenthe reduction maps instances to pairs having distance bounds 2c�1 and 2s�1, respectively.4 Thisestablishes Claim 4.2.The general case. We now proceed to deal with the general case in which there may exist pairs(x; r) so that either both �'s or none of them satisfy Vx(r; �) = 1. We do so by reducing this generalcase to the special case.Claim 4.3 If a problem is in IPc;s(1), then it has an IP(1+c)=2;(1+s)=2(1) proof system with uniqueanswers.Clearly, Lemma 4.1 follows by combining Claims 4.2 and 4.3.Proof: Let (P; V ) be a general IPc;s proof system. Consider the following modi�ed veri�erstrategy, denoted V 0.1. Generate coin tosses r for the original veri�er V .2. Depending on the number j of possible prover responses � for which Vx(r; �) = 1, proceed asfollows:Case j = 2: Send the prover a special \respond with 1" message, and accept if and only ifthe prover responds with 1.Case j = 1: Randomly do one of the following (each with probability 1=2):� Send the prover y = Vx(r) and accept if and only if the prover responds with theunique � such that Vx(r; �) = 1.� Send the prover a special \respond with 1" message, and accept if and only if theprover responds with 1.Case j = 0: Choose a random bit �. Send the prover a special \guess my bit" message,and accept if and only if the prover responds with �.For all possible choices of the coin tosses of V 0, there is exactly one prover response that will makeV 0 accept. Hence V 0 satis�es the conditions of the special case. To establish Claim 4.3, we thatif an optimal prover makes V accept with probability �, then an optimal prover makes V 0 acceptwith probability (1+�)=2. To see this, observe that an optimal prover strategy P 0 for V 0 consists ofalways responding \1" to the special messages, and otherwise responding as an optimal prover P forV . It can be veri�ed by inspection that, conditioned on each value of j, if P makes V accept withprobability �j , then P 0 makes V 0 accept with probability (1 + �j)=2. (That is, �j is the probabilitythat V accepts when interacting with an optimal prover, conditioned on V selecting a random rfor which there are j accepting answers (i.e., j = jf� : Vx(r; �) = 1gj). Indeed, �0 = 0, �2 = 1, and�1 � 1=2.) 23Recall that under the hypothesis of the special case, for every x the prover may convince the veri�er to accept xwith probability at least 1=2 (and so such a non-trivial proof system must have soundness at least 1=2).4Note that this relationship is reversed by the natural IP(1) system for SD�;� in which the veri�er selects atrandom a single sample from one of the two distributions and asks the prover to guess which of the distributionsthis sample came from. If the distributions are at distance � then the prover succeeds with probability 12 + �2 . Thusapplying this proof system to SD2c�1;2s�1 we obtain completeness and soundness bounds c and s, respectively.11



Combining Claims 4.2 and 4.3, the lemma (i.e., Lemma 4.1) follows. Speci�cally, by Claim 4.3, anyproblem in IPc;s(1) has a unique-answer (1-bit) interactive proof with completeness and soundnessbounds c0 = (1 + c)=2 and s0 = (1 + s)=2, respectively. By Claim 4.2, the latter interactive proofsystem implies that the problem is reducible to SD2c0�1;2s0�1 = SDc;s (since 2c0�1 = (1+c)�1 = cand 2s0 � 1 = (1 + s)� 1 = s).Proof of Theorem 3.1: Let c and s satisfy the conditions in Theorem 3.1. The inclusion ofIPc;s(1) in SZK follows by combining Lemma 4.1 and Theorem 2.6: That is, IPc;s(1) reduces toSDc;s, which (for 1 > c2 > s > 0) resides in SZK.The opposite inclusion (i.e., of SZK in IPc;s(1)) follows from Theorem 2.9. Speci�cally, recall thatc < 1 and s > c=2, and let � > 0 be such that c + � � 1 and s � (c=2) + �. For any problemin SZK, consider a veri�er that executes the IP1�2�n;1=2(1) proof system of Theorem 2.9 withprobability c+� � 1 and otherwise rejects without any interaction. This yields a proof system withcompleteness (c+ �) � (1� 2�n) > c (for su�ciently large n), and soundness (c+ �) � (1=2) < s.To generalize the above to non-constant completeness and soundness and prove Theorem 3.3,we use the following transformation.Lemma 4.4 (Polarization Lemma [SV97]) There is an algorithm that takes as input a quin-tuple (X;Y; �; �; k), where X and Y are distributions speci�ed by circuits and �2 > �, and outputsa pair of distributions (X 0; Y 0) such that:�(X;Y ) � � ) �(X 0; Y 0) � 1� 2�k�(X;Y ) � � ) �(X 0; Y 0) � 2�kThe running time of the algorithm is poly(jXj; jY j; 1=(� � �); exp(1=�); k), where � is de�ned by�2+� = �.Proof of Theorem 3.3: Let c; s be as in theorem and consider any problem � in IPc;s(1). Theproof of Lemma 4.1 shows how from any instance x of �, we can construct in polynomial timea pair of distributions (X;Y ) whose statistical di�erence is at least c(jxj) (resp., at most s(jxj))when x is a yes instance (resp., no instance). Applying the Polarization Lemma to (X;Y ) with� = c(jxj), � = s(jxj), and k = 2, gives a reduction from � to SD3=4;1=4, which is in SZK. Thisreduction is computable in polynomial time because 1=(� � �) = 1=(c � s) � poly(jxj) (by thede�nition of IP) and exp(1=�) � poly(jxj) since � = 
(1= log jxj) (by hypothesis).On the limitations regarding c and s. The c2 > s constraint in Theorem 3.1 is due to theanalogous constraint in Theorem 2.6 (which in turn stems from the limitation in Lemma 4.4).Recall that, for every 1 > � > � > 0, every problem in SZK reduces to SD�;� (cf. [SV97]).However, is not known whether SD�;� is in SZK for every 1 > � > � > 0 (rather than for every1 > �2 > � > 0 as in Theorem 2.6). In fact, the latter is an intriguing open problem, and weestablish its equivalence to a question regarding IPc;s(1) (for arbitrary 1 > c > s > c=2 > 0).Theorem 4.5 The following hypotheses are equivalent.1. For all �; � such that 1 > � > � > 0, SD�;� is in SZK.2. For all constants c; s such that 1 > c > s > c=2 > 0, IPc;s(1) � SZK.12



Recall that SZK � IPc;s(1), for every c; s such that 1 > c > s > c=2 > 0. (Note that this wasactually established in the above proof of Theorem 3.1, since the actual conditions used were c < 1and s > c=2.)Proof: The direction (1))(2) is proven in the same way as Theorem 3.1, except that we nowuse Hypothesis (1) instead of Theorem 2.6: Speci�cally, IPc;s(1) reduces to SDc;s (for every c; s byLemma 4.1), and Hypothesis (1) asserts that the latter resides in SZK.The direction (2))(1) is proven by recalling that SD�;� is in IP(1+�)=2;(1+�)=2(1) (see [SV97] andFootnote 4), which by Hypothesis (2) is contained in SZK (since (1+�)=2 > (1+�)=2 > (1+�)=4holds for any 1 > � > � > 0).Finally, we remark that the condition s > c=2 in Theorem 3.1 (or, more generally, for SZK �IPc;s(1)) seems necessary.Proposition 4.6 (cf., [Vad99, Prop 4.1.2]) For every c; s such that s < c=2, IPc;s(1) = BPP.5 On Laconic Provers That Send One MessageIn this section, we prove Theorem 3.4, which reduces 2-message proof systems with a laconic proverto proof systems in which the prover sends only one bit. Let (P; V ) be an IPc;s(b; 2) proof system,with s � 2�b=2. As in Section 4, we may assume that on input x and internal coin tosses r, theveri�er �rst sends a message y = Vx(r), the prover answers with a string z 2 f0; 1gb, and the veri�erdecides whether to accept or reject by evaluating the predicate Vx(r; z) 2 f0; 1g. We obtain a newproof system (P 0; V 0) by randomly \hashing" the prover's responses to one bit.Construction 5.1 (Modi�ed Proof System (P 0; V 0)). On input x, the parties behave as follows:1. V 0: Choose r uniformly, and let y = Vx(r). Choose a random function h : f0; 1gb ! f0; 1g.Send y and h to P 0.2. P 0: Let z = P (x; y), and � = h(z). Send � to V 0.3. V 0: Accept if there exists a w 2 f0; 1gb such that h(w) = � and Vx(r; w) = 1.Clearly, the prover-to-veri�er communication of (P 0; V 0) is one is one bit, and the veri�er's programcan be implemented poly(n) �2b. Also, it is clear that the modi�ed prover can convince the modi�edveri�er to accept any input with probability that is lower bounded by the corresponding probabilityin the original proof system. Our focus is thus on analyzing the soundness of the modi�ed proofsystem.The basic intuition is that the impossibility of determining a good prover answer for the veri�er'smessage y in (P; V ), means that it is hard to predict the hash-value of such a good answer (undera random hash function). This intuition is very clear in case the original system has uniqueacceptable answers, but it holds also in general. Speci�cally, consider a typical message y, and tworandom ri's that may lead to it (i.e., y = Vx(ri)). In case of unique acceptable answers (since xis a no-instance), it is likely that the good answer for r1 di�ers from the good answer for r2, andfurthermore (with probability 1=2) these di�erent good answers have di�erent hash-values undera random hash function. This contributes to the rejection probability of V 0(x). In the generalcase, when x is a no-instance, it is unlikely that the set of good answers for r1 has a non-empty13



