Contents

Probabilistic Proof Systems — Part I

Lecture 1. Interactive Proofs
1.1. Definitions
1.2. GRAPH NONISOMORPHISM
1.3. co-NP and more
1.4. Additional Topics
1.5. Exercises

Lecture 2. Zero-Knowledge Proofs
2.1. Definition
2.2. Zero-knowledge Proofs for NP
2.3. Additional Topics
2.4. Exercises

Suggestions for Further Reading

Bibliography

= O Ut W N

15
15
16
22
25

27
29

IAS/Park City Mathematics Series
Volume 10, 2000

Probabilistic Proof Systems — Part I

Salil Vadhan

LECTURE 1

Interactive Proofs

The notion of a proof is central to mathematics and computer science, and
hence has been the subject of much investigation in both fields. Indeed, from
previous lectures in this volume, the reader should already be aware of the intimate
connection between traditional mathematical proofs and the fundamental questions

of complexity theory (e.g., P Z NP and NP = co-NP). In this lecture series
(and the subsequent one by Madhu Sudan), we will examine several nontraditional
notions of proof which have been at the center of some very exciting developments
in complexity theory.

Recall that proofs are given their meaning by specifying a procedure for verify-
ing them. To formalize this, both assertions and proofs are written as strings over
some finite alphabet, and a language L is used to identify the strings representing
“true assertions.” A classical proof system for L is given by a verification algorithm
V' with the following two properties:

1. (Completeness) True assertions have proofs. That is, if € L, then there
exists proof such that V(z, proof) = accept.
2. (Soundness) False assertions have no proofs. That is, if « ¢ L, then for all
proof ™, V(z, proof ") = reject.
3. (Efficiency) V(z, proof) runs in time poly(|z|).
Clearly, completeness and soundness are central to our intuitive notion of proof.
Some form of efficiency is also important, for if one could decide whether the as-
sertion is true in less time than it takes to verify the proof, then the proof loses its
usefulness. Recall that NP is the class of languages having classical proof systems
as defined above.

IDivision of Engineering and Applied Sciences, Harvard University, Cambridge, MA.

E-mail address: salil@deas.harvard.edu.

The author is supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.
Thanks to Jirka Hanika for assistance in preparing these lecture notes.

(©2000 American Mathematical Society

2 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

In these lectures, we will consider augmenting the above notion with two new
ingredients (as proposed in [GMR89, BM88|). The first is randomization; that is,
we will allow the verification procedure to toss coins and accept or reject incorrectly
with some small probability. While this is a substantial deviation from the clas-
sical viewpoint whereby proofs establish the truth of an assertion with certainty,
it is natural given the wide acceptance of randomized computations as reasonable
substitutes for deterministic ones. The second new ingredient is interaction. Clas-
sically, proofs are viewed as static objects that are written and fixed, before being
examined in their entirety by the verification procedure. Instead, we will allow the
verifier to interact with a dynamic, all-powerful “prover” who will try to convince
the verifier of the validity of the assertion at hand.

Since the classical notion of proof seems to be adequate, the reader may won-
der what we gain by augmenting proof systems in these ways. Most directly, we
obtain a more general notion of “efficiently verifiable proofs” which, in addition
to having possible philosophical value, provides efficient proofs for more assertions
than classical proofs do (as we shall see in Section 1.3). The new notions are also
very useful for statements that do possess classical proofs. For example, they can
yield dramatic efficiency savings in verification (as we will see in the PCP Theorem
presented in Madhu Sudan’s lectures). The new notions also enable us to to define
and achieve properties that are meaningless (or trivial) for classical proofs. For
example, in Lecture 2 we will construct zero-knowledge proofs, which are proofs
that reveal nothing other than the validity of the assertion being proven! We also
obtain new insight into classical proofs and complexity classes by characterizing
them in terms of the new types of proof systems. Finally, the new types of proof
systems have applications to other topics in computer science: the probabilistically
checkable proofs of Madhu Sudan’s lectures yield insight into the approximability
of optimization problems (cf., the lectures of Sanjeev Arora in this volume) and
the zero-knowledge proofs of Lecture 2 have wide applicability in cryptographic
protocols (indeed, this was one of the main motivations of [GMR&89]).

1.1. Definitions

Basic Notation: Let A be a probabilistic algorithm. A(z;7r) denotes the output
of A when fed input = and coin tosses r. A(z) denotes the distribution of A(x;r)
when r is chosen uniformly at random. We say that A runs in time ¢(n) if for all z
of length n, A(z;7) halts within ¢(n) steps with probability 1 over the choice of .

As suggested above, we will obtain a new type of proof system by replacing clas-
sical (NP) proofs with a “prover” that “interacts” with a probabilistic “verifier”.
In order to make this precise, we must first formalize the notion of an interactive
protocol between two parties A and B. We do this by viewing each party as a
function, taking the history of the protocol (all the messages previously exchanged)
and the party’s random coins, to the party’s next message. Either party can decide
to halt the interaction (possibly accepting or rejecting), at which point the other
party is given an opportunity to compute one more message.

Definition 1.1 (interactive protocols). An interactive protocol (A4, B) is any pair
of functions from strings to strings. The interaction between A and B on common
input x s the following random process (denoted (A, B)(x)):

1. Uniformly choose random coin tosses r4 and rp for A and B, respectively.

LECTURE 1. INTERACTIVE PROOFS 3

2. Repeat the following fori=1,2,...:
(a) If i is odd, let m; = A(z,m1,... ,M;—1;T4).
(b) Ifi is even, let m; = B(x,m1,... ,mi—1;TB).
(¢) If m;—1 € {accept,reject,halt}, then exit loop.

If the last message computed by A is accept (resp., reject), we say that A
accepts (resp., rejects), and similarly for B. We call such a protocol polynomially
bounded if there is a polynomial p(-) such that, on common input x, at most p(|x|)
messages are exchanged, and each is of length at most p(|z|) (with probability 1 over
the choice of T4 and rg).

Originally, interactive protocols were defined in terms “interactive Turing ma-
chines,” but that approach is too tied to a particular model of computation for our
tastes.

Now interactive proofs can be defined as a type of interactive protocol between
a prover (with no computational limitations) and a polynomial-time verifier. The
completeness and soundness conditions of classical proofs are replaced with proba-
bilistic ones which guarantee that the verifier gains statistical confidence that the
assertion being proven is true.

Definition 1.2 (interactive proofs — IP [GMRS89, BMS88]). An interactive pro-
tocol (P, V') is said to be an interactive proof system for a language L if the following
conditions hold:

1. (Efficiency) (P,V) is polynomially bounded and V is polynomial-time com-
putable.

2. (Completeness) If x € L, then V accepts with probability at least 2/3 in
(P,V)(x).

3. (Soundness) If © ¢ L, then for any P*, V accepts with probability at most
1/3 in (P*,V)(z).

IP is class of languages possessing interactive proofs.

We now make some basic observations about the above definition.

e The acceptance probabilities of 2/3 and 1/3 allowed in the above definition
are arbitrary, and can be replaced with any pair of constants 1 > «a >
B > 0. Indeed, the error probability of any such proof system can be made
exponentially small by taking polynomially many repetitions and having the
verifier accept according to majority/threshold rule.

e Interactive proofs do indeed generalize classical proofs, because the prover
can simply send the verifier a classical proof, which the verifier then checks.
Thus, NP C IP. The main question we will address in this lecture is
whether IP is strictly bigger than NP, and by how much. It is left as an
exercise to prove the upper bound IP C PSPACE.

e The verifier’s randomness is essential in interactive proofs: IP with deter-
ministic verifiers collapses to NP (exercise). On the other hand, restricting
to a deterministic prover causes no loss of generality (exercise).

1.2. GRAPH NONISOMORPHISM

Our first hint that interactive proofs are strictly more powerful than classical ones
will come from an elegant proof system for GRAPH NONISOMORPHISM.

4 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

Definition 1.3. If G = ([n], E) is an undirected graph* and 7 is a permutation on
[n], then w(G) denotes the graph obtained by permuting the vertices of G according
to m. That is, 7(G) = ([n], E'), where E' = {(7(u),7(v)): (u,v) € E}. If G and
H are graphs on n vertices, and there exists a w such that 7(G) = H, we say that
G and H are isomorphic and write G2H. 7 is called an isomorphism between
G and H, and H is said to be an isomorphic copy of G. GRAPH ISOMORPHISM
is the language Gl = {(G,H): G=H}. GRAPH NONISOMORPHISM (GNI) is the
complement of GI.

It is easy to see that GRAPH ISOMORPHISM is in NP: an easily verifiable proof
that two graphs are isomorphic is an isomorphism between them. In contrast, no
classical proofs are known for GRAPH NONISOMORPHISM. Nevertheless, as we shall
see, GRAPH NONISOMORPHISM does possess a very efficient interactive proof:?

Theorem 1.4 ((GMW91]). GRaAPH NONISOMORPHISM is in IP.

The interactive proof is based on two observations. First, if two graphs are
nonisomorphic, then their sets of isomorphic copies are disjoint. Second, if two
graphs are isomorphic, then a random isomorphic copy of one graph is indistin-
guishable from a random isomorphic copy of the other. Thus, the interactive proof,
given in Protocol 1.5, tests whether the prover can distinguish between random
isomorphic copies of the two graphs.

