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1 IntroductionThis paper is concerned with two related notions. The �rst notion is that oflocally decodable codes (LDC), which are error-correcting codes that allowrecovery of individual information bits based on a few (randomly selected)codeword bits. The second notion is that of private information retrieval(PIR) schemes, which are protocols allowing users to retrieve desired dataitems from several (non-colluding) servers without yielding any informationto any individual server. The relation between these notions has been ob-served by some researchers before, and is further established in this paper.The study of LDCs was initiated by Katz and Trevisan [5], who estab-lished super-linear (but at most quadratic) lower bounds on the length ofcodes that allow recovery based on a constant number of bits. In contrast,the best known constructions of LDCs (supporting such e�cient recovery)have sub-exponential length. This leaves a huge gap between the knownlower and upper bounds, and an important research goal is to try to closethis gap. We take a �rst step in this direction by closing the gap (via im-proved lower bounds) for the special case of linear LDCs in which recoveryis based on two bits.The study of PIR schemes was initiated by Chor, Goldreich, Kushilevitzand Sudan [4], who presented (among other schemes) a one-round, 2-serverPIR scheme of communication complexity O(n1=3). The question of whethertheir (2-server) PIR scheme has the lowest communication complexity pos-sible has been open since. We present several results that are related tothis question, where all our results relate to the special case of one-round,2-server PIR schemes in which the servers' answers are always linear com-binations of the data bits.1.1 Locally Decodable CodesIn this paper we consider error-correcting codes with the following localdecodability property: given a corrupted codeword it is possible to recovereach bit of the original message by applying a probabilistic procedure thatlooks at only two entries of the corrupted codeword. The procedure shouldpredict each bit with a constant advantage even when there is a constantfraction of errors in corrupted codeword. The Hadamard code satis�es thisrequirement, but unfortunately its codewords are exponentially longer thanthe message they encode. In this paper, we prove that this is essentially thebest possible with respect to linear codes.Let us �rst de�ne formally the notion of a locally decodable code. For2



a natural number n, we let [n] def= f1; :::; ng. For x 2 �m and i 2 [m], welet xi be the ith element of x; that is, x = x1 � � � xm. For y; z 2 �m, wedenote by d(y; z) the number of locations on which y and z di�er, that is,d(y; z) = jfi : yi 6= zigj.De�nition 1.1 For reals �; � and an integer q, we say that C : �n ! �m isa (q; �; �)-locally decodable code if there exists a probabilistic oracle machineA such that:� In every invocation, A makes at most q queries (possibly adaptively).Query i 2 [m] to the oracle y 2 �m is answered by yi.� For every x 2 �n, for every y 2 �m with d(y;C(x)) � �m, and forevery i 2 [n], we have Pr[Ay(i) = xi] � 12 + �;where the probability is taken over the internal coin tosses of A.An algorithm A satisfying the above requirements is called an (adaptive)(q; �; �)-local decoding algorithm for C.While it appears natural to allow adaptive reconstruction algorithms in ourde�nition, we only know how to directly prove lower bounds in the non-adaptive case. Lower bounds for the non-adaptive case can be generalizedto the adaptive case by using the following reduction.Lemma 1.2 ([5]) Let C : �n ! �m be an error-correcting code that has anadaptive (2; �; �)-local decoding algorithm. Then C also has a non-adaptive(2; �; �=j�j)-local decoding algorithm.All the results that we will state (from now on) refer to non-adaptive recon-struction procedures, and \local decoding algorithm" and \locally decodablecode" will always refer to the non-adaptive case. We omit the statement ofthe results for the adaptive case (which can be obtained by the applicationof the above lemma).As stated above, our work focuses on linear codes. In particular, we willconsider the following settings:� � = � = F is a �nite �eld, and the function C : F n ! Fm is a linearmapping between the vector spaces F n and Fm. In Theorem 1.3 (andin Section 3) we deal with the special case � = � = GF (2), while inTheorem 1.4 (and in Section 4) we deal with general �elds.3



� � = f0; 1g, � = f0; 1gl , and C : f0; 1gn ! f0; 1glm is linear. We dealwith this case in Theorem 1.5 (and in Section 5).� � = � = f0; 1gl , and C : f0; 1gln ! f0; 1glm is linear. That is, weconsider codes mapping a sequence of n blocks, each being a string oflength l, to a sequence of m such blocks, and algorithms that recovera desired (entire) block by making two block-queries. We refer to suchcodes as block-block codes, and deal with them in Theorem 1.6 (andin Section 6).Our main result isTheorem 1.3 Let � = � = f0; 1g, and let C : �n ! �m be a (2; �; �)-locallydecodable linear code. Then m � 2��n=8.The result has the following extensions to larger alphabets (correspondingto the three cases discussed above). First, we consider an extension to linearcodes over arbitrary �nite �elds.Theorem 1.4 Let C : F n ! Fm be a (2; �; �)-locally decodable linear code.Then m � 2 ��16 �n�1�log2 jF j.Theorem 1.5 Let C : f0; 1gn ! (f0; 1gl)m be a (2; �; �)-locally decodablelinear code, and suppose that the decoder uses only k predetermined bits outof the l bits that it receives as answer to each query. Then m � (1=f(k; l)) �2��n=(8f(k;l)), where f(k; l) =Pki=0 �li� � minf2l; 2lkg.Theorem 1.6 Let C : (f0; 1g`)n ! (f0; 1g`)m be a (2; �; �)-locally decodablecode that is a linear block-block code. Then m � 2 ��16 �n�(`+1)2.Theorem 1.4 is proved in Section 4, by an extension of the argumentused in the proof of Theorem 1.3. Theorem 1.5 is proved in Section 5 bymeans of a reduction to the case l = k = 1 and an application of Theorem1.3. Theorem 1.6 is proved in Section 6 by an extension of the argumentused in the proof of Theorem 1.3.1.2 Private Informational RetrievalLoosely speaking, a Private Information Retrieval (PIR) scheme for k serversis a protocol by which a user can obtain the value of a desired bit out ofn bits held by the servers without yielding the identity of this bit to anyindividual server (assuming that the servers do not cooperate in order to4



learn the identity of the desired bit). The aim is to obtain PIR schemesof low communication complexity (i.e., substantially lower than the obvioussolution of having a server send all n bits to the user). We focus on one-roundPIR schemes that are protocols in which the user sends a single message toeach server, which responds also with a single message. In the de�nitionbelow, Q represents the algorithm employed by the user to generate itsqueries, Sj represents the algorithm employed by the jth server, and Rrepresents the recovery algorithm used by the user (once it gets the servers'answers).De�nition 1.7 A one-round, (1��)-secure, 2-server PIR scheme for databasesize n, with recovery probability p, query size t and answer size a is a quadrupleof deterministic algorithms A = (Q;S1; S2; R) with the following properties.Algorithmic operation: On input i 2 [n] and (random-tape) r 2 f0; 1gL,algorithm Q outputs a pair of t-bit long queries; that is, (q1; q2) def=Q(i; r).On input a database x 2 f0; 1gn, and query q 2 f0; 1gt, algorithmS1 (resp., S2) returns an answer S1(x; q) 2 f0; 1ga (resp., S2(x; q) 2f0; 1ga).On input i 2 [n], r 2 f0; 1gL, and answers �1; �2 2 f0; 1ga, algorithmR outputs a bit R(i; r; �1; �2), which is supposed to be a guess of theentry xi.The recovery condition: We denote by A(i; x) the random variable thatrepresents the output of R(i; r; S1(x; q1); S2(x; q2)), where (q1; q2) =Q(i; r) and the probability space is induced by the uniform distributionof r 2 f0; 1gL. Then, for every i 2 [n] and x 2 f0; 1gn, it must holdthat Pr[A(i; x) = xi] � p.The secrecy condition: For i 2 [n], denote by Q1(i) (resp., Q2(i)) the dis-tribution induced on the �rst (resp., second) element of Q(i; r) when ris uniformly distributed in f0; 1gL. Then, for every i; j 2 [n], the dis-tributions Q1(i) and Q1(j) (resp., Q2(i) and Q2(j)) are �-close (i.e.,the statistical di�erence between them is at most �).Notice that we relax (and quantify) the security and recovery requirements;the traditional perfect requirements are obtained by setting � = 0 and p = 1.On the other hand, in the following, we restrict our attention to PIR schemeswhich have linear answers; that is, for every �xed query q 2 f0; 1gt, theservers' answers S1(x; q) and S2(x; q) are linear functions of x (each bit of5



