
ContentsProbabilistic Proof Systems { Part II 1Lecture 1. Introduction to PCPs 11. Overview 12. De�nitions and Formal Statement of Results 23. Broad Skeleton of the proof 64. Gap Problems and Polynomial Constraint Satisfaction 65. Low-degree Testing 86. Self-correction of polynomials 97. Obtaining a non-trivial PCP 9Lecture 2. NP-Hardness of PCS 111. Multivariate polynomials 112. Hardness of Gap-PCS 133. Low-degree Testing 174. Self-correction 17Lecture 3. A couple of digressions 191. A 3-prover MIP for NP 202. NP � PCP[poly; O(1)] 22Lecture 4. Proof Composition and the PCP Theorem 291. Where are we? 292. Composing the Veri�ers 293. The PCP Theorem 324. Towards Optimal PCPs 335. Roadmap to the Optimal PCP 34Bibliography 37

1

IAS/Park City Mathematics SeriesVolume 00, 0000
Probabilistically Checkable ProofsMadhu SudanScribe: Venkatesan GuruswamiLECTURE 1Introduction to PCPs1. OverviewResearch in the 1990's has led to the following striking theorem: There is a formatof writing proofs and a probabilistic method of verifying their validity, such thatthe veri�er needs to reads only 3 bits of the proof (irrespective of the length of theproof) to obtain probabilistic con�dence in the correctness of the proof. Speci�cally,the veri�er accepts correct proofs with probability 1 (Completeness) and given anypurported \proof" of an incorrect assertions it accepts with probability at most3=4 (Soundness). In fact, this probability can be made arbitrarily close to 1=2.Furthermore, the proof in the new format is only polynomially longer than theoriginal \classical" proof.1In addition to being a surprising result bridging probability and logic, the aboveresult also turns out to have applications to proving intractability results for �ndingnear-optimal solutions to many NP-hard optimization problems. Our goal in theselectures will be to provide insight into the construction of these proof systemsand the associated probabilistic veri�ers. We will not pursue the applications tohardness of approximations (i.e., solving optimization problems near-optimally).The interested reader is referred to the survey article of Arora and Lund [1] formore information on such consequences. Our speci�c target will be to describe themain steps that lead to a weaker result (which we call the PCP Theorem) that thecomplexity class NP has Probabilistically Checkable Proofs in which the veri�er useslogarithmic randomness, queries the proof in only O(1) locations, accepts correctproofs with probability 1, and accepts false proofs with probability bounded away1The result alluded to here is that of H�astad [20]. The picky reader may note some minordiscrepancies between result as claimed above and the main result of [20]. Such a reader isdirected to the work of Guruswami et al. [19] (a derivative of [20]), which certainly achieves allthe claimed properties. 1

2 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSfrom 1 (say (1 � �) for some constant � > 0).2 We will also outline some of theingredients that lead to the sharper result described in the opening sentence.In the �rst lecture, we will formally de�ne a Probabilistically Checkable Proof(henceforth PCP). We will brie
y discuss the history of its de�nition and the maininitial results in this area. We also de�ne the notion of \gap problems" { theNP-hardness of certain gap problems turns out to be equivalent to the existenceof PCPs of the type we seek. Our goal thus leads us to the task of establishingNP-hardness of some convenient (and yet interesting) gap problem. To this end wewill de�ne a constraint satisfaction problem based on polynomials that we call PCS(for Polynomial Constraint Satisfaction). We will then state an NP-hardness resultof a gap version of PCS and two algorithmic results about polynomials. We willthen show that putting these ingredients together, we will see how we can build anon-trivial (but not our �nal) PCP.Looking ahead to future lectures, in the second lecture we will show how toestablish the hardness of PCS with a gap; as well as some overview of the algorithmicresults for polynomials. This will conclude the �rst phase of our task | that ofestablishing a non-trivial PCP construction. In the third lecture, we will launchinto a second phase of PCP constructions. We will see how to construct a varietyof PCPs with very di�erent parameters using algebraic methods. None of thesePCPs will come close to our speci�c target PCP. However, they give an idea of thenature of the tools that are available and useful to build PCPs. In the fourth and�nal lecture, we will introduce a non-algebraic tool in the construction of PCPs,speci�cally a composition theorem for PCPs. We will show how the compositiontheorem allows us to use the PCPs constructed in the third lecture (or to closevariants of the same) and compose them with each other to get a new PCP thathas all the desired properties (for