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1 IntrodutionThe general ontext of this work is that of testing graph properties in the adjaeny matrix repre-sentation (as initiated in [GGR℄). In this model graphs are viewed as (symmetri) Boolean funtionsover a domain onsisting of all possible vertex-pairs (i.e., an N -vertex graph G = ([N ℄; E) is rep-resented by the funtion g : [N ℄ � [N ℄ ! f0; 1g suh that fu; vg 2 E if and only if g(u; v) = 1).Consequently, an N -vertex graph represented by the funtion g : [N ℄ � [N ℄ ! f0; 1g is said to be�-far from some predetermined graph property if more than � � N2 entries of g must be modi�edin order to yield a representation of a graph that has this property. We refer to � as the proximityparameter, and the omplexity of testing is stated in terms of � and the number of verties in thegraph (i.e., N).Interestingly, many natural graph properties an be tested within query omplexity that de-pends only on the proximity parameter; see [GGR℄, whih presents testers with query omplexitypoly(1=�), and [AFNS℄, whih haraterizes the lass of properties that are testable within queryomplexity that depends only on the proximity parameter (where this dependene may be an ar-bitrary funtion of �). A well-known open problem in this area is to haraterize the lass of graphproperties that an be tested within query omplexity poly(1=�). We mention that suh a hara-terization has been obtained in the speial ase of indued subgraph freeness properties [AS℄, butthe general ase seems quite diÆult.In light of this state of a�airs, it was suggested in [GR08℄ to try to haraterize lower queryomplexity lasses, and in partiular the lass of graph properties that an be tested non-adaptivelywithin query omplexity eO(1=�). As a �rst step towards this goal, it was shown in [GR08, Se. 6℄that, for every onstant , the set of graphs that eah onsists of at most  isolated liques is suha property.In this work we signi�antly extend the latter result by showing that the lass of graph propertiesthat an be tested non-adaptively within query omplexity eO(1=�) ontains all graph blow-upproperties. For any �xed graph H = ([h℄; F ), we say that a graph G = ([N ℄; E) is a blow-up of Hif the verties of G an be lustered in up to h lusters suh that the edges between these lustersreet the edge relation of H. That is, verties in the ith and jth luster are onneted in G if andonly if (i; j) 2 F . Note that, unlike in the ase of balaned blow-up (f. [GKNR℄), the lustersare not required to have equal size.1 Also note that the \olletion of  liques" property studiedin [GR08, Se. 6℄ an be ast as the property of being a blow-up of a -vertex lique (by onsideringthe omplement graph).Theorem 1.1 (main result): For every �xed H, the property of being a blow-up of H is testableby eO(1=�) non-adaptive queries. Furthermore, the tester has one-sided error (i.e., it always aeptsgraphs that are blow-ups of H) and runs in poly(1=�)-time.We mention that, exept for h = 1, the aforementioned property annot be tested by o(1=�) queries,even when adaptivity and two-sided error are allowed (see [GR08, Prop. 6.1℄). We also mentionthat, by [GR08, Prop. 6.2℄, a tester of eO(1=�) query omplexity annot be anonial (i.e., it annotrule by inspeting an indued subgraph).Additional results. We also onsider the omplexity of testing \balaned blow-up" properties,showing that the two-sided error query omplexity is quadrati in 1=� for both adaptive and non-adaptive testers; see Proposition 2.4. Finally, we present proximity oblivious testers (f. [GR09℄)for any (general) blow-up property; see Theorem 5.2.1We note that testing balaned blow-up properties requires 
(1=�2) queries. For details, see Setion 2.2.1



Tehniques. Theorem 1.1 is proved by presenting a suitable tester and analyzing it. Reall thatthis tester annot be anonial; indeed, this tester selets at random a sample of eO(1=�) verties, butit inspets (or queries) only eO(1=�) of the vertex pairs in this sample. Consequently, the tester (andthe analysis) has to deal with partial knowledge of the subgraph indued by the sample. A pivotalnotion regarding suh partial views is of \inonsisteny" between verties (w.r.t a given partialview), whih means that these verties have di�erent neighbor sets and thus annot be plaed inthe same luster (of a blow-up of H (or any other graph)). Spei�ally, the tester onsiders all setsof up to h + 1 pairwise inonsistent verties, and aepts if and only if eah suh set (along withthe known inidene relations) an be embedded in H. As usual, the tehnially hallenging part isanalyzing the behavior of the tester on arbitrary graphs that are far from being blow-ups of H. Ouranalysis proeeds in iterations, where in eah iteration some progress is made, but this progress isnot reeted by a growing number of inidene ontraints but rather in the dereasing density ofthe violations reeted in the inidene onstraints. This progress is aptured in Lemma 4.4 (whihrefers to notions introdued in Setion 4.1). Here we merely mention that the number of iterationsis polylogarithmi in ��1 rather than being O(h2).Organization. The ore of this paper is presented in Setions 3 and 4, whih ontain a desriptionof the tester and its