S1(x; q) and each bit of S2(x; q) is a linear combination of the bits of x). Theabove-mentioned PIR scheme of Chor et. al. [4] satis�es this requirement.Theorem 1.8 Suppose there is a one-round, (1 � �)-secure PIR schemewith 2 servers, linear answers, database size n, query size t, answer sizea, and recovery probability 1=2 + �. Suppose also that the user only uses kpredetermined bits out of the a bits it receives as answer to each query. Thent > (�� �) � n12 � f(k; a) � log2 f(k; a)� 3;where f(k; a) =Pki=0 �ai� � minf2a; 2akg.As immediate corollaries we conclude that� Any (secure, one-round) 2-server PIR scheme with linear answers ofconstant length must have queries of linear (i.e., 
(n)) length. (Thisextends a simple lower bound (of n� 1 bits) on the length of queriesin a 2-server PIR scheme with single-bit linear answers [4, Sec. 5.2].)� Any (secure, one-round) 2-server PIR scheme with linear answers inwhich the user only uses one bit from each answer must have commu-nication complexity 
(pn).� Any (secure, one-round) 2-server PIR scheme with linear answers inwhich the user only uses k bits from each answer, k a constant, musthave communication complexity 
(n1=(k+1)).In the abovementioned PIR scheme of Chor et. al. [4], both a and t areO(n1=3), and k = 4. By a minor modi�cation to that scheme, we can reducek to 3. Thus the third lower bound asserts that for this case (i.e., k = 3),communication complexity of 
(n1=4) is essential. We comment that the�rst two lower bounds are tight:� There exists a (perfectly secure, one-round) 2-server PIR scheme thatuses n-bit queries and linear answers that are single bits (cf., [4,Sec. 3.1]).� There exists a (perfectly secure, one-round) 2-server, linear-answerPIR scheme in which the user uses only one bit from each pn bit-longanswer, and the queries are also pn-bit long strings (e.g., by a minormodi�cation of the scheme in [4, Sec. 3.2{3.3] as applied to d = 2).
6



Perspective: Computational security. We stress that the above re-sults (as well as Section 7) refer to an information-theoretic notion of se-curity. A relaxed notion of security, requiring only security with respectto polynomial-time servers, was put forward and �rst investigated by Chorand Gilboa [3]. Assuming the existence of one-way functions, for any � > 0,they presented 2-server computational-secure PIR schemes of communica-tion complexity O(n�). Furthermore, their PIR schemes are one-round anduse linear 1-bit answers. Combined with our results (or actually even with [4,Sec. 5.2]), this provides another PIR setting in which the relaxed notionof computational security o�ers an advantage over information-theoreticsecurity. (The other PIR setting we refer to is the single-server settingin which n bits is a lower bound in the case of information-theoretic se-curity [4, Sec. 5.1], whereas communication complexity of O(n�) can beachieved for computationally-secure PIR's [6], assuming the intractabilityof the quadratic residuo.ity problem.)1.3 OrganizationMost of the paper is devoted to analysis of several types of locally decodablecodes, and the application to private information retrieval is postponed tothe last section (Section 7).We start the analysis of locally decodable codes by using a known re-duction (due to Katz and Trevisan [5]) to a combinatorial problem. In caseof linear codes the reduction yields a special case for which we obtain (inSection 3) stronger bounds than the ones obtained in [5]. Indeed, this im-provement (applicable for the case of linear codes) is the source of all ourlower bounds. We extend our analysis in three directions:1. In Section 4, we consider linear codes over arbitrary �elds (rather thanover the �eld GF (2)).Our lower bound in this case is exponential in n, but inversely propor-tional to the size of the �eld.2. In Section 5, we consider linear codes in which the decoder may readtwo l-bit long blocks in order to recover one input bit.Our lower bound in this case is exponential in n=2l, with an improve-ment to n=minf2l; lkg in case the decoder only uses k out of the l bitsin each retrieved block.3. In Section 6, we consider linear codes in which the decoder may readtwo l-bit long blocks in order to recover one l-bit long input block.Our lower bound in this case is exponential in n� l2.7



2 PreliminariesThe notions and results in this section are mostly due to Katz and Tre-visan [5]. In particular, their notion of smooth codes and its relation tolocally decodable codes are central to our analysis. Here we generalize theirde�nition to the case in which the message is over a non-Boolean alphabet.2.1 Smooth CodesInformally, a code is smooth if a corresponding local decoding algorithm\spreads its queries almost uniformly" (or, actually, does not query anycode location too frequently).De�nition 2.1 For �xed c; �, and integer q we say that C : �n ! �m isa (q; c; �)-smooth code if there exists a probabilistic oracle machine A suchthat:� In every invocation, A makes at most q queries nonadaptively.� For every x 2 f0; 1gn and for every i 2 [n], we havePr[AC(x)(i) = xi] � 12 + �:� For every i 2 [n] and j 2 [m], the probability that on input i machineA queries index j is at most c=m.(The probabilities are taken over the internal coin tosses of A.) An algo-rithm A satisfying the above requirements is called a (q; c; �)-smooth decodingalgorithm for C.We stress that the decoding condition in De�nition 2.1 refers only to validcodewords, whereas the corresponding condition in De�nition 1.1 refers toall oracles that are su�ciently close to valid codewords. To get a feelingfor the smoothness condition note that if the decoding machine spreads itsqueries uniformly, then we would get c = q (and this is the lowest possiblevalue, assuming that the machine always makes q queries). It turns outthat any locally decodable code is smooth, for suitable parameters and bypossible modi�cation of the decoding machine.Theorem 2.2 (See Theorem 1 in [5]) Let C : �n ! �m be a (q; �; �)-locally decodable code. Then C is also a (q; q=�; �)-smooth code.This is stated only for the case � = f0; 1g in [5], but the proof applies tothe general case as well. 8