Protocol 1.5: Interactive proof (P,V) for GRAPH
NONISOMORPHISM
Input: Graphs Gy = ([n], Ey) and Gy = ([n], E1)
1. V: Uniformly select b € {0,1}. Uniformly select a permutation
7 on [n]. Let H = n(Gy). Send H to P.
2. P: If Goy=H,let c=0. Else let ¢ =1. Send c to V.
3. V. If ¢ = b, accept. Otherwise, reject.

We now verify that this protocol meets the definition of an interactive proof.

Proof of Theorem 1.4 (sketch). If Gy and G are nonisomorphic, then Go=H
if and only if b = 0. So the prover strategy specified above will make the verifier
accept with probability 1. Thus, completeness is satisfied.

On the other hand, if Gy and G, are isomorphic, then H has the same dis-
tribution when b = 0 as it does when b = 1 (exercise). Thus, b is independent of
H and the prover has at most probability at most 1/2 of guessing b correctly no
matter what strategy it follows. This shows that the protocol is sound. O

A few remarks about the proof system are in order. The first is it achieves an
acceptance probability of 1 in the completeness condition; this attractive property
is often referred to as perfect completeness. Second, the proof system is very com-
munication efficient: only two messages are exchanged and the prover sends only

ITo avoid notational confusion with the verifier strategy V, all of our graphs will have vertex set

[n] def {1,...,n} for some n € N.

2There has been some recent evidence that GRAPH NONISOMORPHISM is in NP, in fact based on the
existence of an efficient interactive proof for GRAPH NONISOMORPHISM [AK97, KvM99, MV99].

LECTURE 1. INTERACTIVE PROOFS 5

one bit to the verifier (more generally, k bits to achieve soundness probability 1/2*).
Finally, note that it is crucial for soundness that the verifier’s random coin flips are
kept “private.” If the bit b is made public and revealed to the prover, soundness
will no longer hold. Surprisingly, every private-coin interactive proof (like the one
above) can be transformed into a public-coin one; that is, one in which the verifier’s
coin flips are completely visible to the prover [GS89].

1.3. co-NP and more

In the previous section, we saw an interactive proof for a problem not known to
have efficient classical proofs, giving the first evidence that IP is strictly larger than
NP. In this section, we shall obtain much stronger evidence:

Theorem 1.6 ([LFKN92]). co-NP C IP.

It is widely believed that NP # co-NP (cf., the lectures of Paul Beame in this
volume), so this strongly suggests that interactive proofs are more powerful than
classical ones.

1.3.1. A First Attempt

By the NP-completeness of SATISFIABILITY, proving that co-NP C IP is equiv-
alent to giving an interactive proof for UNSATISFIABILITY. So let us consider how
one may try to prove that a formula ¢ is unsatisfiable. Actually, it will be useful to
consider how to prove that a formula ¢ has exactly k satisfying assignments for any
k. That is, we want to give an interactive proof for ExacT #SAT, the language

E#SAT def {(p, k) : p has exactly k satisfying assignments}

Observation. A formula ¢(x1,...,x,) has exactly k satisfying assignments iff
there exist ko, k1 such that
1. ko + k1 =k,
2. o(xa,... ,azn)dzdcp(o,:ﬂz, ..., Zn) has exactly ko satisfying assignments, and
3. p1(xa, ..., xn) def o(1, 22, ... ,x,) has ezactly k1 satisfying assignments.

This observation suggests a first idea for proving that ¢ has exactly k satisfying
assignments: First, the prover sends the verifier ky and k;. Second, the verifier
checks that ky + k1 = k, and randomly selects a value b € {0,1} for the first
variable. Then the prover recursively proves to the verifier (using the same protocol)
that ¢ has exactly k; satisfying assignments. (At the bottom of the recursion
when the formula has no variables, the verifier simply checks that evaluates to
0 or 1 according to whether the prover has claimed that it has 0 or 1 satisfying
assignments, respectively.)

When ¢ has exactly k satisfying assignments, the verifier will accept with prob-
ability 1 in this protocol. Conversely, when ¢ does not have exactly k satisfying
assignments, one of the conditions in the observation must fail to hold, so there is a
nonzero probability that the prover will continue to have a false statement to prove
(unless ko + k1 # k, in which case the verifier will reject immediately). Continuing
this argument inductively, we conclude that the verifier has a nonzero probability
of rejecting overall. However, it is not an interactive proof because, in the sound-
ness case, the verifier may accept with probability 1 — 27", which is not sufficiently
bounded away from 1. This is because, for each variable of the formula, the verifier

6 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

may have only probability 1/2 of setting the variable in a way that leaves the prover
with something false to prove.

1.3.2. Arithmetization

Intuitively, the problem described above comes from the fact that every variable of
the formula has only two possible values and we can only guarantee that at least
one of these values will reflect the falsity of the assertion that the prover is trying
to prove. An idea for solving this is to allow the variables to take values in a larger
set F (D {0,1}), and extend the formula ¢ : {0,1} — {0,1} to a more “robust”
function ¢ : F* — F so that “most” evaluation points will reflect inconsistencies.

We will do this extension via powerful technique known as arithmetization. We
will take F to be a sufficiently large finite field and show how to extend ¢ to a
(multivariate) low-degree polynomial over F. The robustness properties we desire
will be based on the fact that two distinct low-degree polynomials cannot agree in
many places.

We recursively define a mapping ¢ — ¢ from Boolean formulas in variables

Z1,...,%, to polynomials over [F in variables x1,... ,%,:
T = x;
o= 1-¢
PN = §D

(Without loss of generality, we restrict our attention to formulas over the complete
basis — and A.)
The following are easily verified by induction:

1. ¢|{0’1}n = p.
2. The (total) degree of the polynomial ¢ is at most d = |¢p|.

Proving that ¢ has exactly k satisfying assignments is equivalent to proving

(1.7) k=Y > o Y Blan,.)

21€{0,1} z2€{0,1} z,€{0,1}

(provided that the characteristic of F is greater than 2, which can be guaranteed
by choosing F = Z /qZ for a prime ¢ > 2™). The protocol for proving Equation (1.7)
will proceed analogously to the first attempt above, generalized to this setting where
the variables can take values in IF. The prover will send the verifier the values

(1.8) ke ST 0 S Glaa,... 1)

z2€{0,1} . €{0,1}

for every a € F (rather than just ky and k; as before). As before, the verifier will
check that kg + k1 = k, and then choose a random « € F on which the prover should
recursively prove that Equation (1.8) holds. The key observation which makes this
work is that the k,’s can all be specified by a degree d polynomial p satisfying
p(a) = ko Va (because ¢ is of degree d). This helps in two ways. First, it allows
all the values {k,} to be specified succinctly by the prover by giving the d + 1
coefficients of p. (The entire list given explicitly would be of size |F| > 2™, which is
too large). Second, it guarantees that if the prover sends a wrong value for a single
ko, then the prover must send a wrong value for most ky’s.

LECTURE 1. INTERACTIVE PROOFS 7

1.3.3. The Proof System

Formalizing the above ideas, we obtain Protocol 1.9.

Protocol 1.9: Interactive Proof for E#SAT

Input: A formula ¢(x1,...,z,) and an integer k
1. P,V: Let d = |p|, and let F be a finite field of characteristic
greater than 2¢ (> 2"), and let @(x1,...,7,) be the arithmeti-

zation of ¢ (over F).
2. P: Compute the degree d polynomial

pl(w)déf Z Z @(x;x%'-';xn)a

z2€{0,1} zn,€{0,1}
and send p; to V.
V. Check that p;(0)+ p1(1) = k (and reject immediately if not).
V. Choose «; uniformly from F and send «a; to P.
5. P,V: From ¢ = 2 to n, do the following;:
(a) P: Compute the degree d polynomial

def ~
pl(x) = Z Z Qp(ala"' yQi—1, T, Lit1, - - - 7$n)7

z;41€{0,1} z, €{0,1}

- w

and send p; to V.
(b) V: Check that p;(0) + p;(1) = p;i—1(c;—1) (and reject im-
mediately if not).
(c) V: Choose «; uniformly from F and send «; to P.
6. V: Accept if pp(an) = @(ag, ..., an).

Proposition 1.10. Protocol 1.9 is an interactive proof system for EXacr #SAT.

Proof. Efficiency can be verified by inspection. Also by inspection, we see that
if ¢ has exactly k satisfying assignments and the prover computes all the p;’s
according to the specified protocol, then all the verifier’s checks will pass. That
is, p1(0) + pi(1) = k, pi(0) + pi(1) = pi—1(@i—1) for all i > 1, and pu(a,) =
(ﬁ(ala s ;an)‘

Thus, we need only prove soundness. We will argue that if ¢ does not have k
satisfying assignments, then, no matter what strategy P* the prover follows, the
verifier will accept with probability at most nd/|F| < d?/2? < 1/3 (for sufficiently
large d = |¢|).

Let pi(z),...,pn(x) denote the polynomials computed correctly (as prescribed
by Protocol 1.9), and let pi(z), ... ,p)(z) denote the polynomials sent by P*. Note
that p1(0) 4+ p1(1) is exactly the number of satisfying assignments of ¢. Thus, if ¢
does not have exactly k satisfying assignments, then no matter what pj the prover
sends, either (a) pi(0) + pi(1) # k, or (b) pi # p1. If (a) holds, then the verifier
will reject immediately. If (b) holds, then with high probability (> 1 — d/|F|)
pi(a1) # p1(aq) (because pj and p; are distinct degree d polynomials, and hence
agree on at most d points). Thus, after the first variable is set, the prover will be
left with a false assertion to prove with high probability (rather than probability
1/2), as desired.