analysis, respetively. (Indeed, this part establishes Theorem 1.1.) Setion 2provides preliminaries, whih may be skipped by the experts, as well as a side disussion (andresult) regarding \balaned blow-up" properties. Setion 5 another seondary disussion; that is,one regarding proximity oblivious testers.2 PreliminariesIn this setion we review the de�nition of property testing, when speialized to graph propertiesin the adjaeny matrix model. We also de�ne the blow-up properties (and disuss the ase ofbalaned blow-up).2.1 Basi notionsFor an integer n, we let [n℄ def= f1; :::; ng. A generi N -vertex graph is denoted by G = ([N ℄; E),where E � ffu; vg : u; v 2 [N ℄g is a set of (unordered) pairs of verties. Any set of (suh) graphsthat is losed under isomorphism is alled a graph property. By orale aess to suh a graphG = ([N ℄; E) we mean orale aess to the Boolean funtion that answers the query fu; vg (orrather (u; v) 2 [N ℄ � [N ℄) with the bit 1 if and only if fu; vg 2 E. At times, we look at E as asubset of V � V ; that is, we often identify E with f(u; v) :fu; vg2Eg.De�nition 2.1 (property testing for graphs in the adjaeny matrix model): A tester for a graphproperty � is a probabilisti orale mahine that, on input parameters N and � and aess to anN -vertex graph G = ([N ℄; E), outputs a binary verdit that satis�es the following two onditions.1. If G 2 � then the tester aepts with probability at least 2=3.2. If G is �-far from � then the tester aepts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � it holds that the symmetri di�erenebetween E and E0 has ardinality that is greater than �N2.2



If the tester aepts every graph in � with probability 1, then we say that it has one-sided error. Atester is alled non-adaptive if it determines all its queries based solely on its internal oin tosses(and the parameters N and �); otherwise it is alled adaptive.The query omplexity of a tester is the number of queries it makes to any N -vertex graph orale,as a funtion of the parameters N and �. We say that a tester is eÆient if it runs in time that ispolynomial in its query omplexity, where basi operations on elements of [N ℄ are ounted at unitost. We note that all testers presented in this paper are eÆient, whereas the lower-bounds holdalso for non-eÆient testers.We shall fous on properties that an be tested within query omplexity that only depends onthe proximity parameter, �. Thus, the query-omplexity upper-bounds that we state hold for anyvalues of � and N , but will be meaningful only for � > 1=N2 or so. In ontrast, the lower-bounds(e.g., of 
(1=�)) annot possibly hold for � < 1=N2, but they will indeed hold for any � > N�
(1).Alternatively, one may onsider the query-omplexity as a funtion of �, where for eah �xed valueof � > 0 the value of N tends to in�nity.2.2 The blow-up propertiesFollowing the disussion in the introdution, we �rst de�ne the blow-up properties that are thesubjet of our study.De�nition 2.2 (graph blow-up): We say that the graph G = ([N ℄; E) is a blow-up of the graphH = ([h℄; F ) if there is an h-way partition (V1; :::; Vh) of the verties of G suh that for everyi; j 2 [h℄ and (u; v) 2 Vi � Vj it holds that (u; v) 2 E if and only if (i; j) 2 F . We stress that theVi's are not required to be of equal size and that some of them may be empty. We denote by BU(H)(resp., BUN (H)) the set of all graphs (resp., N -vertex graphs) that are blow-ups of H.In ontrast to De�nition 2.2, let us briey onsider the more rigid (and popular) de�nition of abalaned blow-up.De�nition 2.3 (balaned blow-up): We say that the graph G = ([N ℄; E) is a balaned blow-up ofthe graph H = ([h℄; F ) if there is an h-way partition (V1; :::; Vh) of the verties of G suh that thefollowing two onditions hold:1. For every i; j 2 [h℄ and (u; v) 2 Vi � Vj it holds that (u; v) 2 E if and only if (i; j) 2 F .2. For every i 2 [h℄ it holds that jVij 2 fbN=h; dN=heg.We denote by BBU(H) (resp., BBUN (H)) the set of all graphs (resp., N -vertex graphs) that arebalaned blow-ups of H.It is easy to see that, exept for trivial ases (i.e., when H onsists of isolated verties), balanedblow-up annot be tested with one-sided error and omplexity that does not depend on the size ofthe graph. The two-sided error testing omplexity of this property is �(1=�2), as shown next.Proposition 2.4 (on the omplexity of testing balaned blow-up): For every H = ([h℄; F ) suhthat F 6= ;, testing the property BBU(H) requires 
(1=�2) queries even if adaptive testers of twosided error are allowed. On the other hand, for any H = ([h℄; F ), there exists a non-adaptive testerof query omplexity O(1=�2) (and two-sided error) for the property BBU(H).3