2.2 The Recovery GraphsLet C : �n ! �m be a (2; c; �)-smooth code and let algorithm A be a (non-adaptive) (2; c; �)-smooth decoding algorithm for C. Let fq1; q2g be a pairof elements of [m]. We say that a given invocation of A reads fq1; q2g if theset of indices which A reads in that invocation is exactly fq1; q2g. We saythat fq1; q2g is good for i if:Pr[AC(x)(i) = xi jA queries fq1; q2g] > 1=2;where the probability is taken over x uniformly chosen from f0; 1gn, andover the internal coin tosses of A. For every i 2 [n], we consider the graphwith edge set consisting of the set of good pairs. Howard's note: Are weassuming here that q1 6= q2?De�nition 2.3 Fixing a code C : f0; 1gn ! �m and a 2-query recoveryalgorithm A, the recovery graph for i 2 [n], denoted Gi, consists of the vertexset [m] and the edge set Ei that equals the set of pairs fq1; q2g that are goodfor i.We have the following result about such graphs.Lemma 2.4 ([5]) Let C be a (2; c; �)-smooth code and fGigni=1 be the as-sociated set of recovery graphs. Then, for every i, the graph Gi = ([m]; Ei)has a matching Mi � Ei of size at least �m=c.This is essentially Lemma 4 in [5], but, since we slightly changed the de�-nition of the recovery graph (from [5]), and get slightly better bounds, wepresent a proof below.Proof: We may assume without loss of generality that, for every i 2 [n]and j1; j2 2 [m], Pr[AC(x)(i) = xi jA queries fj1; j2g] � 12 (1)where the probability is taken uniformly over x 2 f0; 1gn and A's internalcoin tosses. (For example, we can modify A so that it outputs a randombit whenever i 2 [n] and j1; j2 2 [m] do not satisfy Eq. (1).) Using aMarkov argument, it follows that with probability at least 2�, on inputi 2 [n], algorithm A generates a pair that is good for i. In other words, withprobability at least 2�, the pair generated by A(i) is an edge in Gi. Thus,if C � [m] is a vertex cover of Gi, then the probability that A(i) queries at9



least one element of C is at least 2�. On the other hand, no element of [m]is queried by A with probability greater than c=m, and so it follows thatjCj � (2�)=(c=m) = 2�m=c. Since the size of the maximum matching in agraph is at least half the size of the minimum vertex cover, we conclude thatGi has a matching of size at least �m=c.3 The Boolean Case { Proof of Theorem 1.33.1 Getting Rid Of Projected BitsTo simplify the rest of our analysis, we would like to get rid of bits in therange of the code that are identical to some input (data) bit. That is, wewish the code to be such that no single bit of the output is (always) equal toa particular bit of the input. We can accommodate this condition by �xingbits of the input that are identical to too many bits in the output. Thisgives the following lemma.Lemma 3.1 For n > 4c=�, let C : f0; 1gn ! f0; 1gm be a (q; c; �)-smoothcode. Then there is another code C0 : f0; 1gn0 ! f0; 1gm0 that has a(q; c; �=2)-smooth reconstruction procedure A0, such that n0 � n=2, m0 � m,and for every i and j there exists an x 2 f0; 1gn0 such that the jth bit ofC0(x) is di�erent from xi. Furthermore, if C is a linear code, then so is C0.Thus lower bounds on the length of smooth codes satisfying the conclusionof the lemma yield lower bounds on general smooth codes.Proof: Consider the set I of bits in the input that occur in more thana fraction 2=n of the bits of the output. Clearly, jIj � n=2. For eachi 2 [n] n I, consider the behavior of the smooth reconstruction procedureAC(x)(i) for some x. Since i 62 I, at most a fraction 2=n of the bits ofC(x) contain copies of xi. By the smoothness condition, such code bits areexamined with probability at most 2c=n, which is less than �=2 (providedthat n > 4c=�). Thus, if we modify A such that it does not read such bits,we may decrease the probability that it recovers xi by at most �=2, so therecovery condition is met.We construct the code C0 from C by omitting the output bits that arecopies of any input bit i 2 [n], �xing arbitrary1 values for the bits in I,\hardwiring" these values into C0, and modifying A so that it queries only1 Actually, in order to preserve linearity, these bits should all be set to zero. However,in fact, all our results apply also to a�ne codes.10



bits in C0 (rather than bits in C). Note that the fact that the length of C0may be shorter than the length of C only makes the smoothness conditioneasier to meet.3.2 The Combinatorial LemmaWe will deal with the linear error-correcting code C0 of Lemma 3.1. In thefollowing we will use ei to denote a vector in f0; 1gn that has 1 in the i-thcoordinate and 0 elsewhere. We can identify our error-correcting code C0with a sequence of m0 vectors a1; : : : ; am0 2 f0; 1gn0 , such that the jth bit ofC(x) is aj �x. Recall that, by Lemma 3.1, none of these aj 's equals any unitvector ei. Let fGign0i=1 be the sequence of recovery graphs associated withC0 as in Lemma 2.4.Lemma 3.2 For every i, and for every fq1; q2g 2 Ei, ei is in the span offaq1 ; aq2g.Proof: Suppose ei is linearly independent of aq1 and aq2 . Then, for arandom x, the value x � ei is independent (in the statistical sense) of thevalues x � aq1 and x � aq2 , and so it is not possible to gain any advantage inpredicting xi by looking at the q1-th and the q2-th bit of the encoding of x.Since we are dealing with the �eld f0; 1g, when ei is in the span of faq1 ; aq2gthere are only three possibilities: either aq1 or aq2 equals ei itself, or ei =aq1 � aq2 . But for C0 (as in Lemma 3.1) the only possible case is thatei = aq1 � aq2 . Thus proving Theorem 1.3 reduces to proving the followingresult.Lemma 3.3 (Combinatorial Lemma) Let a1; : : : ; am be elements off0; 1gn such that for every i 2 [n] there is a set Mi of at least 
m dis-joint pairs of indices fj1; j2g such that ei = aj1 � aj2 . Then m � 2
n.Furthermore, the conclusion holds even when the hypothesis only states that1nPni=1 jMij � 
m.Below, we will present two alternative proofs of Lemma 3.3. Actually, thesecond proof yields a stronger lower-bound (of m � 22
n, rather than m �2
n). Combining all the above lemmas, we get:Corollary 3.4 Let C : f0; 1gn ! f0; 1gm be a (2; c; �)-smooth linear code.Then m � 2�n=(4c). 11



Notice that Theorem 1.3 is an immediate consequence of Corollary 3.4 andTheorem 2.2.Proof: We �rst apply Lemma 3.1 to obtain a (2; c; �0)-smooth linear codeC0 : f0; 1gn0 ! f0; 1gm0 , for n0 � n=2, m0 � m and �0 = �=2. CombiningLemmas 2.4 and 3.2, it follows that 1n0 Pn0i=1 jMij � �0m0=c. Finally, applyingLemma 3.3, we get m0 � 2�0n0=c � 2�n=(4c), and using m � m0 the claimfollows.3.3 A Combinatorial Proof of Lemma 3.3For starters, let us suppose that all the vectors a1; : : : ; am are di�erent.In this special case, Lemma 3.3 is a consequence of the following knowncombinatorial result.2Lemma 3.5 (See Appendix) For any subset S � f0; 1gn of the hyper-cube, the number of edges of the hypercube having both endpoints in S is atmost 12 jSj log2 jSj.Note that our (distinct) vectors a1; : : : ; am are all vertices of a hypercube,and we are assuming that, for every i, there are at least 
m edges in the ith\direction" between such vertices. This gives a total of at least 
mn edges,but this number has to be no more than 12mlog2m, and so it follows thatm � 22
n.To complete the proof of Lemma 3.3, we have to consider the case inwhich a1; : : : ; am are not all di�erent. Note that an analogue of Lemma 3.5does not hold in this case (e.g., if a1 = � � � = am=2 = 0n and a(m=2)+1 =� � � = am = 10n�1 then we get (m=2)2 edges).3For every a 2 f0; 1gn, let us denote by �a the number of indices j suchthat aj = a (so that Pa2f0;1gn �a =m). That is, �a is the multiplicity of thevector a in the sequence a1; : : : ; am. For every k, let us denote by Sk the setof vectors a such that �a � k, and let sk = jSkj; observe that2 The proof of Theorem 2 in [2, Sec. 16] implies that the subset S � f0; 1gn of givensize m for which the number of internal edges is maximum is the set of the �rst m = jSjstrings in lexicographic order (of f0; 1gn). Since each such vertex has at most dlog2meinternal edges, we get an upper-bound of 12 jSj dlog2 jSje on the number of internal edges.Indeed, the di�erence is of little signi�cance in the context of our work.3 Note that this example does not violate Lemma 3.3: for every sequence of Mi's asin Lemma 3.3, it holds that Pni=1 jMij � 1 (since jM1j � 1 and all the other Mi's mustbe empty). Thus, the \furthermore hypothesis" only holds with 
 � 1=(nm), implying alower bound of m � 2
n � 2 (which indeed holds).12