8 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

Later rounds are analyzed in a similar fashion. Assume that

pi—1(@i—1) # pi—i(@i—1) = pi(0) + pi(1).

Then no matter what p! the prover sends, it must be the case that either (a)
pi(0) + pi(1) # pf_ (1), or (b) pf # pi. As before, if (a) holds the verifier will
reject immediately, and if (b) holds, then p}(a;) # pi(a;) with probability at least
1—d/|B.

By a union bound, it follows that, with probability at least 1 — nd/|F|, the
verifier rejects or pl(ay,) # pn(an) = @(ai, ... ,a,). Since the verifier will also
reject in the latter case, soundness is established. O

1.3.4. A Full Characterization

co-NP C IP (Thm. 1.6) follows from Proposition 1.10 because UNSATISFIABILITY
reduces to ExacT #SAT via the map ¢ — (p,0). In fact, it even follows that
P#P C IP. With some additional ideas, we obtain a complete characterization of
the power of interactive proofs.

Theorem 1.11 ([Sha92]). IP = PSPACE

Proof sketch. Recall that a complete problem for PSPACE is QUANTIFIED BOOL-
EAN FORMULAE (QBF), i.e., the language of true assertions of the form

VzydzeVas - - dxpe(xy, ..., 2y),

where ¢ is a Boolean formula. Let’s attempt to directly extend the ideas of Pro-
tocol 1.9 to this problem. That is, extend the arithmetization to formulas with
quantifiers, and construct a protocol which eliminates one variable/quantifier at a

time (with the verifier choosing random values in some field). Let p(z1,... ,2;) be
a partially quantified formula with free (i.e., unquantified) variables x1, ... ,z; (and
“bound” variables x;11, ... ,%,). We define its arithmetization ¢(x1,... ,z;) as fol-

lows. If ¢ has no quantifiers (i.e., ¢ = n), then ¢ is defined just as in Section 1.3.2.
If o =Voi19(r1, ... ,2i41) then

(112) (,5(1‘1,... ,.Z‘i) :@ZJ(Il,... ,.Z‘i,O) '77[)"(&?1,... ,.Z‘i,].)

If Y = E'.Z‘i+11/)(1‘1, . 7$i+1) then
(113) @(z1,...,0) =1— (1 — (@, ... ,:cz-,())) : (1 — (@, ... ,azi,l))

This arithmetization maintains the property that the arithmetized formulas agree
with original formulas whenever the free variables are assigned values from {0,1}. In
particular, proving that a fully quantified Boolean formula is in QBF is equivalent
to proving that its arithmetization is the constant polynomial 1.

The problem with this new arithmetization is that the degrees blow up, squaring
with every quantifier. The result is the polynomials the prover would have to send
in a protocol like Protocol 1.9 would be of exponentially large degree, and the proof
system will fail to satisfy the efficiency requirement. The solution is to introduce
operations that reduce the degree but have no effect on boolean values. Suppose
f(z1,...,z;) is a polynomial and, for some j € {1...,i}, consider the polynomial

(1.14) iz, z) = - flee,.. 21,1, 2540, ... ,@n) +

(]‘ _m]) 'f('rla"' 7$j—1707'rj+17"' wrn)'

LECTURE 1. INTERACTIVE PROOFS 9

f' is identical to f when its variables take on boolean values, yet the degree of z; is
reduced to 1 in f’. Interleaving this operation periodically for every unquantified
variable prevents the degree blow-up encountered above, and allows a construction
of proof system like Protocol 1.9 for QBF. (The protocol has a “round” for each
quantifier and each application of the degree-reduction operation, and the consis-
tency checks p;(0) 4+ p;(1) = p;—1(;—1) are replaced with ones to check consistency
with Equations (1.12), (1.13), and (1.14).) O

1.4. Additional Topics
1.4.1. Message Complexity

A striking contrast between the interactive proofs for GRAPH NONISOMORPHISM
(Protocol 1.5) and co-NP/PSPACE (Protocol 1.9) is that the latter requires much
more interaction, as measured in the following way:

Definition 1.15 (message complexity®). An interactive protocol (A, B) has mes-
sage complexity m(n) if on every input x and every choice of the random coins for
A and B, the number of messages computed before the first accept/reject/halt
message is at most m(|x|).

The class of languages possessing interactive proofs with constant message com-
plexity is denoted AM.*

It is natural to ask whether more interaction increases the expressive power of
interactive proofs. That is, are there languages which have interactive proofs of
message complexity m(n) but not m’(n) for some functions m',m? The following
result shows that increasing the number of messages by a constant factor does not
yield more power:

Theorem 1.16 ([BM88]). For any constant ¢ € N and any function m(-) > 2,
the following holds: If L has an interactive proof with message complezity cm(-),
then L has an interactive proof with message complexity m(-).

On the other hand, it is known that interactive proofs with constant message
complexity can only prove languages that are low in the polynomial-time hierarchy
(specifically, AM C II,) [BM88], we have seen that all of PSPACE is provable
with no restriction on the number of messages (Thm. 1.11). Hence, polynomially
many rounds of interaction cannot be reduced to a constant unless PSPACE = II,.
In fact, it is unlikely that such an improvement is possible even for co-NP:

Theorem 1.17 ([BHZS87]). If co-NP C AM, then the polynomial-time hierarchy
collapses (specifically, PH =11,).

Recall that it is widely believed that the polynomial-time hierarchy does not
collapse (cf., the lectures of Steven Rudich in this volume). Since GRAPH NONISO-
MORPHISM is in AM (Protocol 1.5 consists of two rounds), we obtain the following
interesting consequence:

Corollary 1.18. GRAPH [ISOMORPHISM is not NP -complete unless the polynomial-
time hierarchy collapses.

4The notation AM comes from Arthur—Merlin games, which was the name given to the type
of interactive proofs introduced in [BM88]. Arthur-Merlin games are the same as public-coin
interactive proofs, which we discuss in Section 1.4.2.

10 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

NP— AM—II,---

-

_ _Pp#P__Tp _
P— BPP PH—P#F—IP = PSPACE

\CO-NP—CO-AM— DI

Figure 1. Relation of IP and AM to other complexity classes. Lines indicate
left-to-right inclusion.

Proof. If GRAPH ISOMORPHISM were NP-complete, the GRAPH NONISOMOR-
pPHISM would be co-NP-complete and we would have co-NP C AM. O

The above proof refers to NP-completeness via standard Karp reductions (also
known as “many-one” or “mapping” reductions), but it can be easily extended
to more general forms of reducibility such as Cook reductions [Sch88] (see also
[GGO00]).

1.4.2. Private Coins vs. Public Coins

Recall that it was essential in the proof system for GRAPH NONISOMORPHISM
(Protocol 1.5) that the verifier’s coin tosses are “private,” meaning that they are not
visible to the prover. In striking contrast, the verifier needs no hidden randomness
in the proof systems for co-NP (Protocol 1.9) and PSPACE. That is, those proof
systems satisfy the following definition:

Definition 1.19 (public-coin proofs [BM88]). An interactive proof system is
public coin if each of the verifier’s messages consists of random coin tosses, uniform
and independent of the previous messages (except for the last accept/reject/halt
message).

Since PSPACE has a public-coin proof system and IP = PSPACE, it follows
that public-coin interactive proofs are as powerful as private-coin ones. However,
there is a stronger (and older) equivalence between private coins and public coins
that also preserves message complexity:

Theorem 1.20 ([GS89]). If a language has an interactive proof with message
complexity m(n), then it has a public-coin interactive proof with message complezity
m(n).

This theorem is very useful in proving results about interactive proofs, since
the structured behavior of the verifier in public-coin proofs makes them much easier
to analyze and manipulate. Indeed, the proofs of Theorems 1.16 and 1.17 begin by
using Theorem 1.20 to reduce to the public-coin case.

Applying Theorem 1.20 to the proof system for GRAPH NONISOMORPHISM
(Protocol 1.5), we obtain the following consequence:

Corollary 1.21. GRAPH NONISOMORPHISM has a 2-message public-coin interac-
tive proof system.

One of the exercises involves constructing a 2-message public-coin interactive
proof for a problem related to GRAPH NONISOMORPHISM (using the same tools
that underlie the proof of Theorem 1.20).

LECTURE 1. INTERACTIVE PROOFS 11

1.4.3. The Power of the Prover

Even though the definition of interactive proofs places no computational restrictions
on the prover strategy, it is interesting to investigate what power the prover actually
needs. If (P, V') is an interactive for a language L, then the complexity of the prover
strategy P must, in some sense, be at least the complexity of the language L itself,
because one can decide membership in L by simulating the interaction between P
and V. The following definition identifies those proof systems for which this lower
bound on the prover’s complexity is tight.

Definition 1.22 ([BG94]). An interactive proof system (P,V) for a language L
is competitive if the prover strategy P can be computed in probabilistic polynomial
time given a membership oracle for L.

Which problems have competitive interactive proofs? SATISFIABILITY (and
hence every NP-complete problem) has a competitive interactive proof, by the
well-known fact that using an oracle for deciding SAT, one can actually find sat-
isfying assignments in polynomial time. The GRAPH NONISOMORPHISM proof sys-
tem (Protocol 1.5) is also competitive, as the prover strategy amounts to deciding
GRAPH [IsoMORPHISM. With a little more work, it can be verified that the prover
in Protocol 1.9 can be implemented using a #P-oracle, and hence #P-complete
problems have competitive interactive proofs. Finally, it follows from one of the ex-
ercises that PSPACE-complete problems also have competitive interactive proofs.
However, it is unlikely that all problems in IP have competitive interactive proofs:

Theorem 1.23 ([BG94|). If nondeterministic double-exponential time is not con-
tained in probabilistic double-exponential time, then there is a problem in NP which
has no competitive interactive proof.

