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1 Introdu
tionThe general 
ontext of this work is that of testing graph properties in the adja
en
y matrix repre-sentation (as initiated in [GGR℄). In this model graphs are viewed as (symmetri
) Boolean fun
tionsover a domain 
onsisting of all possible vertex-pairs (i.e., an N -vertex graph G = ([N ℄; E) is rep-resented by the fun
tion g : [N ℄ � [N ℄ ! f0; 1g su
h that fu; vg 2 E if and only if g(u; v) = 1).Consequently, an N -vertex graph represented by the fun
tion g : [N ℄ � [N ℄ ! f0; 1g is said to be�-far from some predetermined graph property if more than � � N2 entries of g must be modi�edin order to yield a representation of a graph that has this property. We refer to � as the proximityparameter, and the 
omplexity of testing is stated in terms of � and the number of verti
es in thegraph (i.e., N).Interestingly, many natural graph properties 
an be tested within query 
omplexity that de-pends only on the proximity parameter; see [GGR℄, whi
h presents testers with query 
omplexitypoly(1=�), and [AFNS℄, whi
h 
hara
terizes the 
lass of properties that are testable within query
omplexity that depends only on the proximity parameter (where this dependen
e may be an ar-bitrary fun
tion of �). A well-known open problem in this area is to 
hara
terize the 
lass of graphproperties that 
an be tested within query 
omplexity poly(1=�). We mention that su
h a 
hara
-terization has been obtained in the spe
ial 
ase of indu
ed subgraph freeness properties [AS℄, butthe general 
ase seems quite diÆ
ult.In light of this state of a�airs, it was suggested in [GR08℄ to try to 
hara
terize lower query
omplexity 
lasses, and in parti
ular the 
lass of graph properties that 
an be tested non-adaptivelywithin query 
omplexity eO(1=�). As a �rst step towards this goal, it was shown in [GR08, Se
. 6℄that, for every 
onstant 
, the set of graphs that ea
h 
onsists of at most 
 isolated 
liques is su
ha property.In this work we signi�
antly extend the latter result by showing that the 
lass of graph propertiesthat 
an be tested non-adaptively within query 
omplexity eO(1=�) 
ontains all graph blow-upproperties. For any �xed graph H = ([h℄; F ), we say that a graph G = ([N ℄; E) is a blow-up of Hif the verti
es of G 
an be 
lustered in up to h 
lusters su
h that the edges between these 
lustersre
e
t the edge relation of H. That is, verti
es in the ith and jth 
luster are 
onne
ted in G if andonly if (i; j) 2 F . Note that, unlike in the 
ase of balan
ed blow-up (
f. [GKNR℄), the 
lustersare not required to have equal size.1 Also note that the \
olle
tion of 
 
liques" property studiedin [GR08, Se
. 6℄ 
an be 
ast as the property of being a blow-up of a 
-vertex 
lique (by 
onsideringthe 
omplement graph).Theorem 1.1 (main result): For every �xed H, the property of being a blow-up of H is testableby eO(1=�) non-adaptive queries. Furthermore, the tester has one-sided error (i.e., it always a

eptsgraphs that are blow-ups of H) and runs in poly(1=�)-time.We mention that, ex
ept for h = 1, the aforementioned property 
annot be tested by o(1=�) queries,even when adaptivity and two-sided error are allowed (see [GR08, Prop. 6.1℄). We also mentionthat, by [GR08, Prop. 6.2℄, a tester of eO(1=�) query 
omplexity 
annot be 
anoni
al (i.e., it 
annotrule by inspe
ting an indu
ed subgraph).Additional results. We also 
onsider the 
omplexity of testing \balan
ed blow-up" properties,showing that the two-sided error query 
omplexity is quadrati
 in 1=� for both adaptive and non-adaptive testers; see Proposition 2.4. Finally, we present proximity oblivious testers (
f. [GR09℄)for any (general) blow-up property; see Theorem 5.2.1We note that testing balan
ed blow-up properties requires 
(1=�2) queries. For details, see Se
tion 2.2.1



Te
hniques. Theorem 1.1 is proved by presenting a suitable tester and analyzing it. Re
all thatthis tester 
annot be 
anoni
al; indeed, this tester sele
ts at random a sample of eO(1=�) verti
es, butit inspe
ts (or queries) only eO(1=�) of the vertex pairs in this sample. Consequently, the tester (andthe analysis) has to deal with partial knowledge of the subgraph indu
ed by the sample. A pivotalnotion regarding su
h partial views is of \in
onsisten
y" between verti
es (w.r.t a given partialview), whi
h means that these verti
es have di�erent neighbor sets and thus 
annot be pla
ed inthe same 
luster (of a blow-up of H (or any other graph)). Spe
i�
ally, the tester 
onsiders all setsof up to h + 1 pairwise in
onsistent verti
es, and a

epts if and only if ea
h su
h set (along withthe known in
iden
e relations) 
an be embedded in H. As usual, the te
hni
ally 
hallenging part isanalyzing the behavior of the tester on arbitrary graphs that are far from being blow-ups of H. Ouranalysis pro
eeds in iterations, where in ea
h iteration some progress is made, but this progress isnot re
e
ted by a growing number of in
iden
e 
ontraints but rather in the de
reasing density ofthe violations re
e
ted in the in
iden
e 
onstraints. This progress is 
aptured in Lemma 4.4 (whi
hrefers to notions introdu
ed in Se
tion 4.1). Here we merely mention that the number of iterationsis polylogarithmi
 in ��1 rather than being O(h2).Organization. The 
ore of this paper is presented in Se
tions 3 and 4, whi
h 
ontain a des
riptionof the tester and its analysis, respe
tively. (Indeed, this part establishes Theorem 1.1.) Se
tion 2provides preliminaries, whi
h may be skipped by the experts, as well as a side dis
ussion (andresult) regarding \balan
ed blow-up" properties. Se
tion 5 another se
ondary dis
ussion; that is,one regarding proximity oblivious testers.2 PreliminariesIn this se
tion we review the de�nition of property testing, when spe
ialized to graph propertiesin the adja
en
y matrix model. We also de�ne the blow-up properties (and dis
uss the 
ase ofbalan
ed blow-up).2.1 Basi
 notionsFor an integer n, we let [n℄ def= f1; :::; ng. A generi
 N -vertex graph is denoted by G = ([N ℄; E),where E � ffu; vg : u; v 2 [N ℄g is a set of (unordered) pairs of verti
es. Any set of (su
h) graphsthat is 
losed under isomorphism is 
alled a graph property. By ora
le a