Xk sk = m; (2)because each vector a that occurs in the sequence a1; : : : ; am is countedexactly �a times. Finally, de�ne �(a; j) to be 1 if �a � j and to be 0otherwise. With this new piece of notation we can writeXa2f0;1gn Xk�1�(a; k) = m; (3)and we also note that for any two vectors a; b 2 f0; 1gn, we haveminf�a; �bg =Xk�1�(�a; k)�(�b; k): (4)Now we would like to argue that for every i, the following upper boundholds on the size of the matching Mi:jMij � Xa;b:a�b=eiminf�a; �bg: (5)Indeed, for starters we have by de�nition that Mi is the set of all pairsfj1; j2g such that aj1 � aj2 = ei, and that all such pairs are disjoint. Let us�x two vectors a and b such that a� b = ei, and consider how many possiblepairs fj1; j2g can belong to Mi subject to aj1 = a and aj2 = b; since thepairs have to be disjoint, both �a and �b are upper bounds on the numberof such possible pairs. Summing over all choices of a and b gives the boundof (5).Combining the lemma's hypothesis with Equations (5) and (4), we get
mn � nXi=1 jMij� nXi=1 Xa2f0;1gn minf�a; �a�eig= nXi=1 Xa2f0;1gn Xk�1�(�a; k)�(�a�ei ; k)and so 
mn � Xk�1 nXi=1 Xa2f0;1gn �(�a; k)�(�a�ei ; k): (6)13



Note that Pni=1Pa2f0;1gn �(�a; k)�(�a�ei ; k) counts (twice) the number ofhypercube edges with both endpoints in Sk. Thus, by Lemma 3.5, we have,for every k, thatnXi=1 Xa2f0;1gn �(�a; k)�(�a�ei ; k) � 2 � 12 jSkj log2 jSkj= sk log2 sk � sk � log2m:Combining this inequality with (6), and recalling (2), we have
mn �Xk sk � log2m = m � log2m;from which it follows that m � 2
n.3.4 An Information-Theoretic Proof of Lemma 3.3The \information-theoretic" proof in this section is due to Alex Samorod-nitsky, and was suggested to us after we found the combinatorial proofpresented in the previous subsection.Let X be a random variable uniformly distributed in the multisetfa1; : : : ; amg. We will write X = X1X2 � � �Xn, where Xi denotes the ithbit of X, and Xi;j denotes Xi � � �Xj . We consider the entropy of X, denotedH(X). On one hand, H(X) � log2m. On the other hand, we will provethat H(X) � 2
n, and Lemma 3.3 will follow immediately.We can express the entropy of X asH(X) = H(X1) +H(X2jX1) + � � � +H(XnjX1 � � �Xn�1):The value of the ith term, H(XijX1 � � �Xi�1) = H(XijX1;i�1), is given bythe following formula:H(XijX1;i�1) = Xb2f0;1gi�1Pr[X1;i�1 = b] �H(XijX1;i�1 = b): (7)Observe that for any 0-1 random variable Y (in our case Y = (XijX1;i�1=b)), with p def= Pr(Y = 1), we have H(Y ) = H2(p), where H2(x) =x log( 1=x) + (1 � x) log2(1=(1 � x)) � 2 � min(x; 1 � x) is the binary en-
14



tropy function.4 So Eq. (7) is at leastXb2f0;1gi�1Pr[X1;i�1 = b]�2�minfPr[Xi = 0jX1;i�1 = b];Pr[Xi = 1jX1;i�1 = b]g:(8)Now, under any conditioning, the probability that X is an endpoint of anedge in Mi equals the sum over � 2 f0; 1g of the probabilities that Xi = �and X is an endpoint of an edge in the matching Mi (which matches eventsof the type Xi = 0 with events of the type Xi = 1). Thus, each of the twoprobabilities in the sum is bounded above by min(Pr[Xi = 0jcond];Pr[Xi =1jcond]). Thus, Pr[X is an endpoint of e 2MijX1;i�1 = b] is boundedabove by 2 �minfPr[Xi = 0jX1;i�1 = b];Pr[Xi = 1jX1;i�1 = b]g, and Eq. (8)is bounded below byXb2f0;1gi�1Pr[X1;i�1 = b] �Pr[X is an endpoint in an edge of MijX1;i�1 = b]= Pr[X is an endpoint in an edge of Mi]= 2jMijm � 2
:Then H(X) � 2
n and so m � 22
n.Comment: Note that the lower bound established here (i.e., m � 22
n)is a square of the lower-bound claimed in Lemma 3.3. Furthermore, thisstronger lower-bound is tight, and implies Lemma 3.5 as a special case.54 Extension To Arbitrary Finite Fields { TheProof of Theorem 1.4We extend Theorem 1.3 to linear codes over any �nite �eld F , where F =GF (2) is a special case treated (slightly better) in Theorem 1.3.Remember that Theorem 1.4 states that if we let C : F n ! Fm be a(2; �; �)-locally decodable linear code, then m � 2 ��16 �n�1�log2 jF j.4We claim that, for x 2 [0; 0:5], it holds thatH2(x) � 2x (whereas a bound ofH2(x) � xis obvious). The claim can be veri�ed by noting that f(x) def= H2(x)�2x is convex in thatinterval, and that f(0) = 0 = f(1=2).5 Speci�cally, the set of edges E(S; S) with both endpoints in S can be partitionedinto matchings Mi's as in Lemma 3.3. Letting 
 = (Pi jMij)=(njSj), and applying thestronger bound (for Lemma 3.3), we get jSj � 22
n = 22Pi jMij=jSj. Thus, log2 jSj �2jE(S; S)j=jSj, which implies jE(S; S)j � (1=2)jSj log2 jSj.15