There are a couple of intriguing open problems involving competitive interactive
proofs.

Open Problem 1.24. Do co-NP-complete problems have competitive interactive
proofs?

The best upper bound known on the complexity of a prover for co-NP is #P,
as in Protocol 1.9.

Open Problem 1.25. Does GRAPH NONISOMORPHISM have a public-coin com-
petitive interactive proof ? More generally, are there any problems for which public-
coin interactive proofs require provers with greater complexity than private-coin in-
teractive proofs?

Recall that there is a transformation which converts private-coin interactive
proofs to public-coin ones (Theorem 1.20), but that transformation does not pre-
serve the prover’s complexity (and no “black box” transformation can [Vad00]).

1.5. Exercises

Exercise 1 (The verifier’s randomness is essential). Show that the class of lan-
guages possessing interactive proofs with a deterministic verifier is simply NP.

Exercise 2 (The prover’s randomness is inessential). Show that every language hav-
ing an interactive proof has one with a deterministic prover.

12 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

Exercise 3 (Upper-bounding the power of interaction). Convince yourself that IP C
PSPACE. (Hint: What is the complexity of computing the deterministic prover
strategy you constructed in Problem 27)

Exercise 4 (Soundness of GRAPH NONISOMORPHISM interactive pf). Show that if
Go = ([n], Ey) and G; = ([n], E1) are isomorphic graphs, then 7(Gy) and 7(Gy)
are identically distributed when 7 is a uniformly chosen permutation of the vertex
set [n].

Exercise 5 (Public-coin lower bound protocol*). A family H of functions map-
ping X to Y is called pairwise independent if when we choose h uniformly at random
from H, the following two conditions hold:

e For all x € X, h(x) is distributed uniformly in in Y.

e For all x; # x2 € X, h(x;) and h(z2) are independent.
(Efficiently computable pairwise independent families mapping {0,1}"™ to {0,1}™
exist, e.g., the set of functions of the form h p(z) = Az + b where A is an m xn
0-1 matrix, b € {0,1}™, and all arithmetic is modulo 2.)

1. Let ‘H be a pairwise independent family of functions mapping X to Y, let
S C X, and let y be any fixed element of Y. Show that
(a) If |S]| <6 -|Y], then Prpy [z € S s.t. h(z) =y] <6
(b) If |S] > (1/6)-|Y|, then Prp—p [Tz € S s.t. h(x) =y] > 1 — 6. (Hint:
Use Chebychev’s Inequality.)
2. An automorphism of a graph is an isomorphism with itself. A graph is rigid
if it has no automorphisms other than the identity. Use Part (1) to construct
a public-coin interactive proof for the language of rigid graphs. (Hint: Let
S be the set of 100-tuples of graphs that are isomorphic to the input graph.)

Solution Sketches

Solution 1. A transcript of an interaction in which the verifier accepts constitutes
an NP proof. Note that the validity of such a transcript (i.e., consistency with the
verifier’s algorithm) can be checked in poly time.

Solution 2. An “optimal” prover computes each message to maximize the accep-
tance probability of the verifier given the transcript of the interaction so far. This
strategy is deterministic.

Solution 3. We need to show that the maximum possible acceptance probability
p(t) of the verifier given the transcript ¢ of the interaction so far can be computed
in PSPACE. This can be done recursively: If the next move is the prover’s, then
p(t) = max,, p(t o m) (where we take the maximum over prover messages m). If
the next move is the verifier’s, then p(t) = > qi,m - p(t o m), where ¢, is the
probability that the verifier’s next message is m given that the transcript so far is
t. Note that ¢; ,, can be computed by enumerating over all the verifier’s coin tosses
(and discarding those that are not consistent with ¢.).

Solution 4. Let 7 be such that 7(Gy) = G1. Then for every graph H, the map
7 +— T o is a bijection between the set of permutations taking G; to H and those
taking Go to H. (7(G1) = H & 7(17(Gp)) = H.)

Solution 5.

LECTURE 1. INTERACTIVE PROOFS 13

1. (a) This is just a union bound — each z € S has probability 1/|Y]| of
mapping to y, so the probability that any of them maps to y is at
most |S|- (1/|Y]) < 6.

(b) This is an application of Chebychev. Define indicators I, for the con-
dition h(xz) = y. We are interested in the probability (over the choice
of h) of the event that the sum M =) _g¢ I, is greater than 0. Each
I, has expectation 1/]Y], so E[M] = |S|-(1/]|Y]). Each I, has variance
(I —=1/1Y)]) - (1/]Y]) < 1/]Y]. Since they are pairwise independent,
Var[M] < |S]|-(1/]Y]). Hence, by Chebychev’s Inequality,

V]]

E[M]* — [S] ©

2. The number of graphs isomorphic to G equals n! divided by the number of
automorphisms of G, including the identity. (The number of permutations
taking G to any H isomorphic to G is exactly the number of automorphisms
of G.) Hence, if G has no automorphisms other than the identity then there
are n! graphs isomorphic to G, and if G has at least 1 automorphism other
than the identity then there are at most n!/2 isomorphic to G. Taking
100-tuples amplifies the gap to 2!°°, and we get the following proof system:
The Verifier randomly chooses a hash function h mapping to {0,1}* for
¢ ~ log,(n!/2%°). The Prover is then supposed to return a 100-tuple of
graphs (G1,Go, ... ,G1g) isomorphic to G such that h(Gy,...,G10) = 0%
To prove that these 100 graphs are isomorphic to G, the prover also sends
the corresponding isomorphisms. Completeness and soundness follow from
the argument above and Part (1).

Pr[M = 0] < Pr[|M — E[M]] > EIM]] <

LECTURE 2
Zero-Knowledge Proofs

Given the importance of proofs in mathematics and computer science, it is
natural to ask “What does one learn from a proof?” By definition, upon verifying
a proof, one should be convinced that the assertion being proven is true. But a
proof can actually reveal much more than that. Indeed, proofs in mathematics are
often valued for providing insight in addition to validating a particular theorem.
And, at a minimum, it seems inherent in classical proofs that after verifying a
proof, one leaves not just with confidence that the assertion is true, but also with
the ability to present the same proof to others and convince them of the assertion.

Interactive proofs, however, are not bound by the same limitations as classical
proofs. We will see below that it is possible for an interactive proof to be zero
knowledge, with the verifier learning nothing other than than the validity of the
assertion being proven. In particular, after verifying such a proof, one does gain
the ability to convince someone else of the same statement!

2.1. Definition

It is remarkable that the zero-knowledge property can even be defined in a mean-
ingful and realizable manner. This is accomplished by the simulation paradigm:
we say that verifier has learned nothing from its interaction with the prover if the
verifier can “simulate” its view of the interaction on its own. That is, there should
be an efficient probabilistic algorithm, called a simulator, whose output distribution
is indistinguishable from what the verifier sees when interacting with the prover.
Intuitively, this means that the verifier learns nothing since it can run the simulator
instead of interacting with the prover.

Definition 2.1 (view of an interactive protocol). Let (A, B) be an interactive pro-
tocol. B’s view of (A, B) on common input x is the random variable (A, B)(x) =
(ma, ... ,m;r) consisting of all the messages my, ... ,my exchanged between A and
B together with the string r of random bits that B has read during the interaction.!

Definition 2.2 (zero-knowledge proofs [GMRA89]).
An interactive proof system (P,V') for a language L is said to be zero knowledge if

It may seem unnatural that our notation is asymmetric in that it does not allow for indicating
A’s view of the protocol. However, in these lectures, we will only be interested in B’s view (as B
corresponds to the verifier in an interactive proof), and thus we have opted for a simpler notation
at the expense of generality.

15

16 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

for every probabilistic polynomial-time V*, there exists a probabilistic polynomial-
time simulator S such that

{(S@leer and [PV (@)}eer

are computationally indistinguishable.> That is, for every (nonuniform) polynomial-
time algorithm D, there is a negligible® function o such that for all x € L,

[Pr[D(x, S(x)) = 1] = Pr[D(z, (P, V*)(z)) = 1]| < a(|«]).

Note that the simulation is only required to be accurate on inputs x € L;
that is, when the assertion being proven is true. We wanted the definition to
capture the fact that the verifier should learn nothing from the “proof” (which is
now actually the strategy for P). For inputs x ¢ L, there is no “correct” proof
(as guaranteed by soundness), so it would be somewhat strange to require that
the verifier learns nothing in this case. From a cryptographic point of view, this
asymmetry corresponds to the idea that we only wish to protect parties that are
behaving honestly; a prover that is trying to prove a false assertion is certainly not.

Another important point about the above definition is that we require the
zero-knowledge property to hold even if the verifier follows a strategy V* that
deviates from the specified protocol (provided it is still polynomial time). Clearly,
this feature is crucial in cryptographic applications. (Though “honest-verifier zero
knowledge,” in which a simulator is only required for the specified verifier strategy,
is already nontrivial and of complexity-theoretic interest.)