ess to su
h a graphG = ([N ℄; E) we mean ora
le a

ess to the Boolean fun
tion that answers the query fu; vg (orrather (u; v) 2 [N ℄ � [N ℄) with the bit 1 if and only if fu; vg 2 E. At times, we look at E as asubset of V � V ; that is, we often identify E with f(u; v) :fu; vg2Eg.De�nition 2.1 (property testing for graphs in the adja
en
y matrix model): A tester for a graphproperty � is a probabilisti
 ora
le ma
hine that, on input parameters N and � and a

ess to anN -vertex graph G = ([N ℄; E), outputs a binary verdi
t that satis�es the following two 
onditions.1. If G 2 � then the tester a

epts with probability at least 2=3.2. If G is �-far from � then the tester a

epts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � it holds that the symmetri
 di�eren
ebetween E and E0 has 
ardinality that is greater than �N2.2



If the tester a

epts every graph in � with probability 1, then we say that it has one-sided error. Atester is 
alled non-adaptive if it determines all its queries based solely on its internal 
oin tosses(and the parameters N and �); otherwise it is 
alled adaptive.The query 
omplexity of a tester is the number of queries it makes to any N -vertex graph ora
le,as a fun
tion of the parameters N and �. We say that a tester is eÆ
ient if it runs in time that ispolynomial in its query 
omplexity, where basi
 operations on elements of [N ℄ are 
ounted at unit
ost. We note that all testers presented in this paper are eÆ
ient, whereas the lower-bounds holdalso for non-eÆ
ient testers.We shall fo
us on properties that 
an be tested within query 
omplexity that only depends onthe proximity parameter, �. Thus, the query-
omplexity upper-bounds that we state hold for anyvalues of � and N , but will be meaningful only for � > 1=N2 or so. In 
ontrast, the lower-bounds(e.g., of 
(1=�)) 
annot possibly hold for � < 1=N2, but they will indeed hold for any � > N�
(1).Alternatively, one may 
onsider the query-
omplexity as a fun
tion of �, where for ea
h �xed valueof � > 0 the value of N tends to in�nity.2.2 The blow-up propertiesFollowing the dis
ussion in the introdu
tion, we �rst de�ne the blow-up properties that are thesubje
t of our study.De�nition 2.2 (graph blow-up): We say that the graph G = ([N ℄; E) is a blow-up of the graphH = ([h℄; F ) if there is an h-way partition (V1; :::; Vh) of the verti
es of G su
h that for everyi; j 2 [h℄ and (u; v) 2 Vi � Vj it holds that (u; v) 2 E if and only if (i; j) 2 F . We stress that theVi's are not required to be of equal size and that some of them may be empty. We denote by BU(H)(resp., BUN (H)) the set of all graphs (resp., N -vertex graphs) that are blow-ups of H.In 
ontrast to De�nition 2.2, let us brie
y 
onsider the more rigid (and popular) de�nition of abalan
ed blow-up.De�nition 2.3 (balan
ed blow-up): We say that the graph G = ([N ℄; E) is a balan
ed blow-up ofthe graph H = ([h℄; F ) if there is an h-way partition (V1; :::; Vh) of the verti
es of G su
h that thefollowing two 
onditions hold:1. For every i; j 2 [h℄ and (u; v) 2 Vi � Vj it holds that (u; v) 2 E if and only if (i; j) 2 F .2. For every i 2 [h℄ it holds that jVij 2 fbN=h
; dN=heg.We denote by BBU(H) (resp., BBUN (H)) the set of all graphs (resp., N -vertex graphs) that arebalan
ed blow-ups of H.It is easy to see that, ex
ept for trivial 
ases (i.e., when H 
onsists of isolated verti
es), balan
edblow-up 
annot be tested with one-sided error and 
omplexity that does not depend on the size ofthe graph. The two-sided error testing 
omplexity of this property is �(1=�2), as shown next.Proposition 2.4 (on the 
omplexity of testing balan
ed blow-up): For every H = ([h℄; F ) su
hthat F 6= ;, testing the property BBU(H) requires 
(1=�2) queries even if adaptive testers of twosided error are allowed. On the other hand, for any H = ([h℄; F ), there exists a non-adaptive testerof query 
omplexity O(1=�2) (and two-sided error) for the property BBU(H).3



Proof: The lower bound follows dire
tly from the known lower bounds on estimating the average(
f. [CEG℄). Spe
i�
ally, distinguishing Boolean fun
tions de�ned over [N ℄ and having an averagevalue of 0:5 from Boolean fun
tions having an average of 0:5 � � 
an be redu
ed to distinguishingN -vertex graphs that 
onsist of two isolated 
liques of the same size from graphs that 
onsist oftwo isolated 
liques of sizes (0:5 � �) � N and (0:5 + �) � N , respe
tively. (Given ora
le a

ess to afun
tion f : [N ℄! f0; 1g 
onsider the graph G = ([N ℄; f(u; v) : f(u)=f(v)g).)In des
ribing the tester, we �rst assume that H = ([h℄; F ) is not a blow-up of any smallergraph H 0. Also, anti
ipating the extension to the general 
ase, we generalize the balan
ed blow-upproperty into a proportional blow-up property. Here, for a �xed graph H = ([h℄; F ) and sequen
e ofdensities � = (�1; ::; �h), the graph G is a �-blow-up of H if De�nition 2.3 holds with Condition 2repla
ed by jVij 2 fb�iN
; d�iNeg. The non-adaptive tester for �-blow-up of H, where H is not ablow-up of any smaller graph, pro
eeds as follows (on input a graph G):1. Sele
t uniformly a sample of eO(1=minif�ig) verti
es, denoted B, whi
h will be used as a basisfor 
lustering in Step 2. Sele
t uniformly a sample of O(jBj=�2) verti
es, denoted S. Finally,sele
t uniformly a sample of O(h2=�) vertex pairs in S � S, denoted T .2. Query all pairs (u; v) 2 (B�S)[T , and 
luster the verti
es in S a

ording to their neighborsin B. That is, for every v 2 [N ℄, let sgB(v) def= fu2B : (u; v)2Eg, and, for every set B0 � B,let SB0 def= fv2S : sgB(v)=B0g.3. If the number of non-empty sets SB0 ex
eeds h, then reje
t. Otherwise, 
onsider all possible1-1 mappings from C def= fB0 : SB0 6= ;g to [h℄, and for ea
h su
h mapping � determinewhether or not the following two 
onditions hold.(a) For every B0 2 C it holds that jSB0 j = (1 � �=2) � ��(B0) � jSj.(b) For every (u; v) 2 T it holds that (u; v) 2 E if and only if (�(sgB(u)); �(sgB(v))) 2 F ,The test a