Proof: The lower bound follows diretly from the known lower bounds on estimating the average(f. [CEG℄). Spei�ally, distinguishing Boolean funtions de�ned over [N ℄ and having an averagevalue of 0:5 from Boolean funtions having an average of 0:5 � � an be redued to distinguishingN -vertex graphs that onsist of two isolated liques of the same size from graphs that onsist oftwo isolated liques of sizes (0:5 � �) � N and (0:5 + �) � N , respetively. (Given orale aess to afuntion f : [N ℄! f0; 1g onsider the graph G = ([N ℄; f(u; v) : f(u)=f(v)g).)In desribing the tester, we �rst assume that H = ([h℄; F ) is not a blow-up of any smallergraph H 0. Also, antiipating the extension to the general ase, we generalize the balaned blow-upproperty into a proportional blow-up property. Here, for a �xed graph H = ([h℄; F ) and sequene ofdensities � = (�1; ::; �h), the graph G is a �-blow-up of H if De�nition 2.3 holds with Condition 2replaed by jVij 2 fb�iN; d�iNeg. The non-adaptive tester for �-blow-up of H, where H is not ablow-up of any smaller graph, proeeds as follows (on input a graph G):1. Selet uniformly a sample of eO(1=minif�ig) verties, denoted B, whih will be used as a basisfor lustering in Step 2. Selet uniformly a sample of O(jBj=�2) verties, denoted S. Finally,selet uniformly a sample of O(h2=�) vertex pairs in S � S, denoted T .2. Query all pairs (u; v) 2 (B�S)[T , and luster the verties in S aording to their neighborsin B. That is, for every v 2 [N ℄, let sgB(v) def= fu2B : (u; v)2Eg, and, for every set B0 � B,let SB0 def= fv2S : sgB(v)=B0g.3. If the number of non-empty sets SB0 exeeds h, then rejet. Otherwise, onsider all possible1-1 mappings from C def= fB0 : SB0 6= ;g to [h℄, and for eah suh mapping � determinewhether or not the following two onditions hold.(a) For every B0 2 C it holds that jSB0 j = (1 � �=2) � ��(B0) � jSj.(b) For every (u; v) 2 T it holds that (u; v) 2 E if and only if (�(sgB(u)); �(sgB(v))) 2 F ,The test aepts if and only if there exists a mapping � that satis�es both the above onditions.The number of queries performed by the tester is O(jBj2=�2) = O(1=�2). We �rst onsider whathappens if G is a �-blow-up of H. In this ase, with high probability, (1) the sample B ontainsat least one representative from eah luster of G, and (2) for eah i 2 [h℄ the sample S ontains(1 � �=2) � �i � jSj representatives of the ith luster. In this ase, the tester aepts. We now turnto the ase that G = ([N ℄; E) is �-far from being a �-blow-up of H. In this ase, for any hoie ofB, we an onsider the lustering of the entire graph aording to sgB, and denote the h largestlusters by V1; :::; Vh (where some of these Vi's may be empty). Letting V def= Si2[h℄ Vi, we note thatif jV j < (1� �=2) �N , then with high probability we rejet at the onset of Step 3 due to seeing morethan h lusters in the sample.2 Otherwise, we onsider all possible mappings of the verties of theh largest lusters to [h℄. For eah suh mapping  : V ! [h℄ suh that �(u) = �(v) i� u; v 2 Vi forsome i, either there exists an i 2 [h℄ suh that jVij 62 (1 � �=4) � �iN or there exist at least �N2=4violating pairs (i.e., vertex pairs (u; v) 2 V � V that have an edge relation in G that does not �tthe edge relation of ( (u);  (v)) in H). In the �rst ase, with high probability, the sample S willontain a deviating fration of verties from Vi, whereas in the seond ase, with high probability,2If jVhj � (�=2h) �N , then with high probability S will ontain a vertex from eah Vi as well as a vertex that doesnot belong to V . On the other hand, if jVhj � (�=2h) � N , then with high probability S will ontain h + 1 vertiesfrom di�erent lusters in [N ℄ n V . 4



the sample T will hit some of these violations.3 In either ases, with high probability, the testerwill rejet. This ompletes the treatment of the ase (of �-blow-up) of a graph H = ([h℄; F ) that isnot a blow-up of any smaller graph.Finally, suppose that H([h℄; F ) is a blow-up of some smaller graph H 0, and suppose that H 0 isminimal (i.e., it is not a blow-up of any smaller graph). Then, testing the property BBU(H) reduesto testing a proportional blow-up property regarding H 0, where the proportions are determinedaording to the blow-up of H 0 into H (and the densities are multiples of 1=h).3 The BU(H)-Tester and its Basi FeaturesReall that a tester of the type we seek (i.e., a non-adaptive tester of eO(1=�) query omplexity)annot operate by inspeting an indued subgraph, beause by [GR08, Prop. 6.2℄ suh a subgraphwill have to be indued by 
(1=�) verties, whih would yield query omplexity 
(1=�2). Thus,like in [GR08, Se. 6.2℄, our non-adaptive tester operates by using a less straightforward queryingproedure. Spei�ally, it does selet a sample of eO(1=�) verties, but does not query all vertexpairs.Algorithm 3.1 (testing BU(H), for a �xed graph H = ([h℄; F )): On input parameters, N and �,and aess to an orale g : [N ℄ � [N ℄ ! f0; 1g, representing a graph G = ([N ℄; E), the algorithmsets ` = log2(1=�) +O(log log(1=�)) and proeeds as follows.1. For every i 2 [`℄, it selets uniformly a sample of poly(`) � 2i verties, denoted Ti.Denote T = Si2[`℄ Ti.2. For every i; j 2 [`℄ suh that i+ j � `, the algorithm queries all pairs in Ti � Tj.3. The algorithm aepts if and only if the answers obtained in Step 2 are onsistent with someblow-up of H. That is, let K : T � T ! f0; 1; �g be a partial desription of the subgraph of Gindued by T suh that K(u; v) = g(u; v) if query (u; v) was made in Step 2, and otherwiseK(u; v) = �. Then, the aeptane ondition seeks a mapping � : T ! [h℄ suh that ifK(u; v) = 1 then (�(u); �(v)) 2 F and if K(u; v) = 0 then (�(u); �(v)) 62 F .Indeed, at this point we ignore the omputational omplexity of implementing Step 3. We shallreturn to this issue at the end of the urrent