intersection with the set of good answer for r2 (or else P could make V accept). Furthermore, withpositive probability (which is exponential in the cardinality of these sets), a random hash functionmaps the two sets to di�erent values, which contributes to the rejection probability of V 0(x). (Also,the soundness of V implies that the expected cardinality of these sets is at most s2b � 2b=2.) Theactual analysis follows, where we �rst handle the (easy) special case of unique acceptable answers.5.1 Acceptance probabilities | unique answersEven more than in Section 4, it is illuminating to �rst analyze the natural special case of uniqueanswers. That is, we assume that for every pair (x; r) there exists exactly one z such that Vx(r; z) =1.Claim 5.2 If (P; V ) has unique answers, then (P 0; V 0) has completeness c0 = (1+ c)=2 and sound-ness s0 = (1 +ps)=2. Moreover, (P 0; V 0) also has unique answers.Note that c0 � c and 1� s0 � 1�s4 On the other hand, s0 < c0 if and only if s < c2.Proof: We start by establishing the completeness bound, letting x be an arbitrary yes-instance.Note that whenever z succeeds in making V accept, it is the case that b = h(z) succeeds in makingV 0 accept. (That is, if V accepts z on coins r then V 0 accepts b = h(z) on coins (r; h), for anyh.) On the other hand, if V does not accept z on coins r, then V 0 accepts b = h(z) on coins (r; h)with probability 1=2 for a uniformly chosen h. Speci�cally, V 0 accepts b = h(z) on coins (r; h)if the unique w 6= z that is accepted by V on coins r satis�es h(w) = h(z). Thus, V 0 acceptsP 0(V 0x(r; h)) def= h(P (Vx(r))) with probabilityPrr[Vx(r; P (Vx(r))) = 1] + 12 � Prr[Vx(r; P (Vx(r))) 6= 1] = 12 � (1 + Prr[Vx(r; P (Vx(r))) = 1])� 1 + c2 :This establishes the claimed completeness bound. (We comment that uniqueness of the acceptableanswer was not important above; what we actually need and use is that for every r there exists aw such that Vx(r; w) = 1.)Establishing the soundness bound is (as usual) more involved. We �x an arbitrary no-instancex (which we will hereafter drop from the notation). For a V message y and a P response z, let qzjydenote the probability that V accepts the prover response z given that V 's message is y. That is,qzjy def= jfr : V (r) = y and V (r; z) = 1gjjfr : V (r) = ygj :The optimal prover strategy (for convincing V ) is to respond with z that maximizes the aboveprobability, and this strategy succeeds with probability qy = maxzfqzjyg. By the soundness (ofV ), Ey[qy] � s, where here and below the distribution of y is as induced by Vx (when applied to arandom r).Similarly, for a V 0 message (y; h) and a P 0 response � 2 f0; 1g, let q0�jy;h denote the probabilitythat V 0 accepts the prover response � given that V 0 sent (y; h). Using the unique answers hypothesis,observe that the prover response 0 makes V 0 accept i� the response 1 makes V 0 reject. Thus,q00jy;h = 1� q01jy;h. It follows that the optimal strategy (for V 0) succeeds with probabilityq0y;h = maxfq00jy;h; q01jy;hg = 12 + ����q00jy;h � 12 ���� :14



We will now relate s0 = Ey;h[q0y;h] to Ey[qy] � s. Using the unique answers hypothesis, note thatq00jy;h =Pz2h�1(0) qzjy =Pz qzjy � �z(h), where �z(h) is a random variable (de�ned over the spaceof h's) indicating the event h(z) = 0. Over the choice of the totally random function h, the �z'sare independent random variables, each with expectation 1=2 and variance 1=4. Thus,Eh hq00jy;hi = Eh "Xz qzjy � �z(h)# = Xz qzjy � 12 = 12and Varh hq00jy;hi = Varh "Xz qzjy � �z(h)# = Xz q2zjy � 14 � maxzfqzjyg4 �Xz qzjy = qy4 (1)Combining Eq. (1) with the fact that E(X)2 � E(X2) for every random variable X, we getEy;h �����q00jy;h � 12 �����2 � Ey;h"����q00jy;h � 12 ����2# = Ey �Varh hq00jy;hi� � Ey hqy4 i � s4 :This implies that s0 = Ey;h[q0y;h] = 12 + Ey;h �����q00jy;h � 12 ����� � 1 +ps2 :and the claim follows.Remark 5.3 When s > 1=2, the soundness bound above can be improved to (1+p1� 2s(1� s))=2.This is obtained by replacing Eq. (1) with Varh[q00jy;h] = 14Pz q2zjy � (q2y+(1�qy)2)=4, and obtainings0 = Ey;h[q0y;h] = 12 + Ey[Varh[q00jy;h]]1=2.Remark 5.4 The above analysis only requires the hash function h to be pairwise independence, soV 0 can restrict its choice of h to any pairwise independent family (e.g., inner product modulo 2 witha random vector). This can eliminate the exponential dependence on b in the running-time of V 0if the original protocol has the property that the unique accepting prover response can be computedfrom V 's coin tosses r in polynomial time.Combining Claims 5.2 and 4.2, we getCorollary 5.5 For constants c; s, if a problem has an IPc;s(O(log n); 2) proof system with uniqueanswers, then it reduces to SDc;ps. Hence, if c4 > s then this problem is in SZK.By Remark 5.4, the above extends also to IPc;s(poly(n); 2) proof system with unique answers,provided that the unique accepting prover response can be computed from V 's coin tosses r inpolynomial time.Proof: By Claim 5.2, for c0 = (1+c)=2 and s0 = (1+ps)=2, the problem has an IPc0;s0(1; 2) proofsystem with unique answers. By Claim 4.2, any such problem reduces to SD2c0�1;2s0�1. Recallingthat (2c0�1; 2s0�1) = (c;ps), the �rst claim follows. The second claim follows by Theorem 2.6.Remark 5.6 We note that the unique answers property has a \zero-knowledge" 
avor. Speci�cally,consider a simulator that executes the veri�er strategy and uses the unique accepting answer asthe simulated prover message. The statistical di�erence between this simulation and the (honest)veri�er's view is at most the completeness error 1 � c. If the completeness error is negligible,membership in SZK follows immediately. Thus, what is interesting about Corollary 5.5 is that itapplies even when the completeness error is constant.15



The PCP perspective. Observe that IP(b; 2) systems with unique answers correspond to PCPsystems with zero free-bit complexity in which a single (non-Boolean) query is made and is answeredby an b-bit string. (Furthermore, the de�nition of free-bit complexity requires polynomial-timereconstruction of the acceptable answers.) Viewed in these terms, Corollary 5.5 asserts that, forc4 > s, PCPc;s schemes with zero free-bit complexity in which a single (non-Boolean) query ismade (and is answered by an logarithmically-long bit string) exist only for problems in SZK. Thisis slightly related to Theorem 2.11 that refers to arbitrary PCP1;s schemes with free-bit complexityzero (which are placed in coNP). Note that the hypotheses of the two results are incomparable:here we allow arbitrary c > s1=4 but require a single (non-Boolean) query, whereas Theorem 2.11requires c = 1 but allows an arbitrary number of (Boolean) queries.Generalized Statistical Di�erence. We consider the following many-distribution version ofStatistical Difference. For distributions X1; :::;Xt, de�neD(X1; :::;Xt) def= 1t �Xx maxfPr[X1 = x];Pr[X2 = x]; :::;Pr[Xt] = xg 2 �1t ; 1� (2)For t = 2, the function D is related to the statistical di�erence between the two distributions:�(X;Y ) = 2 �D(X;Y ) � 1 (i.e., D(X;Y ) = (1 + �(X;Y ))=2). Furthermore, D(X1; :::;Xt) is theacceptance probability of the veri�er in the following interactive proof system (executed on commoninput X1; :::;Xt):1. The veri�er selects uniformly i 2 [t], generates a sample x from Xi (i.e., x Xi), and sendsx to the prover.2. The prover tries to guess i; that is, the optimal prover responds with j such that Pr[Xj =x] = maxfPr[X1 = x];Pr[X2 = x]; :::;Pr[Xt] = xg.3. The veri�er accepts if and only if i = j.Note that the above (IP(log2 t; 2)) interactive proof system has unique answers. Thus applyingCorollary 5.5 it follows that, for �4 > �, the problem of distinguishing between the case thatD(X1; :::;Xt) � � from the case that D(X1; :::;Xt) � � is in SZK. That is, for �4 > �, thepromise problem GSD�;� = (GSD�Y ;GSD�N ) is in SZK, whereGSD�Y = f(X1; :::;Xt) : D(X1; :::;Xt) � �gGSD�N = f(X1; :::;Xt) : D(X1; :::;Xt) � �g5.2 Acceptance probabilities | general caseThe following lemma establishes the bounds claimed in Theorem 3.4.Lemma 5.7 (P 0; V 0) has completeness c0 = c and soundness s0 = 1 � exp(�O(s2b=(1 � s22b))),provided s < 2�b=2.Proof: The completeness bound is established similarly to the way this was done in the uniqueanswer case. It still holds (here) that whenever z = P (x; y) succeeds in making V accept (whichhappens probability at least c), the answer � = h(z) succeeds in making V 0 accept. However, sincewe are not guaranteed here that for every r there exists a w that is acceptable by Vx (i.e, that16



Vx(r; w) = 1), we cannot bene�t from the cases in which V does not accept z (but does accept w).Thus, we get a completeness bound of c (rather than (c+ 1)=2).For the analysis of the soundness bound, we adopt some of the notation used in the uniqueanswers case: that is, qzjy, qy = maxzfqzjyg, q0�jy;h and q0y;h = maxfq00jy;h; q01jy;hg are as in Claim 5.2.Unlike the unique answers case, it is no longer true that q0y;h = 1=2 + jq00jy;h � 1=2j, because it maybe the case that both (or neither) of the answers 0 and 1 make V 0 accept. Instead, let Ry denotethe set of coin tosses (of V ) leading to message y, and let Ar � f0; 1gb denote the set of P responsesmaking V accept on coin tosses r. (For a set S � f0; 1gb, we let h(S) denote the image of S underh; i.e., h(S) def= f� : 9s 2 S s.t. h(s) = �g.) Then, for any � 2 f0; 1g (and any y and h),q0�jy;h = Prr2Ry [� 2 h(Ar)] ;since V 0 accepts � if there exists an element of h�1(�) that would make V accept (i.e., is in Ry).Observe that for any �xed y and hmaxfq00jy;h; q01jy;hg = max� Prr2Ry [0 2 h(Ar)] ; Prr2Ry [1 2 h(Ar)]�� Prr0;r12Ry [0 2 h(Ar0) or 1 2 h(Ar1)]= 1� Prr0;r12Ry [0 =2 h(Ar0) and 1 =2 h(Ar1)]Thus, we can bound the soundness of (P 0; V 0) as follows:s0 = Ey;h[q0y;h]= Ey;h hmaxfq00jy;h; q01jy;hgi� 1� Pry;h;r0;r12Ry [0 =2 h(Ar0) and 1 =2 h(Ar1)]Since h is a total function (from f0; 1gb to f0; 1g), the sets Ar0 and Ar1 must be disjoint in orderfor both 0 =2 h(Ar0) and 1 =2 h(Ar1) (since otherwise h(Ar0 \Ar1) � f0; 1g is non-empty and mustcontain either 0 or 1). Furthermore, if Ar0 and Ar1 are disjoint, then the probability (over thechoice of h) that both 0 =2 h(Ar0) and 1 =2 h(Ar1) occurs is exactly 2�jAr0 j � 2�jAr1 j = 2�(jAr0 j+jAr1 j).Thus, for any bound B, we gets0 � 1� Pry;h;r0;r12Ry [0 =2 h(Ar0) and 1 =2 h(Ar1)] (3)= 1� 2bXi=0 Pry;r0;r12Ry [Ar0 \Ar1 = ; and jAr0 j+ jAr1 j = i] � 2�i� 1� Pry;r0;r12Ry [Ar0 \Ar1 = ; and jAr0 j+ jAr1 j � B] � 2�B (4)Thus, we now lower bound the probability, that Ar0 and Ar1 are disjoint and not too large.Claim 5.8 Let � = 1� (s22b)1=3 > 0. ThenPry;r0;r12Ry �Ar0 \Ar1 = ; and jAr0 j+ jAr1 j � 4s2b�2 � � �22 :17