epts if and only if there exists a mapping � that satis�es both the above 
onditions.The number of queries performed by the tester is O(jBj2=�2) = O(1=�2). We �rst 
onsider whathappens if G is a �-blow-up of H. In this 
ase, with high probability, (1) the sample B 
ontainsat least one representative from ea
h 
luster of G, and (2) for ea
h i 2 [h℄ the sample S 
ontains(1 � �=2) � �i � jSj representatives of the ith 
luster. In this 
ase, the tester a

epts. We now turnto the 
ase that G = ([N ℄; E) is �-far from being a �-blow-up of H. In this 
ase, for any 
hoi
e ofB, we 
an 
onsider the 
lustering of the entire graph a

ording to sgB, and denote the h largest
lusters by V1; :::; Vh (where some of these Vi's may be empty). Letting V def= Si2[h℄ Vi, we note thatif jV j < (1� �=2) �N , then with high probability we reje
t at the onset of Step 3 due to seeing morethan h 
lusters in the sample.2 Otherwise, we 
onsider all possible mappings of the verti
es of theh largest 
lusters to [h℄. For ea
h su
h mapping  : V ! [h℄ su
h that �(u) = �(v) i� u; v 2 Vi forsome i, either there exists an i 2 [h℄ su
h that jVij 62 (1 � �=4) � �iN or there exist at least �N2=4violating pairs (i.e., vertex pairs (u; v) 2 V � V that have an edge relation in G that does not �tthe edge relation of ( (u);  (v)) in H). In the �rst 
ase, with high probability, the sample S will
ontain a deviating fra
tion of verti
es from Vi, whereas in the se
ond 
ase, with high probability,2If jVhj � (�=2h) �N , then with high probability S will 
ontain a vertex from ea
h Vi as well as a vertex that doesnot belong to V . On the other hand, if jVhj � (�=2h) � N , then with high probability S will 
ontain h + 1 verti
esfrom di�erent 
lusters in [N ℄ n V . 4



the sample T will hit some of these violations.3 In either 
ases, with high probability, the testerwill reje
t. This 
ompletes the treatment of the 
ase (of �-blow-up) of a graph H = ([h℄; F ) that isnot a blow-up of any smaller graph.Finally, suppose that H([h℄; F ) is a blow-up of some smaller graph H 0, and suppose that H 0 isminimal (i.e., it is not a blow-up of any smaller graph). Then, testing the property BBU(H) redu
esto testing a proportional blow-up property regarding H 0, where the proportions are determineda

ording to the blow-up of H 0 into H (and the densities are multiples of 1=h).3 The BU(H)-Tester and its Basi
 FeaturesRe
all that a tester of the type we seek (i.e., a non-adaptive tester of eO(1=�) query 
omplexity)
annot operate by inspe
ting an indu
ed subgraph, be
ause by [GR08, Prop. 6.2℄ su
h a subgraphwill have to be indu
ed by 
(1=�) verti
es, whi
h would yield query 
omplexity 
(1=�2). Thus,like in [GR08, Se
. 6.2℄, our non-adaptive tester operates by using a less straightforward queryingpro
edure. Spe
i�
ally, it does sele
t a sample of eO(1=�) verti
es, but does not query all vertexpairs.Algorithm 3.1 (testing BU(H), for a �xed graph H = ([h℄; F )): On input parameters, N and �,and a

ess to an ora
le g : [N ℄ � [N ℄ ! f0; 1g, representing a graph G = ([N ℄; E), the algorithmsets ` = log2(1=�) +O(log log(1=�)) and pro
eeds as follows.1. For every i 2 [`℄, it sele
ts uniformly a sample of poly(`) � 2i verti
es, denoted Ti.Denote T = Si2[`℄ Ti.2. For every i; j 2 [`℄ su
h that i+ j � `, the algorithm queries all pairs in Ti � Tj.3. The algorithm a

epts if and only if the answers obtained in Step 2 are 
onsistent with someblow-up of H. That is, let K : T � T ! f0; 1; �g be a partial des
ription of the subgraph of Gindu
ed by T su
h that K(u; v) = g(u; v) if query (u; v) was made in Step 2, and otherwiseK(u; v) = �. Then, the a

eptan
e 
ondition seeks a mapping � : T ! [h℄ su
h that ifK(u; v) = 1 then (�(u); �(v)) 2 F and if K(u; v) = 0 then (�(u); �(v)) 62 F .Indeed, at this point we ignore the 
omputational 
omplexity of implementing Step 3. We shallreturn to this issue at the end of the 
urrent se
tion. But, �rst, let us note that the query 
omplexityof Algorithm 3.1 is Xi;j:i+j�`poly(`) � 2i+j = poly(`) � 2` = eO(1=�): (1)It is also 
lear that Algorithm 3.1 is non-adaptive and that it a

ept every G 2 BU(H) withprobability 1 (i.e., it has one-sided error). The bulk of this work (see Se
tion 4) is devoted toshowing that if G is �-far from BU(H), then Algorithm 3.1 reje
ts it with probability at least 2=3.Relaxing the a

eptan
e 
ondition of Algorithm 3.1. A straightforward implementation ofStep 3 amounts to 
onsidering all hjT j mappings of T to [h℄, and 
he
king for ea
h su
h mapping �whether the 
lustering indu
ed by � �ts the graph H. Relaxing the a

eptan
e 
ondition (used inStep 3 of Algorithm 3.1) yields a more time-eÆ
ient algorithm. A
tually, the relaxed a

eptan
e3Note that a 1=h2 fra
tion of these foregoing violations 
an be attributed to one of 2 � �h2� events that 
orrespondto the existen
e or non-existen
e of edges between some pair of 
lusters.5




ondition (de�ned next) seems easier to analyze than the original one. The notion of pairwise in-
onsistent rows (of K) is pivotal to this relaxed a