setion. But, �rst, let us note that the query omplexityof Algorithm 3.1 is Xi;j:i+j�`poly(`) � 2i+j = poly(`) � 2` = eO(1=�): (1)It is also lear that Algorithm 3.1 is non-adaptive and that it aept every G 2 BU(H) withprobability 1 (i.e., it has one-sided error). The bulk of this work (see Setion 4) is devoted toshowing that if G is �-far from BU(H), then Algorithm 3.1 rejets it with probability at least 2=3.Relaxing the aeptane ondition of Algorithm 3.1. A straightforward implementation ofStep 3 amounts to onsidering all hjT j mappings of T to [h℄, and heking for eah suh mapping �whether the lustering indued by � �ts the graph H. Relaxing the aeptane ondition (used inStep 3 of Algorithm 3.1) yields a more time-eÆient algorithm. Atually, the relaxed aeptane3Note that a 1=h2 fration of these foregoing violations an be attributed to one of 2 � �h2� events that orrespondto the existene or non-existene of edges between some pair of lusters.5



ondition (de�ned next) seems easier to analyze than the original one. The notion of pairwise in-onsistent rows (of K) is pivotal to this relaxed aeptane ondition. (Indeed, it will be instrutiveto think of K as a matrix, and to view retangular restritions of K as sub-matries.)De�nition 3.2 (pairwise inonsistent rows): Let K 0 : R�C ! f0; 1; �g be a sub-matrix of K : T �T ! f0; 1; �g; that is, R;C � T and K 0(r; ) = K(r; ) for for every (r; ) 2 R�C. Then, the rowsr1; r2 2 R are said to be inonsistent (wrt K 0) if there exists a olumn  2 C suh that K 0(r1; ) andK 0(r2; ) are di�erent Boolean values (i.e., K 0(r1; );K 0(r2; ) 2 f0; 1g and K 0(r1; ) 6= K 0(r2; )).A set of rows of K 0 is alled pairwise inonsistent (wrt K 0) if eah pairs of rows is inonsistent (wrtK 0).Another pivotal notion, whih was alluded to before, is the notion of being onsistent with someblow-up of H, whih we now term H-mappability.De�nition 3.3 (H-mappable sub-matries): Let K 0 : R � C ! f0; 1; �g be a sub-matrix of K :T � T ! f0; 1; �g. We say that K 0 is H-mappable if there exists a mapping � : R ! [h℄ suh thatif K 0(u; v) = 1 then (�(u); �(v)) 2 F and if K 0(u; v) = 0 then (�(u); �(v)) 62 F . We all suh a �an H-mapping of K 0 (or R) to [h℄.Note that if K is H-mappable, then every two inonsistent rows of K must be mapped (by � as inDe�nition 3.3) to di�erent verties of H. In partiular, if a sub-matrix K 0 : R � C ! f0; 1; �g ofK has pairwise inonsistent rows, then any H-mapping of K to [h℄ must be injetive. Hene, if Kontains more than h pairwise inonsistent rows, then K is not H-mappable.De�nition 3.4 (the relaxed aeptane ondition (of Algorithm 3.1)): The relaxed algorithm a-ept if and only if eah set of pairwise inonsistent rows in K is H-mappable. That is, for everyset R of pairwise inonsistent rows in K, we hek whether the sub-matrix K 0 : R � T ! f0; 1; �gis H-mappable, where the pairwise inonsisteny ondition mandates that this mapping of R to [h℄be 1-1. In partiular, if K has more than h pairwise inonsistent rows, then the relaxed aeptaneondition fails.Note that the relaxed aeptane ondition an be heked by onsidering all s-subsets of T , for alls � h+ 1. For eah suh subset that onsists of pairwise inonsitent rows, we onsider all possible1-1 mappings of this subset to [h℄, and hek onsisteny with respet to H. This an be performedin time � jT jh+1� � (h!) < jT jh+1 = poly(1=�), where the polynomial depends on h.Clearly, if G 2 BU(H), then for every T � [N ℄ it holds that the orresponding matrixK satis�esDe�nition 3.4. Thus, the relaxed algorithm always aepts graphs in BU(H). Setion 4 is devotedto showing that if G is �-far from BU(H), then the relaxed algorithm rejets with high probability.4 The Aeptane Condition and Graphs that are far from BU(H)In light of the above, Theorem 1.1 follows from the fat that the relaxed version of Algorithm 3.1(whih uses the ondition in De�nition 3.4) rejets with very high probability any graph G that is�-far from BU(H). This fat is established next.Lemma 4.1 (main lemma): Suppose that G = ([N ℄; E) is �-far from BUN (H), and let T = Si2[`℄ Tibe seleted at random as in Step 1 of Algorithm 3.1. Then, with probability at least 2=3, there existsa set R � T of pairwise inonsistent rows in the orresponding matrix K : T � T ! f0; 1; �g thatis not H-mappable,Before embarking on the atual proof of Lemma 4.1, we provide a very rough outline.6



Outline of the proof of Lemma 4.1. Our very rough plan of ation is to partition the seletionof T (and eah of its parts, i.e., T0; T1; :::; T`) into p(`) def= 2`h many phases suh that in the jthphase we selet at random samples T j0 ; T j1 ; :::; T j̀ suh that jT ji j = poly(`) � 2i. Thus, we let eahTi equal Sp(`)j=1 T ji , but we shall onsider the queries as if they are made in phases suh that inthe jth phase we only onsider queries between T j def= Si2[`℄ T ji and T [j℄ def= Sk�j T k. LettingKj : T [j℄ � T [j℄ ! f0; 1; �g denote the partial information obtained on G in the �rst j phases, weonsider a ertain set Rj of pairwise inonsistent rows of Kj. If this set Rj is not H-mappable,then we are done. Otherwise, we show that, with high probability over the hoie of the sampleT j+1, we obtain a new set Rj+1 of pairwise inonsistent rows suh that Rj+1 has a higher indexthan