Observe that s < 2�b=2 guarantees that � > 0. Combining Claim 5.8 with the bound (on s0)provided by Eq. (4), implies that the soundness error of (P 0; V 0) is at most1���22 � � 2� 4s2b�2 (5)Using 1� (s22b)1=3 = �(1 � s22b), we get (�2=2) � 2� 4s2b�2 � 2�O(s2b=(1�s22b)2), and the lemma (i.e.,Lemma 5.7) follows.We now proceed with the proof of Claim 5.8. For a �xed y and any z, Prr2Ry [z 2 Ar] = qzjy � qy(by de�nition), and Prr0;r12Ry [z 2 Ar0 \Ar1 ] = q2zjy � q2y. Thus,Prr0;r1[Ar0 \Ar1 6= ;] = Prr0;r1[jAr0 \Ar1 j � 1]� Er0;r1[jAr0 \Ar1 j]= Xz Prr0;r12Ry[z 2 Ar0 \Ar1 ]� 2b � q2y :Since Ey[qy] � s, we have Pry[qy � s=(1� �)] � �. Thus,Pry;r0;r12Ry[Ar0 \Ar1 = ;] � Pry �qy � s1� �� � Pry;r0;r12Ry �Ar0 \Ar1 = ; ����qy � s1� � �� � � 1�� s1� ��2 � 2b!= �2where the last equality merely uses � = 1 � (s22b)1=3. Turning to the complement of the secondevent, we see that Pry;r0;r12Ry �jAr0 j+ jAr1 j � 4s2b�2 �� �24s2b � Ey;r0;r12Ry [jAr0 j+ jAr1 j]= �24s2b � Xz2f0;1gb� Pry;r02Ry[z 2 Ar0 ] + Pry;r12Ry[z 2 Ar1 ]�� �24s2b � 2b � 2s = �22 :where the last inequality is due to the soundness of V (which implies, as a very restricted case, thatany �xed prover strategy z is accepted with probability at most s). This establishes Claim 5.8, andthereby Lemma 5.7.Proof of Theorem 3.4: For b = O(log n), given an IPc;s(b; 2) proof system (P; V ), we modify itinto an IPc0;s0(1; 2) proof system (P 0; V 0) as in Construction 5.1. By Lemma 5.7 (using s < 2�b=2),we have c0 = c and s0 = 1� exp(�O(s2b=(1� s22b))) as required by Theorem 3.4.18



6 On Laconic Provers with Perfect CompletenessIn this section, we prove Theorem 3.6.Theorem 3.6 (restated): If a problem � has an interactive proof system with perfect complete-ness in which the prover-to-veri�er communication is at most b(�) bits then � 2 coNTIME(2b(n) �poly(n)).Proof: We take a slightly unusual look at the interactive proof system for �, viewing it as a\progressively �nite game" between two players P � and V �. Player P � corresponds to the usualprover strategy and its aim is to make the original veri�er accept the common input. Player V � isa \cheating veri�er" and its aim is to produce an interaction that looks legal and still makes theoriginal veri�er reject the common input.To make this precise, let b = b(n) be the bound on the prover-to-veri�er communication in theoriginal interactive proof (on inputs of length n), and let m = m(n) be the number of messagesexchanged. Without loss of generality, we may assume that V sends all its coin tosses in the lastmessage. A transcript is a sequence of m strings, corresponding to (possible) messages exchangedbetween P and V . We call a transcript t consistent (for x) if every veri�er message in t is themessage V would have sent given input x, the previous messages in t, and the coin tosses speci�edby the last message in t. We call a consistent t rejecting if V would reject at the end of such aninteraction.Now, the game between P �x and V �x has the same structure as the interaction between P andV on input x: a total of m messages are exchanged and P �x is allowed to send at most b bits. Thegame between P �x and V �x yields a transcript t. We say that V �x wins if t is consistent and rejecting,and that P �x wins otherwise. We stress that V �x need not emulate the original veri�er nor is itnecessarily implemented in probabilistic polynomial time.The above constitutes a \perfect information �nite game in extensive form" (also known as a\progressively �nite game") and Zermelo's Theorem (cf., [Tuc95, Sec. 10.2]) says that exactly oneof the two players has a winning strategy | that is, a (deterministic) strategy that will guaranteeits victory no matter how the other player acts.Using the perfect completeness condition, we infer that if the common input x is a yes instance(of �) then there exists a winning strategy for P �x . (This is because the optimal prover for theoriginal interactive proof wins whenever V �x plays in a manner consistent with some sequence ofcoin tosses for the original veri�er, and it wins by de�nition if the V �x plays inconsistently withany such sequence.) On the other hand, by the soundness condition, if the common input is ano instance then there exists no winning strategy for P �x . (This is because in this case no proverstrategy can convince the original veri�er with probability 1.) By Zermelo's Theorem, it followsthat whenever the common input is a no instance (of �) there exists a winning strategy for V �x .Thus, a proof that x is a no instance (of �) consists of a winning strategy for V �x . Such strategyis a function mapping partial transcripts of P �x messages to the next V �x message. Thus, such astrategy is fully speci�ed by a function from [bi=0f0; 1gi to f0; 1gpoly(n), and has description lengthpoly(n) � 2b(n)+1. To verify that such a function constitutes a winning strategy for V �x , one merelytries all possible deterministic strategies for P �x (i.e., all possible b(n)-bit long strings). The theoremfollows.Remark 6.1 As pointed out by an anonymous referee, Theorem 3.6 can be proven without ref-erence to game theory, however we feel that the game thoeretic proof is more insightful. The al-ternative proof is based on considering the quanti�ed boolean formula that represents the (perfect19



completeness) acceptance criterion of the original proof system. Next, one observes that negatingthis formula yields a sequance of polynomially-many Boolean quanti�ers with at most b universalquanti�ers. Thus, a proof that x is a no-instance consists of an adequate sequence of 2b assign-ments to all existentially-quanti�ed variables, where the simplest way of formulating the notion ofan adequate sequence is via a b-move game (or a tree of depth b).7 On General Laconic ProversIn this section, we prove Theorem 3.7. That is, for any problem that has a laconic interactive proof,we will construct an interactive proof of few rounds for its complement.ConventionsLet (P; V ) be an interactive proof for � so that, on common input x, the prover sends a total ofat most b(jxj) bits, and the total number of messages exchanged (in both directions) is at mostm(jxj). To simplify the following exposition, we denote by n = n(jxj) the number of coins tossedby V on common input x (so n = poly(jxj)). We adopt several of the conventions from Section 6.Speci�cally, we assume, without loss of generality, that the last message is by V and it consistsof V 's entire sequence of coins. Recall that a transcript t of a possible (P; V ) interaction is calledconsistent (for x) if every veri�er message in t is the message V would have sent given input x,the previous messages in t, and the coin tosses speci�ed by the last message in t. More generally,we say that a transcript pre�x � is consistent if there exists a sequence of veri�er coin tosses thatwould give rise to all the veri�er messages contained in �. We call a full transcript t rejecting if itis consistent and V would reject at the end of such an interaction.For simplicity of exposition, we assume that the length of the next prover message is determinedby the transcipt of the interaction so far.Without loss of generality, we may assume that P an optimal prover with respect to V ; thatis, for every x and every pre�x � of a possible transcript (even with suboptimal prover moves), Presponds so as to maximize the acceptance probability of V .The Rejecting SetsOur aim is to devise an O(m)-message interactive proof system for � (i.e., the complement of �).Following the ideas of Goldwasser and Sipser [GS89], for any possible pre�x of a (P; V )-interaction,we consider the set of veri�er coins that are consistent with this pre�x and make V reject wheninteracting with P . For yes instances of � (i.e., no instances of �), these sets are typically large,whereas for no instances of � (i.e., yes instances of �) they are typically small.We devise an interactive proof for proving that such sets are large. As we shall see below, weneed to show that the sets corresponding to all (i.e., 2b) possible prover moves are large. This is incontrast to [GS89], where it was only necessary to consider sets corresponding to the optimal provermoves. This is because the aim in [GS89] was to prove (via a public-coin protocol) membership in� itself, and so the sets considered there corresponded to veri�er coins that are consistent with agiven pre�x and make V accept when interacting with P .Speci�cally, for any �xed common input x and any possible pre�x � of an (P; V )-interaction,let rejx(�) denote the set of veri�er coins that are consistent with � and make V reject wheninteracting with P . Note that these sets rejx(�) depend on the prover strategy P ; there may beseveral di�erent optimal prover strategies, and each may cause the veri�er to accept on di�erent20



coin tosses. However, it is important to note that the size of rejx(�) is the same no matter whichoptimal prover strategy P is used.We now discuss some basic properties of these \rejecting sets." Recall that, when interactingwith the optimal prover P , the veri�er V rejects a yes instance (resp., no instance) of � withprobability at most 13 (resp., at least 23 ). Letting � denote the empty pre�x, it follows that,depending on x's membership in �, we have:yes instance of �: jrejx(�)j � 23 � 2n (6)no instance of �: jrejx(�)j � 13 � 2n (7)For any possible prover move � following a pre�x � it holds that jrejx(�)j � jrejx(��)j withequality holding for at least one � (i.e., the � chosen by an optimal P to be its next move). Thus,prover move: jrejx(�)j = min� fjrejx(��)jg (8)For the next veri�er move following a pre�x � it holds that rejx(�) = [�rejx(��). Thus,veri�er move: jrejx(�)j =X� jrejx(��)j: (9)7.1 Motivation to the protocolFixing a common input x (supposedly a yes instance of �), our goal is to prove that jrejx(�)j �23 � 2n. This is done recursively following the round structure of (P; V ). Suppose that we currentlyneed to prove that jrejx(�)j � N . We consider three cases.Case 1: � is a full transcript. In this case, it is easy to generate the set rejx(�) (which is eitheran empty or a singleton set) and to compare its size to N .(Recall that by our conventions, the last veri�er message consists of the outcomes of allthe coins the veri�er has tossed during the interaction. Thus, the latter sequence is easilyextracted from �, and one can easily determine whether or not � is rejecting.)Case 2: the next message is by P . Speci�cally, suppose that the next message is (a provermessage) of length `. Then, by Equation (8), we just prove recursively that jrejx(��)j � Nfor every � 2 f0; 1g`.This means branching in parallel to 2` recursive proofs, yielding a total branching factor of2b (in all rounds). Indeed, here is where the bound on the total number of bits sent by P isused.Case 3: the next message is by V . In case the next message is a veri�er message, by Equa-tion (9) we need to prove thatP� jrejx(��)j � N . Note that the number of possible veri�ermessages may be huge (i.e., exponential in n), and thus we cannot a�ord to examine eachterm in the sum. Instead, we let the prover supply a succinct representation of a sequencefN�g such that P� N� � N and jrejx(��)j � N� for every �. This succinct representationshould allow the new veri�er to verify that both conditions hold. The veri�cation will useparallel executions of a constant-round sampling protocol as well as poly(m) parallel recursivecalls (i.e., to verify jrejx(��)j � N� for poly(m)-many �'s).This means branching in parallel to poly(m) recursive proofs, yielding a total branching factorof poly(m)m=2 = mO(m) (in all rounds). 21