our speci�c target).2. De�nitions and Formal Statement of ResultsThe central ingredient of a PCP system is the veri�er: a probabilistic polynomialtime machine with oracle access to a proof �. The primary resources used by theveri�er that are of interest to PCP are the amount of randomness used, and thenumber of bits of � that are queried by the veri�er (once the random coins tossedby the veri�er are �xed). This leads to the notion of an (r; q)-restricted veri�er:For integer valued functions r(�) and q(�), a veri�er is said to be (r; q)-restricted ifon every input of length n, it tosses at most r(n) coins and queries the proof for atmost q(n) bits.De�nition 1. For integer valued functions r(�); q(�) de�ned on integers, and func-tions c(�); s(�) , the class PCPc;s�r; q� consists of all languages L for which thereexists a (r; q)-restricted veri�er V with the following properties:� [Completeness]: x 2 L) 9 � s.t V �(x) accepts with probability at leastc (over the coin tosses of V).� [Soundness]: x =2 L) 8 � V �(x) accepts with probability < s (over thecoin tosses of V).2This result was proven by [3, 2]. Our presentation of even this result will not be complete| the reader is referred to the original articles for full details. However, we do hope to give afairly detailed overview of the steps involved. It may be pointed out that the presentation here issomewhat di�erent than in the original works.

LECTURE 1. INTRODUCTION TO PCPS 3In this notation the PCP Theorem states that there exists a constant q suchthat NP = PCP1; 12 �O(log n); q� :At this point some explanation of the role and interrelationships of the param-eters may be in order. Note that the de�nition has four parameters: c; s; r andq. Of these four, the randomness (r)and query (q) parameters are the ones of pri-mary interest. Usually, the other two parameters will be of subordinate interest. Inparticular, most PCP constructions today set c = 1. Such PCPs are said to haveperfect completeness, so that \correct" proofs are accepted with probability 1. Itis sometimes useful to have the extra
exibility of having c < 1 as o�ered by thede�nition. However, we won't construct any such PCPs in these lectures. so thatis one less parameter to worry about. The soundness of a PCP, in turn, is relatedto the query complexity and the two can be traded of against each other. Stan-dard techniques used for amplication of error in probabilistic algorithms show howsoundness may be reduced by increasing the number of queries. On the other hand,the classical reduction from SAT to 3SAT can be employed to reduce the queries to3, from any constant, while increasing the soundness but preserving boundednessaway from one. Thus to simplify our study we may �x the soundness to some �xedvalue and then try to minimize the randomness and query complexity. Our choicefor this value will be s = 12 . When we omit subscripts in the notation PCP[r; q], itis implied that c = 1 and s = 12 . Finally, we remark on a parameter that we seemto have omitted in the de�nition, namely the size of the proof. While some papersin the literature study this parameter explicitly, we don't do so here. Instead welet this parameter be captured implicitly by the other parameters. Note that a(r; q)-restricted veri�er can make at most 2r+q distinct queries to the proof, andthus the proof size need not be larger than 2r+q. Thus the randomness complexityand query complexity implicitly capture the size of the proof required by a PCPveri�er, and we will be satis�ed with studying this rough upper bound.2.1. Some History of De�nitionsThe de�nition of PCP actually evolved over a series of surprising developments inthe late 80s and early 90s. The notion of checking proofs in a probabilistic sense(where the veri�cation process is allowed to err with small probability) dates back tothe seminal work of Goldwasser, Micali and Racko� [18] and Babai [4] on InteractiveProofs (IP). In the IP proof system, a probabilistic veri�er interacts with a proverwho wishes to convince the veri�er that some assertion is true. The model of theinteractive proofs evolved over time, partly motivated by e�orts to understand themodel better. One such model was that of \multi-prover interactive proof systems"(MIP) introduced by Ben-Or, Goldwasser, Kilian and Wigderson [12]. In thismodel, a single veri�er interacts with multiple provers to verify a given assertion.The MIP proof systems in
uenced the development of PCPs in two signi�cantways. On the one hand, many technical results about PCPs go through MIP proofsystems, in essential ways. More important to our current context, it led to thede�nition of the notion of the PCP veri�er (though it was not so named then),i.e., a probabilistic veri�er with access to an oracle. This notion originated in thework of Fortnow, Rompel and Sipser [16] as part of an e�ort to understand thecomplexity of MIP proof systems.