Rj , where the indies refer to an order over sequenes of length at most h over [`℄. Sine thenumber of suh sequenes is Pk2[h℄ `k < p(`), with high probability, this proess must reah a setRj that is not H-mappable, and so we are done.Needless to say, the ruial issue is the progress ahieved in eah phase; that is, the fat that ateah phase j the index of the new set Rj+1 is higher than the index of the old set Rj. Intuitively, thisprogress is ahieved beause the urrent (H-mappable) set Rj indues a lustering of all verties ofG that extends this H-mapping, whereas this mapping must ontain many vertex pairs that violatethe edge relation of H. The sample taken in the urrent phase (i.e., T j+1) is likely to hit theseviolations, and this gives rise to a set Rj+1 with higher index.4.1 Basi notions and notationsIn addition to the foregoing notations, T ji ; T j and T [j℄, we shall use the following notations.� A pair (R;C) is alled a j-basi pair if C � T [j℄ and R � C. Indeed, j-basi pairs orrespondto restritions of the sample available at phase j (i.e., T [j℄).� The j-index of a vertex v 2 T [j℄, denoted idxj(v), is the smallest index i suh that v 2 T [j℄i ,where T [j℄i def= Sk�j T ki . (Note that idx(�) depends on T , but this dependene is not shown inthe notation.)A key observation is that for every u; v 2 T , it holds that K(u; v) = g(u; v) if and only ifidxp(`)(u) + idxp(`)(v) � `. Othewise, K(u; v) = � (indiating that (u; v) was not queried byAlgorithm 3.1.We omment that, with extremely high probability, for eah j and v 2 T [j℄, there exists aunique i 2 [`℄ and k 2 [j℄ suh that v 2 T ki . Thus, for any v 2 T [j℄, we may assume thatidxj+1(v) = idxj(v).� The indies of individual verties in T [j℄ are the basis for de�ning the index of sets in T [j℄.Spei�ally, the j-index of a set S � T [j℄, denoted idxj(S), is the multi-set onsisting of allvalues idxj(v) for v 2 S. It will be instrutive to onsider an ordered version of this multi-set; that is, we rede�ne idxj(S) as (i1; :::; ijSj) suh that (1) for every k < jSj it holds thatik � ik+1, and (2) for every i 2 [`℄ it holds that jfk2 [jSj℄ : ik= igj = jfv 2 S : idxj(v)= igj.� We onsider a natural lexiographi order over sequenes, denoted �, suh that for two(monotonily non-inreasing) sequenes of integers, a = (a1; :::; am) and b = (b1; :::; bn), itholds that a � b if{ either there exists i � min(n;m) suh that (a1; :::; ai�1) = (b1; :::; bi�1) and ai > bi.7



{ or m > n and (a1; :::; an) = (b1; :::; bn).Note that � is a total order on the set of monotonily non-inreasing (�nite) sequenes ofintegers.As hinted in the overview, a key notion in our analysis is the notion of a lustering of the vertiesof G that is indued by an H-mapping of some small subset of verties. Atually, the lustering isindued by a partial knowledge sub-matrix K 0 : R�C ! f0; 1; �g as follows.De�nition 4.2 (the lustering indued by K 0): Let K 0 : R � C ! f0; 1; �g be a sub-matrix ofK : T � T ! f0; 1; �g suh that K 0 has pairwise inonsistent rows. Then, for every r 2 R, wedenote by Vr(K 0) the set of verties v 2 [N ℄ that are onsistent with row r in K 0. That is,Vr(K 0) def= fv2 [N ℄ : (82C) g(v; )�=K 0(r; )g (2)where, for �; � 2 f0; 1; �g, we write ��= � if either � = � or � = � or � = �. The verties that areinonsistent with all rows, are plaed in the leftover set L(K 0) def= [N ℄ n Sr2R Vr(K 0).Indeed, rows r1; r2 2 R are inonsistent wrt K 0 (as per De�nition 3.2) if there exists a olumn  2 Csuh that K 0(r1; ) 6�=K 0(r2; ) (whih means that K 0(r1; ) and K 0(r2; ) are both in f0; 1g but aredi�erent). Thus, the hypothesis that the rows of K 0 are pairwise inonsistent implies that the setsin Eq. (2) are disjoint. Hene, the lustering in De�nition 4.2 is indeed a partition of the vertexset of G (sine v 2 L(K 0) if for every r 2 R there exists  2 C suh that g(v; ) 6�=K 0(r; )). Thismotivates our fous on sub-matries having pairwise inonsistent rows. The following de�nitionadds a requirement (regarding suh sub-matries) that refers to the relation between the index ofrow r and the density of the orresponding set Vr(K 0).De�nition 4.3 (nie pairs): Let (R;C) be a j-basi pair and K 0 : R � C ! f0; 1; �g be theorresponding sub-matrix of K. We say that (R;C) is a j-nie pair if the following two onditionshold.1. R are pairwise inonsistent with respet to K 0.2. For every r 2 R it holds that indj(r) � �(Vr(K 0)) + 1, where �(S) def= dlog(N=jSj)e.As a sanity hek, suppose that r 2 R was seleted in phase j (i.e., r 2 T j). Then, it is verylikely that r (or some other member of Vr(K 0)) is seleted in T j�(Vr(K0))�1, beause T j�(Vr(K0))�1 is arandom set of ardinality poly(`) � 2�(Vr(K0))�1 = poly(`) �N=jVr(K 0)j.For eah phase j, we shall show the existene of a j-nie pair. Furthermore, we shall show thatthe orresponding set of rows has a higher index than all sets of rows assoiated with previousphases. The furthermore laim is the rux of the analysis, and is aptured by the Progress Lemmapresented in Setion 4.2. But let us �rst establish the mere existene of j-nie pairs. Indeed, forevery j � 1, we may pik an arbitrary r 2 T 11 , and onsider the j-nie pair (frg; frg), while notingthat idx1(r) = 1 and �(Vr(K 0) � 0 (where K 0 : frg � frg ! f0; 1; �g).