Further details regarding the implementation of Case 3 are indeed in place. As a warm-up, supposethat all non-empty rejx(��)'s are of the same size. In such a case, the prover can state this size,denoted N 0, and prove that there are at least N=N 0 non-empty rejx(��)'s each having size N 0.Intuitively, the prover can prove this claim by employing a (standard) set lower-bound protocol.Such a protocol has constant number of rounds, and produces a � for which the prover has torecursively prove that jrejx(��)j � N 0. Unfortunately, things are not that simple, because it isnot necessarily the case that all non-empty rejx(��)'s are of the same size. Consequently, a morere�ned approach seems to be necessary.The way Goldwasser and Sipser [GS89] dealt with this di�culty (i.e., that not all the sets arethe same size) was to group the sets into clusters according to their approximate size; say, theith cluster contains all sets of size between 2i and 2i+1. Since there are only n such clusters, atleast one of them must account for at least a 1=n fraction of the total sum, and we can recursivelyproceed with just that one cluster using the approach above. Clearly, such an approach incurs atleast a factor n loss of accuracy with each round. To compensate for this loss, [GS89] �rst reducedthe error of the proof system dramatically (to increase the gap in the set sizes that is guaranteedbetween yes and no instances). However, we cannot a�ord such an error reduction because itblows up the prover-to-veri�er communication.Wishing to avoid the corresponding cost, we do not apply any error reduction on the interactiveproof (P; V ), but rather use it directly. Instead of focusing on one cluster (i.e., the \heaviest"one), we simultaneously consider all clusters. Towards the recursive calls, we select a sample ofpoly(m)-many clusters (according to their weights) and generate poly(m)-many elements in eachselected cluster. Loosely speaking, in the recursive calls, we shall verify that each of these elementsis indeed in the corresponding cluster.To summarize, the succinct representation used in implementing Case 3 consists of a sequenceof sizes of the corresponding clusters, where we use a more re�ne clustering than [GS89]; that is,the ith cluster contains all sets of size between (1 + �)i and (1 + �)i+1, where � = �(1=m). In otherwords, we are clustering all �j's having jrejx(��j)j � (1 + �)i into the ith cluster, and the proveronly provides the number of such �j 's. Letting ci be the claimed size of the ith cluster, we need toverify thatPi ci �(1+�)i � N , and check recursively that these claimed sizes are essentially correct.The latter check is performed by selecting a weighted sample of clusters and sampling elementsfrom each selected cluster.The fact that we select a sample of clusters rather than working on all of them allows thecomplexity of our protocol to relate to poly(m)m rather than to nm. (Recall that n = poly(jxj),whereas m may be very small (e.g., m = log log jxj).)The analysis of our protocol relies on a delicate combinatorial lemma regarding the clusteringof sets by their size (Lemma 7.2 below), rather than on much simpler versions that are quitestraightforward.7.2 The actual protocolRecall that the size of jrejx(�)j depends on whether x is a yes instance or a no instance of �, andthat the ratio between these two cases is at least a factor of 2. Let � def= 21=(m+2) = 1 + 1=O(m).We start the protocol with the aim to prove that jrejx(�)j � 23 � 2n (which indeed holds in casex 2 �yes), whereas in case x 2 �no the size of rejx(�) is o� by a factor of �m+1. We hope thatafter i = 1; :::;m iterations, the relevant sets in case x 2 �no will be o� by a factor of �m+1�i.The discrepancy will be easily detectable at the end of the last iteration. (In the description thatfollows, � = (1 + �)2.) 22



Our protocol utilizes a constant-round (public-coin) protocol for sampling in arbitrary sets.The protocol is invoked so to enable a probabilistic polynomial-time player (called the veri�er) tosample in a set, which is implicitly de�ned via some common input, and this player will be assistedby a computationally unbounded player (called the prover) that the �rst player does not trust. The�rst player will be given an integer, denoted N , that is supposed to be a valid lower-bound on thesize of the set, denoted S. The names given above to the two parties �t the standard conventionsregarding interactive proofs as well as �t our application (in which the high-level veri�er will playthe role of the veri�er in the sampling protocol). The sampling protocol satis�es the following twoproperties:1. If both players are honest, agree to sample a set S � f0; 1gn, and the veri�er has a validlower bound on jSj, then, with overwhelmingly high probability, the veri�er will output anelement of S.2. If both players agree to sample a set S � f0; 1gn, and the (honest) veri�er has a (possiblyinvalid) lower boundN on jSj (i.e., possibly jSj < N), then no matter how the prover behaves,with probability at least 1� jSjN � 1poly(n) , the veri�er will not output an element of S.(In fact, for any S0 � S, the probability that the output is in S0 is at most jS0jN + 1poly(n) .)Protocols satisfying the above properties are implicit in the literature (cf., [BM88, GS89, AH91]).For sake of self-containment, we present such a protocol in Appendix A.Construction 7.1 (main and recursive protocols):Input: x (supposedly in �yes).Let b = b(jxj), m = m(jxj) and n = n(jxj) be as above.Let � = 1=�(m) and t = n= log(1 + �) = �(n=�).Main protocol: Invoke the recursive protocol (P ; V ) on input (x; �; 23 � 2n). The veri�er acceptsif and only if V returns true.(Motivation: If x 2 �yes then jrejx(�)j � 23 � 2n).Recursive protocol (P ; V ): On input (x; �;N), depending on �, perform one of the following:Case of full transcript: In this case, � is a full transcript of (P; V ). If � is a consistenttranscript that makes V reject and N = 1 then the veri�er V returns true. Otherwise,V returns false.5Case of next move by P : In this case, the next message w.r.t. � is a message by P . Letus denote the length of this message by `. Here the parties invoke 2` parallel executionsof (P ; V ), with inputs (x; ��;N), corresponding to all possible � 2 f0; 1g`. The veri�erV returns true if and only if all these executions return true.Case of next move by V : In this case, the next message w.r.t. � is a veri�er message.1. Prover's initial message: The prover P computes s0; :::; st such that si = jCij, wherethe message class Ci is de�ned as follows:Ci def= f� : jrejx(��)j � (1 + �)ig (10)5Note that the higher level never invokes the protocol with N < 1.23



The prover P sends s0; :::; st to V .(Motivation: Ci � Ci+1 and thus si should be greater or equal to si+1. Similarly,Pti=0 jCi nCi+1j � (1+ �)i+1 > jrejx(�)j, and thusPti=0(si� si+1) � (1+ �)i+1 shouldbe greater than N .)2. Veri�er's initial checks: If si < si+1, for some i, then the veri�er V aborts withoutput false. If Pti=0(si � si+1) � (1 + �)i+1 � N then the veri�er V aborts withoutput false.3. Veri�er's selection of classes: The veri�er randomly selects a sequence of w =poly(m) indices i0; i1; :::; iw�1 such that i0 = 0 and for each j � 1 the index ijis selected independently according to the following distribution I that assigns i 2 [t]probability proportional to (1 + �)isi. That is,Pr[I = i] = (1 + �)isiPtk=1(1 + �)ksk (11)4. Sampling in (the selected) classes: In parallel, for all j = 0; 1; :::; w � 1, the partiesrun a sampling protocol to obtain w samples (supposedly) in Cij , where the veri�erenters sij as input to this sampling protocol. All invocations are with deviationparameter �=16 and probability parameter 2�b2 (see Appendix A). Denote the w2samples obtained by �j;k's, where �j;k is the kth sample generated supposedly in Cij .(Motivation: If �j;k is indeed in Cij then jrejx(��j;k)j � (1 + �)ij .)5. Recursive calls: The parties invoke W def= w2 parallel executions of (P ; V ), withcorresponding inputs (x; ��j;k; (1 + �)ij ). The veri�er V returns true if and only ifall these executions return true.Since the body of the recursive protocol (i.e., without the recursive calls) can be implementedby a constant-round (public-coin) protocol, our main protocol has O(m) messages (and is of thepublic-coin type). The total number of bottom-level recursive calls invoked by the main protocol is2b �Wm = 2b �mO(m), and so the overall complexity is 2b �mO(m) �poly(n;m; 1=�) = 2b �mO(m) �poly(n).Motivation to the analysis: Assuming that the sampling protocol works perfectly (in caseboth parties are honest), it follows that x 2 �yes is always accepted by V . (Unfortunately, thesampling protocol does carry a small probability of error, and so the actual analysis of this caseis also postponed to the next subsection.) On the other hand, if x 2 �no and P wishes not tofail V 's initial checks (of Step 2), then P must provide many over-estimated si's in each recursivecall in which it is asked to prove an over-estimated size bound. Furthermore, the probability massof these over-estimated si's (w.r.t. the distribution in Eq. (11)) is at least 1=O(m), and so someover-estimated si will be selected w.h.p. (in Step 3). (The di�erent treatment of s0 is due to sometechnicality.) For each such over-estimated si, taking a large sample is likely to yield a � for which(1 + �)i is also an over-estimation. Thus, an over-estimation for some claim at some recursive levelis propagated to next recursive level. Needless to say, the above is merely a very rough sketch; theactual analysis is provided in the next subsection.7.3 AnalysisThe following lemma plays a key role in our analysis.24