4 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSAll the above works did not place any explicit restrictions on the resources usedby the veri�er, except the minimal one that it run in (probabilistic) polynomial time.Focus on the e�ciency of the veri�cation process started with the work of Babai,Fortnow, Levin and Szegedy [5]. Their work focussed on the computation timeof the veri�er and the size of the proof. They de�ned the notion of transparentor holographic proofs, which are proofs that can be checked very e�ciently (inpolylogarithmic time). The resources of focus in De�nition 1 were highlighted bythe seminal paper of Feige, Goldwasser, Lov�asz, Safra and Szegedy [14]. Feige et al.established an astonishing connection between probabilistic proof systems for NPand the hardness of approximate solutions to theMax Clique problem. It becameevident from their work that the randomness and query complexity of proof systemswere parameters of central interest to inapproximability. However, their work didnot abstract a de�nition of the complexity class PCP. Such a de�nition was �nallyabstracted in the work of Arora and Safra [3]. Their work explicitly de�nes the tworesources: randomness and query complexity; and maintains them as parameters(rather than placing absolute bounds on them), re
ecting the importance of thetwo resources and the very distinguishable impact that they tend to have on theveri�cation capabilities of the PCP.2.2. History of ResultsThe sequence of results culminating in the PCP Theorem is a long one. We willattempt to give a bird's eye view of this history, presenting some of the landmarkresults. We break this history into four phases.Phase 0. Some properties of PCPs follow immediately from their de�nition.These properties, typically attributed to folklore, include results such as NP =PCP�0; poly(n)�. This is the case because, for any language L 2 NP, the veri-�er can deterministically read the entire polynomial size witness of the member-ship of x 2 L and then choose to accept or reject. It is also easy to see thatNP = PCP� logn; poly(n)� since once the proof oracle is �xed, one can enumerateall logarithmically long random coin toss sequences of the veri�er and compute itsacceptance probability deterministically. Thus a little bit of randomness does notincrease the power of the PCP veri�ers in terms of the languages for which they canverify membership. However it does allow them to be signi�cantly more e�cient.(A collection of these and other such folklore results about PCPs may be found in[9].)Phase 1. The �rst non-trivial result on PCPs did not talk about the class NP butrather about the class NEXP. This result, due to Babai, Fortnow, and Lund [6],showed that NEXP = PCP[poly(n); poly(n)]. Note that the traditional veri�er ofNEXP languages looks at a proof in exponentially many places, while the PCP veri-�er is only allowed to look at it in polynomially many places. Thus this landmark re-sult reduced the number of queries by a poly-logarithmic amount by using the powerof randomness. Subsequently, scaling this result down to NP, Babai, Fortnow, Levinand Szegedy [5], NP � PCP�poly logn; poly logn�. The result of [5] actually gotextremely small blowups, nearly linear, in proof size too, though the implicit boundpromised by examining the randomness and query complexity is not even polyno-mially bounded. The next improvement in the parameters was brought about byFeige et al. who improved the result to NP � PCP� logn log logn; logn log logn�.

