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1 IntroductionThis paper is concerned with two related notions. The �rst notion is that of locally decodable codes(LDC), which are error-correcting codes that allow recovery of individual information bits based ona few (randomly selected) codeword bits. The second notion is that of private information retrieval(PIR) schemes, which are protocols allowing users to retrieve desired data items from several (non-colluding) servers without yielding any information to any individual server. The relation betweenthese notions has been observed by some researchers before, and is further established in this paper.The study of LDCs was initiated by Katz and Trevisan [9], who established super-linear (butat most quadratic) lower bounds on the length of codes that allow recovery based on a constantnumber of bits. In contrast, the best known constructions of LDCs supporting recovery based onreading k bits [3] have length 2n�(log log k=(k log k)) , which is of the form 2n
(1) for every constant k.This leaves a huge gap between the known lower and upper bounds, and an important research goalis to try to close this gap. We take a �rst step in this direction by closing the gap (via improvedlower bounds) for the special case of linear LDCs in which recovery is based on two bits. Wenote that all the known constructions of LDCs are linear codes, including constructions where thedecoder makes more than two queries. See [13] for a survey on LDCs and their applications.The study of PIR schemes was initiated by Chor, Goldreich, Kushilevitz and Sudan [6], whopresented (among other schemes) a one-round, 2-server PIR scheme of communication complexityO(n1=3). The question of whether their (2-server) PIR scheme has the lowest communicationcomplexity possible has been open since. We present several results that are related to this question,where all our results relate to the special case of one-round, 2-server PIR schemes in which theservers' answers are always linear combinations of the data bits. Again, we note that in all theknown constructions of PIR schemes the server's answers are linear combination of the data bits.This is also true of schemes involving more than two servers. See [8] for a survey on PIR schemes.1.1 Locally Decodable CodesIn this paper we consider error-correcting codes with the following local decodability property:given a corrupted codeword it is possible to recover each bit of the original message by applyinga probabilistic procedure that looks at only two entries of the corrupted codeword. That is, if thecode is binary, then only two bits of the corrupted codeword are read. The procedure should predicteach bit with a constant advantage even when there is a constant fraction of errors in the corruptedcodeword. The Hadamard code satis�es this requirement, but unfortunately its codewords areexponentially longer than the message they encode. In this paper, we prove that this is essentiallythe best possible with respect to linear codes.Let us �rst de�ne formally the notion of a locally decodable code. For a natural number n,we let [n] def= f1; :::; ng. For x 2 �m and i 2 [m], we let xi be the ith element of x; that is,x = x1 � � � xm. For y; z 2 �m, we denote by d(y; z) the number of locations on which y and z di�er,that is, d(y; z) = jfi : yi 6= zigj.De�nition 1.1 For reals �; � and an integer q, we say that C : �n ! �m is a (q; �; �)-locallydecodable code if there exists a probabilistic oracle machine A such that:� In every invocation, A makes at most q queries (possibly adaptively). Query i 2 [m] to theoracle y 2 �m is answered by yi. 2



� For every x 2 �n, for every y 2 �m with d(y;C(x)) � �m, and for every i 2 [n], we havePr[Ay(i) = xi] � 1j�j + �;where the probability is taken over the internal coin tosses of A.An algorithm A satisfying the above requirements is called an (adaptive) (q; �; �)-local decodingalgorithm for C.Notice that, for small � and large �, the de�nition is very weak: the decoding algorithm is onlyguaranteed to recover the requested entry with some advantage over a random guess. The correctanswer may not even be the one with the largest probability of being output, and so the correct-ness probability cannot be ampli�ed by running the algorithm several times and taking the mostoccurring answer. In order to prove a lower bound, it is of course desirable to state the weakestpossible de�nition.While it appears natural to allow adaptive reconstruction algorithms in our de�nition, we onlyknow how to directly prove lower bounds in the non-adaptive case. Lower bounds for the non-adaptive case can be generalized to the adaptive case by using the following reduction.Lemma 1.2 ([9]) Let C : �n ! �m be an error-correcting code that has an adaptive (2; �; �)-localdecoding algorithm. Then C also has a non-adaptive (2; �; �=j�j)-local decoding algorithm.All the results that we will state (from now on) refer to non-adaptive reconstruction procedures,and \local decoding algorithm" and \locally decodable code" will always refer to the non-adaptivecase. We omit the statement of the results for the adaptive case (which can be obtained by theapplication of the above lemma).As stated above, our work focuses on linear codes. In particular, we will consider the followingsettings:� � = � = F is a �nite �eld, and the function C : F n ! Fm is a linear mapping between thevector spaces F n and Fm. In Theorem 1.3 (and in Section 3) we deal with the special case� = � = GF (2), while in Theorem 1.4 (and in Section 4) we deal with general �elds.� � = f0; 1g, � = f0; 1gl , and C : f0; 1gn ! f0; 1glm is linear. We deal with this case inTheorem 1.5 (and in Section 5).� � = � = f0; 1gl, and C : f0; 1gln ! f0; 1glm is linear. That is, we consider codes mappinga sequence of n blocks, each being a string of length l, to a sequence of m such blocks, andalgorithms that recover a desired (entire) block by making two block-queries. We refer tosuch codes as block-block codes, and deal with them in Theorem 1.6 (and in Section 6).Our main result isTheorem 1.3 Let � = � = f0; 1g, let C : �n ! �m be a (2; �; �)-locally decodable linear code, andsuppose that n � 8=��. Then m � 2��n=4.In comparison, the Hadamard code, which is linear, is a (2; �; 1=2 � 2�)-locally decodable codefor every � < 1=4, and its encoding length is m = 2n. In Section 8 we show that linear (2; �; �)codes exist with m = 2O(�n=(1�2�).Theorem 1.3 has the following extensions to larger alphabets (corresponding to the three casesdiscussed above). First, we consider an extension to linear codes over arbitrary �nite �elds.3



Theorem 1.4 Let C : F n ! Fm be a (2; �; �)-locally decodable linear code. Then m �2 ��8 �n�2�log2 jF j.Theorem 1.5 Let C : f0; 1gn ! (f0; 1gl)m be a (2; �; �)-locally decodable linear code, and supposethat the decoder uses only k predetermined bits out of the l bits that it receives as answer to eachquery. Then m � (1=f(k; l)) � 2��n=(4f(k;l)), where f(k; l) = Pki=0 �li� � minf2l; 2lkg, provided thatn � 8f(k; l)=��.Theorem 1.6 Let C : (f0; 1g`)n ! (f0; 1g`)m be a (2; �; �)-locally decodable code that is a linearblock-block code. Then m � 2 ��8 �n�(`+1)2.Theorem 1.4 is proved in Section 4, by an extension of the argument used in the proof ofTheorem 1.3. Theorem 1.5 is proved in Section 5 by means of a reduction to the case l = k = 1 andan application of Theorem 1.3. Theorem 1.6 is proved in Section 6 by an extension of the argumentused in the proof of Theorem 1.3.1.2 Private Informational RetrievalLoosely speaking, a Private Information Retrieval (PIR) scheme for k servers is a protocol by whicha user can obtain the value of a desired bit out of n bits held by the servers without yielding theidentity of this bit to any individual server (assuming that the servers do not cooperate in orderto learn the identity of the desired bit). The aim is to obtain PIR schemes of low communicationcomplexity (i.e., substantially lower than the obvious solution of having a server send all n bitsto the user). We focus on one-round PIR schemes that are protocols in which the user sends asingle message to each server, which responds also with a single message. All known e�cient PIRschemes are one-round. In the de�nition below, Q represents the algorithm employed by the userto generate its queries, Sj represents the algorithm employed by the jth server, and R representsthe recovery algorithm used by the user (once it gets the servers' answers).De�nition 1.7 A one-round, (1 � �)-secure, 2-server PIR scheme for database size n, with re-covery probability p, query size t and answer size a is a quadruple of deterministic algorithmsA = (Q;S1; S2; R) with the following properties.Algorithmic operation: On input i 2 [n] and (random-tape) r 2 f0; 1gL, algorithm Q outputs apair of t-bit long queries; that is, (q1; q2) def= Q(i; r).On input a database x 2 f0; 1gn, and query q 2 f0; 1gt, algorithm S1 (resp., S2) returns ananswer S1(x; q) 2 f0; 1ga (resp., S2(x; q) 2 f0; 1ga).On input i 2 [n], r 2 f0; 1gL, and answers �1; �2 2 f0; 1ga, algorithm R outputs a bitR(i; r; �1; �2), which is supposed to be a guess of the entry xi.The recovery condition: We denote by A(i; x) the random variable that represents the output ofR(i; r; S1(x; q1); S2(x; q2)), where (q1; q2) = Q(i; r) and the probability space is induced by theuniform distribution of r 2 f0; 1gL. Then, for every i 2 [n] and x 2 f0; 1gn, it must hold thatPr[A(i; x) = xi] � p.The secrecy condition: For i 2 [n], denote by Q1(i) (resp., Q2(i)) the distribution induced on the�rst (resp., second) element of Q(i; r) when r is uniformly distributed in f0; 1gL. Then, forevery i; j 2 [n], the distributions Q1(i) and Q1(j) (resp., Q2(i) and Q2(j)) are �-close (i.e.,the statistical di�erence between them is at most �).4