This result is proven by an argument analogous to the one in Section 3.Here we deal with vector spaces over an arbitrary �nite �eld. Speci�cally, welet F denote any such �eld, and consider n-dimensional vectors over F . Inparticular, ~ei denotes the n-dimensional vector that has 1 in coordinate i andzero in all other coordinates. We say that a pair of vectors (~u;~v) 2 F n�F nspans a third vector ~w 2 F n if there exists �; � 2 F such that ~w = �~u+ �~v.Again, the analysis reduces to providing lower bounds on the cardinality ofmultisets that contain many disjoint pairs that span each ~ei.Lemma 4.1 Let F be a �nite �eld, n an integer, and S a multiset of F n.For i = 1; :::; n, let Mi be a set of disjoint pairs of elements of S that span~ei. Then nXi=1 jMij � 2jSj + 2 � jSj � log2(jSj � jF j):Thus, if 1nPni=1 jMij � 
jSj, then jSj � 2(
n=2)�1�log2 jF j.4.1 Getting Rid Of Multiples Of ~eiMotivation: Our �rst goal is to get rid of queries that are multiples ofsome unit vector ~ei. Intuitively, such queries have limited utility, as shownin Claim 4.2. One bene�t of getting rid of such queries is that recovery via aremaining pair of queries requires to use both answers, that is, if the queryvectors ~u and ~v span ~ei then it must be the case that ei = �~u+�~v, for some�; � 2 F n f0g.Let S be as in the lemma, and Ei denote the set of all pairs in S thatspan ~ei. (Recall that Mi is a subset of Ei, consisting only of disjoint pairs.)De�ne S0 def= S n f�~ei : � 2 F & i = 1; :::; ng (9)E0i def= Ei \ (S0 � S0) (10)M 0i def= Mi \ (S0 � S0): (11)Claim 4.2 Pni=1 jMij � 2jSj+Pni=1 jM 0i j.Proof: We bound from above the number of pairs in [iMi with an end-point in S n S0. We consider two types of pairs:1. A pair (~u;~v) such that either ~u or ~v is a multiple of some ~ei. Thenumber of such pairs is bounded from above by 2 � jS n S0j, becauseelement of the form �~ei can \account" for at most one pair.16



2. A pair (~u;~v) such that for some i and �; � 2 F n f0g, ~ei = �~u + �~v.Suppose, without loss of generality, that ~u = 
~ej and ~v = �~ei + �~ej .Then ~v contributes to Mi n M 0i , but cannot contribute (under thiscase) to any Mk nM 0k with k =2 fi; jg (because if (~u0; ~v) 2 Mk nM 0ifor k =2 fi; jg, then ~u0 must be a multiple of ~ek and it must hold that~ek = �0~u0 + �0~v with �0 = 0; so this pair is not counted in the currentcase). It follows that the number of such pairs is bounded above by2jS0j.Combining the two types, the claim follows.4.2 Reduction To The Boolean caseMotivation: The �rst step in the reduction is to convert the system intoone in which recovery is via �xed coe�cients. Speci�cally, we shall de�nea redundant form of S0 such that each ~v 2 S0 will be represented by itsjF j � 1 nonzero multiples. Recovery of the ith bit via queries ~u and ~v withmultipliers � and �� will be replaced by queries �~u and �~v and straightaddition.Let S0 be a multiset as above. De�neS00 def= fh~u; �i : ~u 2 S0&� 2 F n f0gg; (12)E00i def= f(h~u; �i; h~v; �i) 2 S00 � S00 : 9
 2 F n f0g s.t. �~u� �~v = 
~eig:(13)That is, if ~u occurs with multiplicity m in S0, then (for every � 2 F n f0g)h~u; �i occurs with multiplicity m in S00. Clearly, if (h~u; �i; h~v; �i) 2 E00i ,then (~u;~v) 2 E0i. On the other hand, if (~u;~v) 2 E0i, then there exists�; �; 
 2 F n f0g such that �~u� �~v = 
~ei, and thus there exists � 2 F n f0g(i.e., � = �=�) such that (h~u; �i; h~v; ��i) 2 E00i for every � 2 F n f0g.Let M 00i be de�ned as follows. For every (~u;~v) 2 M 0i such that �~u � �~vis a multiple of ~ei, and for every � 2 F n f0g, add (h~u; ��i; h~v; ��i) to M 00i .Note that since ~u;~v 2 S0 are not multiples of ~ei, it must be the case that�; � 6= 0, and thus indeed M 00i � E00i .Claim 4.3 1. jS00j = (jF j � 1) � jS0j.2. Pni=1 jM 00i j = (jF j � 1) �Pni=1 jM 0i j.3. M 00i is a set of disjoint pairs in E00i .Proof: All items are obvious by the de�nition. In particular, by theabove discussion, M 00i � E00i , and the disjointness of pairs introduced for17



each single (~u;~v) 2 M 0i follows similarly. Speci�cally, for every (~u;~v) 2M 0i ,there exist �; � 2 F nf0g such that �~u��~v is a multiple of ~ei. Thus the pairs(h~u; ��i; h~v; ��i) added to M 00i , for every � 2 F n f0g, are disjoint (because�� = �0� implies � = �0, and similarly for �� = �0�).Motivation: The main reduction step in the reduction is carried out inthe following proof. It relies on the fact that if ~u0�~v0 = 
~ei, with 
 2 F nf0g,then ~u0 and ~v0 agree on all but their ith coordinate (and they di�er on theirith coordinate).Claim 4.4 Let S000 be an arbitrary subset of F n�F and M 000i be an arbitraryset of disjoint pairs such that (h~u; �i; h~v; �i) 2 M 000i implies �~u � �~v = 
~eifor some 
 2 F n f0g. Then jS000j log2 jS000j � 12 �Pni=1 jM 000i j.Proof: We consider a randomized mapping of F n � F to f0; 1gn. Themapping is based on a uniformly chosen 2-coloring of F , denoted �, andh~u; �i 2 F n � F is mapped to �(v1) � � ��(vn), where (v1; :::; vn) = �~u. Letus denote by �� : F n � F ! f0; 1gn the mapping induced by the 2-coloring� : F ! f0; 1g, that is, ��(~u; �) = �(v1) � �(vn), where (v1; :::; vn) = �~u.Thus the multiset S000 is randomly mapped (by ��) to a multiset B� off0; 1gn such that jB�j = jS000j.The key observation is that for every (h~u; �i; h~v; �i) 2 M 000i , with prob-ability 12 , it holds that ��(~u; �) � ��(~v; �) = ei (and otherwise ��(~u; �) =��(~v; �)). The observation follows by combining the fact that �~u = �~v+
~ei,with 
 2 F n f0g, and the fact that Pr[�(e) = �(e+ 
)] = 12 for every e 2 F(and 
 2 F n f0g). Letting Mi;� denote the pairs in M 000i that are mapped(by ��) to pairs (u; v) such that u� v = ei, we conclude that the expectedsize of Mi;� equals 12 � jM 000i j, where the expectation is taken uniformly overall possible �'s.It follows that there exists a 2-coloring � such that Pni=1 jMi;�j � 12 �Pni=1 jM 000i j. Fixing this �, we apply (the \furthermore" part of) Lemma 3.3to B� and the Mi;�'s, and conclude that jB�j log2 jB�j �Pni=1 jMi;�j. ThusjS000j log2 jS000j = jB�j log2 jB�j � nXi=1 jMi;�j � 12 � nXi=1 jM 000i j:
18