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4.2 The Progress LemmaReall that G = ([N ℄; E) is �-far from BU(H), where H = ([h℄; F ). Furthermore, we onsider thepartial view K : T � T ! f0; 1; �g obtained by Algorithm 3.1, where T = Si2[`℄;j2[p(`)℄ T ji is therandom sample is seleted. Throughout the rest of this setion, we say that an event has negligibleprobability if it ours with probability that vanishes faster than any polynomial in �. Sine we shallonsider only poly(`) many events, we an safely ignore these negligible probabilities.4 We saythat an event ours with overwhelmingly high probability if the probability that it does not ouris negligible.Lemma 4.4 (Progress Lemma): Let (R;C) be a j-nie pair and K 0 : R � C ! f0; 1; �g be theorresponding sub-matrix of K. If K 0 is H-mappable then, with overwhelmingly high probabilityover the hoie of T j+1, there exists a (j + 1)-nie pair (R0; C 0) suh that indj+1(R0) � indj(R).Realling that a (trivial) 1-nie pair always exists and that the number of possible indies is smallerthan p(`), we onlude that, with overwhelmingly high probability (over the hoie of T ), thereexists a j < p(`) and a j-nie pair that is not H-mappable. Lemma 4.1 follows. Thus, all thatremains is proving Lemma 4.4, whih we undertake next.Proof: We onsider the partition indued by K 0, as per De�nition 4.2, and onsider two asesregarding the size of L def= L(K 0):Case 1: �(L) � `. In this ase (i.e., jLj � 2�` �N), with overwhelmingly high probability, the sampleT j+1 ontains a vertex u 2 L(K 0). Using this u, we shall obtain a (j + 1)-nie pair with aset of rows that has a higher index than R. Intuitively, sine (g(u; ))2C is inonsistent withall rows of K 0, we may add u as a row to K 0 while possibly omitting rows of K 0 that areonsistent with (K(u; ))2C (see below), obtaining a sub-matrix that has a larger index (thanthe index of K 0). The detailed analysis of this ase is presented in Claim 4.4.2.Case 2: �(L) > `. In this ase (i.e., jLj < 2�` � N < �N=2), the partition indued by (Vr(K 0))r2Rontains many pairs that violate the edge relation of H, sine the number of pairs adjaentat L is smaller than �N2=2. We shall show that, with overwhelmingly high probability, thesample T j+1 ontains a vertex w suh that augmenting K 0 with the olumn orrespond-ing to w yields a sub-matrix K 00 suh that �(L(K 00)) < `. Intuitively, pairs of verties inV (K 0) def= Sr2R Vr(K 0) that violate the edge relation of H, yield verties w that e�etivelyshrink V (K 0) in the sense that adding w as a olumn to K 0 moves many verties fromV (K 0) to L(K 00). In partiular, we shall show that jL(K 00)j = 
(�N=`), whih means that�(L(K 00)) < log2(O(`)=�) < `. At this point we may proeeds as in Case 1. (Formally, in thisase, the j+1st phase is partitioned into two sub-phases, where in eah sub-phase we use halfof eah of the samples T j+1i .) The detailed analysis of this ase is presented in Claim 4.4.3.Our analysis of the two ases ombines straightforward probabilisti arguments with manipulationsof sub-matries. The latter manipulations inlude adding rows and olumns and trunating thesub-matrix so as to leave only rows that have an index that is lower-bounded by some value. It isthus instrutive to disuss these three operations �rst.4In fat, it would have suÆed to de�ne as negligible any probability that vanishes faster than any polynomial in1=` (i.e., faster than any polylogarithmi funtion of �). 9



Adding an arbitrary olumn from T j+1. Suppose that (R;C) is j-nie with a orresponding sub-matrix K 0. Then, adding any olumn v 2 T j+1 to K 0 results in a sub-matrixK 00 suh that theorresponding pair (R;C [fvg) is (j+1)-nie. Clearly, adding a olumn may only add inon-sistenies, and so the pairwise inonsisteny ondition of K 0 is preserved. For any r 2 R, thedensities of Vr(�) may only drop when moving from K 0 to K 00, and so indj(r) � �(Vr(K 0))+1implies indj+1(r) � �(Vr(K 00)) + 1.Adding a row that belongs to L(K 0) \ T j+1�(L(K0)). It is tempting to think that if (R;C) is j-nie, thenadding any row v 2 T j+1�(L(K0)) \ L(K 0) \ C to K 0 results in a sub-matrix K 00 suh that theorresponding pair (R[fvg; C) is (j+1)-nie. It is true that indj+1(r) � �(Vr(K 00))+1 holdsfor eah row r, inluding the added row v (beause indj+1(v) = �(L(K 0)) and �(Vv(K 00)) ��(L(K 0)), sine Vv(K 00) � L(K 0)). However, although for every r 2 R there exists  2 Csuh that g(v; ) 6�=K 0(r; ) (sine v 62 Vr(K 0)), it not neessarily the ase that the row v inK is inonsistent with all rows in K 0 (i.e., it may be the ase that, for some r 2 R and eah 2 C, it holds that K(v; )�=K 0(r; ), sine K(v; ) 2 fg(v; ); �g and ��=K 0(r; )). Copingwith this problem, whih arises from the fat that K may have 8-values, leads us to introduethe following trunation operator.Trunating at an added row. Suppose that (R;C) is j-nie with a orresponding sub-matrixK 0, andlet v 2 L(K 0) \ T j+1�(L(K0)). Then, onsider �rst adding v as a new row and olumn to K 0, andthen leaving in the resulting sub-matrix only the rows that have a (j+1)-index that is at leastas large as the one of v (i.e., row r remains if and only if indj+1(r) � indj+1(v)). We laimthat these rows are pairwise inonsistent, and thus the resulting sub-matrix is (j + 1)-nie.It suÆes to prove that the new row v (of K) is inonsistent with any row that was left fromK 0; that is, �xing any r 2 R suh that indj+1(r) � indj+1(v), we laim that there exists 2 C suh that K(v; ) 6�=K 0(r; ). Sine v 2 L(K 0), we know that there exists  2 C suhthat g(v; ) 6�=K 0(r; ), whih implies that K 0(r; ) 2 f0; 1g, whih in turn implies indj(r) +indj() � ` (by de�nition of K). Now, using indj+1(v) � indj+1(r) � indj(r), we