Notice that we relax (and quantify) the security and recovery requirements; the traditional perfectrequirements are obtained by setting � = 0 and p = 1. On the other hand, in the following, werestrict our attention to PIR schemes which have linear answers; that is, for every �xed queryq 2 f0; 1gt, the servers' answers S1(x; q) and S2(x; q) are linear functions of x (each bit of S1(x; q)and each bit of S2(x; q) is a linear combination of the bits of x). All known PIR schemes satisfythis requirement.Our main result for PIR schemes is the following lower bound, proved in Section 7Theorem 1.8 Suppose there is a one-round, (1 � �)-secure PIR scheme with 2 servers, linearanswers, database size n, query size t, answer size a, and recovery probability 1=2+ �. Suppose alsothat the user only uses k predetermined bits out of the a bits it receives as answer to each query.Then t > (�� �) � n6 � f(k; a) � log2 f(k; a)� 3;where f(k; a) =Pki=0 �ai� � minf2a; 2akg.As immediate corollaries we conclude that� Any (secure, one-round) 2-server PIR scheme with linear answers of constant length musthave queries of linear (i.e., 
(n)) length. (This extends a simple lower bound (of n� 1 bits)on the length of queries in a 2-server PIR scheme with single-bit linear answers [6, Sec. 5.2].)� Any (secure, one-round) 2-server PIR scheme with linear answers in which the user only usesone bit from each answer must have communication complexity 
(pn).� Any (secure, one-round) 2-server PIR scheme with linear answers in which the user only usesk bits from each answer, k a constant, must have communication complexity 
(n1=(k+1)).In one of the PIR schemes of Chor et al. [6], both a and t are O(n1=3), and k = 4. By a minormodi�cation to that scheme, we can reduce k to 3. Thus the third lower bound asserts that for thiscase (i.e., k = 3), communication complexity of 
(n1=4) is essential. We comment that the �rsttwo lower bounds are tight:� There exists a (perfectly secure, one-round) 2-server PIR scheme that uses n-bit queries andlinear answers that are single bits (cf., [6, Sec. 3.1]).� There exists a (perfectly secure, one-round) 2-server, linear-answer PIR scheme in which theuser uses only one bit from each pn bit-long answer, and the queries are also pn-bit longstrings (e.g., by a minor modi�cation of the scheme in [6, Sec. 3.2{3.3] as applied to d = 2).Regarding 2-server schemes, Chor et al. [6] present a scheme where a, k and t are O(n1=3). Ourresults do not yield any lower bound in this setting. In particular, it is compatible with currentknowledge (but considered very unlikely) that a 2-server scheme exists in which a, k and t are allO(log n).The best q-server PIR construction, for large q, is due to Beimel et al. [3], and it achieves a = 1and t = nlog q=(q log log q).All known constructions, including those in [6, 3] are linear and one-round.5



Perspective: Computational security. We stress that the above results (as well as Section 7)refer to an information-theoretic notion of security. A relaxed notion of security, requiring onlysecurity with respect to polynomial-time servers, was put forward and �rst investigated by Chorand Gilboa [5]. Assuming the existence of one-way functions, for any � > 0, they presented 2-server computational-secure PIR schemes of communication complexity O(n�). Furthermore, theirPIR schemes are one-round and use linear 1-bit answers. Combined with our results (or actuallyeven with [6, Sec. 5.2]), this provides another PIR setting in which the relaxed notion of compu-tational security o�ers an advantage over information-theoretic security. (The other PIR settingwe refer to is the single-server setting in which n bits is a lower bound in the case of information-theoretic security [6, Sec. 5.1], whereas communication complexity of O(n�) can be achieved forcomputationally-secure PIR's [10], assuming the intractability of the quadratic residuosity prob-lem.)1.3 Tightness of Our BoundsIn Section 8 we outline some constructions that give upper bounds which are quite close to ourlower bounds for the case of binary codes (or PIR with answer size one).Speci�cally, we present the following constructions:� For every 0 < � � 1=2, c � 2 and for su�ciently large n, a (2; c; �) smooth linear code withencoding length 2O(�n=c). (See Section 2 for a de�nition of smooth code.) This constructionperfectly matches our 2
(�n=c) lower bound that we prove as an intermediate step for ourlower bounds for codes and PIR schemes.� For every 0 < � � 1=2, 0 < � < 1=4 and su�ciently large n, a (2; �; �) locally decodable linearcode with encoding length 2O(�n=(1�2�)). Our lower bound is 2
(��n).� For every 0 < � < 1=2, 0 < � < 2�, a (1 � �)-secure 2-round linear PIR with query sizeO(n(2�� �)) and answer size 1. Our lower bound is 
(n(�� �)).1.4 Subsequent WorkFollowing the preliminary publication of our results, Obata [12] improves our lower bound for binarylinear smooth codes to 2
(�n=(1�2�)), for every � > 0, � < 1=2. (Note that in a locally decodablecode that corrects up to a � fraction of errors, the reconstruction probability cannot be arbitrarilyclose to 1.) In light of the construction that we mentioned above, this lower bound is tight in allparameters.One central question left open by our work refers to general (rather than linear) binary codes.Speci�cally, does the exponential lower-bound on the length of binary linear codes that support2-query decodability extend to general (i.e., non-linear) codes? This question has been resolvedrecently by Kerenidis and de Wolf [11], who proved a 2
(poly(�;�)�n) lower-bound on the length ofany (2; �; �) locally decodable binary code. The results of Kerenidis and de Wolf also apply to2-server, 2-round, (1 � �)-secure PIR with answer size k and recovery probability 1 � �, giving acommunication lower bound of 
(poly(�; �; 2�k) for such schemes. We note that the dependencyof their bound on � and � is worse than in our results. Interestingly, the lower bound of [11] relieson quantum information theory. For special the case of private information retrieval with 1-bit6



answers and recovery probability 1, the lower-bound of [11] was subsequently improved by Beigelet al. [2] (using a simpler \classical" argument).Our lower-bound for the case of general �elds (i.e., Theorem 1.4) was recently improved by Dvirand Shpilka [7], who removed the dependency of the lower bound on the �eld size. We conjecturethat a similar improvement is possible for Theorem 1.6.1.5 OrganizationMost of the paper is devoted to analysis of several types of locally decodable codes, and theapplication to private information retrieval is postponed to the last section (Section 7).We start the analysis of locally decodable codes by using a known reduction (due to Katz andTrevisan [9]) to a combinatorial problem. In case of linear codes the reduction yields a special casefor which we obtain (in Section 3) stronger bounds than the ones obtained in [9]. Indeed, thisimprovement (applicable for the case of linear codes) is the source of all our lower bounds. Weextend our analysis in three directions:1. In Section 4, we consider linear codes over arbitrary �elds (rather than over the �eld GF (2)).Our lower bound in this case is exponential in n, but inversely proportional to the size of the�eld.2. In Section 5, we consider linear codes in which the decoder may read two l-bit long blocks inorder to recover one input bit.Our lower bound in this case is exponential in n=2l, with an improvement to n=minf2l; lkgin case the decoder only uses k out of the l bits in each retrieved block.3. In Section 6, we consider linear codes in which the decoder may read two l-bit long blocks inorder to recover one l-bit long input block.Our lower bound in this case is exponential in n� l2.In Section 8 we consider the tightness of some of our lower-bounds.2 PreliminariesThe notions and results in this section are mostly due to Katz and Trevisan [9]. In particular, theirnotion of smooth codes and its relation to locally decodable codes are central to our analysis. Herewe generalize their de�nition to the case in which the message is over a non-Boolean alphabet.2.1 Smooth CodesInformally, a code is smooth if a corresponding local decoding algorithm \spreads its queries almostuniformly" (or, actually, does not query any code location too frequently).De�nition 2.1 For �xed c; �, and integer q we say that C : �n ! �m is a (q; c; �)-smooth code ifthere exists a probabilistic oracle machine A such that:� In every invocation, A makes at most q queries non-adaptively.7