Lemma 7.2 Let S � f0; 1gn be a nonempty set, � > 0, t = n= log(1 + �), and fS�g be a partitionof S. For every integer i, de�ne6 Ci def= f� : jS�j � (1 + �)ig (12)1. There exist s0 � s1 � � � � � st � st+1 = 0 such that si � jCij for all i = 0; :::; t andtXi=0(si � si+1) � (1 + �)i+1 > jSj:Furthermore, setting si = jCij, for all i's, will do.2. Let �0 > 0 and ` 2 N. Suppose that s0 � s1 � � � � � st � st+1 = 0 and thattXi=0(si � si+1) � (1 + �)i+1 > (1 + �)`+1(1� �0)2 � jSj (13)Let I be the probability distribution on [t] which assigns i 2 [t] probability mass proportionalto (1 + �)isi (as in Equation 11). Then either jC�`j < (1� �0) � s0 orPri I �jCi�`j < (1� �0) � si� > �0:We apply this Lemma with S = rejx(�) and S� = rejx(��). Part 1 implies that if jrejx(�)j � Nand the prover sets the si's as directed by the protocol (i.e., to equal the jCij's de�ned in Eq. (10))then the veri�er does not abort in Step 2. Furthermore, with overwhelmingly high probability, therecursive calls will be invoked with valid lower-bound claims (i.e., jrejx(��j;k)j � (1+�)ij ). On theother hand, Part 2 asserts that if (1+�)`(1��0)2 � jrejx(�)j � N and the veri�er does not abort in Step 2,then in Step 3 the veri�er is likely to select an index in I def= fi : jCi�`j < (1 � �0) � sig, where thejCij's are as in Eq. (10). Speci�cally, either 0 2 I in which case i0 is always in I or each ij hits Iwith probability at least �0 (which will be set to equal 1=O(m)). Loosely speaking, for each ij 2 I,with probability at least �0, each sample � that is generated with size parameter sij is not in Cij�`;that is, with probability at least �0, jrejx(��)j < (1 + �)ij�`, in contrast to the recursive call thatuses a size lower-bound of (1 + �)ij . Thus, in such a case, we started with an over-estimate factorof (1+�)`+1(1��0)2 = 1+�(1��0)2 � (1 + �)`, and invoke a recursive call with an over-estimate factor of (1 + �)`.But before applying the lemma, let us establish its correctness.Proof: First, we note that+1Xi=�1 (jCij � jCi+1j) � (1 + �)i � jSj < tXi=0 (jCij � jCi+1j) � (1 + �)i+1; (14)because (1+�)i � jS�j < (1+�)i+1 for every � 2 CinCi+1. Thus, Part 1 follows by setting si = jCij,for i = 0; :::; t.Part 2 is established by the following claim and an application of Markov's inequality (i.e., forX = jCi�`j=si, which is non-negative, it holds that Pr[X � 1� �0] � E[X]=(1 � �0) < 1� �0).6Indeed, Ci is de�ned also for i < 0, and indeed in this case it equals C0.25



Claim 7.3 Suppose that Eq. (13) holds and jC�`j � (1� �0)2s0. ThenEi I � jCi�`jsi � < (1� �0)2:To prove this claim, we �rst expand the expectation:Ei I � jCi�`jsi � = tXi=1 (1 + �)i � siPtk=1(1 + �)k � sk � jCi�`jsi= Pti=1(1 + �)i � jCi�`jPti=1(1 + �)i � siWe rewrite both the numerator and denominator using the following identity, which holds for anysequence of numbers x0; :::; xt and xt+1 = 0:tXi=1(1 + �)i � xi = 1 + �� � �x0 + tXi=0(xi � xi+1) � (1 + �)i!This gives: Ei I � jCi�`jsi � = �jC�`j+Pti=0(jCi�`j � jCi+1�`j) � (1 + �)i�s0 +Pti=0(si � si+1) � (1 + �)i (15)We bound the numerator as follows:�jC�`j+Pti=0 (jCi�`j � jCi+1�`j) � (1 + �)i� �jC�`j+ (1 + �)`jSj [by Eq. (14)]� �(1� �0)2 � s0 + (1 + �)`jSj [by the claim's second hypothesis]< �(1� �0)2 � s0 + (1� �0)2 �Pti=0(si � si+1) � (1 + �)i [by the claim's �rst hypothesis]Substituting this bound into Eq. (15) establishes Claim 7.3 and thereby Lemma 7.2.Proof of Theorem 3.7. Construction 7.1 yields a (public-coin) protocol which satis�es the com-plexity bounds asserted in Theorem 3.7 (i.e., it exchanges O(m) messages and the total complexityis at most 2b � poly(n;mm)). It is left to show that this protocol constitutes an interactive proofsystem for �. This fact is established in the following two claims.Claim 7.4 (completeness) If x 2 �yes and the prover plays as directed, then V accepts withprobability at least 2=3.Proof: We will show (below) that, with probability at least 2=3, all recursive calls are withinputs (x; �;N) satisfying jrejx(�)j � N . Applying Part 1 of Lemma 7.2 with S = rejx(�) andS� = rejx(��), it then follows that (when the prover sets the si's as directed by the protocol)the veri�er does not abort in Step 2 (because Pti=0(si � si+1) � (1 + �)i+1 > jrejx(�)j � N).Furthermore, in this case, all the bottom-level recursive calls are with inputs (x; �;N) that satisfyjrejx(�)j � N � 1 (because N � 1 in each call), and since such � fully speci�es V 's coins it mustbe that jrejx(�)j = 1 = N (because for such a full transcript � it must be jrejx(�)j � 1). Thus,all the bottom-level calls return true, and thus all recursive calls return true.We now show that, with probability at least 2=3, all calls at each level of the recursion are withinputs (x; �;N) satisfying jrejx(�)j � N . This is shown by induction on the recursion level, using26



the fact that the number of recursive calls (in each level) is less than (2m)O(b). The basis of theinduction holds because at the top level the input is (x; �; 23 �2n) and jrejx(�)j � 23 �2n holds (sincex 2 �yes). For the induction step we show that if jrejx(�)j � N for some recursive executionwith input (x; �;N), then, for each recursive call that is directly invoked by the former execution,with probability at least 1 � 2�b2 , the input (x; �0; N 0) associated with the recursive call satis�esjrejx(�0)j � N 0. Thus, if the induction hypothesis holds for some level, then, with probability atleast 1� (2m)O(b) � 2�b2 > 1� 13m , it holds also for the next level.We consider two cases. In case the next message is by P , we have jrejx(��)j � N for everypossible � (by Eq. (8)), and so the recursive calls (x; ��;N) satisfy the condition. In case thenext message is by V , it holds that the si's sent by P satisfy si = jCij, where the Ci's are as inEq. (10). Thus, for every ij selected in Step 3, it holds that jCij j � sij . Thus, each invocation ofthe sampling protocol in Step 4, is likely to return a sample in the corresponding Cij ; speci�cally,with probability at least 1 � 2�b2 , the sampled �j;k is in Cij . In this case, the resulting recursivecall with input (x; ��j;k; (1 + �)ij ) satis�es jrejx(��j;k)j � (1 + �)ij .Claim 7.5 (soundness) If x 2 �no then, no matter how the prover plays, the veri�er V acceptswith probability at most 1=3 (provided � < 1=cm for a su�ciently large constant c).Proof: We may assume, without loss of generality, that in each recursive call the prover suppliesa list of si's that pass the veri�er's initial check (of Step 2). We will show, by induction on therecursion depth d = 0; 1; :::;m, that with high probability, one of the recursive calls at level d iswith an input (x; �;N) that satis�es jrejx(�)j � (1+ �)2d�(2m+1) �N . Thus, the last recursion levelhas a call an input (x; �;N) that satis�es jrejx(�)j � (1 + �)�1 � N . If N > 1 then such a callreturns false, causing the veri�er to reject (i.e., return false to the main protocol). Otherwise, itmust be that N = 1 and rejx(�) = ;, which means that � is not a consistent rejecting transcript,and so this call also returns false. Thus, we may focus on proving the above inductive claim.The induction basis holds because it refers to the main protocol's call to the recursive protocol,a call that is with input (x; �; 23 � 2n) that satis�es jrejx(�)j � 13 � 2n � (1 + �)�(2m+1) � 23 � 2n (sincex 2 �no and � < 1=cm). Speci�cally, we may use � � (ln 2)=(2m + 1) so that (1 + �)2m+1 = 2holds.We now turn to the induction step. We assume that there is a level d recursive-call with input(x; �;N) that satis�es jrejx(�)j � (1+ �)2d�(2m+1) �N . We will show that, with probability at least1�2� poly(m) > 1�1=3m, this level d recursive-call invokes a level d+1 call with an input (x; �0; N 0)that satis�es jrejx(�0)j � (1+�)2(d+1)�(2m+1) �N 0. We consider two cases. In case the next messageis by P , for some �, we have jrejx(��)j = jrejx(�)j � (1+�)2d�(2m+1) �N < (1+�)2(d+1)�(2m+1) �N(where the equality is due to Eq. (8)), and so the recursive calls (x; ��;N) satisfy the condition.The more involved case is when the next message is by V . Using the hypothesis that the listof si's (supplied by the prover) passes the veri�er's initial check (of Step 2), we may invoke Part 2of Lemma 7.2 with S = rejx(�),7 S� = rejx(��), �0 � �=2 (so that (1 � �0)�2 = 1 + �) and` = (2m + 1) � 2d � 2 (so that (1 + �)(2m+1)�2d = (1 + �)`+1=(1 � �0)2). For Ci's as in Eq. (10)and I def= fi : jCi�`j < (1 � �0) � sig, it follows that either i0 = 0 2 I or for every j = 1; :::; w � 1,the index ij selected in Step 3 is in I with probability at least �0. Thus, with probability at least1� 2� poly(m), one of the ij's (possibly i0) selected in Step 3 is in I. For the rest of the argument,let us �x a j such that ij 2 I. By the de�nition of I and Ci, it follows thatjf� : jrejx(��)j � (1 + �)ij�`gj = jCij�`j < (1� �0) � sij7Lemma 7.2 requires that S 6= ;, but if rejx(�) = ;, then rejx(��j;k) = ; for all recursive calls and the inductionstep trivially holds. 27