eptan
e 
ondition. (Indeed, it will be instru
tiveto think of K as a matrix, and to view re
tangular restri
tions of K as sub-matri
es.)De�nition 3.2 (pairwise in
onsistent rows): Let K 0 : R�C ! f0; 1; �g be a sub-matrix of K : T �T ! f0; 1; �g; that is, R;C � T and K 0(r; 
) = K(r; 
) for for every (r; 
) 2 R�C. Then, the rowsr1; r2 2 R are said to be in
onsistent (wrt K 0) if there exists a 
olumn 
 2 C su
h that K 0(r1; 
) andK 0(r2; 
) are di�erent Boolean values (i.e., K 0(r1; 
);K 0(r2; 
) 2 f0; 1g and K 0(r1; 
) 6= K 0(r2; 
)).A set of rows of K 0 is 
alled pairwise in
onsistent (wrt K 0) if ea
h pairs of rows is in
onsistent (wrtK 0).Another pivotal notion, whi
h was alluded to before, is the notion of being 
onsistent with someblow-up of H, whi
h we now term H-mappability.De�nition 3.3 (H-mappable sub-matri
es): Let K 0 : R � C ! f0; 1; �g be a sub-matrix of K :T � T ! f0; 1; �g. We say that K 0 is H-mappable if there exists a mapping � : R ! [h℄ su
h thatif K 0(u; v) = 1 then (�(u); �(v)) 2 F and if K 0(u; v) = 0 then (�(u); �(v)) 62 F . We 
all su
h a �an H-mapping of K 0 (or R) to [h℄.Note that if K is H-mappable, then every two in
onsistent rows of K must be mapped (by � as inDe�nition 3.3) to di�erent verti
es of H. In parti
ular, if a sub-matrix K 0 : R � C ! f0; 1; �g ofK has pairwise in
onsistent rows, then any H-mapping of K to [h℄ must be inje
tive. Hen
e, if K
ontains more than h pairwise in
onsistent rows, then K is not H-mappable.De�nition 3.4 (the relaxed a

eptan
e 
ondition (of Algorithm 3.1)): The relaxed algorithm a
-
ept if and only if ea
h set of pairwise in
onsistent rows in K is H-mappable. That is, for everyset R of pairwise in
onsistent rows in K, we 
he
k whether the sub-matrix K 0 : R � T ! f0; 1; �gis H-mappable, where the pairwise in
onsisten
y 
ondition mandates that this mapping of R to [h℄be 1-1. In parti
ular, if K has more than h pairwise in
onsistent rows, then the relaxed a

eptan
e
ondition fails.Note that the relaxed a

eptan
e 
ondition 
an be 
he
ked by 
onsidering all s-subsets of T , for alls � h+ 1. For ea
h su
h subset that 
onsists of pairwise in
onsitent rows, we 
onsider all possible1-1 mappings of this subset to [h℄, and 
he
k 
onsisten
y with respe
t to H. This 
an be performedin time � jT jh+1� � (h!) < jT jh+1 = poly(1=�), where the polynomial depends on h.Clearly, if G 2 BU(H), then for every T � [N ℄ it holds that the 
orresponding matrixK satis�esDe�nition 3.4. Thus, the relaxed algorithm always a

epts graphs in BU(H). Se
tion 4 is devotedto showing that if G is �-far from BU(H), then the relaxed algorithm reje
ts with high probability.4 The A

eptan
e Condition and Graphs that are far from BU(H)In light of the above, Theorem 1.1 follows from the fa
t that the relaxed version of Algorithm 3.1(whi
h uses the 
ondition in De�nition 3.4) reje
ts with very high probability any graph G that is�-far from BU(H). This fa
t is established next.Lemma 4.1 (main lemma): Suppose that G = ([N ℄; E) is �-far from BUN (H), and let T = Si2[`℄ Tibe sele
ted at random as in Step 1 of Algorithm 3.1. Then, with probability at least 2=3, there existsa set R � T of pairwise in
onsistent rows in the 
orresponding matrix K : T � T ! f0; 1; �g thatis not H-mappable,Before embarking on the a
tual proof of Lemma 4.1, we provide a very rough outline.6



Outline of the proof of Lemma 4.1. Our very rough plan of a
tion is to partition the sele
tionof T (and ea
h of its parts, i.e., T0; T1; :::; T`) into p(`) def= 2`h many phases su
h that in the jthphase we sele
t at random samples T j0 ; T j1 ; :::; T j̀ su
h that jT ji j = poly(`) � 2i. Thus, we let ea
hTi equal Sp(`)j=1 T ji , but we shall 
onsider the queries as if they are made in phases su
h that inthe jth phase we only 
onsider queries between T j def= Si2[`℄ T ji and T [j℄ def= Sk�j T k. LettingKj : T [j℄ � T [j℄ ! f0; 1; �g denote the partial information obtained on G in the �rst j phases, we
onsider a 
ertain set Rj of pairwise in
onsistent rows of Kj. If this set Rj is not H-mappable,then we are done. Otherwise, we show that, with high probability over the 
hoi
e of the sampleT j+1, we obtain a new set Rj+1 of pairwise in
onsistent rows su
h that Rj+1 has a higher indexthan Rj , where the indi
es refer to an order over sequen
es of length at most h over [`℄. Sin
e thenumber of su
h sequen
es is Pk2[h℄ `k < p(`), with high probability, this pro
ess must rea
h a setRj that is not H-mappable, and so we are done.Needless to say, the 
ru
ial issue is the progress a
hieved in ea
h phase; that is, the fa
t that atea
h phase j the index of the new set Rj+1 is higher than the index of the old set Rj. Intuitively, thisprogress is a
hieved be
ause the 
urrent (H-mappable) set Rj indu
es a 
lustering of all verti
es ofG that extends this H-mapping, whereas this mapping must 
ontain many vertex pairs that violatethe edge relation of H. The sample taken in the 
urrent phase (i.e., T j+1) is likely to hit theseviolations, and this gives rise to a set Rj+1 with higher index.4.1 Basi
 notions and notationsIn addition to the foregoing notations, T ji ; T j and T [j℄, we shall use the following notations.� A pair (R;C) is 
alled a j-basi
 pair if C � T [j℄ and R � C. Indeed, j-basi
 pairs 
orrespondto restri
tions of the sample available at phase j (i.e., T [j℄).� The j-index of a vertex v 2 T [j℄, denoted idxj(v), is the smallest index i su
h that v 2 T [j℄i ,where T [j℄i def= Sk�j T ki . (Note that idx(�) depends on T , but this dependen
e is not shown inthe notation.)A key observation is that for every u; v 2 T , it holds that K(u; v) = g(u; v) if and only ifidxp(`)(u) + idxp(`)(v) � `. Othewise, K(u; v) = � (indi
ating that (u; v) was not queried byAlgorithm 3.1.We 
omment that, with extremely high probability, for ea
h j and v 2 T [j℄, there exists aunique i 2 [`℄ and k 2 [j℄ su
h that v 2 T ki . Thus, for any v 2 T [j℄, we may assume thatidxj+1(v) = idxj(v).� The indi
es of individual verti
es in T [j℄ are the basis for de�ning the index of sets in T [j℄.Spe
i�
ally, the j-index of a set S � T [j℄, denoted idxj(S), is the multi-set 
onsisting of allvalues idxj(v) for v 2 S. It will be instru
tive to 
onsider an ordered version of this multi-set; that is, we rede�ne idxj(S) as (i1; :::; ijSj) su
h that (1) for every k < jSj it holds thatik � ik+1, and (2) for every i 2 [`℄ it holds that jfk2 [jSj℄ : ik= igj = jfv 2 S : idxj(v)= igj.� We 
onsider a natural lexi
ographi
 order over sequen
es, denoted �, su
h that for two(monotoni
ly non-in
reasing) sequen
es of integers, a = (a1; :::; am) and b = (b1; :::; bn), itholds that a � b if{ either there exists i � min(n;m) su
h that (a1; :::; ai�1) = (b1; :::; bi�1) and ai > bi.7