2.2. Zero-knowledge Proofs for NP

Definition 2.2 beautifully captures the intuitive notion of “learning nothing,” but
of course, the question remains whether nontrivial zero-knowledge proofs exist.
Remarkably, every problem having a classical proof also has a zero-knowledge proof.

Theorem 2.3 ((GMWI91]). Every language in NP has a zero-knowledge proof
(assuming one-way functions® exist).

With this theorem, zero-knowledge proofs gain vast applicability in cryptogra-
phy, where it often arises that one party wishes to convince others of some “NP
assertion” without leaking unnecessary information. For example, zero-knowledge
proofs can be used to make protocols robust against cheating parties: participants
in the protocol can prove to each other that their actions are consistent with the
specified protocol without comprising any of their “secret” information (e.g., their
encryption keys) [Yao86, GMWS87]. They can also be used to construct “iden-
tification schemes,” whereby one party can “prove” her identity to others without
leaking any information that can later be used to impersonate her [FFS88].

To prove Theorem 2.3, it suffices to give a zero-knowledge proof for a single
NP-complete problem. We will use GRAPH 3-COLORING. A 3-coloring of a graph
G = ([n],E) is an assignment C : [n] — {R,G,B} (for “Red,” “Green,” and

2See Oded Goldreich’s lecture notes in this volume for a detailed discussion of computational
indistinguishability. The definition we need differs from the one there in two main respects: the
ensembles are indexed by strings in a language rather than all natural numbers, and we allow the
distinguisher to be nonuniform (i.e., a circuit).

3A function « : N — [0,1] is negligible if for every (positive) polynomial p, a(n) < 1/p(n) for all
sufficiently large n.

4See the lecture notes of Goldreich in this volume for the definition of one-way functions

LECTURE 2. ZERO-KNOWLEDGE PROOFS 17

“Blue”) such that no pair of adjacent vertices are assigned the same color. GRAPH
3-COLORING is the language

3COL = {G : G is 3-colorable},
and it is known to be NP-complete (cf., [Pap94]).

2.2.1. A “Physical” Protocol

The zero-knowledge proof for GRAPH 3-COLORING is based on the observation
that the classical proof can be broken into “pieces” and randomized in such a way
that (a) the entire proof is valid if and only if every piece is valid, yet (b) each
piece reveals nothing on its own. For GRAPH 3-COLORING, the classical proof is
a three-coloring of the graph, and the pieces are the restriction of the coloring to
the individual edges: (a) An assigment of colors to vertices of the graph is a proper
3-coloring if and only if the endpoints of every edge have distinct colors, yet (b) if
the three colors are randomly permuted, then the colors assigned to the endpoints
of any particular edge are merely a random pair of distinct colors and hence reveal
nothing.

In Protocol 2.4, we show how to use the above observations to obtain a zero-
knowledge proof for GRAPH 3-COLORING which makes use of “physical” imple-
ments — namely opaque, lockable boxes. We will later obtain the final proof system
by using an appropriate “digital” (i.e., mathematical) primitive which emulates the
properties of opaque boxes used.

Protocol 2.4: “Physical” Proof System (P, V) for GRAPH
3-COLORING
Input: A graph G = ([n], E)

1. P: Let C be any canonical 3-coloring of G (e.g., the lexicograph-
ically first one). Let m be a uniformly selected permutation of
{R,G,B}. Let C' =7 o C.

2. P: For every vertex v € [n], place C'(v) inside a box B,, lock

the box using a key K, and send the box B, to V.

. V: Uniformly select an edge (z,y) € E and send (z,y) to P.

. P: Send the keys K, and K, to V.

. V: Unlock the boxes B, and By, and accept if the colors inside
are different.

Ut = W

We now explain why this protocol works. The following “proof” should only be
taken as motivation for the final protocol, and the reader should not be disturbed by
ambiguities resulting from the fact that we haven’t precisely defined this “physical”
model.

“Proposition” 2.5. Protocol 2.4 is a “zero-knowledge proof” for 3COL.

“Proof”. For completeness, first observe that if C' is a proper 3-coloring of G then
sois C'. Thus, no matter which edge (z,y) € E the verifier selects, the colors C'(x)
and C'(y) inside boxes B, and B, will be different. Therefore, the verifier accepts
with probability 1 when G € 3COL.

18 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

For soundness, consider the colors inside the boxes sent by the prover in Step 2
as assigning a color to each vertex of G. If G is not 3-colorable, then it must be
the case that for some (z,y) € E, B, and B, contain the same color. So the
verifier will reject with probability at least 1/|E|. By repeating the protocol |E| +1
times, the probability that the verifier accepts on G ¢ 3COL will be reduced to
(1—1/|E)FI+ < 1/3.

To argue that Protocol 2.4 is “zero knowledge,” let’s consider what a verifier
“sees” in an execution of the protocol (when the graph is 3-colorable). The verifier
sees n boxes {B,}, all of which are locked and opaque, except for a pair B,, B,
corresponding to an edge in G. For that pair, the keys K, and K, are given and
the colors C'(z) and C'(y) are revealed. Of all this, only C'(z) and C'(y) can
potentially leak knowledge to the verifier. However, since the coloring is randomly
permuted by m, C'(z) and C'(y) are simply a (uniformly) random pair of distinct
colors from {R, G, B}, and clearly this is something the verifier can generate on its
oW1l

In this intuitive argument, we have reasoned as if the verifier selects the edge
(z,y) in advance, or at least independently of the permutation 7. This would
of course be true if the verifier follows the specified protocol and selects the edge
randomly, but the definition of zero knowledge requires that we also consider cheat-
ing verifier strategies whose edge selection may depend on the messages previously
received from the prover (i.e., the collection of boxes). However, the perfect opaque-
ness of the boxes guarantees that the verifier has no information about their con-
tents, so we can indeed view (x,y) as being selected in advance by the verifier, prior
to receiving any messages from the prover. O

2.2.2. The “Digital” Protocol

In order to obtain a “digital” (i.e., mathematical) zero-knowledge proof for GRAPH
3-COLORING, we will replace the opaque boxes with a cryptographic primitive that
retains the essential features of the boxes: We should be able “lock” objects (i.e.,
strings) into “boxes” (again, strings) in such a way that:

1. The locked box completely hides the object locked within it (to maintain
the zero-knowledge property).

2. A “key” to open a box and verify its contents can be given (to implement
Step 4).

3. The contents of a locked box cannot be changed (to maintain soundness).

The following definition captures the above three properties.

Definition 2.6 (commitment schemes — simplified)). A commitment scheme is a
polynomial-time algorithm Commit which takes a message m and a (random) key K
and produces a commitment B = Commit(m; K). For a given m, the distribution
of B over a uniformly chosen key K € {0,1}* is denoted Commity(m). Commit
must satisfy the following properties:

1. (unambiguity) For any m # m', the set of commitments to m is disjoint
from the set of commitments to m'. That is, there do not exist K, K' such
that Commit(m; K') = Commit(m; K').

2. (secrecy) For any m,m', commitments to m and m' are computationally in-
distinguishable. That is, for every (nonuniform) polynomial-time algorithm

LECTURE 2. ZERO-KNOWLEDGE PROOFS 19

D, there is a negligible function a such that
|Pr[D(Commity(m)) = 1] — Pr[D(Commitg(m'))]| < a(k).

Note that a commitment B can indeed be “opened” by providing the cor-
responding message m and key K, and this can be verified by checking that
B = Commit(m; K).

Commitment schemes meeting the above definition can be construct from any
one-way permutation® (exercise). There is a more general definition of commitment
schemes which allows interaction (cf., [G0l00]), and commitment schemes meeting
the more general definition exist if and only if one-way functions exist [HILL99,
Nao91].

Replacing the boxes in Protocol 2.4 with a commitment scheme yields the
“digital” zero-knowledge proof for GRAPH 3-COLORING given in Protocol 2.7.

Protocol 2.7: “Digital” Proof System (P,V) for GRAPH
3-COLORING
Input: A graph G = ([n], E)

1. P: Let C be any canonical 3-coloring of G (e.g., the lexicograph-
ically first one). Let m be a uniformly selected permutation of
{R,G,B}. Let C' =7 o C.

2. P: For every vertex v € [n], choose K, uniformly in {0,1}", let
B, = Commit(C'(v); K,), and send B, to V.

3. V: Uniformly select an edge (z,y) € E and send (z,y) to P.

4. P: Send K, Ky, C'(z), and C'(y) to V.

5. V: Accept if B, = Commit(C'(z);K,) and B, =
Commit(C'(y); Ky), and C'(z) # C'(y).

2.2.3. Proof of Correctness
We now prove the correctness of Protocol 2.7, establishing Theorem 2.3.°

Proposition 2.8. Protocol 2.7 is a zero-knowledge proof system for GRAPH 3-
COLORING.

Proof. Completeness and soundness are proved as they were for “Proposition” 2.5,
using the unambiguity property of commitment schemes to establish soundness.
The zero-knowledge property follows the same intuition as in the physical pro-
tocol — all the verifier sees is a random pair of distinct colors, together with the
unopened commitments. A random pair of distinct colors is something the verifier
can generate on its own, and the secrecy property of the commitment scheme should
imply that the verifier learns nothing from the unopened commitments. Based on
this intuition, it is straightforward to simulate the verifier’s view when the verifier
follows the specified protocol: the simulator can randomly select an edge (x,y) € E,

50ne-way permutations are the same objects referred to as “one-to-one one-way functions” in
Goldreich’s lecture notes.