Thus, in each of the w corresponding invocations of the sampling protocol (in Step 4), with prob-ability at least �0 � 4 � �16 = 
(1=m), we generate � 62 Cij�`; that is, � such thatjrejx(��)j < (1 + �)ij�` = (1 + �)�((2m+1)�2d�2) � (1 + �)ijThus, with probability at least 1 � 2� poly(m), one of the �j;k's generated in Step 4 satis�esjrejx(��j;k)j < (1 + �)2(d+1)�(2m+1) � (1 + �)ij , which implies that the corresponding recursivecall is with input (x; ��j;k; (1 + �)ij ) that satis�es the induction claim. This establishes the induc-tion step, and the claim follows.8 A Message Complexity HierarchyIn this section, we give evidence that the Speedup Theorem (Thm. 2.3) cannot be improved. To doso, for every \nice" function m(), we give a problem that has an interactive proof with m messagesbut is unlikely to have an interactive proof with o(m) messages.First, we formalize what we mean by a \nice" function. For a function f : N ! N, let f�1(n)be the least m such that f(m) � n. We say that f is nice if (a) f(n) and f�1(n) are computablein time poly(n) (b) f is monotone increasing (not necessarily strict), and (c) f(f�1(n)) = O(n).Note that these conditions are by functions such as log n, polylog n, n�, and n.The problems we consider are variants of #SAT, which was shown to be in IP in [LFKN92].Recall that the decisional version of the counting problem #SAT is#SAT def= f('; k) : ' has at most k satisfying assignmentsg:For a nice function v : N ! N satisfying v(n) � n, we de�ne#SATv def= f('; k) 2#SAT : ' has at most v(j'j) variablesg:By re�ning the standard proof system for #SAT, we have:Theorem 8.1 (re�ning [LFKN92, Sha92]) For every nice function v(n),#SATv 2 AM(poly(n);m) ; where m(n) = v(n)= log2 n.Proof Sketch: We begin by sketching what the standard interactive proof for #SAT (e.g., aspresented in [Sip97, Gol99, Vad00]) gives for an instance of #SATv. The common input is a pair('; k), where ' is of length n and has v = v(n) variables. The prover sends the veri�er the numberk0 of satisfying assignments of ', and the veri�er checks that k0 � k. Then, the prover and veri�erextend ' : f0; 1gv ! f0; 1g to a polynomial ~' : Fv ! F of degree at most n over some su�cientlylarge �nite �eld F and the problem is reduced to proving a statement of the form:Xx12f0;1g Xx22f0;1g � � � Xxv2f0;1g ~'(x1; : : : ; xv) = k0; (16)In each round of the protocol, one variable of ~' is \eliminated". More precisely, in the i'th round,the prover sends the veri�er a univariate polynomialpi(x) def= Xxi+12f0;1g � � � Xxv2f0;1g ~'(�1; : : : ; �i�1; x; xi+1; : : : ; xv);28



where �1; : : : ; �i�1 are elements of the �eld determined by earlier rounds of the protocol. Then theveri�er checks that pi(0) + pi(1) = pi�1(�i�1), and chooses �i uniformly from F. (p0 is de�ned tobe constant polynomial k0, and at the end, the veri�er checks that pv(�v) = ~'(�1; : : : ; �v).)To reduce the message complexity of the proof system, we instead work with ` = �(log n)variables at a time, like done in [BFLS91, AS98]. Let H be any canonical subset of F of size 2`, andlet � = (�1; : : : ; �`) be a bijection from H to f0; 1g`. By interpolation, each �i can be extended toa degree jHj = poly(n) polynomial ~�i : F ! F which agrees with �i on H. Consider the polynomialf : Fv=` ! F de�ned byf �y1; : : : ; yv=`� = ~' �~�1(y1); : : : ; ~�`(y1); : : : ; ~�1(yv=`); : : : ; ~�`(yv=`)� :Two key points are that f is still of degree poly(n) (because ~' and the ~�i's have degree poly(n))and that f is just as easy to evaluate as ~'. Now proving Equation 16 becomes equivalent to provingXy12H Xy22H � � � Xyv=`2H f(y1; : : : ; yv=`) = k0: (17)This can be done in almost exactly the same way as before, eliminating one variable at a time,except that instead of checking pi(0)+pi(1) = pi�1(�i�1), the veri�er must check thatP�2H pi(�) =pi�1(�i�1). The representation of the pi's and the evaluation of this sum are still feasible becausethe degree of f is poly(n) and H is of size poly(n). The analysis of the new proof system is identicalto that of the original, with a slight loss in the soundness due to the fact that the degree of f islarger than that of ~'. 2Now we observe that it is unlikely that #SATv has a substantially better proof system.Proposition 8.2 Let v be any nice function satisfying !(log n) � v(n) � n. If#SAT =2 AM(2o(n); 2),then for every m : N ! N such that m(n) = o(v(n)= log2 n):#SATv =2 IP(poly(n);m)Proof: Suppose #SATv 2 IP(poly(n);m), where m(n) = o(v(n)= log n). Combining Theo-rems 2.4 and 2.3, we have #SATv 2 IP (poly(n);m)� AM (poly(n);m+ 1)� AM�poly(n)O(m); 2�= AM�2O(m�log n); 2�= AM�2o(v); 2� :Now we can obtain a proof system for #SAT by padding. Given an instance ('; k) of #SAT oflength n, if we pad it to length N = v�1(n), then it has at most n � v(N) variables. So we can viewit as an N -bit long instance of #SATv and execute the above AM(2o(v(N)) ; 2) proof system on it.This gives a 2-message proof system for #SAT that on instances of length n has bit complexitypoly(N; 2o(v(N))) = 2o(v(N)) = 2o(n);where the �rst equality is because v(N) = !(logN), and the second because N = v�1(n).29



Proof of Theorem 3.10: Combining Theorem 8.1 and Proposition 8.2 (and assuming #SAT =2AM(2o(n); 2)), we have for every nice and super-logarithmic v : N ! N (such that v(n) � n)#SATv 2 AM(poly(n);m) nAM(poly(n); o(m))where m(n) = v(n)= log2 n. Theorem 3.10 follows.9 Directions for Further WorkThere are clearly several places where quantitative improvements to our results would be desirable.As discussed in Section 4, it would be very interesting to remove the c2 > s constraint in Theorem 3.1(or to give evidence that it is necessary). The constraints on the completeness and soundness in ourresults for general 1-message proof systems (in Section 5) are even more severe, and do not stemsolely from constraints in previous results about SZK. Another place where it is not clear that ourbounds are quantitatively optimal involves the complexity bounds in our results for general IP(b).Speci�cally, it is unclear whether the mm complexity in Theorem 3.7 and the additional exponentof m incurred in Corollary 3.9 are necessary. (In fact, removing the mm from Theorems 2.1 and2.2 was stated as an open problem in [GH98].)Another direction for further work is to unify these results with those which bound the complex-ity of interactive proofs with low knowledge complexity. As mentioned in Section 1.3, those worksare incomparable to ours. For example, the results of [PT96] require that the error probabilities areexponentially small in the knowledge complexity, and the results of [SV97] only apply to knowledgecomplexity in the \hint sense" (which is not bounded by the prover-to-veri�er communication).Can one give evidence that NP does not have interactive proofs of low knowledge complexity k(in the usual sense) where the error probabilities are larger than 2�k? The strongest imaginablestatement of this form would say that interactive proofs with logarithmic knowledge complexityand constant error probabilities capture exactly SZK; such a result would simultaneously subsumeall of our results and those mentioned above.

30



References[ABV95] William Aiello, Mihir Bellare, and Ramarathnam Venkatesan. Knowledge on theaverage|perfect, statistical and logarithmic. In Proceedings of the Twenty-Seventh An-nual ACM Symposium on the Theory of Computing, pages 469{478, Las Vegas, Nevada,29 May{1 June 1995.[AH91] William Aiello and Johan H�astad. Statistical zero-knowledge languages can be recog-nized in two rounds. Journal of Computer and System Sciences, 42(3):327{345, June1991.[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-tion of NP. Journal of the ACM, 45(1):70{122, January 1998.[AK97] V. Arvind and J. K�obler. On resource-bounded measure and pseudorandomness. In Pro-ceedings of the 17th Conference on Foundations of Software Technology and TheoreticalComputer Science, pages 235{249. LNCS 1346, Springer-Verlag, 1997.[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polyloga-rithmic time. In Proceedings of the Twenty Third Annual ACM Symposium on Theoryof Computing, pages 21{31, New Orleans, Louisiana, 6{8 May 1991.[Bab85] L�aszl�o Babai. Trading group theory for randomness. In Proceedings of the SeventeenthAnnual ACM Symposium on Theory of Computing, pages 421{429, Providence, RhodeIsland, 6{8 May 1985.[BM88] L�aszl�o Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system anda hierarchy of complexity classes. Journal of Computer and System Sciences, 36:254{276, 1988.[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, andnonapproximability|towards tight results. SIAM Journal on Computing, 27(3):804{915 (electronic), 1998.[BHZ87] Ravi B. Boppana, Johan H�astad, and Stathis Zachos. Does co-NP have short interactiveproofs? Information Processing Letters, 25:127{132, 1987.[BCC88] Gilles Brassard, David Chaum, and Claude Cr�epeau. Minimum disclosure proofs ofknowledge. Journal of Computer and System Sciences, 37(2):156{189, October 1988.[For89] Lance Fortnow. The complexity of perfect zero-knowledge. In Silvio Micali, editor,Advances in Computing Research, volume 5, pages 327{343. JAC Press, Inc., 1989.[Gol99] Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudorandomness.Number 17 in Algorithms and Combinatorics. Springer-Verlag, 1999.[GG00] Oded Goldreich and Sha� Goldwasser. On the limits of nonapproximability of latticeproblems. Journal of Computer and System Sciences, 60(3):540{563, 2000.[GH98] Oded Goldreich and Johan H�astad. On the complexity of interactive proofs withbounded communication. Information Processing Letters, 67(4):205{214, 1998.31



[GK93] Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof system for aproblem equivalent to the discrete logarithm. Journal of Cryptology, 6:97{116, 1993.[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but theirvalidity or all languages in NP have zero-knowledge proof systems. Journal of the ACM,38(1):691{729, 1991.[GOP98] Oded Goldreich, Rafail Ostrovsky, and Erez Petrank. Computational complexity andknowledge complexity. SIAM Journal on Computing, 27(4):1116{1141, August 1998.[GP99] Oded Goldreich and Erez Petrank. Quantifying knowledge complexity. ComputationalComplexity, 8(1):50{98, 1999.[GMR89] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge complexity ofinteractive proof systems. SIAM Journal on Computing, 18(1):186{208, February 1989.[GS89] Sha� Goldwasser and Michael Sipser. Private coins versus public coins in interactiveproof systems. In Silvio Micali, editor, Advances in Computing Research, volume 5,pages 73{90. JAC Press, Inc., 1989.[Kil92] Joe Kilian. A note on e�cient zero-knowledge proofs and arguments (extended ab-stract). In Proceedings of the Twenty-Fourth Annual ACM Symposium on the Theoryof Computing, pages 723{732, Victoria, British Columbia, Canada, 4{6 May 1992.[KvM99] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponentialsize proofs unless the polynomial-time hierarchy collapses. In Proceedings of the Thirty-�rst Annual ACM Symposium on Theory of Computing, pages 659{667, Atlanta, 1{4May 1999.[LFKN92] Carsten Lund, Lance Fortnow, Howard Karlo�, and Noam Nisan. Algebraic methodsfor interactive proof systems. Journal of the ACM, 39(4):859{868, October 1992.[MV99] Peter Bro Miltersen and N.V. Vinodchandran. Derandomizing Arthur{Merlin gamesusing hitting sets. In 40th Annual Symposium on Foundations of Computer Science,New York, NY, 17{19 October 1999. IEEE.[Oka00] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journalof Computer and System Sciences, 60(1):47{108, February 2000.[PT96] Erez Petrank and G�abor Tardos. On the knowledge complexity of NP . In 37th AnnualSymposium on Foundations of Computer Science, pages 494{503, Burlington, Vermont,14{16 October 1996. IEEE.[SV97] Amit Sahai and Salil P. Vadhan. A complete promise problem for statistical zero-knowledge. In 38th Annual Symposium on Foundations of Computer Science, pages448{457, Miami Beach, Florida, 20{22 October 1997. IEEE.[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869{877, October 1992.[Sip97] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.[Tuc95] Alan Tucker. Applied combinatorics. John Wiley & Sons Inc., New York, third edition,1995. 32



[Vad00] Salil Vadhan. Probabilistic proof systems I: Interactive and zero-knowledge proofs. Lec-ture Notes from the IAS/PCMI Graduate Summer School on Computational Complexity,August 2000. Available from http://eecs.harvard.edu/~salil/.[Vad99] Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Mas-sachusetts Institute of Technology, August 1999.