{ or m > n and (a1; :::; an) = (b1; :::; bn).Note that � is a total order on the set of monotoni
ly non-in
reasing (�nite) sequen
es ofintegers.As hinted in the overview, a key notion in our analysis is the notion of a 
lustering of the verti
esof G that is indu
ed by an H-mapping of some small subset of verti
es. A
tually, the 
lustering isindu
ed by a partial knowledge sub-matrix K 0 : R�C ! f0; 1; �g as follows.De�nition 4.2 (the 
lustering indu
ed by K 0): Let K 0 : R � C ! f0; 1; �g be a sub-matrix ofK : T � T ! f0; 1; �g su
h that K 0 has pairwise in
onsistent rows. Then, for every r 2 R, wedenote by Vr(K 0) the set of verti
es v 2 [N ℄ that are 
onsistent with row r in K 0. That is,Vr(K 0) def= fv2 [N ℄ : (8
2C) g(v; 
)�=K 0(r; 
)g (2)where, for �; � 2 f0; 1; �g, we write ��= � if either � = � or � = � or � = �. The verti
es that arein
onsistent with all rows, are pla
ed in the leftover set L(K 0) def= [N ℄ n Sr2R Vr(K 0).Indeed, rows r1; r2 2 R are in
onsistent wrt K 0 (as per De�nition 3.2) if there exists a 
olumn 
 2 Csu
h that K 0(r1; 
) 6�=K 0(r2; 
) (whi
h means that K 0(r1; 
) and K 0(r2; 
) are both in f0; 1g but aredi�erent). Thus, the hypothesis that the rows of K 0 are pairwise in
onsistent implies that the setsin Eq. (2) are disjoint. Hen
e, the 
lustering in De�nition 4.2 is indeed a partition of the vertexset of G (sin
e v 2 L(K 0) if for every r 2 R there exists 
 2 C su
h that g(v; 
) 6�=K 0(r; 
)). Thismotivates our fo
us on sub-matri
es having pairwise in
onsistent rows. The following de�nitionadds a requirement (regarding su
h sub-matri
es) that refers to the relation between the index ofrow r and the density of the 
orresponding set Vr(K 0).De�nition 4.3 (ni
e pairs): Let (R;C) be a j-basi
 pair and K 0 : R � C ! f0; 1; �g be the
orresponding sub-matrix of K. We say that (R;C) is a j-ni
e pair if the following two 
onditionshold.1. R are pairwise in
onsistent with respe
t to K 0.2. For every r 2 R it holds that indj(r) � �(Vr(K 0)) + 1, where �(S) def= dlog(N=jSj)e.As a sanity 
he
k, suppose that r 2 R was sele
ted in phase j (i.e., r 2 T j). Then, it is verylikely that r (or some other member of Vr(K 0)) is sele
ted in T j�(Vr(K0))�1, be
ause T j�(Vr(K0))�1 is arandom set of 
ardinality poly(`) � 2�(Vr(K0))�1 = poly(`) �N=jVr(K 0)j.For ea
h phase j, we shall show the existen
e of a j-ni
e pair. Furthermore, we shall show thatthe 
orresponding set of rows has a higher index than all sets of rows asso
iated with previousphases. The furthermore 
laim is the 
rux of the analysis, and is 
aptured by the Progress Lemmapresented in Se
tion 4.2. But let us �rst establish the mere existen
e of j-ni
e pairs. Indeed, forevery j � 1, we may pi
k an arbitrary r 2 T 11 , and 
onsider the j-ni
e pair (frg; frg), while notingthat idx1(r) = 1 and �(Vr(K 0) � 0 (where K 0 : frg � frg ! f0; 1; �g).
8



4.2 The Progress LemmaRe
all that G = ([N ℄; E) is �-far from BU(H), where H = ([h℄; F ). Furthermore, we 
onsider thepartial view K : T � T ! f0; 1; �g obtained by Algorithm 3.1, where T = Si2[`℄;j2[p(`)℄ T ji is therandom sample is sele
ted. Throughout the rest of this se
tion, we say that an event has negligibleprobability if it o

urs with probability that vanishes faster than any polynomial in �. Sin
e we shall
onsider only poly(`) many events, we 
an safely ignore these negligible probabilities.4 We saythat an event o