Finishing the proof of Lemma 4.1: Using Item 3 of Claim 4.3, we mayapply Claim 4.4 to S00 and the M 00i 's, and get jS00j log2 jS00j � 12 �Pni=1 jM 00i j.Applying the other items of Claim 4.3, we get(jF j�1)�jS0j log2(jF j�jS0j) � (jF j�1)�jS0j log2((jF j�1)jS0j) � 12 �(jF j�1)� nXi=1 jM 0i j:Thus Pni=1 jM 0i j � 2jS0j log2(jF j � jS0j). Combining this with Claim 4.2, weget Pni=1 jMij � 2jSj+ 2jSj log2(jF j � jSj).5 Extension To Binary Linear Block Codes { TheProof of Theorem 1.5In this section we deal with linear codes mapping f0; 1gn to (f0; 1g`)m, wherethe case ` = 1 corresponds to the main result (presented in Section 3). Thuseach output symbol is an `-bit long string, where each of these bits is a linearcombination of the n input bits. We show that providing lower bounds forthe general case reduces to providing lower bounds for the special case of` = 1.5.1 Reduction to the Boolean caseLemma 5.1 Let C : f0; 1gn ! (f0; 1g`)m be a (q; c; �)-smooth linear error-correcting code. Then there is a code C0 : f0; 1gn ! f0; 1g2` �m that is(q; c � 2`; �)-smooth. Furthermore, suppose that C has a decoding algorithmthat uses only k predetermined bits out of the ` bits that it receives as answerto each query. Then there is a code C00 : f0; 1gn ! f0; 1gt�m that is (q; c�t; �)-smooth, where t =Pki=0 �ì�.Proof: Let x 2 f0; 1gn. We de�ne C0(x) as follows: for every j 2 [m]and for every a 2 f0; 1g`, the entry of C0(x) indexed by (j; a) contains theinner product between the jth (`-bit long) block of C(x) and the (`-bit long)string a. This encoding has length m0 def= 2`m. We now describe a smoothdecoding procedure for C0.Let A be the (2; c; �)-smooth decoding procedure for C. The smoothdecoding procedure A0 for C0 will �rst simulate A, and get two queries(j1; j2). If xi is in the span of C(x)j1 and C(x)j2 , then A0 will reconstructxi as a linear combination of C(x)j1 and C(x)j2 , a computation that can bedone by looking at two entries of C0(x) (i.e., speci�cally the entries (j1; a1)and (j2; a2), where xi = ha1;C(x)j1i+ ha2;C(x)j2i). If xi is not in the span19



of C(x)j1 and C(x)j2 , then A0 will output a random guess. As argued inthe proof of Lemma 2.4, with probability at least 2�, algorithm A (on inputi) samples a pair (j1; j2) that is good for i (i.e., allows reconstruction withaverage success probability above 1=2, when averaging over all possible x's).However, whenever (j1; j2) is good for i, it must be the case that xi is inthe span of C(x)j1 and C(x)j2 , and A0 correctly reconstructs xi. Combiningthese two observations, we bound the reconstruction probability of A0 belowby 2� �1+(1�2�) � (1=2) = 1=2+ � (as required). Turning to the smoothnesscondition, observe that each entry in C0(x) is queried with probability atmost c=m, which equals (2` � c)=m0 as required.In order to prove the \furthermore" part, we do a similar construction,except that the entries of C00(x) correspond to pairs (j; a) where j 2 [m] anda 2 f0; 1gn is a vector of weight at most k. When introducing the decodingprocedure A00 (for C00), we refer not only to the queries made by A but alsothe the predetermined bit locations in the answer that are inspected by A.Speci�cally, A00 �rst simulates A, and gets two queries (j1; j2) as well as twocorresponding sets of bit locations S1; S2 � [`]. If xi is in the span of thebit positions S1 in C(x)j1 and the bit positions S2 in C(x)j2 , then A00 willreconstruct xi as a linear combination of these bit positions, a computationthat can be done by looking at two entries of C00(x), since jS1j; jS2j � k. Inthe analysis we note that whenever a pair of queries (made by A) is goodfor i, it must be the case that xi is in the span of the bits of C(x)j1 andC(x)j2 that are inspected by A, and A00 correctly reconstructs xi.5.2 ConsequencesCombining Lemma 5.1 and Corollary 3.4, we obtain the following result.Corollary 5.2 Let C : f0; 1gn ! (f0; 1g`)m be a (q; c; �)-smooth linearerror-correcting code. Then m � (1=2l) � 2�n=4�2l�c. Furthermore, if C has adecoding algorithm that uses only k of the ` bits that it receives as answerto each query, then m � (1=t) � 2�n=4�t�c, where t =Pki=0 �ì�.Theorem 1.5 follows by combining Corollary 5.2 and Theorem 2.2.6 Extension To Binary Linear Block Codes WithBlock Decoding { The Proof of Theorem 1.6Here we deal with codes mapping (f0; 1g`)n to (f0; 1g`)m, that is, mappinga sequence of n blocks, each being a string of length `, to a sequence of m20



such blocks. We consider algorithms that recover a desired (entire) block bymaking two block-queries.We focus on such codes in which the bits of each output block are a linearcombination of the `n input bits (so indeed the ` = 1 case corresponds to themain result presented in Section 3). We stress that the ` linear combinationscorresponding to one output block are not necessarily consistent with onelinear combination of the input blocks. (In case they were, this could behandled as a special case of the results presented in Section 4.)6 We callsuch codes linear block-block codes.We seek stronger bounds than the ones presented in Section 5, and weobtain them by extending Theorem 1.3. This extension is analogous to butdi�erent from the one presented in Section 5.Recall that Theorem 1.6 states that if we let C : (f0; 1g`)n ! (f0; 1g`)mbe a (2; �; �)-locally decodable code that is linear block-block, then m �2 ��16 �n�(`+1)2 .This result is proven by an argument analogous to the one in Section 3.Here we deal with `n-bit long vectors, and consider queries consisting of` (`n-dimensional) vectors over f0; 1g. For every i = 1; ::; n, we focus onpairs of queries that allow one to recover the entire ith block. Thus the 2`vectors corresponding to this pair of queries must span the vectors ~e(i�1)`+jfor j = 1; :::; `, where a sequence of vectors ~v1; :::; ~vt 2 f0; 1g`n spans thevector ~w 2 f0; 1g`n if for some I � [t], it holds that �i2I~vi = ~w. We saythat a pair of queries spans the ith block if the 2` vectors corresponding tothis pair of queries span the vectors ~e(i�1)`+j for j = 1; :::; `. Again, theanalysis reduces to providing lower bounds on the cardinality of multisetsthat contain many disjoint pairs that span each block.Lemma 6.1 Let ` � 2 and n be integers, and S a multiset of Q def=(f0; 1g`n)`. For i = 1; :::; n, let Mi be a set of disjoint pairs of elements6 A sequence of ` vectors, v(1); :::; v(`), of f0; 1g`n (i.e., ` linear combinations of the `ninput bits) is consistent with one n-dimensional vector (b1; :::; bn) 2 f0; 1gn (i.e., a linearcombination of the n input blocks) if, for every j = 1; :::; `, the v(j) = (b(j)1 ; ::::; b(j)`n ) suchthat b(j)k = bdk=`e if k � j (mod `), and b(j)k = 0 otherwise. To see that this case is aspecial case of Section 4, consider the blocks as elements of the �eld GF (2`), and observethat the output symbols (i.e., the input blocks viewed as elements of GF (2`)) are merelylinear combinations (over GF (2`)) of the input symbols (and that, furthermore, theselinear combinations over the extension �eld GF (2`) are restricted to having entries in thebase �eld GF (2) = f0; 1g.
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of S that span the ith block. ThennXi=1 jMij � (`+ 2`2) � jSj+ 2 � jSj log2 jSjThus, if 1nPni=1 jMij � 
jSj, then jSj � 2(
n=2)�`2�`.Notations: It will be more convenient to view queries as `� `n Booleanmatrices (i.e., Q � f0; 1g`�`n), rather than as `-sequences of `n-dimensionalvectors. Correspondingly, it is more convenient to view the recovery (orspanning) condition in matrix form: Two queries U and V span the ithblock if there exist two ` � ` matrices A and B such that AU + BV = Ii,where Ii is the ` � `n matrix that consists of ` � ` sub-matrices such thatall but the ith sub-matrix are identically zero and the ith is the identitymatrix.6.1 Getting Rid of Singular MultiplesMotivation: Unlike the analogous part of the proof of Lemma 4.1, herewe do not modify S but rather only modify the M 0i 's. Again, we wishto maintain only query pairs that allow recovery (spanning) via full-rankmatrices. It can be shown that such query-pairs are few in number.Let S and the Mi's be as in the lemma, and Ei be the set of all pairs inS that span the ith block. Recall that (U; V ) 2 Ei implies that there existtwo `� ` matrices A and B such that AU +BV = Ii. Let F denote the setof full rank `� ` matrices. De�neE0i def= f(U; V ) 2 S � S : 9A;B 2 F s.t. AU +BV = Iig; (14)M 0i def= Mi \E0i: (15)Claim 6.2 Pni=1 jMi nM 0i j � `jSj.Proof: Suppose that (U; V ) 2 Mi nM 0i , and let AU + BV = Ii. Theneither A or B is not full rank. Suppose, without loss of generality, that Ais not full rank and let w be a nonzero vector such that wA = 0. Thenw(AU + BV ) = wBV is a vector that is spanned by Ii, and so V spans avector in the set fe(i�1)`+j : j = 1; :::; `g. It follows that V can appear in atmost ` pairs in [ni=1(MinM 0i) (because if V appears in a pair (U; V ) 2MinM 0isuch that AU +BV = Ii for a singular matrix A, then V spans a vector inthe set fe(i�1)`+j : j = 1; :::; `g). Thus each V 2 S contributes at most `pairs to [ni=1(Mi nM 0i), and the claim follows.22