� For every x 2 f0; 1gn and for every i 2 [n], we havePr[AC(x)(i) = xi] � 1j�j + �:� For every i 2 [n] and j 2 [m], the probability that on input i machine A queries index j is atmost c=m.(The probabilities are taken over the internal coin tosses of A.) An algorithm A satisfying the aboverequirements is called a (q; c; �)-smooth decoding algorithm for C.We stress that the decoding condition in De�nition 2.1 refers only to valid codewords, whereasthe corresponding condition in De�nition 1.1 refers to all oracles that are su�ciently close to validcodewords. To get a feeling for the smoothness condition note that if the decoding machine spreadsits queries uniformly, then we would get c = q (and this is the lowest possible value, assuming thatthe machine always makes q queries). It turns out that any locally decodable code is smooth, forsuitable parameters and by possible modi�cation of the decoding machine.Theorem 2.2 (See Theorem 1 in [9]) Let C : �n ! �m be a (q; �; �)-locally decodable code.Then C is also a (q; q=�; �)-smooth code.This is stated only for the case � = f0; 1g in [9], but the proof applies to the general case as well. Aweak converse also holds, namely, if C is a (q; c; �)-smooth code, then C is also (q; �; �� q�)-locallydecodable, for every � < �=q.2.2 The Recovery GraphsLet C : �n ! �m be a (2; c; �)-smooth code and let algorithm A be a (non-adaptive) (2; c; �)-smoothdecoding algorithm for C. Let fq1; q2g be a pair of elements of [m]. We say that a given invocationof A reads fq1; q2g if the set of indices which A reads in that invocation is exactly fq1; q2g. We saythat fq1; q2g is good for i if there is a non-zero probability that A reads fq1; q2g andPr[AC(x)(i) = xi jA reads fq1; q2g] > 1j�j ;where the probability is taken over x uniformly chosen from f0; 1gn, and over the internal cointosses of A. This may seem a very weak property, but we can derive interesting consequences fromit when C is a linear code. When C is linear, the value of xi can either be deduced as a linearcombination of the entries q1 and q2 of C(x), or it is linearly independent from them. In the lattercase, the pair (q1; q2) cannot possibly be good for i, because, for a random x, the value xi is arandom variable that is statistically independent of the entries q1 and q2 of C(x). Therefore, if(q1; q2) is good for i, and C is linear, it follows that xi can be deduced without errors by lookingat the entries q1 and q2 of C(x).For every i 2 [n], we consider the graph with edge set consisting of the set of good pairs. Wecall this graph the recovery graph for i. We may assume without loss of generality that the decodingprocedure makes two distinct queries, and so the recovery graph has no self-loop.8



De�nition 2.3 Fixing a code C : f0; 1gn ! �m and a 2-query recovery algorithm A, the recoverygraph for i 2 [n], denoted Gi, consists of the vertex set [m] and the edge set Ei that equals the setof pairs fq1; q2g that are good for i.We have the following result about such graphs.Lemma 2.4 ([9]) Let C be a (2; c; �)-smooth code and fGigni=1 be the associated set of recoverygraphs. Then, for every i, the graph Gi = ([m]; Ei) has a matching Mi � Ei of size at least�mj�j=(2c � (j�j � 1)).This is essentially Lemma 4 in [9], but, since we slightly changed the de�nition of the recoverygraph (from [9]), and get slightly better bounds, we present a proof below.Proof: We may assume without loss of generality that, for every i 2 [n] and j1; j2 2 [m],Pr[AC(x)(i) = xi jA queries fj1; j2g] � 1j�j (1)where the probability is taken uniformly over x 2 �n and A's internal coin tosses. (For example,we can modify A so that it outputs a random element of � whenever i 2 [n] and j1; j2 2 [m] do notsatisfy Eq. (1).) It follows from Markov's inequality that, with probability at least j�j�=(j�j � 1),on input i 2 [n], algorithm A generates a pair that is good for i. In other words, with probability atleast j�j�=(j�j � 1), the pair generated by A(i) is an edge in Gi. Thus, if C � [m] is a vertex coverof Gi, then the probability that A(i) queries at least one element of C is at least j�j�=(j�j � 1).On the other hand, no element of [m] is queried by A with probability greater than c=m, and soit follows that jCj � (j�j�=(j�j � 1)=(c=m) = j�j�m=(j�j � 1)c. Since the size of the maximummatching in a graph is at least half the size of the minimum vertex cover, we conclude that Gi hasa matching of size at least j�j�m=2(j�j � 1)c.3 The Boolean Case { Proof of Theorem 1.33.1 Getting Rid Of Projected BitsTo simplify the rest of our analysis, we would like to get rid of bits in the range of the code thatare identical to some input (data) bit. That is, we wish the code to be such that no single bit ofthe output is (always) equal to a particular bit of the input. We can accommodate this conditionessentially by removing the bits of the input that are identical to too many bits in the output. Thisgives the following lemma, which is stated and proven here only for the case of linear codes.1Lemma 3.1 For n > 4c=� and m < 2n=2=n, let C : f0; 1gn ! f0; 1gm be a linear (q; c; �)-smoothcode. Then, for some n0 � n=2, there is a linear code C0 : f0; 1gn0 ! f0; 1g2m that has a (q; c; �=2)-smooth reconstruction procedure such that each of the output bits of C0 is neither identically zeronor equal to a single input bit.1 We conjecture that a similar lemma hold for general codes.9



Thus lower bounds on the length of smooth codes satisfying the conclusion of the lemma yield lowerbounds on general smooth codes. Needless to say, if m � 2n=2=n then we are done anyhow.Proof: We say that the output position j 2 [m] is a projection of the input position i 2 [n] if itholds that C(x)j = xi for every x 2 f0; 1gn. We denote by Pi the set of output positions that areprojections of the input position i 2 [n], and consider the set I of locations in the input that occurin more than a fraction 2=n of the bits of the output; that is, I def= fi 2 [n] : jPij � 2m=ng. Clearly,jIj � n=2. On the other hand, for each i 2 [n] n I, on input i, the reconstruction procedure queriesa location in Pi with probability at most 2c=n, which is less than �=2 (provided that n > 4c=�).Thus, if we modify C in locations [i2[n]nIPi, then we may decrease the recovery probability by atmost �=2, so the recovery condition is met.Without loss of generality, suppose that I = fn0 + 1; :::; ng, where n0 � n=2. We construct thecode C0 : f0; 1gn0 ! f0; 1gm by replacing the values of all projected output bits that correspond toinputs in [n0] by x1+x2, and replacing each input bit xi for i 2 I by some function fi(x1; :::; xn0) tobe determined later. That is, C0(x1; :::; xn0)j = x1 + x + 2 for j 2 [i2[n0]Pi, and C0(x1; :::; xn0)j =C(x1; :::; xn0 ; fn0+1(x0); :::; fn(x0))j otherwise, where x0 = (x1; :::; xn0). Note that C0 essentiallymaintains the decodability properties of the original n0 variables; that is, the recovery algorithm ofC recovers each of the bits of C0 with probability at least (1 + �)=2.Recall that we need to show that each of the output bits of C0 is neither identically zero norequal to a single input bit. This is obvious for j 2 [i2[n0]Pi, and showing it for the other j'srequires an adequate choice of the functions fi's (for i 2 I). This yields n0 + 1 linear inequalitiesfor each of the m output bits, yielding a system on (n0 + 1)m inequalities in the formal variablesx1; :::; xn0 and the undetermined linear functions fn0+1; :::; fn. Using the probabilistic method and(n0 + 1)m < 2n0 , it follows that there exists a choice of these functions such that all (n0 + 1)minequalities are satis�ed (as formal inequalities between linear expressions in the formal variablesx1; :::; xn0).2 The lemma follows.3.2 The Combinatorial LemmaWe will deal with the linear error-correcting code C0 of Lemma 3.1. In the following we will useei to denote a vector in f0; 1gn that has 1 in the i-th coordinate and 0 elsewhere. We can identifyour error-correcting code C0 with a sequence of m0 vectors a1; : : : ; am0 2 f0; 1gn0 , such that the jthbit of C(x) is aj � x. Recall that, by Lemma 3.1, none of these aj's equals any unit vector ei. LetfGign0i=1 be the sequence of recovery graphs associated with C0 as in Lemma 2.4.Lemma 3.2 For every i, and for every fq1; q2g 2 Ei, ei is in the span of faq1 ; aq2g.Proof: Suppose ei is linearly independent of aq1 and aq2 . Then, for a random x, the value x � eiis independent (in the statistical sense) of the values x � aq1 and x � aq2 , and so it is not possible togain any advantage in predicting xi by looking at the q1-th and the q2-th bit of the encoding of x.Since we are dealing with the �eld f0; 1g, when ei is in the span of faq1 ; aq2g there are only threepossibilities: either aq1 or aq2 equals ei itself, or ei = aq1 � aq2 . But for C0 (as in Lemma 3.1) the2 Speci�cally, selecting each fi uniformly among all possible 2n0 linear functions, each inequality is violated withprobability at most 2�n0 . Thus, a random choice of these functions satis�es all inequalities with probability at least1� (n0 + 1)m � 2�n0 > 0. 10