6Except for the fact that we assume the existence of a commitment scheme in the simplified sense
of Definition 2.6, and this is apparently stronger than assuming the existence of one-way functions.

20 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

construct B, and B, as commitments to a random pair of distinct colors, and con-
struct the remaining commitments as commitments to arbitrary colors (since they
need not be opened).

However, for cheating verifiers, this setting presents an additional subtlety not
present in the physical protocol. Unlike boxes, commitments do not always “look
the same” — they vary as a function of their contents and the key. A cheating
verifier can select the edge (z,y) in a way that depends on the commitment. Thus,
unlike the physical setting, the simulator cannot determine in advance which edge
(z,y) the verifier will select and then place a random pair of distinct colors in B,
and By. Instead, the simulator will randomly “guess” which edge the cheating
verifier will select, and later check this by running the verifier algorithm. We will
argue that the simulator succeeds with noticeable probability (= 1/|E|), and hence
polynomially many trials will yield success with all but negligible probability. A
simulator SV~ (for a cheating verifier V*) designed according to this intuition is
given in Algorithm 2.9.

Algorithm 2.9: Simulator SV~ for Protocol 2.7

Input: A graph G = ([n], E), and a cheating verifier algorithm V*

1. Uniformly select an edge (z,y) € E.

2. Define a coloring C' : [n] — {R,G,B} as follows: Select
(C'(z),C'(y)) uniformly among the distinct pairs from {R, G, B},
and for v ¢ {z,y}, set C'(v) = R.

3. For every v € V, choose K, uniformly in {0,1}"™ and let B, =
Commit(C'(v); K,).

4. Run V* to determine which edge (z*,y*) it would select when
sent all the B,’s. That is, uniformly select coin tosses r for V*
and let (z*,y*) = V*(G,{By};7).

5. If (z*,y*) # (x,y), output fail. Otherwise, output
{Buoevs (,9), (Kas Ky C'(2), C'(9)); 7).

Claim 2.10. For any probabilistic polynomial-time V*, there is a negligible func-
tion o such that on any input G = ([n], E),
1. SV (G) succeeds with probability at least 1/|E| — a(n).
2. The output distribution of SV*(G), conditioned on success, is computation-
ally indistinguishable from (P,V*)}(G).

In order to prove Claim 2.10, it will be convenient to consider a modification
of the distribution (P, V*)(G) that incorporates a failure probability:

Distribution (P, V*)*(G): Choose (z,y) uniformly from E. Sample view =

({Byv}vev, (z*,y*), (Kg=, Ky, C'(z*),C'(y*));) according to (P, V*)(G). If
(z*,y*) # (x,y), output fail. Otherwise, output view.

(P,V*)'(G) succeeds with probability exactly 1/|E| (since (z,y) is indepen-
dent of (z*,y*)), and conditioned on success, its output distribution is identical
to (P,V*)(G). Thus, Claim 2.10 is reduced to showing that SV (G) is computa-
tionally indistinguishable from (P, V*)*(G). We will prove this using the secrecy

LECTURE 2. ZERO-KNOWLEDGE PROOFS 21

property of the commitment scheme. More precisely, we will argue that if SV~ (@)
could be distinguished from (P, V*)*(G), then the following two distributions would
be distinguishable.

Distribution RRR: Output 3n independent commitments to R.

Distribution RGB: Output n independent commitments to R, followed by n
independent commitments to B, followed by n independent commitments to
G.

(Above, all commitments are using uniformly selected keys of length n, i.e., Commit,,(-).)
Distributions RRR and RGB are computationally indistinguishable by the secrecy
of the commitment scheme and a “hybrid argument” (cf., the lecture notes of Oded
Goldreich in this volume).

To perform the desired reduction, we will give a (nonuniform) polynomial-time
algorithm 7' which “transforms” Distributions RRR and RGB into SV (G) and
(P, V*)*(@), respectively. Thus T can be used to transform a distinguisher between
the latter pair of distributions into a distinguisher between the former pair. 7" will
have the graph G = ([n], E) and the coloring C used by the prover “hardwired in”;
this is why we need it to be nonuniform.

Algorithm 2.11: Transforming Algorithm T

Input: A sequence of 3n commitments
(BY,BY,...,BY BY ... BS BP,... B5)
Nonuniformity: A 3-colorable graph G = ([n], E), a 3-coloring C of
G, and a cheating verifier algorithm V*
1. Uniformly select an edge (z,y) € E.
2. Let 7 be a uniformly selected permutation of {R,G,B}. Let
C'=noC.
3. Choose K, and K, uniformly in {0,1}". Let B, =
Commit(C'(z); K), By = Commit(C'(y); Ky).
4. For v ¢ {z,y}, Let B, = BS' ™).
5. Uniformly select coin tosses r for V* and let (z*,y*) =
V*(G,{By};r).
6. If (z*,94*) # (z,y), output fail. Otherwise, output
{Bu}vers (2,9), (Ke, Ky, C'(2), C' (1)) 1)-

The transforming algorithm T is given in Algorithm 2.11. It can be verified by
inspection that when T is fed Distribution RGB, its output distribution is exactly
(P,V*)*(G). On the other hand, when 7T is fed Distribution RRR, its output
distribution is identical to that of the simulator SV (G) (since when C is a proper
3-coloring, C'(z) and C'(y) are indeed a random pair of distinct colors). This proves
that SV7() is computationally indistinguishable from (P,V*)*(G), which in turn
establishes Claim 2.10 and Proposition 2.8. O

22 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

2.2.4. Remarks

A few remarks about the proofs of Theorem 2.3 and Proposition 2.8 are in or-
der. First, although the definition of interactive proofs allows a computationally
unbounded prover, the strategy of the prover in Protocol 2.7 can actually be im-
plemented in polynomial time when given an NP witness (i.e., a 3-coloring of the
graph). This property is crucial in cryptographic applications of zero-knowledge
proofs, where we typically want the computations required of all parties to be
efficient (though we may wish for security against computationally unbounded ad-
versaries).

The simulation is another place in which the proof gives something stronger
than required by the definition. The definition only requires that for every veri-
fier strategy V*, there erists a simulator. However, Algorithm 2.9 gives a single
“universal” simulator S which works for all verifier strategies V*, using this ver-
ifier strategy only as a “black box.” That is, the simulator only requires access
to the input-output behavior of V*, and not the program which computes it. All
known zero-knowledge proofs are demonstrated correct using such universal black-
box simulation, and it is difficult to imagine how one would prove the zero-knowledge
property in any other way. On the other hand, there are several limitations on the
efficiency of black-box zero-knowledge proofs that are not known to hold for the
general definition, so there is some motivation to seek alternatives to this paradigm.

We also remark on the use of NP-completeness in the proof of Theorem 2.3.
NP-completeness results are most often thought of as “negative” statements, as
they give evidence of a problem’s intractability. Here, however, we have used NP-
completeness in a “positive” way — to reduce the task of proving something about
all of NP to the task of proving something about a single NP-complete problem,
namely GRAPH 3-COLORING. (There was a similar positive use of completeness in
the proofs of Theorems 1.6 and 1.11.)

Finally, we mention a result showing that the seemingly strong zero-knowledge
condition actually does not limit the expressive power of interactive proofs at all:

Theorem 2.12 ([IY87, BGG™88]). Every problem in IP has a zero-knowledge
proof (assuming one-way functions exist).

While it is a substantial strengthening of Theorem 2.3 from a complexity-
theoretic viewpoint, Theorem 2.12 does not yield much more utility for crypto-
graphic protocols. The reason is that the crucial property guaranteed by the proof
of Theorem 2.3 — that the prover can be implemented in polynomial time given
an NP witness — cannot be extended to Theorem 2.12 for this property does not
even make sense for problems outside NP,

2.3. Additional Topics
2.3.1. Composition of Zero-Knowledge Proofs

When presenting the GRAPH 3-COLORING proof system above, we cavalierly said
“repeat the protocol several times to reduce the error probability.” While it is true
that repetitions do work for reducing the error probability, their effect on the zero-
knowledge property is more subtle. To explain the issue in more detail, we need to
be more precise about what we mean by “repetitions.” Two natural interpretations
are:

LECTURE 2. ZERO-KNOWLEDGE PROOFS 23

Sequential Composition: The k executions of the proof system are per-
formed one after another. So if the original proof system has message com-
plexity m, the new proof system has message complexity km.

Parallel Composition: The k executions of the proof system are carried out
all at once, “in lock step.” That is, the message complexity of the proof
system remains the same, and each message of the new proof system consists
of a k-tuple of messages in the original proof system.

Of these two, the zero-knowledge property is only preserved under sequential
composition, and even that requires a modification of Definition 2.2 to allow the ver-
ifier an “auxiliary input” (to model the verifier’s state after prior interactions) (cf.,
[FS90, GO94, GK96b]). The fact that zero knowledge is not closed under parallel
composition makes it difficult to construct zero-knowledge proofs which simultane-
ously have low message complexity and negligible error probability. Furthermore,
there are inherent limitations on constructing such zero-knowledge proofs, at least
using black-box simulation:

Theorem 2.13 ([GK96b]). Only problems in BPP have 3-message black-box sim-
ulation zero-knowledge proofs with negligible error probabilities (in the completeness
and soundness conditions). For public-coin proofs, the same result holds for any
constant message complexity.

Still, using private coins and a stronger complexity assumption, it is known
how to construct constant-message zero-knowledge proofs.

Theorem 2.14 ([GK96al). If a family of “claw-free permutations” ezists, then
NP has 5-message zero-knowledge proofs.