33



A Sampling Sets of Known CardinalityThe following protocol is a variant of known protocols for sampling NP-sets of known cardinality.8In fact, we will present a two-party protocol for sampling in arbitrary sets, while ignoring the issueof verifying membership in the set. In correspondence with common applications as well as withthe respective computing powers of the parties, we call the parties veri�er and prover. Indeed, theveri�er strategy presented below is implementable in probabilistic polynomial-time, whereas this isnot necessarily the case for the prover.Standard sampling protocol utilize a family of pairwise independent hash functions (cf., [BM88,GS89, AH91]). In order to obtain improved performance (in Item 1 of Lemma A.2 below), we use inour protocol hash functions that are 2k-wise independent. More precisely, a set of hash functionsHn;` is 2k-wise independent if, for every 2k distinct preimages (in f0; 1gn), the correspondingimages, under a function uniformly selected in Hn;`, are independent and uniformly distributed inthe range (f0; 1g`). One construction of such hash functions is obtained by considering the set ofall 2k�1 degree (univariate) polynomials over GF (2n) � f0; 1gn (and taking the `-bit pre�x of thevalue of such polynomials (on an evaluation point)).Construction A.1 (a sampling protocol):Common input: An integer n, a string � 2 f0; 1gpoly(n) specifying a set S def= S� � f0; 1gn, andan integer N which is supposed to equal jSj.Error parameters: a deviation error � > 0 and a probability error � > 0.Protocol: The parties set k = log2(1=�) and ` def= blog2(�3N=2k2)c. Thus, 2�`N � 2k2�3 .Assuming that ` > 0, we denote by Hn;` a family of e�cient 2k-wise independent hashingfunctions. Otherwise (i.e., for ` � 0), we rede�ne ` def= 0 and let Hn;` be the singleton setcontaining the function h mapping f0; 1gn to the empty string (and so satisfying h�1(0`) =f0; 1gn).1. The veri�er uniformly selects h 2 Hn;`, and sends it to the prover.2. Upon receiving h 2 Hn;`, the prover responds with a list of t def= (1 � �) � N2` strings inS \ h�1(0`). Denote the list sent to the veri�er y1; :::; yt.3. The veri�er performs a super�cial examination of the list and produces a correspondingoutput. That is:(a) Reject illegal lists: The veri�er checks that all the yi's are distinct, and that h(yi) =0` for every i = 1; :::; t. If any of these conditions is not satis�ed, the veri�er outputsa special error symbol, denoted ?.(b) Act on legal lists: Assuming that the above conditions hold, the veri�er selects uni-formly i 2 f1; :::; tg, and outputs yi.The above protocol exchanges two messages, and the messages being sent have length poly(n� �log(1=�)). The veri�er is of the public-coin type and can be implemented in probabilistic polynomial-time. Clearly, the veri�er's output is either an n-bit long string or the error symbol ?. A cheatingprover may easily cause the veri�er to always output ?, but this means that the veri�er detects8By sampling an NP-set, we actually mean sampling a \slice" of such a set. That is, for some n 2 N, the slice isa subset S� of f0; 1gn, speci�ed by a string � 2 f0; 1gpoly(n), and the set f(�; x) : x 2 S�g is an NP-set.34



that the prover is cheating. In case S is a slice of an NP-set, the protocol can be augmented withNP-witnesses, and the veri�er may avoid outputting elements not in S (and output ? wheneversuch an element is presented to it). As we shall show, the essential feature of the above protocol isthat the prover cannot restrict the output to a too small set (see Item 2 below).Lemma A.2 (analysis of the sampling protocol): Suppose that � � � < 1=3 and that the veri�erfollows the prescribed program.1. If N = jSj and the prover follows the prescribed program then, with probability at least 1� �,the veri�er outputs an element of S.2. For every set S0 � f0; 1gn and every N � 2n, no matter what the prover does, the probabilitythat the veri�er output resides in S0 is at most jS0jN + 4�.Proof: We start with Part 1, and ignore the case ` = 0 (which is obvious). In case ` > 0, wede�ne 0-1 random variables �x such that �x def= 1 if h(x) = 0` and �x def= 0 otherwise. Clearly, for everyx 2 S, it holds that E(�x) = Pr[�x = 1] = 2�`, and the �x's are 2k-wise independent. Denoting�x def= �x � 2�` and employing standard analysis (using jSj > 2`+1) we getPrh �����Px2S �xjSj � 2�`���� > � � 2�`� < E h�Px2S �x�2ki(�2�` � jSj)2k= E hPx1;:::;x2k2SQ2ki=1 �xii�2k � (2�`)2k � jSj2k< jSjk � k2k � (2�`)k�2k � (2�`)2k � jSj2k= � k2 � 2`�2 � jSj�kUsing jSj = N and 2k2 � 2` � �3N < �2N (where the �rst inequality is due to ` � log2(�3N=2k2)),we get: Prh h��� jfx 2 S : h(x) = 0`gj � 2�` �N ��� > � � 2�` �Ni < � k2 � 2`�2 � jSj�k< 2�k = �Thus, with probability at least 1��, the cardinality of the set S\h�1(0`) is at least t = (1��)�2�` �N(and at most (1 + �) � 2�` �N). Part 1 follows.We now turn to Part 2. Suppose that jS0j � � �N (otherwise, if jS0j < � � N , we may augmentS0 with jS0j � �N elements of f0; 1gn n S0). Applying a similar argument as above to the set S0, weconclude that with probability at least 1�� k2�2`�2�jS0j�k, the set h�1(0`) contains at most (1+�)�2�` �jS0jmembers of S0. Then, using �2 � jS0j � �3N � 2k2 � 2`, it follows that with probability at least 1� �:jS0 \ h�1(0`)j � (1 + �) � 2�` � jS0j= 1 + �1� � � jS0jN � t35



where the equality is due to t = (1 � �) � 2�` � N . Thus, the probability that the output residesin the set S0 is bounded by � + 1+�1�� � jS0jN , where the �rst term accounts for the probability thatt0 def= jS0 \ h�1(0`)j is greater than 1+�1�� � jS0jN � t, and the second term is an upper bound on t0t (whichholds otherwise). Using � � � < 1=3 and recalling that the original S0 was possibly augmented sothat jS0j � �N , the probability that the output resides in S0 is upper-bounded by� + 1 + �1� � � max(jS0j ; � �N)N < �+ (1 + 3�) �max� jS0jN ; �� < 4�+ jS0jNand the lemma follows.B Some Comments regarding Theorem 2.3Recall that Theorem 2.3 is equivalent to the following two claims:AM(b;m) � AM(b2 � poly(m); dm=2e) (18)AM(b;m) � AM((b �m)O(m); 2) (19)As stated in the main text, Eq. (18) is implicit in the work of Babai and Moran [BM88]. However,Eq. (19) does not follow by merely applying Eq. (18) dlog2me times (unlessm is a constant), becausesuch a sequence of applications does not allow to keep track of the computational complexity of theveri�er. The problem is that Eq. (18) does not assert that the computational complexity of the newveri�er is polynomial in the computational complexity of the original veri�er (but rather that if thelatter is polynomial in n+ b then the former is polynomial in n + b0 = n+ b2 � poly(m)). Indeed,by going into the original proof of Eq. (18), one may verify that the computational complexity ofthe new veri�er is polynomially related to that of the original veri�er, because the new veri�er justmanipulates the new messages, derives one set of original messages and applies the original veri�erto it. Still, it seems nicer (and more convincing) to present a direct proof of Eq. (19). This is doneby \unraveling"the recursion, and \optimizing" things a little (as done below).We assume that the reader is familiar with the terminology of public-coin (a.k.a Arthur-Merlin)interactive proofs, where the veri�er is called Arthur and the prover is called Merlin. By possiblyusing padding, we may assume, without loss of generality, that all Arthur's messages are of thesame length n. Starting with an AM(b;m) system, we modify it so that each Merlin message haslength exactly b. (This increases the total number of bits sent by the prover by a factor of m, butwe do not care.) Let us denote a generic message of Arthur by � 2 f0; 1gn, and a generic messageof Merlin's by � 2 f0; 1gb.For sake of perspective and as a warm-up, we start (see Sec. B.1) by presenting the main idea ofthe Babai{Moran transformation [BM88], and recall (in Sec. B.2) how it is applied in order to cutthe number of rounds by half and establish Eq. (18). However, one may skip these preliminariesand proceed directly to Sec. B.3, where we prove Eq. (19).B.1 The basic switch (from MA to AM)We start by recalling the main idea underlying the transformation of Babai and Moran [BM88]. AnArthur{Merlin proof system can be viewed as a game between an honest Arthur and Merlin thatalternate in taking moves such that Arthur takes random moves and Merlin takes optimal oneswith respect to a �xed predicate that is evaluated on the full transcript of the game's execution.36