only possible case is that ei = aq1�aq2 . Thus proving Theorem 1.3 reduces to proving the followingresult.Lemma 3.3 (Combinatorial Lemma) Let a1; : : : ; am be a sequence of (not necessarily distinct)elements of f0; 1gn such that for every i 2 [n] there is a set Mi of disjoint pairs of indices fj1; j2gsuch that ei = aj1 � aj2. Then m � 22n, where  def= Pni=1 jMij=nm.Indeed, a special case of interest is where jMij � m, for each i. Below, we will present twoalternative proofs of Lemma 3.3 (the �rst being \combinatorial" and the second \informationtheoretic"). Combining all the above lemmas, we get:Corollary 3.4 Let C : f0; 1gn ! f0; 1gm be a (2; c; �)-smooth linear code, and suppose that n �4c=�. Then m � 2�n=(2c).Notice that Theorem 1.3 is an immediate consequence of Corollary 3.4 and Theorem 2.2.Proof: Ignoring the case ofm � 2n=2=n, we �rst apply Lemma 3.1 to obtain a (2; c; �0)-smooth lin-ear codeC0 : f0; 1gn0 ! f0; 1gm0 , for n0 � n=2,m0 � m and �0 = �=2 such that no bit in the codewordequals a bit of the plaintext. Combining Lemmas 2.4 and 3.2, it follows that 1n0 Pn0i=1 jMij � �0m0=c.Finally, applying Lemma 3.3, we get m0 � 22�0n0=c � 2�n=(2c), and using m � m0 the claim follows.For sake of future reference, we also state the following direct corollary to Lemma 3.3:Corollary 3.5 Let a1; : : : ; am and M1; : : : ;Mn be as in Lemma 3.3. Then, m log2m � 2�Pni=1 jMij.Proof: Just let  def= 1nmPni=1 jMij, and apply Lemma 3.3 (which yields log2m � 2n).3.3 A Combinatorial Proof of Lemma 3.3For starters, let us suppose that all the vectors a1; : : : ; am are di�erent. In this special case, Lemma3.3 is a consequence of the following known combinatorial result.3Lemma 3.6 (See Appendix) For any subset S � f0; 1gn of the hypercube, the number of edgesof the hypercube having both endpoints in S is at most 12 jSj log2 jSj.Let us see that in this special case, Lemma 3.3 follows. Recall that the aforementioned (distinct)vectors a1; : : : ; am are all vertices of a hypercube, and the hypothesis (of Lemma 3.3) implies thatthe total number of edges between these vertices is at least mn. But Lemma 3.6 implies that thisnumber it at most 12mlog2m, and so it follows that m � 22n.3 We note that the lower-bound of Lemma 3.3 is tight and implies Lemma 3.6 as a special case. Speci�cally,in the special case, the set of edges E(S; S) with both endpoints in S can be partitioned into matchings Mi's asin Lemma 3.3. Letting  = (Pi jMij)=(njSj), and applying Lemma 3.3, we get jSj � 22n = 22Pi jMij=jSj. Thus,log2 jSj � 2jE(S; S)j=jSj, which implies jE(S; S)j � (1=2)jSj log2 jSj.11



To complete the proof of Lemma 3.3, we have to consider the case in which a1; : : : ; am are notall di�erent. Note that an analogue of Lemma 3.6 does not hold in this case (e.g., if a1 = � � � =am=2 = 0n and a(m=2)+1 = � � � = am = 10n�1 then we get (m=2)2 edges).4For every a 2 f0; 1gn, let us denote by �a the number of indices j such that aj = a (so thatPa2f0;1gn �a = m). That is, �a is the multiplicity of the vector a in the sequence a1; : : : ; am. Forevery k, let us denote by Sk the set of vectors a such that �a � k, and let sk = jSkj; observe thatXk sk = m; (2)because each vector a that occurs in the sequence a1; : : : ; am is counted exactly �a times. Finally,de�ne �(a; j) to be 1 if �a � j and to be 0 otherwise. With this new piece of notation we can writeXa2f0;1gn Xk�1�(a; k) = m; (3)and we also note that for any two vectors a; b 2 f0; 1gn, we haveminf�a; �bg =Xk�1�(�a; k)�(�b; k): (4)Now we would like to argue that for every i, the following upper bound holds on the size of thematching Mi: jMij � Xa;b:a�b=eiminf�a; �bg = 12Xa minf�a; �a�eig (5)Indeed, for starters we have by de�nition that Mi is the set of all pairs fj1; j2g such that aj1�aj2 =ei, and that all such pairs are disjoint. Let us �x two vectors a and b such that a � b = ei, andconsider how many possible pairs fj1; j2g can belong to Mi subject to aj1 = a and aj2 = b; sincethe pairs have to be disjoint, both �a and �b are upper bounds on the number of such possible pairs.Summing over all choices of a and b gives the �rst part of the bound of (5). Notice that the sum isover all unordered pairs fa; bg, so that if we enumerate all ordered pairs of the form (a; a � ei) weare actually counting each unordered pair twice. This explains the factor 1=2 in the second partof (5).Combining the lemma's hypothesis with Equations (5) and (4), we getmn = nXi=1 jMij� 12 nXi=1 Xa2f0;1gn minf�a; �a�eig= 12 nXi=1 Xa2f0;1gn Xk�1�(�a; k)�(�a�ei ; k)4 Note that this example does not violate Lemma 3.3: for every sequence of Mi's as in Lemma 3.3, it holds thatPni=1 jMij � 1 (since jM1j � 1 and all the other Mi's must be empty). Thus, Lemma 3.3 implies m � 22n , for � 1=nm � 1=2n, which indeed holds (because m � 2). 12



and so mn � 12Xk�1 nXi=1 Xa2f0;1gn �(�a; k)�(�a�ei ; k): (6)Note that Pni=1Pa2f0;1gn �(�a; k)�(�a�ei ; k) counts (twice) the number of hypercube edges withboth endpoints in Sk. Thus, by Lemma 3.6, we have, for every k, thatnXi=1 Xa2f0;1gn �(�a; k)�(�a�ei ; k) � 2 � 12 jSkj log2 jSkj= sk log2 sk � sk � log2m:Combining this inequality with (6), and recalling (2), we havemn � 12Xk sk � log2m = 12m � log2m;from which it follows that m � 22n. This completes the proof of Lemma 3.3.3.4 An Information-Theoretic Proof of Lemma 3.3The \information-theoretic" proof in this section is due to Alex Samorodnitsky, and was suggestedto us after we found the combinatorial proof presented in the previous subsection.Let J be an integer chosen uniformly at random from f1; 2; :::;mg and let X = aJ . We willwrite X = X1X2 � � �Xn, where Xi denotes the ith bit of X, and Xi;j denotes Xi � � �Xj . We considerthe entropy of X, denoted H(X). On one hand, H(X) � log2m. On the other hand, we will provethat H(X) � 2n, and m � 22n will follow immediately.We can express the entropy of X asH(X) = H(X1) +H(X2jX1) + � � �+H(XnjX1 � � �Xn�1): (7)The value of the ith term H(XijX1 � � �Xi�1) = H(XijX1;i�1) is given by the following formula:H(XijX1;i�1) = Xb2f0;1gi�1Pr[X1;i�1 = b] �H(XijX1;i�1 = b): (8)Observe that for any 0-1 random variable Y with p def= Pr(Y = 1) (in our case Y = (XijX1;i�1=b)),we have H(Y ) = H2(p), where H2(x) = x log2(1=x) + (1� x) log2(1=(1 � x)) � 2 �minfx; 1� xg isthe binary entropy function.5 So Eq. (8) is at leastXb2f0;1gi�1Pr[X1;i�1 = b] � 2minfPr[Xi = 0jX1;i�1 = b];Pr[Xi = 1jX1;i�1 = b]g: (9)Let us say X = aJ is an endpoint of an edge of Mi if J is any one of the 2jMij indices in the pairsof Mi. Now, conditioning on the values of any bits other than the ith, the probability that X is an5We claim that, for x 2 [0; 0:5], it holds that H2(x) � 2x (whereas a bound of H2(x) � x is obvious). The claimcan be veri�ed by noting that f(x) def= H2(x)� 2x is convex in that interval, and that f(0) = 0 = f(1=2).13



endpoint of an edge of Mi equals the sum, over � 2 f0; 1g, of the probability that Xi = � and Xis an endpoint of an edge of Mi, under the same conditioning. We prove below thatPr[Xi = � and X is an endpoint of an edge of Mijcond] (10)� minfPr[Xi = 0jcond];Pr[Xi = 1jcond]gfor � = 0; 1. Applying inequality (10) for � = 0; 1, we have1X�=0Pr[Xi = � and X is an endpoint of an edge of Mijcond]� 2minfPr[Xi = 0jcond];Pr[Xi = 1jcond]g;and therefore Pr[X is an endpoint of an edge of Mijcond] (11)� 2minfPr[Xi = 0jcond];Pr[Xi = 1jcond]g:Now we prove inequality (10). We use the fact that the conditioning cond doesn't involve bit iof X. Given an edge e of Mi, either both endpoints satisfy condition cond or neither. HencePr[Xi = 0 and X is an endpoint of an edge of Mijcond] (12)= Pr[Xi = 1 and X is an endpoint of an edge of Mijcond]:Clearly Pr[Xi = 0 and X is an endpoint of an edge of Mijcond]� Pr[Xi = 0jcond]and Pr[Xi = 1 and X is an endpoint of an edge of Mijcond]� Pr[Xi = 1jcond]:By equation (12), for � 2 f0; 1g we havePr[Xi = � and X is an endpoint of an edge of Mijcond]� minfPr[Xi = 0jcond];Pr[Xi = 1jcond]g:This is inequality (10).By inequality (11) with cond replaced by \X1;i�1 = b" for varying b, expression (9) and henceH(XijX1;i�1) are bounded below byXb2f0;1gi�1 Pr[X1;i�1 = b] �Pr[X is an endpoint of an edge of MijX1;i�1 = b]= Pr[X is an endpoint in an edge of Mi]= 2jMijm :Therefore, by equation (7), H(X) � nXi=1 2jMijm = 2m � mn = 2n:Recalling that H(X) � logm, we obtain m � 22n, and establish Lemma 3.3.14