urs with overwhelmingly high probability if the probability that it does not o

uris negligible.Lemma 4.4 (Progress Lemma): Let (R;C) be a j-ni
e pair and K 0 : R � C ! f0; 1; �g be the
orresponding sub-matrix of K. If K 0 is H-mappable then, with overwhelmingly high probabilityover the 
hoi
e of T j+1, there exists a (j + 1)-ni
e pair (R0; C 0) su
h that indj+1(R0) � indj(R).Re
alling that a (trivial) 1-ni
e pair always exists and that the number of possible indi
es is smallerthan p(`), we 
on
lude that, with overwhelmingly high probability (over the 
hoi
e of T ), thereexists a j < p(`) and a j-ni
e pair that is not H-mappable. Lemma 4.1 follows. Thus, all thatremains is proving Lemma 4.4, whi
h we undertake next.Proof: We 
onsider the partition indu
ed by K 0, as per De�nition 4.2, and 
onsider two 
asesregarding the size of L def= L(K 0):Case 1: �(L) � `. In this 
ase (i.e., jLj � 2�` �N), with overwhelmingly high probability, the sampleT j+1 
ontains a vertex u 2 L(K 0). Using this u, we shall obtain a (j + 1)-ni
e pair with aset of rows that has a higher index than R. Intuitively, sin
e (g(u; 
))
2C is in
onsistent withall rows of K 0, we may add u as a row to K 0 while possibly omitting rows of K 0 that are
onsistent with (K(u; 
))
2C (see below), obtaining a sub-matrix that has a larger index (thanthe index of K 0). The detailed analysis of this 
ase is presented in Claim 4.4.2.Case 2: �(L) > `. In this 
ase (i.e., jLj < 2�` � N < �N=2), the partition indu
ed by (Vr(K 0))r2R
ontains many pairs that violate the edge relation of H, sin
e the number of pairs adja
entat L is smaller than �N2=2. We shall show that, with overwhelmingly high probability, thesample T j+1 
ontains a vertex w su
h that augmenting K 0 with the 
olumn 
orrespond-ing to w yields a sub-matrix K 00 su
h that �(L(K 00)) < `. Intuitively, pairs of verti
es inV (K 0) def= Sr2R Vr(K 0) that violate the edge relation of H, yield verti
es w that e�e
tivelyshrink V (K 0) in the sense that adding w as a 
olumn to K 0 moves many verti
es fromV (K 0) to L(K 00). In parti
ular, we shall show that jL(K 00)j = 
(�N=`), whi
h means that�(L(K 00)) < log2(O(`)=�) < `. At this point we may pro
eeds as in Case 1. (Formally, in this
ase, the j+1st phase is partitioned into two sub-phases, where in ea
h sub-phase we use halfof ea
h of the samples T j+1i .) The detailed analysis of this 
ase is presented in Claim 4.4.3.Our analysis of the two 
ases 
ombines straightforward probabilisti
 arguments with manipulationsof sub-matri
es. The latter manipulations in
lude adding rows and 
olumns and trun
ating thesub-matrix so as to leave only rows that have an index that is lower-bounded by some value. It isthus instru
tive to dis
uss these three operations �rst.4In fa
t, it would have suÆ
ed to de�ne as negligible any probability that vanishes faster than any polynomial in1=` (i.e., faster than any polylogarithmi
 fun
tion of �). 9



Adding an arbitrary 
olumn from T j+1. Suppose that (R;C) is j-ni
e with a 
orresponding sub-matrix K 0. Then, adding any 
olumn v 2 T j+1 to K 0 results in a sub-matrixK 00 su
h that the
orresponding pair (R;C [fvg) is (j+1)-ni
e. Clearly, adding a 
olumn may only add in
on-sisten
ies, and so the pairwise in
onsisten
y 
ondition of K 0 is preserved. For any r 2 R, thedensities of Vr(�) may only drop when moving from K 0 to K 00, and so indj(r) � �(Vr(K 0))+1implies indj+1(r) � �(Vr(K 00)) + 1.Adding a row that belongs to L(K 0) \ T j+1�(L(K0)). It is tempting to think that if (R;C) is j-ni
e, thenadding any row v 2 T j+1�(L(K0)) \ L(K 0) \ C to K 0 results in a sub-matrix K 00 su
h that the
orresponding pair (R[fvg; C) is (j+1)-ni
e. It is true that indj+1(r) � �(Vr(K 00))+1 holdsfor ea
h row r, in
luding the added row v (be
ause indj+1(v) = �(L(K 0)) and �(Vv(K 00)) ��(L(K 0)), sin
e Vv(K 00) � L(K 0)). However, although for every r 2 R there exists 
 2 Csu
h that g(v; 
) 6�=K 0(r; 
) (sin
e v 62 Vr(K 0)), it not ne
essarily the 
ase that the row v inK is in
onsistent with all rows in K 0 (i.e., it may be the 
ase that, for some r 2 R and ea
h
 2 C, it holds that K(v; 
)�=K 0(r; 
), sin
e K(v; 
) 2 fg(v; 
); �g and ��=K 0(r; 
)). Copingwith this problem, whi
h arises from the fa
t that K may have 8-values, leads us to introdu
ethe following trun
ation operator.Trun
ating at an added row. Suppose that (R;C) is j-ni
e with a 
orresponding sub-matrixK 0, andlet v 2 L(K 0) \ T j+1�(L(K0)). Then, 
onsider �rst adding v as a new row and 
olumn to K 0, andthen leaving in the resulting sub-matrix only the rows that have a (j+1)-index that is at leastas large as the one of v (i.e., row r remains if and only if indj+1(r) � indj+1(v)). We 
laimthat these rows are pairwise in
onsistent, and thus the resulting sub-matrix is (j + 1)-ni
e.It suÆ
es to prove that the new row v (of K) is in
onsistent with any row that was left fromK 0; that is, �xing any r 2 R su
h that indj+1(r) � indj+1(v), we 
laim that there exists
 2 C su
h that K(v; 
) 6�=K 0(r; 
). Sin
e v 2 L(K 0), we know that there exists 
 2 C su
hthat g(v; 
) 6�=K 0(r; 
), whi
h implies that K 0(r; 
) 2 f0; 1g, whi
h in turn implies indj(r) +indj(
) � ` (by de�nition of K). Now, using indj+1(v) � indj+1(r) � indj(r), we getindj+1(v)+indj(
) � `, whi
h implies thatK(v; 
) = g(v; 
). Re
alling that g(v; 
) 6�=K 0(r; 
),we obtain K(v; 
) 6�=K 0(r; 
), and the 
laim follows.Note that the trun
ation of K 0 : R�C ! f0; 1; �g at the added row v always 
ontains the new rowv, and that it may result in jRj + 1 rows (i.e., no \real trun
ation"). Another key feature of thetrun
ation-at-an-added-row operation is that it yields a set of rows with an index larger than theindex of R.Claim 4.4.1 (the e�e
t of trun
ation): Suppose that (R;C) is j-ni
e with a 
orresponding sub-matrix K 0, and let v 2 L(K 0) \ T j+1�(L(K0)). Then, trun
ating the sub-matrix that 
orresponds to(R [ fvg; C [ fvg) at row v yields a (j + 1)-ni
e pair with a row set having an index larger thanindj(R).Proof: The �rst part of this 
laim was already established above. Denoting the resulting set ofrows by R0, we need to prove that indj+1(R0) � indj(R). If R0 = R[ fug then the 
laim is trivial,and so we 
onsider the 
ase that indj+1(R0) = (i1; :::; it), where t � jRj and it = indj+1(v). Thismeans that a non-trivial trun
ating took pla
e, and that all omitted rows had index smaller thanit, whi
h implies that (i1; :::; it) � indj+1(R) (be
ause indj+1(R) = (i1; :::; it�1; dt; :::; djRj) withdt < it). 2 10