LECTURE 1. INTRODUCTION TO PCPS 5The good news about results in this phase was that they reduce the numberof queries made by the veri�er by a poly-logarithmic amount (from poly(n) topoly logn), a result that was completely unexpected at the time. However the badnews, is that the randomness and query complexities were still super-logarithmicand hence the above containment are not equalities and thus these do not givecharacterizations of NP in terms of (non-trivial) PCP classes.3Phase 2. The �rst exact characterization of NP came in the work of Arora andSafra [3] who showed that NP = PCP�O(log n); o(logn)�. This work also intro-duced the powerful idea of recursive composition of proofs which played a criticalrole in their and all subsequent improvements to PCP constructions. The PCP The-orem itself (i.e., NP = PCP�O(log n); O(1)�) was proved by Arora, Lund, Motwani,Sudan and Szegedy [2].4As in the results of Phase 1, the results of Phase 2 were startling surprises.The query complexity is independent of the proof size! And both parameters canbe reduced to functions which were within constant factors away from the smallestamount conceivable.5 However these were not yet the ultimate possible PCP results.Speci�cally, they were not tight in either the randomness complexity (or equivalentlythe proof size) or the query complexity.Phase 3. Examination of the (non-asymptotic) tightness of the parameters ofthe PCP theorem was initiated by Bellare, Goldwasser, Lund and Russell [10].Several intermediate results improved the constants in the parameters [15, 11,9]. Eventually near-tight results which optimize both these parameters (but notsimultaneously!) were shown. Speci�cally:� Polishchuk and Spielman [23] showed that Sat 2 PCP�(1 + ") logn;O(1)�for every " > 0.� It is a folklore result that the number of queries required in the PCPTheoremis at least 3. H�astad [20] proved the tight result that for every " > 0, NP =PCP1�"; 12 �O(log n); 3�. (Note that this result does not have perfect com-pleteness: a later result in [19] shows that NP = PCP1; 12+"�O(log n); 3�.)The result of H�astad, once again, was a startling development. A folklore resultshows that any PCP for an NP-complete language must use q � 3 to attain perfectcompleteness. It was also believed that such a PCP could not have soundness s � 12(though this was not proven till much later). Work prior to H�astad's however werefar from show that any s > 1=2 could be achieved with q = 3. In fact, if any-thing, the belief in days just prior to H�astad's works tended to the conjecture thatPCP1;s[O(log n); 3] may be contained in P for some s > 1=2. These beliefs werebolstered by the strong algorithmic techniques, based on \semide�nite program-ming", introduced in the work of Goemans and Williamson [17]. H�astad's resultsthus brought about (yet another) unexpected settlement of these conjectures. Sub-sequently, Karlo� and Zwick [22] used semide�nite programming methods to showthe optimality of H�astad's results by showing that PCP1;1=2[O(log n); 3] = P. Our3Actually a careful analysis of the protocol in [5] shows that the randomness can be made log-arithmic; a fact that is related to the fact that the proof size can be made n1+" for arbitrarilysmall " > 0.4More formally, by a statement like NP = PCP[O(logn); O(1)], we mean the following: 9cq suchthat 8L 2 NP, 9cr such that L 2 PCP[cr � log n; cq].5That
(1) queries are required is clear, and a result in [3] shows that if NP �PCP[o(log n); o(log n)] then NP = P.