4 Extension To Arbitrary Finite Fields { The Proof of Theorem1.4We extend Theorem 1.3 to linear codes over any �nite �eld F , where F = GF (2) is a special casetreated (slightly better) in Theorem 1.3. Our aim here is to establish Theorem 1.4, which assertsthat if we let C : F n ! Fm be a (2; �; �)-locally decodable linear code, then m � 2 ��8 �n�2�log2 jF j.This result is proven by an argument analogous to the one in Section 3. Here we deal with vectorspaces over an arbitrary �nite �eld. Speci�cally, we let F denote any such �eld, and considern-dimensional vectors over F . In particular, ~ei denotes the n-dimensional vector that has 1 incoordinate i and zero in all other coordinates. We say that a pair of vectors (~u;~v) 2 F n�F n spansa third vector ~w 2 F n if there exists �; � 2 F such that ~w = �~u+ �~v. Again, the analysis reducesto providing lower bounds on the cardinality of multi-sets that contain many disjoint pairs thatspan each ~ei. Indeed the technical contents of this section is captured by the following lemma.Lemma 4.1 Let F be a �nite �eld, n an integer, and S a multi-set of F n. For i = 1; :::; n, let Mibe a set of disjoint pairs of elements of S that span ~ei. ThennXi=1 jMij � 2jSj+ jSj � log2(jSj � jF j):Thus, if 1nPni=1 jMij � jSj, then jSj � 2n�2�log2 jF j.4.1 Getting Rid Of Multiples Of ~eiMotivation: Our �rst goal is to get rid of queries that are multiples of some unit vector ~ei.Intuitively, such queries have limited utility, as shown in Claim 4.2. One bene�t of getting rid ofsuch queries is that recovery via a remaining pair of queries requires to use both answers, thatis, if the query vectors ~u and ~v span ~ei then it must be the case that ei = �~u + �~v, for some�; � 2 F n f0g.Let S be as in Lemma 4.1, and Ei denote the set of all pairs in S that span ~ei. (Recall that Miis a subset of Ei, consisting only of disjoint pairs.) De�neS0 def= S n f�~ei : � 2 F & i = 1; :::; ng (13)E0i def= Ei \ (S0 � S0) (14)M 0i def= Mi \ (S0 � S0): (15)Claim 4.2 Pni=1 jMij � 2jSj+Pni=1 jM 0i j.Proof: We bound from above the number of pairs in [iMi with an endpoint in S n S0. Weconsider two types of pairs:1. A pair (~u;~v) such that either ~u or ~v is a multiple of some ~ei. The number of such pairs isbounded from above by 2 � jS nS0j, because element of the form �~ei can \account" for at mostone pair. 15



2. A pair (~u;~v) such that for some i and �; � 2 F n f0g, ~ei = �~u + �~v. Suppose, without lossof generality, that ~u = ~ej and ~v = �~ei + �~ej . Then ~v contributes to Mi nM 0i , but cannotcontribute (under this case) to any Mk nM 0k with k =2 fi; jg (because if (~u0; ~v) 2Mk nM 0i fork =2 fi; jg, then ~u0 must be a multiple of ~ek and it must hold that ~ek = �0~u0+�0~v with �0 = 0;so this pair is not counted in the current case). It follows that the number of such pairs isbounded above by 2jS0j.Combining the two types, the claim follows.4.2 Reduction To The Boolean caseMotivation: The �rst step in the reduction is to convert the system into one in which recoveryis via �xed coe�cients. Speci�cally, we shall de�ne a redundant form of S0 such that each ~v 2 S0will be represented by its jF j � 1 nonzero multiples. Recovery of the ith entry of the message viaqueries ~u and ~v with multipliers � and �� will be replaced by queries �~u and �~v and straightaddition.Let S0 be a multi-set as above. De�neS00 def= fh~u; �i : ~u 2 S0&� 2 F n f0gg; (16)E00i def= f(h~u; �i; h~v; �i) 2 S00 � S00 : 9 2 F n f0g s.t. �~u� �~v = ~eig: (17)That is, if ~u occurs with multiplicity m in S0, then (for every � 2 F n f0g) h~u; �i occurs withmultiplicity m in S00. Clearly, if (h~u; �i; h~v; �i) 2 E00i , then (~u;~v) 2 E0i. On the other hand, if(~u;~v) 2 E0i, then there exists �; �;  2 F n f0g such that �~u � �~v = ~ei, and thus there exists� 2 F n f0g (i.e., � = �=�) such that (h~u; �i; h~v; ��i) 2 E00i for every � 2 F n f0g.Let M 00i be de�ned as follows. For every (~u;~v) 2M 0i such that �~u� �~v is a multiple of ~ei, andfor every � 2 F n f0g, add (h~u; ��i; h~v; ��i) to M 00i . Note that since ~u;~v 2 S0 are not multiples of~ei, it must be the case that �; � 6= 0, and thus indeed M 00i � E00i .Claim 4.3 1. jS00j = (jF j � 1) � jS0j.2. Pni=1 jM 00i j = (jF j � 1) �Pni=1 jM 0i j.3. M 00i is a set of disjoint pairs in E00i .Proof: All items are obvious by the de�nition. In particular, by the above discussion, M 00i � E00i ,and the disjointness of pairs introduced for each single (~u;~v) 2 M 0i follows similarly. Speci�cally,for every (~u;~v) 2 M 0i , there exist �; � 2 F n f0g such that �~u � �~v is a multiple of ~ei. Thus thepairs (h~u; ��i; h~v; ��i) added to M 00i , for every � 2 F n f0g, are disjoint (because �� = �0� implies� = �0, and similarly for �� = �0�).Motivation: The main reduction step in the reduction is carried out in the following proof. Itrelies on the fact that if ~u0 � ~v0 = ~ei, with  2 F n f0g, then ~u0 and ~v0 agree on all but their ithcoordinate (and they di�er on their ith coordinate).Claim 4.4 Let S000 be an arbitrary subset of F n � F and M 000i be an arbitrary set of disjoint pairssuch that (h~u; �i; h~v; �i) 2M 000i implies �~u� �~v = ~ei for some  2 F n f0g. Then jS000j log2 jS000j �Pni=1 jM 000i j. 16



Proof: We consider a randomized mapping of F n � F to f0; 1gn. The mapping is based on auniformly chosen 2-coloring of F , denoted �, and h~u; �i 2 F n � F is mapped to �(v1) � � ��(vn),where (v1; :::; vn) = �~u. Let us denote by �� : F n � F ! f0; 1gn the mapping induced by the2-coloring � : F ! f0; 1g, that is, ��(~u; �) = �(v1) � � ��(vn), where (v1; :::; vn) = �~u. Thus themulti-set S000 is randomly mapped (by ��) to a multi-set B� of f0; 1gn such that jB�j = jS000j.The key observation is that for every (h~u; �i; h~v; �i) 2 M 000i , with probability 12 , it holds that��(~u; �)���(~v; �) = ei (and otherwise ��(~u; �) = ��(~v; �)). The observation follows by combiningthe fact that �~u = �~v+ ~ei, with  2 F n f0g, and the fact that Pr[�(e) = �(e+ )] = 12 for everye 2 F (and  2 F n f0g). Letting Mi;� denote the pairs in M 000i that are mapped (by ��) to pairs(u; v) such that u� v = ei, we conclude that the expected size of Mi;� equals 12 � jM 000i j, where theexpectation is taken uniformly over all possible �'s.It follows that there exists a 2-coloring � such that Pni=1 jMi;�j � 12 �Pni=1 jM 000i j. Fixing this�, we apply Corollary 3.5 to B� and the Mi;�'s, and conclude that jB�j log2 jB�j � 2 �Pni=1 jMi;�j.Thus jS000j log2 jS000j = jB�j log2 jB�j � 2 � nXi=1 jMi;�j � nXi=1 jM 000i j:Finishing the proof of Lemma 4.1: Using Item 3 of Claim 4.3, we may apply Claim 4.4 to S00and the M 00i 's, and get jS00j log2 jS00j �Pni=1 jM 00i j. Applying the other items of Claim 4.3, we get(jF j � 1) � jS0j log2(jF j � jS0j) > (jF j � 1) � jS0j � log2((jF j � 1)jS0j)= jS00j � log2 jS00j� nXi=1 jM 00i j= (jF j � 1) � nXi=1 jM 0i j:Thus Pni=1 jM 0i j � jS0j log2(jF j � jS0j). Combining this with Claim 4.2, we get Pni=1 jMij � 2jSj +jSj log2(jF j � jSj).5 Extension To Binary Linear Block Codes { The Proof of Theo-rem 1.5In this section we deal with linear codes mapping f0; 1gn to (f0; 1g`)m, where the case ` = 1corresponds to the main result (presented in Section 3). Thus each output symbol is an `-bit longstring, where each of these bits is a linear combination of the n input bits. We show that providinglower bounds for the general case reduces to providing lower bounds for the special case of ` = 1.5.1 Reduction to the Boolean caseLemma 5.1 Let C : f0; 1gn ! (f0; 1g`)m be a (q; c; �)-smooth linear error-correcting code. Thenthere is a code C0 : f0; 1gn ! f0; 1g2`�m that is (q; c � 2`; �)-smooth. Furthermore, suppose that C17