Claim 4.4.2 (
ase 1): Suppose that (R;C) is j-ni
e and that �(L) � `, where L = L(K 0). Then,with overwhelmingly high probability (over the 
hoi
e of T j+1�(L(K0))), the sample T j+1�(L(K0)) 
ontainsa vertex u 2 L(K 0) su
h that adding u to K 0 (both as a row and a 
olumn) and trun
ating theresulting sub-matrix at row u yields a (j + 1)-ni
e pair (R0; C 0) su
h that indj+1(R0) � indj(R).Proof: With overwhelmingly high probability, the sample T j+1�(L(K0)) 
ontains a vertex u 2 L(K 0),while using any su
h vertex yields the desired result (due to Claim 4.4.1). 2Claim 4.4.3 (
ase 2): Suppose that (R;C) is j-ni
e and that the 
orresponding sub-matrix K 0 isH-mappable. Further suppose that �(L) > `, where L = L(K 0). Then, with overwhelmingly highprobability (over the 
hoi
e of T j+1), the sample T j+1 
ontains a vertex w su
h that adding the
olumn w to K 0 yields a (j + 1)-ni
e pair (R;C [ fwg) su
h that the 
orresponding sub-matrix K 00satis�es �(L(K 00)) � `Proof: We 
ombine the hypothesis that G is �-far from BU(H) with the hypothesis that K 0 isH-mappable, and denote the 
orresponding H-mapping by � : R ! [h℄. Extending this mappingto V (K 0) def= Sr2R Vr(K 0) su
h that �(v) = �(r) for every v 2 Vr(K 0), and using the hypothesisthat jL(K 0)j < 2�`N < �N=2, we 
on
lude that there are at least �N2=2 vertex pairs that violatethe edge relation of H (i.e., pairs (u; v) 2 V (K 0)�V (K 0) su
h that (u; v) 2 E i� (�(u); �(v)) 62 F ).A
tually, we should 
onsider all h! possible inje
tions (from R to [h℄), and apply the argument toea
h of them, but this only in
reases the error probability by a fa
tor of h!. These violations 
anbe of one of the following two types.1. Edges (u; v) 2 E su
h that (�(u); �(v)) 62 F . If the number of su
h pairs ex
eeds �N2=4, thenwe sele
t a pair (r; s) 2 R � R su
h that there exist at least �N2=4h2 pairs (u; v) 2 E forwhi
h (�(u); �(v)) = (�(r); �(s)) 62 F .2. Non-edges (u; v) 62 E su
h that (�(u); �(v)) 2 F . If the number of su
h pairs ex
eeds �N2=4,then we sele
t a pair (r; s) 2 R � R su
h that there exist at least �N2=4h2 pairs (u; v) 62 Efor whi
h (�(u); �(v)) = (�(r); �(s)) 2 F .Fixing (r; s) as above we have at least �N2=4h2 violating pairs in Vr(K 0)� Vs(K 0). Next, we sele
tan integer m 2 [`℄ su
h that there exists a set W � Vr(K 0) of 
ardinality 2�m �N and every w 2Wparti
ipates in at least �2mN=4h2` > 2�(`�m�3) �N violating pairs (with verti
es of Vs(K 0)). Clearly,�(W ) = m, and so with overwhelmingly high probability T j+1m 
ontains a vertex w 2 W . Addingany su
h w as a 
olumn to K 0, we obtain a sub-matrix K 00 and 
laim that �(L(K 00)) � ` � m.Spe
i�
ally, we show that every u 2 Vs(K 0) su
h that (u;w) is a violating pair must be in L(K 00),and re
all that the number of su
h violating pairs in whi
h w parti
ipates ex
eeds 2�(`�m�3) �N .Lastly, letting Uw denote the set of all u 2 Vs(K 0) su
h that (u;w) is a violating pair, we provethat Uw � L(K 00). Let u be an arbitrary vertex in Vs(K 0) (and re
all that w 2 Vr(K 0)).1. We �rst note that indj(r) � �(Vr(K 0)) + 1 (by the ni
ety 
ondition), whereas �(Vr(K 0)) ��(W ) = m. Similarly, indj(s) � �(Vs(K 0)) + 1, whereas �(Vs(K 0)) � �(Uw) � ` � m � 3(sin
e Vs(K 0) � Uw and jUwj > 2�(`�m�3) �N).2. Combining the two foregoing fa
ts, we 
on
lude that indj(r) + indj(s) � `, whi
h impliesthat K 0(r; s) = g(r; s).3. Sin
e w 2 Vr(K 0), it must be that g(w; s)�=K 0(r; s), whi
h implies g(w; s) = g(r; s) (when
ombined with K 0(r; s) = g(r; s)). Sin
e � is an H-mapping it must be that g(s; w) = g(s; r)�ts the edge relation of (�(s); �(w)) = (�(s); �(r)) with respe
t to H.11



4. On the other hand, if (u;w) is a violating pair, then g(u;w) does not �t the edge relation of(�(u); �(w)) = (�(s); �(r)) with respe
t to H.5. Combining Items 3 and 4, we infer that g(u;w) 6= g(s; w), whi
h implies g(u;w) 6�=K 00(s; w)(be
ause K 00(s; w) = g(s; w) by virtue of indj+1(s)+indj+1(w) � (`�m�2)+m < `, wherew 2 T j+1m by the hypothesis). Thus, u is not in Vs(K 00), although it is in Vs(K 0).6. We observe that, for every r 2 R n fsg, vertex u 2 Vs(K 0) is not in Vr(K 00) � Vr(K 0), sin
ethe rows of K 0 are pairwise in
onsistent.7. Combining Items 5 and 6, we 
on
lude that u 62 Sr2R Vr(K 00), and hen
e u 2 L(K 00).The 
laim follows (sin
e jL(K 00)j � jUwj � 2�(`�m�3) �N > 2�`N). 2Completing the proof of Lemma 4.4. In a