6 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSlectures will unfortunately not be able to go into this phase of developments in theconstructions of PCPs; however, we will attempt to provide pointers to this in theconcluding lecture.3. Broad Skeleton of the proofWe now move towards the proof of the PCP theorem. The proof that we presentwill roughly follow the historical path to the proof. We will start by provinga statement similar in spirit to the principal results of Phase 1. Namely, wewill �rst prove (modulo some technical theorems that we will only state) NP =PCP�O(log n); poly logn�. Two fundamental techniques that will be used in itsproof are Arithmetization and Low-degree testing. This will occupy the �rst twolectures. We will then take some digressions. The �rst one will take us into MIPsand show how the poly logn queries in the above PCP can be \aggregated" so thatthe veri�er needs to read only O(1) locations of the proof (and receive poly logn sizeanswers from each location). This will be very useful for us in the �nal step(s) whenwe will apply proof composition to reduce the number of queries down to O(1). Asa second digression we will show a new PCP veri�er for NP that makes only O(1)queries (thus is very good from this perspective) but uses poly(n) randomness (andhence results in exponential sized proofs). Finally, in the �nal lecture, we will sketchhow to prove the PCP Theorem itself by applying the idea of proof composition tothe MIP system and this veri�er, and show NP = PCP[O(log n); O(1)].4. Gap Problems and Polynomial Constraint Satisfaction4.1. Constraint Satisfaction ProblemsConstraint satisfaction problems are a special category of optimization problemsthat arise naturally in the study of PCP. An instance of the problem consistsof a collection of constraints on some variables that take values from some set[B] = f1; : : : ; Bg. The goal is to �nd an assignment to the variables that maximizesthe number of satis�ed constraints. More formally, an instance of Max w-CSP(B)consists of n B-ary variables V = fx1; : : : ; xng and t w-ary constraints C1; : : : ; Ctde�ned on subsets of V of size w. The goal is to �nd an assignment a1; : : : ; an 2 Bto the variables V that maximizes the number of satis�ed constraints. A well-knownexample of a constraint satisfaction problem is Max 3-SAT where w = 3, B = 2and the constraints are of the form (`i1 _ `i2 _ `i3) where each `ij is either xij or�xij .)As mentioned earlier the Constraints Satisfaction Problems (henceforth, CSPs)arise naturally in the study of PCP. Informally, PCP[r; q] \corresponds" to Max w-CSP(2) with appropriate relation between the parameters. Roughly, the bits of theproof correspond to the variables (which is why B = 2). Each condition checked bythe veri�er corresponds to a constraint (thus the number of constraints is t = 2r).The number of queries q equals the \width" w of the CSP. Finally, the acceptanceprobability of the veri�er on a proof equals the fraction of satis�ed constraints in theassociated assignment to the variables. Thus computing (or even approximating)the maximum number of satis�able constraints amounts to answering the question:Is the veri�er's acceptance probability greater than the completeness, or not? Toformally, study the correspondence one needs to work with the notion of gappedproblems.

LECTURE 1. INTRODUCTION TO PCPS 74.2. Gap problemsWhen dealing with hardness of approximations, it is useful to formulate optimiza-tion problems as decision problems with \gaps" associated with them. Gap prob-lems fall into the more general class of \promise" problems whose instances arepartitioned into disjoint YES, NO and Don't Care sets. The computational ques-tion associated with such a problem is that of deciding whether a given instanceis a YES or a NO instance under the promise that the given instance is either aYES instance or a NO instance. (In particular, any answer on an instance from theDon't care set is acceptable.) For CSPs, the associated gap problem, called Gapw-CSPc;s(B) where s � c, is the following:YES instances: 9 assignment that satis�es at least c fraction of the constraints.NO instance: No assignment satis�es s fraction of the constraints.The correspondence between PCP and CSP sketched above implies the follow-ing which we leave as an (instructive) exercise:Lemma 1 (Exercise). NP = PCP1;1�"�O(log n); 3� if and only if Gap 3-CSP1;1�"(2)is NP-hard.(In proving the above, assume that NP-hardness is shown via a many-onereduction from a standard NP-complete problem such as SAT.)4.3. Polynomial Constraint SatisfactionFrom the previous section, to construct PCPs we need to prove NP-hardness ofcertain gap problems. But then this is only a restatement of the question, and toprove NP-hardness of a gap problem, we need a CSP whose constraints are \robust"in the sense that either all of them can be satis�ed or at most a small fraction ofthem can be satis�ed. Low-degree polynomials (over �elds) have such a robustnessproperty: if they are zero at \many" places, then are in fact zero everywhere. Wenow de�ne a CSP called Polynomial Constraint Satisfaction (henceforth referred toas PCS).Consider a Max w-CSP(B) problem where B = F is a �nite �eld and thenumber of variables n = jFjm for some integerm. Thus assignments to the variablescan be viewed as functions f : Fm ! F. The PCS problem is obtained by restrictingthe assignments f to be some polynomial of (total) degree at most d over F. Theformal de�nition, formulated as a gap problem follows:Polynomial Constraint Satis�ability Gap PCS1;"(t;m;w; s; d; q):Instance: Integer valued functions m;w; s; d; q; Finite �eld F with jFj = q(t);Constraints ~C1; ~C2; : : : ; ~Ct with each ~Cj = �Cj ; hx(j)1 ; : : : ; x(j)w(t)i 2 Fm(t)�where each Cj : Fw(t) ! f0; 1g is a w(t)-ary constraint over F that can becomputed by a size s(t) algebraic circuit).YES instances: 9 a degree d(t) polynomial p : Fm(t) ! F such that for allj 2 f1; 2; : : : ; tg, Cj�p(x(j)1); : : : ; p(x(j)w(t))� = 0.NO instances: 8 degree d(t) polynomials p : Fm(t) ! F, the number of j 2f1; 2; : : : ; tg such that Cj�p(x(j)1); : : : ; p(x(j)w(t))� = 0 is less than "t.For notational convenience we will often omit the parameter t and refer tom(t); w(t),s(t); d(t); q(t) as simply m;w; d; q.