has a decoding algorithm that uses only k predetermined bits out of the ` bits that it receives asanswer to each query. Then there is a code C00 : f0; 1gn ! f0; 1gt�m that is (q; c � t; �)-smooth, wheret =Pki=0 �ì�.Proof: Let x 2 f0; 1gn. We de�ne C0(x) as follows: for every j 2 [m] and for every a 2 f0; 1g`,the entry of C0(x) indexed by (j; a) contains the inner product between the jth (`-bit long) blockof C(x) and the (`-bit long) string a. This encoding has length m0 def= 2`m. We now describe asmooth decoding procedure for C0.Let A be the (2; c; �)-smooth decoding procedure for C. The smooth decoding procedure A0 forC0 will �rst simulate A, and get two queries (j1; j2).There are two cases to be considered, depending on whether or not xi can be reconstructed asa linear combination of the 2` bits C(x)j1 ;C(x)j2 .1. If xi can be reconstructed as a linear combination of the bits C(x)j1 ;C(x)j2 , then this meansthat there are vectors a1; a2 2 f0; 1g` such that xi = a1 � C(x)j1 � a2 �C(x)j2 . (We use thenotation a � b to denote the inner product of the vectors a and b.) In this case, algorithm A0can reconstruct xi by looking at two bits of C0(x), that is, the entries (j1; a1) and (j2; a2).2. If xi cannot be reconstructed as a linear combination the bits C(x)j1 ;C(x)j2 , then, for arandom x, the random variable xi is independent of the random variables C(x)j1 and C(x)j2 .In this case, algorithm A0 outputs a random guess.As argued in the proof of Lemma 2.4, with probability at least 2�, algorithm A (on input i)samples a pair (j1; j2) that is good for i (i.e., allows reconstruction with average success probabilityabove 1=2, when averaging over all possible x's). However, whenever (j1; j2) is good for i, we arein case (1) and A0 correctly reconstructs xi. Combining these two observations, we bound thereconstruction probability of A0 below by 2� � 1 + (1 � 2�) � (1=2) = 1=2 + � (as required). Turningto the smoothness condition, observe that each entry in C0(x) is queried with probability at mostc=m, which equals (2` � c)=m0 as required.In order to prove the \furthermore" part, we do a similar construction, except that the entriesof C00(x) correspond to pairs (j; a) where j 2 [m] and a 2 f0; 1gn is a vector of weight at most k.When introducing the decoding procedure A00 (for C00), we refer not only to the queries made byA but also the the predetermined bit locations in the answer that are inspected by A. Speci�cally,A00 �rst simulates A, and gets two queries (j1; j2) as well as two corresponding sets of bit locationsS1; S2 � [`]. If xi can be reconstructed as a linear combination of the bit positions S1 in C(x)j1and the bit positions S2 in C(x)j2 , then A00 will reconstruct xi using such a linear combination,a computation that can be done by looking at two entries of C00(x), since jS1j; jS2j � k. In theanalysis we note that whenever a pair of queries (j1; j2) (made by A) is good for i, it must be thecase that A00 correctly reconstructs xi when (j1; j2) are the queries selected in the simulation step.5.2 ConsequencesCombining Lemma 5.1 and Corollary 3.4, we obtain the following result.18



Corollary 5.2 Let C : f0; 1gn ! (f0; 1g`)m be a (q; c; �)-smooth linear error-correcting code. Thenm � (1=2l) � 2�n=2�2l�c, provided that n � 2l+2c=�. Furthermore, if C has a decoding algorithm thatuses only k of the ` bits that it receives as answer to each query, then m � (1=t) � 2�n=2�t�c, wheret =Pki=0 �ì�, provided that n � 4ct=�.Theorem 1.5 follows by combining Corollary 5.2 and Theorem 2.2.6 Extension To Binary Linear Block Codes With Block Decoding{ The Proof of Theorem 1.6Here we deal with codes mapping (f0; 1g`)n to (f0; 1g`)m, that is, mapping a sequence of n blocks,each being a string of length `, to a sequence of m such blocks. We consider algorithms that recovera desired (entire) block by making two block-queries.We focus on such codes in which the bits of each output block are a linear combination of the `ninput bits (so indeed the ` = 1 case corresponds to the main result presented in Section 3). We stressthat the ` linear combinations corresponding to one output block are not necessarily consistent withone linear combination of the input blocks. (In case they were, this could be handled as a specialcase of the results presented in Section 4.)6 We call such codes linear block-block codes.We seek stronger bounds than the ones presented in Section 5, and we obtain them by extendingTheorem 1.3. This extension is analogous to but di�erent from the one presented in Section 4. Ouraim here is to establish Theorem 1.6, which asserts that if we let C : (f0; 1g`)n ! (f0; 1g`)m be a(2; �; �)-locally decodable code that is linear block-block, then m � 2 ��8 �n�(`+1)2.This result is proven by an argument analogous to the one in Section 3. Here we deal with `n-bitlong vectors, and consider queries consisting of ` (`n-dimensional) vectors over f0; 1g. For everyi = 1; ::; n, we focus on pairs of queries that allow one to recover the entire ith block. Thus the 2`vectors corresponding to this pair of queries must span the vectors ~e(i�1)`+j for j = 1; :::; `, wherea sequence of vectors ~v1; :::; ~vt 2 f0; 1g`n spans the vector ~w 2 f0; 1g`n if for some I � [t], it holdsthat �i2I~vi = ~w. We say that a pair of queries spans the ith block if the 2` vectors correspondingto this pair of queries span the vectors ~e(i�1)`+j for j = 1; :::; `. Again, the analysis reduces toproviding lower bounds on the cardinality of multi-sets that contain many disjoint pairs that spaneach block. Indeed the technical contents of this section is captured by the following lemma.Lemma 6.1 Let ` � 2 and n be integers, and S a multi-set of Q def= (f0; 1g`n)`. For i = 1; :::; n,let Mi be a set of disjoint pairs of elements of S that span the ith block. ThennXi=1 jMij � (`+ `2) � jSj+ jSj log2 jSjThus, if 1nPni=1 jMij � jSj, then jSj � 2n�`2�`.6 A sequence of ` vectors, v(1); :::; v(`), of f0; 1g`n (i.e., ` linear combinations of the `n input bits) is consistentwith one n-dimensional vector (b1; :::; bn) 2 f0; 1gn (i.e., a linear combination of the n input blocks) if, for everyj = 1; :::; `, the v(j) = (b(j)1 ; ::::; b(j)`n ) such that b(j)k = bdk=`e if k � j (mod `), and b(j)k = 0 otherwise. To see that thiscase is a special case of Section 4, consider the blocks as elements of the �eld GF (2`), and observe that the outputsymbols (i.e., the input blocks viewed as elements of GF (2`)) are merely linear combinations (over GF (2`)) of theinput symbols (and that, furthermore, these linear combinations over the extension �eld GF (2`) are restricted tohaving entries in the base �eld GF (2) = f0; 1g. 19



Notations: It will be more convenient to view queries as ` � `n Boolean matrices (i.e., Q �f0; 1g`�`n), rather than as `-sequences of `n-dimensional vectors. Correspondingly, it is moreconvenient to view the recovery (or spanning) condition in matrix form: Two queries U and Vspan the ith block if there exist two ` � ` matrices A and B such that AU + BV = Ii, where Iiis the ` � `n matrix that consists of ` � ` sub-matrices such that all but the ith sub-matrix areidentically zero and the ith is the identity matrix.6.1 Getting Rid of Singular MultiplesMotivation: Unlike the analogous part of the proof of Lemma 4.1, here we do not modify Sbut rather only modify the M 0i 's. Again, we wish to maintain only query pairs that allow recovery(spanning) via full-rank matrices. It can be shown that such query-pairs are few in number.Let S and the Mi's be as in Lemma 6.1, and Ei be the set of all pairs in S that span theith block. Recall that (U; V ) 2 Ei implies that there exist two ` � ` matrices A and B such thatAU +BV = Ii. Let F denote the set of full rank `� ` matrices. De�neE0i def= f(U; V ) 2 S � S : 9A;B 2 F s.t. AU +BV = Iig; (18)M 0i def= Mi \E0i: (19)Claim 6.2 Pni=1 jMi nM 0i j � `jSj.Proof: Suppose that (U; V ) 2 Mi nM 0i , and let AU + BV = Ii. Then either A or B is not fullrank. Suppose, without loss of generality, that A is not full rank and let w be a nonzero vectorsuch that wA = 0. Then w(AU +BV ) = wBV is a vector that is spanned by Ii, and so V spans avector in the set fe(i�1)`+j : j = 1; :::; `g. Consider now the set of indices i such that V belongs toa pair in Mi nM 0i ; for each such index i, V spans a vector in the set fe(i�1)`+j : j = 1; :::; `g, and fordi�erent indices i the sets fe(i�1)`+j : j = 1; :::; `g are disjoint, and their elements are all linearlyindependent. Considering that V can span at most ` linearly independent vectors, we concludethat there are at most ` indices i such that V belongs to a pair in Mi nM 0i . Thus each V 2 Scontributes at most ` pairs to [ni=1(Mi nM 0i), and the claim follows.6.2 Reduction To The Boolean caseLet S be a multi-set as above and de�neS00 def= fhU;Ai : U 2 S&A 2 Fg; (20)E00i def= f(hU;Ai; hV;Bi) 2 S00 � S00 : A;B 2 F &9C 2 F AU +BV = CIig: (21)That is, if U occurs with multiplicity t in S, then (for every A) hU;Ai occurs with multiplicity tin S00. Clearly, if (hU;Ai; hV;Bi) 2 E00i , then (U; V ) 2 E0i. On the other hand, if (U; V ) 2 E0i, thenthere exist A;B 2 F such that AU+BV = Ii, and so for every C 2 F we have (hU;CAi; hV;CBi) 2E00i . In other words, there exists D 2 F (i.e., D = A�1B) such that for every A0 2 F we have(hU;A0i; hV;A0Di) 2 E00i .Let M 00i be de�ned as follows. For every (U; V ) 2 M 0i and A;B 2 F such that AU + BV = Ii,and for every C 2 F , add (hU;CAi; hV;CBi) to M 00i .20