The value of the game is de�ned as the expected value of an execution of the game (when playedagainst an optimal Merlin).The basic idea is to transform an MA-game (i.e., a two-move game in which Merlin moves �rstand Arthur follows) into an AM-game (in which Arthur moves �rst and Merlin follows). That is,in the original game Merlin �rst sends � 2 f0; 1gb, Arthur responds with a random � 2 f0; 1gn,and the value of the game is de�ned given by v(�; �). Then, (for t to be speci�ed) we switch theorder of moves by letting Arthur �rst send a random sequence (�1; :::; �t) 2 f0; 1gtn, then Merlinresponds with an � 2 f0; 1gb and the value is de�ned as the average of the values v(�; �i), overi = 1; :::; t. Using t = O(b), this guarantees that for every � 2 f0; 1gb with very high probability(i.e., probability at least 1�2�b�2), the value of the modi�ed game (i.e., 1t Pti=1 v(�; �i) for random�i's) approximates the value of the original game (i.e., E�(�; �)) up to an additive constant. Thus:Pr�1;:::;�t "8� 2 f0; 1gb : �����1t tXi=1 v(�; �i)� E�(�; �)����� > 16# < 2b � 2�b�3 < 14This immediately implies that the classMA is contained in the class AM. A similar reasoning canbe applied to longer games (by considering the value of the residual game after two moves) impliesthat the class A(MA)j is contained in the class AAM(MA)j�1 = A(MA)j�1. This impliesAM(poly;O(1)) = AM and, more generally, AM(poly; b+O(1)) = AM(poly; b) (for any b � 2).B.2 Concurrent switches in mid-game ([MAMA]r to [AMMA]r = [AM ]rA)Sequential applications of the \MA-to-AM switch" allow to reduce the number of rounds by anyadditive constant. In order to cut the number of rounds by a constant, one may apply the \MA-to-AM switch" concurrently to disjoint segments of the game. That is, suppose that the originalgame proceeds in r stages, where the ith stage (i 2 [r]) is as follows:1. Merlin selects �2i�1 2 f0; 1gb,2. Arthur responds with a random �2i�1 2 f0; 1gn,3. Merlin selects �2i 2 f0; 1gb,4. Arthur responds with a random �2i 2 f0; 1gn,The value of the corresponding execution of the game is de�ned as v(�1; �1; �2; �2; :::; �2r�1; �2r�1; �2r; �2r).For t = poly(r) � b, we transform the above game into the following corresponding r-stage game,where the ith stage (i 2 [r]) is as follows:1. Arthur selects a random sequence (�12i�1; :::; �t2i�1) 2 f0; 1gtn,2. Merlin responds with a single �2i�1 2 f0; 1gb,3. Merlin further selects and sends a sequence (�12i; :::; �t2i) 2 f0; 1gtb,4. Arthur responds with a random ci 2 [t] and a random �2i 2 f0; 1gn,The value of the corresponding execution of the game is de�ned as v(�1; �c11 ; �c12 ; �2; :::; �2r�1; �cr2r�1; �cr2r ; �2r).Observe that, starting from a game of the form (MA)2r = (MAMA)r, we have obtained a gameof the form (AMMA)r = A(MA)r . 37



Each of the r switches is analyzed by �rst considering a random choice of Arthur's �rstmove and the average over its choices of ci 2 [t] in its second move. Speci�cally, for ~
 =(�1; �1; �2; �2; :::; �2(i�1)�1 ; �2(i�1)�1; �2(i�1); �2(i�1)),v~
(�2i�1; �2i�1; �2i; �2i; :::; �2r�1; �2r�1; �2r; �2r)def= v(~
; �2i�1; �2i�1; �2i; �2i; :::; �2r�1; �2r�1; �2r; �2r)v(~
) def= max�2i�1� E�2i�1 �max�2i � E�2i [v(~
; �2i�1; �2i�1; �2i; �2i)]���That is, v(~
) is the value of the game conditioned on the 2i� 2 �rst messages having transcript ~
.The key observation is that for any ~
 and every �2i�1, with probability at least 1 � (1=10r) � 2�bover the choice random sequence (�12i�1; :::; �t2i�1) 2 f0; 1gtn, we have1t � tXj=1max�j2i � E�2i hv(~
; �2i�1; �j2i�1; �j2i; �2i)i� = E�2i�1 �max�2i � E�2i [v(~
; �2i�1; �2i�1; �2i; �2i)]��� 110rApplying the same reasoning to each possible �2i�1 2 f0; 1gb, we conclude that with probability atleast 1� (1=10r) over the choice of the �j2i�1s,max�2i�1;�12i;:::;�t2if Eci;�2i[v(~
; �2i�1; �ci2i�1; �ci2i ; �2i)]g = v(~
)� 110rIn the actual analysis we consider p def= poly(r) parallel executions of each of the games, and de�nethe value of each parallel game to be the average of the values of the corresponding copies.9 Onemay show that each of the r switches approximately maintains the value of the original game. Thatis, for every i = 0; :::; r, consider the value of the (p-parallel) game obtained by performing only the�rst i switches. Denote these (p-parallel) games by G0; :::; Gr, and note that G0 is the (p-parallelversion of the) original (MAMA)r game, and Gr is the resulting (p-parallel) A(MA)r game. Forevery i = 1; :::; r, we consider the di�erence between the value of Gi�1 and the value of Gi. Forany �xed transcript of the �rst i� 1 stages, with probability at least 1� (1=10r) the values of theresidual executions of Gi�1 and Gi di�er by at most 1 � (1=10r). Thus, with probability at least9=10, the value of a random execution of Gr is within 0:1 of the (expected) value of G0 (whichequals the expected value of the original game).B.3 A direct approach (to placing (AM)r in AM)Think of the original 2r + 1-message (MA)rM game as a tree of depth r with nodes being labeledby Merlin moves (each in f0; 1gb) and edges being labeled by Arthur moves (each in f0; 1gn). Thus,the tree has (2n)r leaves. Each Merlin strategy corresponds to a di�erent node-labeling of the tree,whereas the edge labels are �xed. Such a vertex-labeling assigns Boolean values to the leaves (incorrespondence to A's decision), and by this to all internal nodes such that the value of an internalnode is the average of the value of its 2n children. The value of a speci�c Merlin strategy is justthe value of the root under the corresponding vertex-labeling.9This part of the analysis is di�erent from the analysis in [BM88]. In [BM88] one �rst reduces the error probabilityof the original game (also by parallel executions), and argues that each of the residual values to be considered is verylikely to be very close to either 0 or 1. Here by considering the value of the average of p copies, we can relate thelikely value of this average to its expected value. 38



Following [GH98], we consider selecting a random subtree of the above tree so that for eachinternal node we select at random t = poly(r) �b children. Again, each speci�c Merlin strategy usedas vertex-labeling (of the random sub-tree) de�nes a value of the root, a value that corresponds toa new game in which Arthur's moves are restricted to this subtree. We shall prove that, with highprobability over the choice of the random subtree, for each speci�c Merlin strategy (i.e., a labelingof all vertices in the full tree), the value of the subtree approximates the value of the full tree. Thisleads to the following new (2-message) AM game:1. Arthur selects and sends Merlin a random subtree.2. Merlin provides a labeling of the vertices in this subtree.Arthur computes the value of the root of the subtree, under the vertex-labeling (provided by Merlin),and decides accordingly. Note that all complexities (i.e., the number of bits sent by Merlin as wellas the computational complexity of the new Arthur) are related to the size of the subtree, whichequals tr = (poly(r) � b)r = bO(r) (since b � r).Analysis: We consider hybrid tree distributions in which the �rst i top levels are as in a randomsubtree, and the bottom r � i levels are as in the full tree (i.e., span all (2n)r�i leaves). The zerohybrid (i.e., i = 0) corresponds to the full tree, and the rth hybrid is a random subtree. We willshow that for every i = 0; :::; r � 1, with probability 1 � (1=10r), for every vertex-labeling (i.e.,Merlin strategy) of levels 0; :::; i and the best possible Merlin strategy for levels i + 1; :::; r, the(random) value of the i+1st hybrid approximates the value of the ith hybrid up to an additive termof 1=10r. It follows that, with probability at least 0.9, the value of a random subtree (under thebest labeling) approximates the value of the full tree (under the best labeling) up to an additiveterm of 0.1.Consider any �xed tree T of the ith hybrid, and the random i + 1st hybrid trees obtained byselecting a sample of t vertices out of the 2n children of each level i node v in T . (Recall: The rootis zero level, and the leaves are at level r.) For each vertex-labeling of levels 0; :::; i, we considerthe best possible Merlin strategy for levels i + 1; :::; r. Such strategy assigns values to all verticesof level r; :::; i + 1 of T , and the value of any level i node vertex is merely the average of the valueof its children. Speci�cally, the value at a leaf is determined by the path to leaf (which correspondto the edge labels) and by the labels of the vertices on this path, where the �rst i+1 vertex-labelsare determined by the �xed labeling of levels 0; :::; i, and the labels of vertices at levels i+ 1; :::; rare determined by the optimal Merlin moves. The values of all other internal nodes are determinedrecursively as the average of the values of their children, where nodes at levels i+ 1; :::; r � 1 have2n children (as in the original tree), nodes at level i have t random children, and nodes at levels0; :::; i � 1, have t children as determined by T .Our aim is to prove that, with high probability over the choice of children for the ith level nodes,the value of each of these nodes under any labeling of the vertices in levels 0; :::; i is approximatelythe average of the values of all its 2n children. Thus, the i+1st hybrid approximates the ith hybrid.Fixing any level i node vertex, denoted v, and any vertex-labeling for levels 0; :::; i, we considerthe value of v in the random (i + 1st) hybrid tree (which extends T ). Actually, we only �x thevertex-labeling of v and its ancestors, because only these labels a�ect the value of the vertices inthe subtree rooted at v. For each such labeling, with probability at least 1 � 2�
(t�2), the averagevalue of t random children of v approximates the average value of all 2n children of v up to anadditive � = 1=10r. Since there are at most 2(i+1)b � 2rb possible labelings to the vertices alongthis path, with probability 1� 2rb � 2�
(t=r2), for every vertex-labeling of levels 0; :::; i, the value of39



v in T is within 1=10r of its value in a random i+1st hybrid tree obtained from T (by sampling itslevel i + 1 nodes). In case the above holds, we call v a good vertex, otherwise we call it bad; thatis, v is good with probability at least 1� 2rb � 2�
(t=r2). Usingt � Cr2 � (b+ r log t+ log 10r) for a su�ciently large constant C (e.g., t = �(r4b)), we concludethat each level i vertex is bad with probability at most 2br�t=Cr2 < 2�r log2 t�log2 10r = t�r=10r.Thus, with probability at least 1� (1=10r), all vertices of the ith level are good. This means that,with probability at least 1� (1=10r), for every vertex-labeling of levels 0; :::; i, the values of all leveli nodes in the i+ 1st hybrid tree obtained from T is within 1=10r of their corresponding values inT . Considering all possible T 's and doing the same for all neighboring hybrid pairs it follows that(as claimed above), with probability at least 0.9, the value of a random subtree (under the bestlabeling) approximates the value of the full tree (under the best labeling) up to an additive term of0.1. Hence we obtain AM(b; 4r) � AM(tr � b; 2), and Eq. (19) follows (since t = O(r4b) = bO(1)).(If one cares then AM(b; 4r) � AM(br+1 �O(r)4r; 2).)
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