Recently, much attention has focused on the behavior of the zero-knowledge
property under more general, “adversarial” forms of repetition to model situations
that can arise in cryptographic applications. One object of study along these lines
has been concurrent zero knowledge [DNS98], which asks for protocols whose zero-
knowledge property is preserved even when many of them are executed at the
same time and the verifier can adversarially determine how the steps of the various
protocols are interleaved. Such a situation could arise, for example, when zero-
knowledge proofs are being employed in a distributed environment such as the
Internet. An even stronger requirement that has been studied is resettable zero
knowledge [CGGMOO], which asks that the zero-knowledge property be preserved
even if the verifier can force the prover to execute the protocol many times using
the same coin tosses. This might be a realistic attack on physical implementations
of zero-knowledge proofs, where the prover is implemented on, say, a smart card.

Given that standard zero-knowledge proofs are not closed under even parallel
composition, it is not surprising that the construction of message-efficient concur-
rent and resettable zero-knowledge proofs is quite difficult. To overcome these
difficulties, some researchers have considered augmenting the model of interac-
tion with additional features such as “timing” or “public keys” [DNS98, Dam99,
CGGMO0]. Other researchers have investigated these notions in the standard in-
teractive model, attempting to determine the minimal message complexity needed
for NP to have concurrent or resettable zero-knowledge proofs. While there has
been considerable progress, at the time of these lectures there is still a signifi-
cant gap between the known upper bounds [RK99, CGGMO00, KP00] and lower
bounds [KPR98, Ros00] (which are stronger than those given by Theorem 2.13).

24 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

2.3.2. Perfect and Statistical Zero Knowledge

The definition of zero-knowledge proofs (Definition 2.2) requires the simulator’s
output to be computationally indistinguishable from the verifier’s view of the in-
teraction. Here, we will consider two “information-theoretic” strengthenings of this
requirement:

Perfect zero knowledge: The simulator’s output distribution is identical to
the verifier’s view of the interaction.

Statistical zero knowledge: The simulator’s output distribution is statisti-
cally close to the verifier’s view. More precisely, their statistical difference”
is bounded by a negligible function of the input length.

The class of languages possessing statistical (resp., perfect) zero-knowledge
proofs is denoted SZK (resp., PZK). For contrast, zero-knowledge proofs in the
sense of Definition 2.2 are often referred to as computational zero knowledge and
the class of languages possessing them is denoted CZK. Clearly, PZK C SZK C
CZK.

Statistical and perfect zero-knowledge proofs provide much stronger “security”
guarantees than computational ones, in that the zero-knowledge condition is mean-
ingful even for verifiers with unbounded computational power. Surprisingly, these
stronger requirements can be met, and perfect zero-knowledge proofs are known
to exist for a number of nontrivial problems of complexity-theoretic and cryp-
tographic interest: QUADRATIC RESIDUOSITY and NONRESIDUOSITY [GMRS89],
GRAPH ISOMORPHISM and NONISOMORPHISM [GMW91]|, the DISCRETE LOGA-
RITHM problem [GK93], and approximate versions of the SHORTEST VECTOR and
CLOSEST VECTOR problems in lattices [GGO0O0].

Despite containing these problems believed to be hard, there are are also strong
upper bounds on the complexity of SZK:

Theorem 2.15 ([For89, AH91]). SZK C AM N co-AM.

By Theorem 1.17, this means that it is unlikely that SZK contains NP-hard
problems. This puts SZK in an intriguing region in complexity theory — lying
somewhere between the tractable problems (i.e., BPP) and the NP-hard ones.
This is striking contrast to CZK which equals PSPACE if one-way functions
exist (by Theorems 1.11 and 2.12).

Recently, there has been substantial progress in improving our understanding
of statistical zero knowledge. Here, we mention two results which have shed more
light on the the complexity of the class SZK.

Theorem 2.16 ([Oka00]). SZK is closed under complement.

This result is surprising because of the asymmetric definition of SZK. There is
no a priori reason to believe that if one can prove that a statement is true in zero
knowledge then one should also be able to prove that it is false in zero knowledge;
this is similar to the intuition that underlies our belief that NP # co-NP. In fact,
IP and CZK are also closed under complement (assuming one-way functions exist
for CZK), but those are a trivial consequences of the more dramatic result showing
that they are equal to PSPACE (Thms. 1.11 and 2.12).

"The statistical difference between two probability distributions X and Y on a set D is
maxgcp |[Pr[X € S]—Pr[Y €]|

LECTURE 2. ZERO-KNOWLEDGE PROOFS 25

AM

CZK =IP =
o PIK— PH PSPACE =
P BPP SZK = co SZK o CIK

co- NP co-AM

Figure 1. Relation of PZK, SZK, and CZK to other complexity classes

(assuming one-way functions exist). Lines indicate left-to-right inclusion.

Theorem 2.17 ([SV97, GV99]). SZK has two complete problems, called STA-
TISTICAL DIFFERENCE and ENTROPY DIFFERENCE. (These problems essentially
amount to approzrimating the statistical difference or the difference in entropies be-
tween two distributions specified by algorithms (circuits) which sample from them.)

These problems give a characterization of SZK that makes no reference to
interaction or zero knowledge, and provide further evidence that SZK captures a
rich and natural class of computational problems. Furthermore, they have proven
to be very useful for obtaining general results about SZK, as they reduce questions
about the entire class to ones about a single problem. Thus, we see more “positive”
uses of completeness in this area.

There are many open problems regarding statistical zero knowledge (cf., [Vad99]),
but here we just mention two.

Open Problem 2.18. Does SZK = PZK?

Open Problem 2.19. Find a complete problem for SZK that is combinatorial or
number-theoretic (rather than statistical) in nature.

2.4. Exercises

Exercise 1 (Commitment schemes). Construct a commitment scheme from any
one-way permutation (which cannot be inverted by polynomial-sized circuits).®

Exercise 2 (Honest-verifier zero knowledge). An honest-verifier zero-knowledge proof
is one in which the simulation condition is only required to hold for the specified
verifier V' (rather than all polynomial-time verifiers V*).

1. Show that the interactive proof for GRAPH NONISOMORPHISM given in lec-
ture is honest-verifier (perfect) zero knowledge.

2. Construct a similar honest-verifier perfect zero-knowledge proof system for
QUADRATIC NONRESIDUOSITY, i.e., the language

QNR = {(n,z) : there is no y such that y> =z (mod n)}.

Exercise 3 (Perfect zero knowledge). Exhibit a perfect zero-knowledge proof for
QUADRATIC RESIDUOSITY, i.e., the complement of QUADRATIC NONRESIDUOSITY
from Problem 2. (You should exhibit a simulator even for cheating verifiers. The

8The key-length in your construction may depend on the message length, although technically
Definition 2.6 does not allow such a dependence. (This dependency can be removed using a
pseudorandom generator, as defined in the lecture notes of Goldreich in this volume.)

26 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

simulation may fail with probability, say, 1/2, as long as its output distribution is
correct conditioned on non-failure.)

Exercise 4 (Resettable zero knowledge). Informally, a zero-knowledge proof is re-
settable if it remains zero knowledge even when the verifier can force the prover to
use the same coin tosses in polynomially many interactions. Find a zero-knowledge
proof which is not resettable (under a reasonable complexity assumption).

Solution Sketches

Solution 1. Let B be a hard-core predicate for a one-way permutation f. To
commit to a bit b, choose z at random and output (f(z), B(z) ®b). Unambiguity
follows because f is one-to-one. And secrecy follows from the fact that (f(z), B(x))
is indistinguishable from uniform and hence also from (f(z), B(xz) ® 1). (See the
construction of pseudorandom generators which stretch by 1 bit in Goldreich’s
lecture notes.) To commit to a long message m, apply this commitment scheme to
each bit of m (using independently chosen z’s for each bit). The indistinguishability
of Commit(m) and Commit(m') for all m, m' follows from a hybrid argument
reducing to secrecy of the 1-bit commitment scheme. (The reduction will need to
have the messages m,m' hardwired in; this is why we need to work with circuits
rather than uniform adversaries.)

Solution 2. For GRAPH NONISOMORPHISM, the simulator just mimics the verifier
and produces a transcript in which the prover answers correctly (which happens
w.p. 1in the real interaction on YES instances). The proof system for QUADRATIC
NONRESIDUOSITY is as follows: the verifier chooses a random r € Z} and flips a
coin b € {0,1}. If b = 0, she sends the prover r? and if b = 1, she sends the prover
x-r%. The prover must guess b. When z is a quadratic nonresidue, the distributions
r2 and zr? are disjoint; otherwise, they are identical. The analysis proceeds as for
GRAPH NONISOMORPHISM.

Solution 3. On input (n,z), the prover sends the verifier a random square s mod-
ulo n, and then the verifier asks the prover to return a square root of either s
or sz; the prover chooses one of the possible square roots at random. If z is a
square, this will always be possible. If z is a nonsquare, at most 1 of x, sz has a
square root, so the verifier will reject with probability at least 1/2. The simulator
chooses r uniformly in Z}, randomly guesses the verifier’s challenge, and accord-
ingly sends either s = r? or s = r?/x as the prover’s message. It then runs the
verifier V* to find out whether it guessed the challenge correctly. If yes, it uses r
as the prover’s last message. If not (which happens w.p. 1/2), it fails. It can be
verified that conditioned on non-failure, the output distribution is identical to the
real interaction.