Claim 6.3 1. jS00j = jF j � jSj and jM 00i j = jF j � jM 0i j.2. M 00i is a set of disjoint pairs in E00i .Proof: The claim follows immediately by the de�nition of S00 and theM 00i 's. Speci�cally, for every(U; V ) 2 M 0i , there exist A;B 2 F such that AU � BV = Ii. Thus the pairs (hU;CAi; hV;CBi)added to M 00i , for every C 2 F , are disjoint (because CA = C 0A implies C = C 0, and similarly forCB = C 0B).Claim 6.4 Let S000 be an arbitrary subset of Q � F and M 000i be an arbitrary set of disjoint pairssuch that (hU;Ai; hV;Bi) 2 M 000i implies AU � BV = CIi for some C 2 F . Then jS000j log2 jS000j �Pni=1 jM 000i j.Recall that Q = (f0; 1g`n)`, but it will be more convenient to view Q as a set of n sequences of`� ` matrices, that is, Q = (f0; 1g`�`)n.Proof: The proof mimics the proof of Claim 4.4. This time, we consider a randomized mapping ofQ�F to f0; 1gn. The mapping is based on a uniformly chosen 2-coloring ofM def= f0; 1g`�`, denoted�, and hU;Ai 2 Q � F is mapped to �(U1) � � ��(Un), where (U1; :::; Un) = AU . Let us denote by�� : Mn�F ! f0; 1gn the mapping induced by the 2-coloring �, that is, ��(U;A) = �(U1) � � ��(Un),where (U1; :::; Un) = AU . Thus the multi-set S000 is randomly mapped (by ��) to a multi-set B� off0; 1gn such that jB�j = jS000j. Again, the key observation is that for every (hU;Ai; hV;Bi) 2M 000i ,with probability 12 , it holds that ��(U;A) � ��(V;B) = ei, and otherwise ��(U;A) = ��(V;B).To justify the key observation, let (U1; : : : ; Un) = AU and (V1; : : : ; Vn) = BV . Then, Uj = Vj forj 6= i, and Ui 6= Vi. For every choice of the coloring �, we have �(Uj) = �(Vj). With probability12 , we have �(Ui) = �(Vi), and with probability 12 we have �(Ui) 6= �(Vi). The �rst case gives��(U;A) = ��(V;B), and the second case gives ��(U;A)� ��(V;B) = ei. Letting Mi;� denote thepairs in M 000i that are mapped (by ��) to pairs (u; v) such that u � v = ei, we conclude that theexpected size of Mi;� equals 12 � jM 000i j, where the expectation is taken uniformly over all possible�'s.It follows that there exists a 2-coloring � such that Pni=1 jMi;�j � 12 �Pni=1 jM 000i j. Fixing this�, we apply Corollary 3.5 to B� and the Mi;�'s, and conclude that jB�j log2 jB�j � 2 �Pni=1 jMi;�j.Thus jS000j log2 jS000j = jB�j log2 jB�j � 2 � nXi=1 jMi;�j � nXi=1 jM 000i j:Finishing the proof of Lemma 6.1: Using Item 2 of Claim 6.3, we may apply Claim 6.4 to S00and the M 00i 's, and get jS00j log2 jS00j �Pni=1 jM 00i j. Applying the other item of Claim 6.3, we getjF j � jSj log2(jF j � jSj) � jF j � nXi=1 jM 0i j:Thus Pni=1 jM 0i j � jSj log2(jF j � jSj). Combining this with Claim 6.2 (and using jF j � 2`2), we getnXi=1 jMij � ` � jSj+ nXi=1 jM 0i j21



� ` � jSj+ jSj log2(2`2 � jSj)� (`+ `2) � jSj+ jSj log2 jSj:7 Lower Bounds For Private Information Retrieval { Proof of The-orem 1.8The main result of this section is a reduction showing that a one-round PIR system can be convertedinto a smooth error-correcting code. This transformation preserves linearity, and hence, combinedwith the lower bound for smooth linear codes, yields a lower bound for linear one-round PIRsystems.7.1 Constructing Smooth Codes Based on PIR SchemesActually, we consider a relaxed notion of a PIR. First, recovery is not required to always be correctbut rather only to be correct with probability at least 1=2 + �, where the probability is taken overthe PIR's randomization for any �xed input (i.e., a database and a desired bit). Second, we do notrequire perfect secrecy (i.e., � = 0), but rather that the distributions of each query for each desiredbit are at pairwise statistical distance at most �.Lemma 7.1 Suppose there is a one-round, (1 � �)-secure PIR scheme with two servers, databasesize n, query size t, answer size a, and recovery probability at least 1=2 + �. Then there is a(2; 3; � � �)-smooth error-correcting code C : f0; 1gn ! (f0; 1ga)m, where m � 6 � 2t. Furthermore:1. If in the PIR scheme the answer bits are a linear combination of the data, then C is linear.2. If, in the PIR scheme, the user only uses k predetermined bits out of the a bits it receives asan answer to each question, then the same property is true for the decoding algorithm of C.Proof: Let us �rst develop some intuition about the proof. By enumerating all possible answersfrom either server, we can view the PIR system as encoding the database x 2 f0; 1gn as a stringPIR(x) 2 (f0; 1ga)l, where l = 2 � 2t. The user can reconstruct one bit xi of the database withadvantage � by looking at two entries of the encoded string PIR(x). For any i and j, the distributionof the �rst entry read into PIR(x) when reconstructing xi is �-close to the distribution of the �rstentry read into PIR(x) when reconstructing xj (and similarly for the second entry). Instead of thiscloseness property, we would like to have a smoothness property, that is, we would like each entryto be read with low probability. We are willing to make the encoding be slightly longer in order toachieve this goal. We will achieve this goal by duplicating entries that have a high probability ofbeing read.Suppose, to start, that � = 0. Then, for every j, the probability that entry j is queried by thereconstruction algorithm (as a �rst query or as a second query) is a �xed value pj (independent ofwhich bit of the database the user wants to reconstruct); note that Pj pj = 2. We will replicateentry j of the encoding nj = dpj � le times, denoting by C(x) this new encoding (with repetitions)of x. Recall that PIR(x) 2 (f0; 1ga)l (and we will show that C(x) 2 (f0; 1ga)O(l)).A reconstruction algorithm for xi from C(x) will generate queries j1; j2 as in the reconstructionalgorithm that accesses PIR(x). The algorithm then picks at random one of the nj1 copies of thej1th entry and one of the nj2 copies of the j2th entry, and then accesses these selected two entries22



in C(x). Clearly, the advantage in decoding xi remains the same. Regarding smoothness, let usconsider an entry j in PIR(x). If pj � 1=l, then the corresponding (unique) bit in C(x) is accessedwith probability pj � 1=l. Otherwise (i.e., pj > 1=l), the jth entry is replicated nj = dpjle > 1times, and each copy is accessed with probability pj=nj, which ispjdpjle � pjpjl = 1l :The length of the new encoding is m =Plj=1 nj, and we havem = lXj=1 dpjle� lXj=1(1 + pjl)= l +Xj pjl= 3l = 6 � 2q:Recall that no entry is queried with probability higher than 1=l, which (usingm � 3l) is boundedabove by 3=m.Consider now the general case in which the query distributions for xi1 and xi2 are only guar-anteed to be �-close. We apply the previously described construction using the distribution ofqueries for x1. When we want to reconstruct xi we proceed as follows. For every j, let pj bethe probability that j is queried when reconstructing x1 and let qj be the probability that j isqueried when reconstructing xi. Note that Pj pj = Pj qj = 2 and that Pj jpj � qjj � 4�, and soPj:qj>pj (qj � pj) � 2�. We sample queries j1; j2 as in the original algorithm for xi (modi�ed soas to choose a random copy, if the required entry has multiple copies), and then if qj1 � pj1 , weproceed to make query j1. If qj1 > pj1 , then we read query j1 with probability pj1=qj1 and we entera \failure mode" with the remaining probability. In failure mode, bit xi is just guessed randomly.Query j2 is handled similarly.Observe that the smoothness requirement is satis�ed as before (since each bit corresponding tothe original query j is accessed with probability minfqj ; pjg=nj � pj=nj � 1=l). The probabilityof entering the failure mode is Pj:qj>pj (qj � pj) � 2�, and when the failure mode is entered, theprobability of guessing xi correctly is exactly one half. Thus, in the worst case, failures subtract �of the probability of guessing xi correctly, and so the overall probability of guessing xi right is atleast 1=2 + �� �.7.2 ConsequencesTheorem 1.8 follows by combining Lemma 7.1 and Corollary 5.2. Speci�cally, using m � 6 � 2t, asmoothness bound of c = 3 and recovery advantage � � �, we have 6 � 2t � 1f(k;a) � 2 (���)�n2�3�f(k;a) , andTheorem 1.8 follows.77Note that, in order to use Corollary 5.2, we need to assume n � 12f(k; a)=(���). If the condition is not satis�ed,however, the conclusion of Theorem 1.8 is still true, because it reduces to the trivial statement that t is larger thana negative number. 23