getindj+1(v)+indj() � `, whih implies thatK(v; ) = g(v; ). Realling that g(v; ) 6�=K 0(r; ),we obtain K(v; ) 6�=K 0(r; ), and the laim follows.Note that the trunation of K 0 : R�C ! f0; 1; �g at the added row v always ontains the new rowv, and that it may result in jRj + 1 rows (i.e., no \real trunation"). Another key feature of thetrunation-at-an-added-row operation is that it yields a set of rows with an index larger than theindex of R.Claim 4.4.1 (the e�et of trunation): Suppose that (R;C) is j-nie with a orresponding sub-matrix K 0, and let v 2 L(K 0) \ T j+1�(L(K0)). Then, trunating the sub-matrix that orresponds to(R [ fvg; C [ fvg) at row v yields a (j + 1)-nie pair with a row set having an index larger thanindj(R).Proof: The �rst part of this laim was already established above. Denoting the resulting set ofrows by R0, we need to prove that indj+1(R0) � indj(R). If R0 = R[ fug then the laim is trivial,and so we onsider the ase that indj+1(R0) = (i1; :::; it), where t � jRj and it = indj+1(v). Thismeans that a non-trivial trunating took plae, and that all omitted rows had index smaller thanit, whih implies that (i1; :::; it) � indj+1(R) (beause indj+1(R) = (i1; :::; it�1; dt; :::; djRj) withdt < it). 2 10



Claim 4.4.2 (ase 1): Suppose that (R;C) is j-nie and that �(L) � `, where L = L(K 0). Then,with overwhelmingly high probability (over the hoie of T j+1�(L(K0))), the sample T j+1�(L(K0)) ontainsa vertex u 2 L(K 0) suh that adding u to K 0 (both as a row and a olumn) and trunating theresulting sub-matrix at row u yields a (j + 1)-nie pair (R0; C 0) suh that indj+1(R0) � indj(R).Proof: With overwhelmingly high probability, the sample T j+1�(L(K0)) ontains a vertex u 2 L(K 0),while using any suh vertex yields the desired result (due to Claim 4.4.1). 2Claim 4.4.3 (ase 2): Suppose that (R;C) is j-nie and that the orresponding sub-matrix K 0 isH-mappable. Further suppose that �(L) > `, where L = L(K 0). Then, with overwhelmingly highprobability (over the hoie of T j+1), the sample T j+1 ontains a vertex w suh that adding theolumn w to K 0 yields a (j + 1)-nie pair (R;C [ fwg) suh that the orresponding sub-matrix K 00satis�es �(L(K 00)) � `Proof: We ombine the hypothesis that G is �-far from BU(H) with the hypothesis that K 0 isH-mappable, and denote the orresponding H-mapping by � : R ! [h℄. Extending this mappingto V (K 0) def= Sr2R Vr(K 0) suh that �(v) = �(r) for every v 2 Vr(K 0), and using the hypothesisthat jL(K 0)j < 2�`N < �N=2, we onlude that there are at least �N2=2 vertex pairs that violatethe edge relation of H (i.e., pairs (u; v) 2 V (K 0)�V (K 0) suh that (u; v) 2 E i� (�(u); �(v)) 62 F ).Atually, we should onsider all h! possible injetions (from R to [h℄), and apply the argument toeah of them, but this only inreases the error probability by a fator of h!. These violations anbe of one of the following two types.1. Edges (u; v) 2 E suh that (�(u); �(v)) 62 F . If the number of suh pairs exeeds �N2=4, thenwe selet a pair (r; s) 2 R � R suh that there exist at least �N2=4h2 pairs (u; v) 2 E forwhih (�(u); �(v)) = (�(r); �(s)) 62 F .2. Non-edges (u; v) 62 E suh that (�(u); �(v)) 2 F . If the number of suh pairs exeeds �N2=4,then we selet a pair (r; s) 2 R � R suh that there exist at least �N2=4h2 pairs (u; v) 62 Efor whih (�(u); �(v)) = (�(r); �(s)) 2 F .Fixing (r; s) as above we have at least �N2=4h2 violating pairs in Vr(K 0)� Vs(K 0). Next, we seletan integer m 2 [`℄ suh that there exists a set W � Vr(K 0) of ardinality 2�m �N and every w 2Wpartiipates in at least �2mN=4h2` > 2�(`�m�3) �N violating pairs (with verties of Vs(K 0)). Clearly,�(W ) = m, and so with overwhelmingly high probability T j+1m ontains a vertex w 2 W . Addingany suh w as a olumn to K 0, we obtain a sub-matrix K 00 and laim that �(L(K 00)) � ` � m.Spei�ally, we show that every u 2 Vs(K 0) suh that (u;w) is a violating pair must be in L(K 00),and reall that the number of suh violating pairs in whih w partiipates exeeds 2�(`�m�3) �N .Lastly, letting Uw denote the set of all u 2 Vs(K 0) suh that (u;w) is a violating pair, we provethat Uw � L(K 00). Let u be an arbitrary vertex in Vs(K 0) (and reall that w 2 Vr(K 0)).1. We �rst note that indj(r) � �(Vr(K 0)) + 1 (by the niety ondition), whereas �(Vr(K 0)) ��(W ) = m. Similarly, indj(s) � �(Vs(K 0)) + 1, whereas �(Vs(K 0)) � �(Uw) � ` � m � 3(sine Vs(K 0) � Uw and jUwj > 2�(`�m�3) �N).2. Combining the two foregoing fats, we onlude that indj(r) + indj(s) � `, whih impliesthat K 0(r; s) = g(r; s).3. Sine w 2 Vr(K 0), it must be that g(w; s)�=K 0(r; s), whih implies g(w; s) = g(r; s) (whenombined with K 0(r; s) = g(r; s)). Sine � is an H-mapping it must be that g(s; w) = g(s; r)�ts the edge relation of (�(s); �(w)) = (�(s); �(r)) with respet to H.11



4. On the other hand, if (u;w) is a violating pair, then g(u;w) does not �t the edge relation of(�(u); �(w)) = (�(s); �(r)) with respet to H.5. Combining Items 3 and 4, we infer that g(u;w) 6= g(s; w), whih implies g(u;w) 6�=K 00(s; w)(beause K 00(s; w) = g(s; w) by virtue of indj+1(s)+indj+1(w) � (`�m�2)+m < `, wherew 2 T j+1m by the hypothesis). Thus, u is not in Vs(K 00), although it is in Vs(K 0).6. We observe that, for every r 2 R n fsg, vertex u 2 Vs(K 0) is not in Vr(K 00) � Vr(K 0), sinethe rows of K 0 are pairwise inonsistent.7. Combining Items 5 and 6, we onlude that u 62 Sr2R Vr(K 00), and hene u 2 L(K 00).The laim follows (sine jL(K 00)j � jUwj � 2�(`�m�3) �N > 2�`N). 