ordan
e with the motivating dis
ussion, we now
omplete the proof of the lemma by using the two latter 
laims. Spe
i�
ally, if Case 1 holds(i.e., �(L(K 0)) � `), then we invoke Claim 4.4.2 anre are done. Otherwise, Case 2 holds (i.e.,�(L(K 0)) > `), and we take the following two steps. Re
all that, as stated in the beginning of theproof, in this 
ase (i.e., Case 2) we partition the sample T j+1 into two parts, and use a di�erentpart in ea
h step. In the �rst step we apply Claim 4.4.3 to the �rst part, and get into Case 1; thatis, we obtain a new K 0 su
h that �(L(K 0)) � `. Next, in the se
ond step, we apply Claim 4.4.3 tothe resulting K 0 and the se
ond part of the sample, and are done.5 Proximity Oblivious Testing of Blow-UpIn this se
tion we derive, for every �xed graph H, a 
onstant-query proximity oblivious tester ofBU(H). That is, we refer to the following de�nition of [GR09℄, when spe
ialized to the dense graphmodel.De�nition 5.1 (proximity oblivious testing for graphs in the adja
en
y matrix model): A proximityoblivious tester for a graph property � is a probabilisti
 ora
le ma
hine that, on input parameter Nand a

ess to an N -vertex graph G = ([N ℄; E), outputs a binary verdi
t that satis�es the followingtwo 
onditions.1. If G 2 �, then the tester a

epts with probability 1.2. There exists a monotone fun
tion � : (0; 1℄ ! (0; 1℄ su
h that, for every graph G = ([N ℄; E) 62�, it holds that the tester reje
ts G with probability at least �(Æ�(G)), where Æ�(G) denotesthe (relative) distan
e of G from the set of N -vertex graphs that are in �.The fun
tion � is 
alled the dete
tion probability of the tester.Combining Lemma 4.1 and the ideas underlying [GR09, Thm. 6.3℄, we obtain.Theorem 5.2 For every �xed graph H = ([h℄; F ), there exists a O(h2)-query proximity oblivioustester of BU(H). Furthermore, the tester has dete
tion probability �(�) = �O(h).This extends the result of [GR09, Prob. 4.11℄, whi
h 
orresponds to the spe
ial 
ase in whi
h H isa h-vertex 
lique. We also mention that, for 
onstant-query proximity oblivious testers of BU(H),dete
tion probability of the form �(�) = �
(h) is essential (
f. [GR09, Prob. 4.3℄).12



Proof: While a dire
t appli
ation of [GR09, Thm. 6.3℄ would yield a dete
tion bound of �(�) =�O(h2), we obtain a quantative improvement by using a version of [GR09, Thm. 6.3℄ that is spe-
ialized to the dense graph model. This version refers to any graph property � having a standardtester T (of error probability 1=3) that satis�es the following three 
onditions:1. T is non-adaptive;2. for a monotoni
ally non-de
reasing � : (0; 1℄ ! N , on proximity parameter �, the queries ofT refer to at most �(�) verti
es; and3. for some �xed s 2 N , the tester T reje
ts if and only if it sees a partial view of some s-vertexsubgraph that 
annot o

ur in any graph in �. (Su
h a partial view is 
alled a witness fornon-membership.)In su
h a 
ase, � has an �s2�-query proximity-oblivious tester with dete
tion probability at least�(�) = 
(�=�(�=2)s). We mention that a dire
t appli
ation of [GR09, Thm. 6.3℄ would have yieldeda dete
tion bound of �(�) = 
(�=q(�=2)(s2)), where q < �2 denotes the query 
omplexity of theoriginal tester.The foregoing 
laim is easily proved by following the ideas that underly the proof of [GR09,Thm. 6.3℄. Spe
i�
ally, the proximity oblivious tester sele
t i 2 f1; :::; dlog2Neg with probability2�i, invokes the query-generator pro
edure of T on input ((alleged) proximity parameter) 2�i,sele
ts uniformly s verti
es among those that appear in the generated queries, makes (only) the
orresponding �s2� queries, and a

ept if and only if the indu
ed subgraph is not a witness for non-membership. Clearly, the resulting tester reje
ts any graph that is 2�i-far from � with probabilityat least 2�i � 23 � ��(2�i)s ��1.It remains to show that, when applied to � = BU(H), the (non-adaptive) tester in Algorithm 3.1(when using the relaxed 
ondition of De�nition 3.4) reje
ts based on a witness for non-membershipthat 
ontains O(h) verti
es. Essentially, this holds sin
e the 
ondition in De�nition 3.4 refers to aset of at most h+ 1 pairwise in
onsistent rows that are not H-mappable, whereas (as shown next)only n� 1 
olumns are required in order to establish that n rows are pairwise in
onsistent. Thus,it suÆ
es to augment the set of rows R by at most jRj � 1 additional verti
es, and derive a witnessfor non-membership that 
ontains at most 2h+ 1 verti
es.Lastly, we prove that n � 1 
olumns suÆ
e for establishing the fa
t that n rows are pairwisein
onsistent. Starting with a row r of the largest index, we pi
k an arbitrary 
olumn that witnessesthe in
onsisten
e of row r with some other row r0. This 
olumn 
 partitions the set of rows to twonon-trivial sets: the set of rows having the same value as r on 
olumn 
, and the set of rows havingthe opposite value on this 
olumn. (Note that all rows have a binary value on 
olumn 
, sin
e westarted with a row r of largest index.) The pro
ess 
ontinues, separately, with ea
h of these twosets, and the key observation is that ea
h split requires only one (possibly new) 
olumn.6 Con
lusionsWe have shown a non-adaptive tester of query 
omplexity eO(1=�) for BU(H). The degree of thepolynomial in the polylogarithmi
 fa
tor that is hidden in the eO() notation is h + O(1), whereh is the number of verti
es in H. We wonder whether the query 
omplexity 
an be redu
ed top(h log(1=�))) � ��1, where p is a �xed polynomial. We mention that su
h a dependen
e on h wasobtained in [GR08, Se
. 6.2℄ for the spe
ial 
ase in whi
h H is an h-
lique. Furthermore, we wonderwhether non-adaptive testing of BU(H) is possible in query 
omplexity poly(h) � ��1. We mention13



that su
h a result is only known for h = 2 (
f. [GR08, Se
. 6.1℄), whereas an adaptive tester ofquery 
omplexity O(h2=�) is known (
f. [A, Se
. 4℄).A
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