8 Tightness of our BoundsIn this section we show that, for the case of binary alphabets, our bounds are almost tight in theirdependency on all parameters. Some of the bounds presented in this section also appear in [12],credited to Trevisan.We begin by recalling that the Hadamard code is a locally decodable and smooth code and howit gives a private information retrieval system.The Hadamard code is a linear code C : f0; 1gn ! f0; 1g2n . We index the 2n entries of acodeword by using elements of f0; 1gn instead of using integers in [2n], and for a message x and anentry a we have C(x)[a] = x � a, where the dot product x � a is de�ned as Pi xiai (mod 2).Such a code is (2; 2; 1=2) smooth. The decoding algorithm, when given a codeword C(x) and anindex i, picks at random a string a 2 f0; 1gn and it computes C(x)[a+ ei]�C(x)[a], where all theoperations are done modulo 2 and ei is the vector with a 1 in the ith position and zeroes everywhereelse. The algorithm is always correct, because the output of the algorithm is x � (a + ei) � x � awhich, by linearity, is equal to x � ei = xi. Both queries are uniformly distributed, and so everylocation is queried with probability exactly 2=2n.The same algorithm also shows that the Hadamard code is (2; �; 1=2� 2�) locally decodable forevery � < 1=4.Since the encoding length of the Hadamard code is 2n, this implies that for constant � and �,our lower bound of 2
(��n) on the encoding length of a (2; �; �) locally decodable linear code is tight,and so is, for constant c, our 2
(�n=c) lower bound on the encoding length of a (2; c; �) smooth linearcode.Finally, we note that the algorithm also implies the existence of a 1-secure 2-server one-roundlinear PIR scheme with recovery probability 1, query size n and answer size 1. We proved a
((�� �)n) lower bound on the query size of a (1� �)-secure 2-server one-round linear PIR schemewith answer size 1, and so our bound is tight for constant � and constant � < �.We are now going to consider some other constructions based on the Hadamard code that showthat bound are tight (or almost tight) also in their dependency on the other parameters.8.1 Smooth CodesFor a given parameter t, that we will set later, we de�ne a code C : f0; 1gn ! f0; 1gt�2n=t asfollows:8 we divide the input message into t blocks of length n=t each. We encode each block usingthe Hadamard code, and then we concatenate the encodings together. The length of the encodingis therefore t � 2n=t.The decoding algorithm, given C(x) and i, applies the Hadamard decoding algorithm to theportion of C(x) that contains the encoding of the block of x to which xi belongs. The decodingprocedure makes two queries, and each entry of C(x) has a probability of being queried which iseither zero or 2=2n=t. The decoding procedure is then (2; 2t; 1=2) smooth, and by setting t = c=2,we get a (2; c; 1=2)-smooth code with encoding length (c=2) � 22n=c = 2O(n=c).Consider now the following decoding algorithm: with probability 2� run the above decodingprocedure; with probability 1 � 2� make two queries uniformly at random among the entries thatwould not be queried by the decoding procedure, and then output a random bit. This algorithm hasa probability 2�+(1� 2�)=2 = 1=2+ � of outputting the right answer. Regarding smoothness, each8We assume for simplicity that n=t is an integer. 24



entry has either a probability 2�=2n=t or 2(1��)=((t�1) �2n=t) of being queried. By setting t = c=2�,we get that the decoding procedure is (2; c; �)-smooth and the encoding length is (c=2�) � 22�n=c =2O(�n=c). Our 2
(�n=c) lower bound is thus tight in its dependency on all the parameters.8.2 Locally Decodable CodesThe (2; c; 1=2)-smooth code that we described in the previous section is also a (2; �; 1=2 � c � �)-locally decodable code (whereas its length is (c=2) � 22n=c). (Use the �rst decoding procedure andnote that the decoding error is c � �.) In particular, setting c = (1 � 2�)=2� � 2, we can have a(2; �; �) locally decodable code with encoding length 2O(n�=(1�2�)). Note that this holds only for� � (1=2) � 2�, and that for very small � this upper-bound does not not quite match our 2
(��n)lower bound. Obata [12] has recently closed this gap by proving an improved, and tight, lowerbound of 2
(n�=(1�2�)).8.3 Private Information RetrievalWe consider again the encoding C : f0; 1gn ! f0; 1gt�2n=t where the input is divided into t blocks,each block is encoded using the Hadamard code, and then the blocks are concatenated together. Inthe 2-server PIR schemes described in this section, a query is an entry j 2 [t �2n=t] and the reply of aserver to query j for database x is the j-th bit of C(x). The query size is thus n=t+log t = O(n=t).The protocols di�er in the choice of t and in the algorithm for the user.As a �rst scheme, the user, given index i, runs with probability 1=t the Hadamard decodingalgorithm to recover the bit i; with probability 1 � 1=t it makes two random queries that areuniformly distributed among the queries that are never made by the decoding algorithm for biti, and then produces a random answer. Each server sees a uniform query regardless of i, so theprotocol is 1-secure. The probability of success for the user is 1=t + (1 � 1=t)=2 = 1=2 + 1=2t.By setting t = 1=(2�) we get a PIR system with query size O(�n), perfect security and recoveryprobability 1=2 + �.Suppose now that we just want to construct a (1 � �)-secure system. Then the user can runthe Hadamard decoding algorithm with probability � + 1=t and make random other queries withprobability 1 � � � 1=t. This still guarantees (1 � �)-security. The recovery probability is now1=2 + �=2 + 1=2t, which is 1=2 + � if we set t = 1=(2� � �). With such a setting we get a (1 � �)-secure system with recovery probability 1=2 + � and query size O(n(2� � �)), which is a close, ifimperfect, match for our 
(n(�� �)) lower bound.AcknowledgmentsWe are grateful to Alex Samorodnitsky for suggesting to us the information-theoretic proof ofLemma 3.3 and allowing us to present it in Section 3.4. Thanks also to Noga Alon for helpfuldiscussions, to Yan Zhong Ding for suggesting an improvement in Section 3.3, and to the anonymousreferees for their valuable comments.
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Appendix: Proof of Lemma 3.6Theorem 2 in [4, Sec. 16] establishes a tighter upper-bound on the number of internal edges; that is,the upper-bound is tight for any possible value of jSj. The said upper-bound has a more cumbersomeform, which does imply the upper-bound of Lemma 3.6 (i.e., 12 jSj log2 jSj), but Exercise 1 in [4,Sec. 16] only asserts an upper-bound of 12 jSj dlog2 jSje. Here, we present a direct proof of Lemma 3.6,which is simpler than the proof of Theorem 2 in [4, Sec. 16]. This proof seems to be folklore.The proof is by induction on the size of the set S � f0; 1gn. The base case of a singleton setis trivial. In the induction step (i.e., for jSj � 2), we consider any bit that is not �xed over thestrings in S, and denotes by S0 and S1 the partition of S according to the value of this bit. Usingthe induction hypothesis, the number of internal edges in S is at most12 jS0j log2 jS0j+ 12 jS1j log2 jS1j+min(jS0j; jS1j); (22)where the last term upper-bounds the number of edges between S0 and S1. Assuming, withoutloss of generality, that jS0j � jS1 and denoting m = jSj and x = jS0j=jSj, the expression inEq. (22) is captured by the function fm(x) def= 12 [(xm log2 xm)+(1�x) log2(1�x)m]+xm. Clearly,fm(x) = (m=2) � (2x�H2(x))+ 12m log2m, where H2(x) = x log2(1=x)+(1�x) log2(1=(1�x)), andthe claim follows by noting that H2(x) � 2x for x 2 (0; 1=2]. The latter fact follows by (H2(0) = 0and H2(1=2) = 1 and) the convexity of H2 in the interval [0; 1=2], which in turn follows by the factthat H2(x) � x log2(1=x) � x in this interval.
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