2Completing the proof of Lemma 4.4. In aordane with the motivating disussion, we nowomplete the proof of the lemma by using the two latter laims. Spei�ally, if Case 1 holds(i.e., �(L(K 0)) � `), then we invoke Claim 4.4.2 anre are done. Otherwise, Case 2 holds (i.e.,�(L(K 0)) > `), and we take the following two steps. Reall that, as stated in the beginning of theproof, in this ase (i.e., Case 2) we partition the sample T j+1 into two parts, and use a di�erentpart in eah step. In the �rst step we apply Claim 4.4.3 to the �rst part, and get into Case 1; thatis, we obtain a new K 0 suh that �(L(K 0)) � `. Next, in the seond step, we apply Claim 4.4.3 tothe resulting K 0 and the seond part of the sample, and are done.5 Proximity Oblivious Testing of Blow-UpIn this setion we derive, for every �xed graph H, a onstant-query proximity oblivious tester ofBU(H). That is, we refer to the following de�nition of [GR09℄, when speialized to the dense graphmodel.De�nition 5.1 (proximity oblivious testing for graphs in the adjaeny matrix model): A proximityoblivious tester for a graph property � is a probabilisti orale mahine that, on input parameter Nand aess to an N -vertex graph G = ([N ℄; E), outputs a binary verdit that satis�es the followingtwo onditions.1. If G 2 �, then the tester aepts with probability 1.2. There exists a monotone funtion � : (0; 1℄ ! (0; 1℄ suh that, for every graph G = ([N ℄; E) 62�, it holds that the tester rejets G with probability at least �(Æ�(G)), where Æ�(G) denotesthe (relative) distane of G from the set of N -vertex graphs that are in �.The funtion � is alled the detetion probability of the tester.Combining Lemma 4.1 and the ideas underlying [GR09, Thm. 6.3℄, we obtain.Theorem 5.2 For every �xed graph H = ([h℄; F ), there exists a O(h2)-query proximity oblivioustester of BU(H). Furthermore, the tester has detetion probability �(�) = �O(h).This extends the result of [GR09, Prob. 4.11℄, whih orresponds to the speial ase in whih H isa h-vertex lique. We also mention that, for onstant-query proximity oblivious testers of BU(H),detetion probability of the form �(�) = �
(h) is essential (f. [GR09, Prob. 4.3℄).12



Proof: While a diret appliation of [GR09, Thm. 6.3℄ would yield a detetion bound of �(�) =�O(h2), we obtain a quantative improvement by using a version of [GR09, Thm. 6.3℄ that is spe-ialized to the dense graph model. This version refers to any graph property � having a standardtester T (of error probability 1=3) that satis�es the following three onditions:1. T is non-adaptive;2. for a monotonially non-dereasing � : (0; 1℄ ! N , on proximity parameter �, the queries ofT refer to at most �(�) verties; and3. for some �xed s 2 N , the tester T rejets if and only if it sees a partial view of some s-vertexsubgraph that annot our in any graph in �. (Suh a partial view is alled a witness fornon-membership.)In suh a ase, � has an �s2�-query proximity-oblivious tester with detetion probability at least�(�) = 
(�=�(�=2)s). We mention that a diret appliation of [GR09, Thm. 6.3℄ would have yieldeda detetion bound of �(�) = 
(�=q(�=2)(s2)), where q < �2 denotes the query omplexity of theoriginal tester.The foregoing laim is easily proved by following the ideas that underly the proof of [GR09,Thm. 6.3℄. Spei�ally, the proximity oblivious tester selet i 2 f1; :::; dlog2Neg with probability2�i, invokes the query-generator proedure of T on input ((alleged) proximity parameter) 2�i,selets uniformly s verties among those that appear in the generated queries, makes (only) theorresponding �s2� queries, and aept if and only if the indued subgraph is not a witness for non-membership. Clearly, the resulting tester rejets any graph that is 2�i-far from � with probabilityat least 2�i � 23 � ��(2�i)s ��1.It remains to show that, when applied to � = BU(H), the (non-adaptive) tester in Algorithm 3.1(when using the relaxed ondition of De�nition 3.4) rejets based on a witness for non-membershipthat ontains O(h) verties. Essentially, this holds sine the ondition in De�nition 3.4 refers to aset of at most h+ 1 pairwise inonsistent rows that are not H-mappable, whereas (as shown next)only n� 1 olumns are required in order to establish that n rows are pairwise inonsistent. Thus,it suÆes to augment the set of rows R by at most jRj � 1 additional verties, and derive a witnessfor non-membership that ontains at most 2h+ 1 verties.Lastly, we prove that n � 1 olumns suÆe for establishing the fat that n rows are pairwiseinonsistent. Starting with a row r of the largest index, we pik an arbitrary olumn that witnessesthe inonsistene of row r with some other row r0. This olumn  partitions the set of rows to twonon-trivial sets: the set of rows having the same value as r on olumn , and the set of rows havingthe opposite value on this olumn. (Note that all rows have a binary value on olumn , sine westarted with a row r of largest index.) The proess ontinues, separately, with eah of these twosets, and the key observation is that eah split requires only one (possibly new) olumn.6 ConlusionsWe have shown a non-adaptive tester of query omplexity eO(1=�) for BU(H). The degree of thepolynomial in the polylogarithmi fator that is hidden in the eO() notation is h + O(1), whereh is the number of verties in H. We wonder whether the query omplexity an be redued top(h log(1=�))) � ��1, where p is a �xed polynomial. We mention that suh a dependene on h wasobtained in [GR08, Se. 6.2℄ for the speial ase in whih H is an h-lique. Furthermore, we wonderwhether non-adaptive testing of BU(H) is possible in query omplexity poly(h) � ��1. We mention13



that suh a result is only known for h = 2 (f. [GR08, Se. 6.1℄), whereas an adaptive tester ofquery omplexity O(h2=�) is known (f. [A, Se. 4℄).AknowledgmentsWe are grateful to Dana Ron for omments regarding a previous version of this work.
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