6.2 Reduction To The Boolean caseLet S be a multiset as above and de�neS00 def= fhU;Ai : U 2 S&A 2 Fg; (16)E00i def= f(hU;Ai; hV;Bi) 2 S00 � S00 : A;B 2 F &9C 2 F AU +BV = CIig:(17)That is, if U occurs with multiplicitym in S, then (for every A) hU;Ai occurswith multiplicitym in S00. Clearly, if (hU;Ai; hV;Bi) 2 E00i , then (U; V ) 2 E0i.On the other hand, if (U; V ) 2 E0i, then there exist A;B 2 F such thatAU + BV = Ii, and so for every C 2 F we have (hU;CAi; hV;CBi) 2 E00i .In other words, there exists D 2 F (i.e., D = A�1B) such that for everyA0 2 F we have (hU;A0i; hV;A0Di) 2 E00i .Let M 00i be de�ned as follows. For every (U; V ) 2M 0i and A;B 2 F suchthat AU +BV = Ii, and for every C 2 F , add (hU;CAi; hV;CBi) to M 00i .Claim 6.3 1. jS00j = jF j � jSj and jM 00i j = jF j � jM 0i j.2. M 00i is a set of disjoint pairs in E00i .Proof: The claim follows immediately by the de�nition of S00 and theM 00i 's. Speci�cally, for every (U; V ) 2 M 0i , there exist A;B 2 F such thatAU � BV = Ii. Thus the pairs (hU;CAi; hV;CBi) added to M 00i , for everyC 2 F , are disjoint (because CA = C 0A implies C = C 0, and similarly forCB = C 0B).Claim 6.4 Let S000 be an arbitrary subset of Q�F and M 000i be an arbitraryset of disjoint pairs such that (hU;Ai; hV;Bi) 2M 000i implies AU�BV = CIifor some C 2 F . Then jS000j log2 jS000j � 12 �Pni=1 jM 000i j.Recall that Q = (f0; 1g`n)`, but it will be more convenient to view Q as aset of n sequences of `� ` matrices, that is, Q = (f0; 1g`�`)n.Proof: The proof mimics the proof of Claim 4.4. This time, we considera randomized mapping of Q � F to f0; 1gn. The mapping is based on auniformly chosen 2-coloring of M def= f0; 1g`�`, denoted �, and hU;Ai 2Q�F is mapped to �(m1) ��(mn), where (U1; :::; Un) = AU . Let us denoteby �� :Mn�F ! f0; 1gn the mapping induced by the 2-coloring �, that is,��(U;A) = �(U1) � �(Un), where (U1; :::; Un) = AU . Thus the multiset S000is randomly mapped (by ��) to a multiset B� of f0; 1gn such that jB�j =jS000j. Again, the key observation is that for every (hU;Ai; hV;Bi) 2 M 000i ,with probability 12 , it holds that ��(U;A) � ��(V;B) = ei, and otherwise23



��(U;A) = ��(V;B). Letting Mi;� denote the pairs inM 000i that are mapped(by ��) to pairs (u; v) such that u� v = ei, we conclude that the expectedsize of Mi;� equals 12 � jM 000i j, where the expectation is taken uniformly overall possible �'s.It follows that there exists a 2-coloring � such that Pni=1 jMi;�j � 12 �Pni=1 jM 000i j. Fixing this �, we apply (the \furthermore" part of) Lemma 3.3to B� and the Mi;�'s, and conclude that jB�j log2 jB�j �Pni=1 jMi;�j. ThusjS000j log2 jS000j = jB�j log2 jB�j � nXi=1 jMi;�j � 12 � nXi=1 jM 000i j:
Finishing the proof of Lemma 6.1: Using Item 2 of Claim 6.3, we mayapply Claim 6.4 to S00 and the M 00i 's, and get jS00j log2 jS00j � 12 �Pni=1 jM 00i j.Applying the other item of Claim 6.3, we getjF j � jSj log2(jF j � jSj) � 12 � jF j � nXi=1 jM 0i j:Thus Pni=1 jM 0i j � 2jSj log2(jF j � jSj). Combining this with Claim 6.2 (andusing jF j � 2`2), we getnXi=1 jMij � ` � jSj+ nXi=1 jM 0i j� ` � jSj+ 2 � jSj log2(2`2 � jSj)� (`+ 2`2) � jSj+ 2 � jSj log2 jSj:7 Lower Bounds For Private Information Re-trieval { Proof of Theorem 1.8The main result of this section is a reduction showing that a one-round PIRsystem can be converted into a smooth error-correcting code. This transfor-mation preserves linearity, and hence, combined with the lower bound forsmooth linear codes, yields a lower bound for linear one-round PIR systems.7.1 Constructing Smooth Codes Based on PIR SchemesActually, we consider a relaxed notion of a PIR. First, recovery is not re-quired to always be correct but rather only to be correct with probability at24