Solution 4. The proof system for GRAPH 3-COLORING given in lecture is an ex-
ample. By making the prover run n with the same coin tosses and querying an edge
touching a new vertex each time, the verifier can learn a 3-coloring of the graph.
Hence this cannot be simulated in poly-time unless NP C BPP.

SUGGESTIONS FOR FURTHER READING

These lectures were not intended to be comprehensive surveys of the areas covered.
The “additional topics” sections in particular were designed to give a small sample
of recent research directions and open problems, and are largely a reflection of the
author’s own interests. Here we mention some places where the interested reader
can learn more about this area.

[G0199, Ch. 2] contains a broad survey of probabilistic proof systems, including
variants of interactive and zero-knowledge proofs not treated in these lectures. More
details of proof that IP = PSPACE (Thm. 1.11) can be found in [Sip97, 10.4].
An entertaining account of the ideas leading up to that theorem can be found in
[Bab90]|. Zero-knowledge proofs are covered in great depth and detail in [Gol0O0,
Ch. 4]. A unified treatment of the recent work on statistical zero knowledge can
be found in [Vad99).

27

[AH91]

[AK97]

[Bab90]

[BMSS]

[BGY4]

[BGG*8S)

[BHZS87]

[CGGMO0]

[Dam99]

[DNS98]

BIBLIOGRAPHY

William Aiello and Johan Hastad. Statistical zero-knowledge languages
can be recognized in two rounds. Journal of Computer and System
Sciences, 42(3):327-345, June 1991.

Vikraman Arvind and Johannes Kobler. On resource-bounded mea-
sure and pseudorandomness. In Proceedings of the 17th Conference on
Foundations of Software Technology and Theoretical Computer Science,
pages 235-249. LNCS 1346, Springer-Verlag, 1997.

Laszl6 Babai. E-mail and the unexpected power of interaction. In Pro-
ceedings, Fifth Annual Structure in Complexity Theory Conference,
pages 30-44, Barcelona, Spain, 8-11 July 1990. IEEE Computer So-
ciety Press.

Léaszl6 Babai and Shlomo Moran. Arthur-Merlin games: A randomized
proof system and a hierarchy of complexity classes. Journal of Com-
puter and System Sciences, 36:254-276, 1988.

Mihir Bellare and Shafi Goldwasser. The complexity of decision versus
search. SIAM Journal on Computing, 23(1):97-119, 1994.

Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Hastad,
Joe Kilian, Silvio Micali, and Phillip Rogaway. Everything provable
is provable in zero-knowledge. In S. Goldwasser, editor, Advances in
Cryptology—CRYPTO ’88, volume 403 of Lecture Notes in Computer
Science, pages 37-56. Springer-Verlag, 1990, 21-25 August 1988.

Ravi B. Boppana, Johan Hastad, and Stathis Zachos. Does co-NP have
short interactive proofs? Information Processing Letters, 25:127-132,
1987.

Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
Resettable zero-knowledge (extended abstract). In Proceedings of the
32nd Annual ACM Symposium on Theory of Computing, pages 235—
244, Portland, OR, May 2000. ACM.

Ivan Damgard. Concurrent zero-knowledge is easy in prac-
tice. Technical Report 1999/014, Cryptology ePrint Archive,
http://eprint.iacr.org/, 1999.

Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-
knowledge. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pages 409-418, Dallas, 23—-26 May 1998.

29

30

[FFS88]

[FS90]

[For89]

[Gol99]

[Gol00]

[GGOO]

[GK96a]

[GK96b]

[GK93]

[GMWS87]

[GMWO1]

(G094

[GV99)]

[GMRS89)

[GS89]

SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of iden-
tity. Journal of Cryptology, 1(2):77-94, 1988.

Uriel Feige and Adi Shamir. Witness indistinguishable and witness hid-
ing protocols. In Proceedings of the Twenty Second Annual ACM Sym-
posium on Theory of Computing, pages 416—426, Baltimore, Maryland,
14-16 May 1990.

Lance Fortnow. The complexity of perfect zero-knowledge. In Silvio
Micali, editor, Advances in Computing Research, volume 5, pages 327—
343. JAC Press, Inc., 1989.

Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseu-
dorandomness. Number 17 in Algorithms and Combinatorics. Springer-
Verlag, 1999.

Oded Goldreich. Foundations of Cryptography (Volume 1 — Ba-
sic Tools), 2000. To be published by Cambridge University
Press. Preliminary versions and further information available from
http://www.wisdom.weizmann.ac.il/ oded/foc-book.html.

Oded Goldreich and Shafi Goldwasser. On the limits of nonapproxima-
bility of lattice problems. Journal of Computer and System Sciences,
60(3):540-563, 2000.

Oded Goldreich and Ariel Kahan. How to construct constant-round
zero-knowledge proof systems for NP. Journal of Cryptology, 9(3):167—
190, 1996.

Oded Goldreich and Hugo Krawczyk. On the composition of zero-
knowledge proof systems. STAM Journal on Computing, 25(1):169-192,
February 1996.

Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof
system for a problem equivalent to the discrete logarithm. Journal of
Cryptology, 6:97-116, 1993.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or a completeness theorem for protocols with honest ma-
jority. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, pages 218-229, New York City, 25-27 May 1987.
Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity or all languages in NP have zero-knowledge
proof systems. Journal of the ACM, 38(1):691-729, 1991.

Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1-32, Winter
1994.

Oded Goldreich and Salil Vadhan. Comparing entropies in statistical
zero-knowledge with applications to the structure of SZK. In Proceed-
ings of the Fourteenth Annual IEEE Conference on Computational
Complexity, pages 54-73, Atlanta, GA, May 1999. IEEE Computer
Society Press.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186-208, February 1989.

Shafi Goldwasser and Michael Sipser. Private coins versus public coins
in interactive proof systems. In Silvio Micali, editor, Advances in Com-
puting Research, volume 5, pages 73-90. JAC Press, Inc., 1989.

[HILL99]

[1Y87]

[KPOO]

[KPROS]

[KvM99)]

[LFKN92]

[MV99]

[Nao91]

[Oka00]

[Pap94]

[RK99]

[Ros00]

[SV97]

[Sch88]

[Sha92]

[Sip97]

BIBLIOGRAPHY 31

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A pseudorandom generator from any one-way function. SIAM
Journal on Computing, 28(4):1364-1396 (electronic), 1999.

Russell Impagliazzo and Moti Yung. Direct minimum-knowledge com-
putations (extended abstract). In Carl Pomerance, editor, Advances in
Cryptology—CRYPTO ’87, volume 293 of Lecture Notes in Computer
Science, pages 40-51. Springer-Verlag, 1988, 16-20 August 1987.

Joe Kilian and Erez Petrank. Concurrent zero-knowledge in poly-
logarithmic rounds. Technical Report 2000/013, Cryptology ePrint
Archive, http://eprint.iacr.org/, 2000.

Joe Kilian, Erez Petrank, and Charles Rackoff. Lower bounds for zero-
knowledge on the internet. In 39th Annual Symposium on Foundations
of Computer Science, Palo Alto, California, 8-11November 1998. IEEE.
Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism
has subexponential size proofs unless the polynomial-time hierarchy
collapses. In Proceedings of the Thirty-first Annual ACM Symposium
on Theory of Computing, pages 659—667, Atlanta, 1-4 May 1999.
Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. Journal of the ACM,
39(4):859-868, October 1992.

Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing Arthur—
Merlin games using hitting sets. In 40th Annual Symposium on Foun-
dations of Computer Science, pages 71-80, New York City, New York,
17-190ctober 1999. IEEE.

Moni Naor. Bit commitment using pseudorandomness. Journal of Cryp-
tology, 4(2):151-158, 1991.

Tatsuaki Okamoto. On relationships between statistical zero-knowledge
proofs. Journal of Computer and System Sciences, 60(1):47-108, Feb-
ruary 2000.

Christos H. Papadimitriou. Computational Complexity. Addison—
Wesley, 1994.

Ransom Richardson and Joe Kilian. On the concurrent composition of
zero-knowledge proofs. In Advances in cryptology—EUROCRYPT 99
(Prague), pages 415-431. Springer, Berlin, 1999.

Alon Rosen. A note on the round-complexity of concurrent zero-
knowledge. In Mihir Bellare, editor, Advances in Cryptology—
CRYPTO 00, volume 1880 of Lecture Notes in Computer Science,
pages 451-468. Springer-Verlag, August 2000.

Amit Sahai and Salil P. Vadhan. A complete promise problem for sta-
tistical zero-knowledge. In 38th Annual Symposium on Foundations of
Computer Science, pages 448-457, Miami Beach, Florida, 20-22 Octo-
ber 1997. IEEE.

Uwe Schoning. Graph isomorphism is in the low hierarchy. Journal of
Computer and System Sciences, 37(3):312-323, December 1988.

Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, Oc-
tober 1992.

Michael Sipser. Introduction to the Theory of Computation. PWS Pub-
lishing, 1997.

32 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS — PART I

[Vad99] Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD
thesis, Massachusetts Institute of Technology, August 1999.

[Vad0o] Salil P. Vadhan. On transformations of interactive proofs that preserve
the prover’s complexity. In Proceedings of the 32nd Annual ACM Sym-
posium on Theory of Computing, pages 200-207, Portland, OR, May
2000. ACM.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th Annual Symposium on Foundations of Computer Sci-
ence, pages 162-167, Toronto, Ontario, Canada, 27-29 October 1986.
IEEE.