8 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS4.4. Hardness of Gap-PCSThe following Lemma (which will be proved in the next Lecture) shows that a Gapversion of the PCS problem is NP-hard and thus forms the stepping stone for ourPCP constructions.Lemma 2. For all constants " > 0, Gap-PCS1;"(m;w; s; d; q) is NP-hard, forw; s; d; q = poly log t and m = O� log tlog log t�.First note all the good things which the above Lemma gives us. To beingwith we have a gap! Also by the choice of parameters in the NP-hardness, wehave jFjm = poly(t) and thus the table of values of f is a reasonable proof toask the prover to provide. Also the veri�er can just pick a random one of the tconstraints (which takes only log t randomness), reading the corresponding w =poly log t locations from the table for f and verify that the constraint is satis�ed intime poly(s(t)) = poly log t. Thus by Lemma 1 we seem to have our �rst non-trivialPCP characterization (namely NP � PCP[O(log); poly log]). There is a caveat,however; namely the gap (and hence the soundness of the PCP) is guaranteed onlywhen f is restricted to a degree d polynomial, and there is no guarantee that theprover will oblige by conforming to this restriction. Thus we need an e�cient wayto enforce this low-degree restriction on f which is given by low-degree tests.5. Low-degree TestingIdeally, we would like a low-degree test to have the following speci�cation:Given: d 2 Z+; and oracle f : Fm ! FTask: Verify that f is a degree � d polynomial in time poly(m; d); i.e.,Completeness: If deg(f) � d then accept with probability 1.Soundness: If deg(f) > d then reject with high probability.The above, however, is not possible, since, for every a 2 Fm , one can have an fwhich disagrees with a degree d polynomial at a 2 Fm and agrees with p everywhereelse, and thus will pass any test that only queries f at poly(m; d) places with highprobability. We thus need to relax the soundness condition.De�nition 2. Functions f; g : Fm ! F are said to be �-close if Prx �f(x) 6= g(x)� �� when x is drawn uniformly at random from Fm .Low-degree Test (revised de�nition):Given: � > 0, d 2 Z+; and oracle f : Fm ! FTask: Verify that f is close to a degree � d polynomial; i.e.,Completeness: If deg(f) � d then accept with probability 1.Soundness: Reject with high probability if f is not �-close to anydegree � d polynomial.The following result from [2] building upon the previous analyses in Rubinfeld andSudan [25] and Arora and Safra [3], shows that very e�cient low-degree testersdo indeed exist. The proof of this result is complicated and we will not delve intoit here. We will describe the testing algorithm fully in the second lecture. Theinterested reader can �nd all details of the proof in [2] and the references citedtherein.