least 1=2 + �, where the probability is taken over the PIR's randomizationfor any �xed input (i.e., a database and a desired bit). Second, we do notrequire perfect secrecy (i.e., � = 0), but rather that the distributions of eachquery for each desired bit are at pairwise statistical distance at most �.Lemma 7.1 Suppose there is a one-round, (1� �)-secure PIR scheme withtwo servers, database size n, query size t, answer size a, and recovery prob-ability at least 1=2 + �. Then there is a (2; 3; � � �)-smooth error-correctingcode C : f0; 1gn ! (f0; 1ga)m, where m � 6 � 2t. Furthermore:1. If in the PIR scheme the answer bits are a linear combination of thedata, then C is linear.2. If, in the PIR scheme, the user only uses k predetermined bits out ofthe a bits it receives as an answer to each question, then the sameproperty is true for the decoding algorithm of C.Proof: Let us �rst develop some intuition about the proof. By enumer-ating all possible answers from either server, we can view the PIR systemas encoding the database x 2 f0; 1gn as a string PIR(x) 2 (f0; 1ga)l, wherel = 2 � 2t. The user can reconstruct one bit xi of the database with ad-vantage � by looking at two entries of the encoded string PIR(x). For anyi and j, the distribution of the �rst entry read into PIR(x) when recon-structing xi is �-close to the distribution of the �rst entry read into PIR(x)when reconstructing xj (and similarly for the second entry). Instead of thiscloseness property, we would like to have a smoothness property, that is,we would like each entry to be read with low probability. We are willing tomake the encoding be slightly longer in order to achieve this goal. We willachieve this goal by duplicating entries that have a high probability of beingread.Suppose, to start, that � = 0. Then, for every j, the probability thatentry j is queried by the reconstruction algorithm (as a �rst query or as asecond query) is a �xed value pj (independent of which bit of the databasethe user wants to reconstruct); note that Pj pj = 2. We will replicate entryj of the encoding nj = dpj � le times, denoting by C(x) this new encoding(with repetitions) of x. Recall that PIR(x) 2 (f0; 1ga)l (and we will showthat C(x) 2 (f0; 1ga)O(l)).A reconstruction algorithm for xi from C(x) will generate queries j1; j2as in the reconstruction algorithm that accesses PIR(x). The algorithmthen picks at random one of the nj1 copies of the j1th entry and one of thenj2 copies of the j2th entry, and then accesses these selected two entries inC(x). Clearly, the advantage in decoding xi remains the same. Regarding25



smoothness, let us consider an entry j in PIR(x). If pj � 1=l, then thecorresponding (unique) bit in C(x) is accessed with probability pj � 1=l.Otherwise (i.e., pj > 1=l), the jth entry is replicated nj = dpjle > 1 times,and each copy is accessed with probability pj=nj , which ispjdpjle � pjpjl = 1l :The length of the new encoding is m =Plj=1 nj, and we havem = Xj:pj�1=l dpjle+ Xj:pj>1=l dpjle� Xj:pj�1=l 1 + Xj:pj>1=l(1 + pjl)� l +Xj pjl= 3l = 6 � 2q:Recall that no entry is queried with probability higher than 1=l, which (usingm � 3l) is bounded above by 3=m.Consider now the general case in which the query distributions for xi1and xi2 are only guaranteed to be �-close. We apply the previously describedconstruction using the distribution of queries for x1. When we want toreconstruct xi we proceed as follows. For every j, let pj be the probabilitythat j is queried when reconstructing x1 and let qj be the probability thatj is queried when reconstructing xi. Note that Pj pj =Pj qj = 2 and thatPj jpj� qjj � 4�, and so Pj:qj>pj (qj � pj) � 2�. We sample queries j1; j2 asin the original algorithm for xi (modi�ed so as to choose a random copy, ifthe required entry has multiple copies), and then if qj1 � pj1 , we proceed tomake query j1. If qj1 > pj1 , then we read query j1 with probability pj1=qj1and we enter a \failure mode" with the remaining probability. In failuremode, bit xi is just guessed randomly. Query j2 is handled similarly.Observe that the smoothness requirement is satis�ed as before (sinceeach bit corresponding to the original query j is accessed with probabilityminfqj; pjg=nj � pj=nj � 1=l). The probability of entering the failuremode is Pj:qj>pj (qj � pj) � 2�, and when the failure mode is entered, theprobability of guessing xi correctly is exactly one half. Thus, in the worstcase, failures subtract � of the probability of guessing xi correctly, and sothe overall probability of guessing xi right is at least 1=2 + �� �.26



7.2 ConsequencesTheorem 1.8 follows by combining Lemma 7.1 and Corollary 5.2. Speci�-cally, using m � 6 � 2t, a smoothness bound of c = 3 and recovery advantage�� �, we have 6 � 2t � 1f(k;a) � 2 (���)�n4�3�f(k;a) , and Theorem 1.8 follows.AcknowledgmentsWe are grateful to Alex Samorodnitsky for suggesting to us the information-theoretic proof of Lemma 3.3 and allowing us to present it in Section 3.4.Thanks also to Noga Alon for providing us with a proof of Lemma 3.5 andallowing us to reproduce it in Appendix.References[1] A. Ambainis. An Upper Bound On The Communication Complexity ofPrivate Information Retrieval. In 24th ICALP, Springer, Lecture Notesin Computer Science, Vol. 1256, pages 401{407, 1997.[2] B. Bollob�as. Combinatorics. Cambridge University Press, 1986.[3] B. Chor and N. Gilboa. Computationally-Private Information Retrieval.In 29th STOC, pp. 304{313, 1997.[4] B. Chor, O. Goldreich, E. Kushilevitz andM. Sudan, Private InformationRetrieval. Journal of the ACM, Vol. 45, No. 6, pages 965{982, November1998.[5] J. Katz and L. Trevisan. On The E�ciency Of Local Decoding Proce-dures For Error-Correcting Codes. In 32nd STOC, 2000.[6] E. Kushilevitz and R. Ostrovsky. Replication is Not Needed: Sin-gle Database, Computationally-Private Information Retrieval. In 38thFOCS, pages 364{373, 1997.
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Appendix: Proof of Lemma 3.5The proof of Theorem 2 in [2, Sec. 16] implies that the subset S � f0; 1gnfor which the number of internal edges is maximum is the set of the �rstm = jSj strings in lexicographic order (of f0; 1gn). Since each such vertexhas at most dlog2me internal edges, we get a bound of 12 jSj dlog2 jSje onthe number of internal edges. Indeed, this is what Exercise 1 in [2, Sec. 16]asserts. To get the claimed bound of 12 jSjlog2 jSj, a more careful analysisis required. We assume that such analysis has appeared somewhere before,but being unable to �nd it we turned to Noga Alon for help. Noga hasprovided us with the following analysis.Clearly, the problem is equivalent to the statement that the expectednumber of 1-bits in (the binary representation of) a random integer between0 and n � 1 is at most 0:5 log2 n. We prove the claim by induction on n.For n � 2 that's trivial. For the induction step suppose n = (1 + ") � 2kfor an integer k and " 2 [0; 1). Then upper bound the expected number of1-bits in a random integer between 0 and n� 1 as follows: With probability1=(1+") the random integer is in [0; 2k�1], and in this case the expectationis exactly 0:5k. With probability "=(1+") the random integer is in [2k; n�1],and in this case bit number k+1 is always 1 and the k other bits representall integers in [0; " � (2k � 1)]. Hence, by the induction hypothesis, thecontribution of these k bits is at most 0:5 log2(2k"). Thus, the expectednumber of 1-bits is bounded above by11 + " � k2 + "1 + " �  1 + log2(2k")2 ! = k2 + "1 + " + " log2 "2(1 + ") (18)To complete the proof we have to show that Eq. (18) is bounded above by0:5 log2 n = (k=2) + 0:5 log2(1 + "). This is equivalent to proving that, forevery " in [0; 1), "1 + " + " log2 "2(1 + ") � log2(1 + ")2which is equivalent to showing 2" + " log2 " � (1 + ") log2(1 + "), whichis equivalent to showing that f : < ! < is non-negative in [0; 1), wheref(x) def= (1 + x) ln(1 + x)� x ln(4x). This can be veri�ed by observing thatf(0) = f(1) = 0 and f 00(x) = �1=x(x+1) < 0 in [0; 1), which concludes theproof.
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