LECTURE 1. INTRODUCTION TO PCPS 9Lemma 3 ([2]). There exists a �0 > 0 such that for every � < �0 there exists aprobabilistic solution to the low-degree test that has running time poly(m; d; 1�) andthat tosses O(m log jFj) random coins.6. Self-correction of polynomialsFor the choice of parameters in the hardness result of Lemma 2, it follows that thelow-degree test of Lemma 3 uses O(log t) randomness and makes poly log t queriesto the oracle f . However the gap between the completeness and the soundness ofthe low-degree test still leaves us with a problematic situation: What to do if theprover provides as proof, a function that is �-close to a degree d polynomial, whichsatis�es most constraints? In this case, we get around the problem by testing ifthe degree d polynomial g that is �-close to the oracle f satis�es most constraints.But how can we get our hands an oracle for g? It turns out we can implementsuch an oracle, probabilistically, using the oracle for f . The self-correction problemformalizes the task at hand; and the subsequent lemma shows how e�ciently thisproblem can be solved.Self-correction of Multivariate polynomials:Given: � > 0; d 2 Z+; x 2 Fm ; oracle f : Fm ! F such that f is �-close tosome degree d polynomial p. (We assume � < d2jFj so that a polynomial pthat is �-close to f , if one exists, is unique.)Task: Compute p(x).The following result from [7] shows the existence of randomized self-correctors formultivariate polynomials.Lemma 4. There exists a randomized algorithm that solves the self-correction prob-lem that runs in time poly(m; d; 1�) and tosses O(m log jFj) random coins, andoutputs the right answer (for every x) with probability at least (1 � ") provided� < minf d2jFj ; "d+1g.The proof of the above lemma is not di�cult and will be presented in the nextlecture. For now we just assume this lemma for a fact and move towards the PCPthat gives us the result of Phase 1.7. Obtaining a non-trivial PCPArmed with Lemmas 2, 3 and 4 we can now give our �rst PCP veri�er that worksas follows. Let L 2 NP. Given x purportedly in L, the veri�er computes (inpolynomial) an instance � of Gap-PCS as guaranteed in the NP-hardness result ofLemma 2. The prover supplies an oracle for an assignment f : Fm ! F (plus otherauxiliary information which may be used by the low-degree test). The veri�cationprocess proceeds as follows:1. Run the Low-degree test from Lemma 3 on f . Reject it the test rejects.2. Pick a random constraint C of � and verify that Self-correct(f) satis�es C(where the algorithm Self-correct is obtained from Lemma 4). Reject if not.3. Accept otherwise.From the statements of Lemmas 2, 3 and 4, it follows that the above veri�erqueries poly log jxj bits in the proof, tosses O(log jxj) random coins, has perfectcompleteness c = 1 and soundness s� 12 . We thus have our �rst step:

10 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSTheorem 1. NP = PCP�O(log n); poly logn�.The agenda for the next lecture is to give further details on the proofs of Lemmas 2-4 on the NP-hardness of Gap-PCS.

LECTURE 2NP-Hardness of PCSIn this lecture we will set out and prove the NP-hardness of Gap-PCS (Lemma 2from previous lecture) and present a self-corrector for multivariate polynomials(Lemma 4 from previous lecture) and there by complete Phase I of the proof; i.e.,establish NP = PCP[O(log n); poly logn]. (For the other result, Lemma 3, on low-degree tests, we will only present a test and and take its analysis on faith.)1. Multivariate polynomialsAll of our lemmas seem to involve polynomials, while our original goal of construct-ing PCPs (seemingly) had nothing to do with polynomials. Before, plunging intothe proofs of the lemmas, it may be worth our while to see why polynomials arisenaturally in this context.We �rst note a robustness property that proofs in the PCP format seem tohave. Speci�cally, if we take a valid proof (accepted with probability 1) in the3-query PCP of, say H�astad, the proof has the property that when 1% of the bitsare
ipped at random then its acceptance probability is still at least 97%. ThusPCP proofs are special in that they retain the power to convince a veri�er evenwhen a reasonably large fraction of their bits are
ipped, completely at random.A natural question to ask is: How does the proof develop this resilience to error?Turns out that a previous context in which similar resilience to error was exploredwas in the context of information transmission over noisy channels. This researchled to the development of error-correcting codes. Informally, an error-correctingcode consists of an encoding function that maps a small string (message) into alarge one (codeword) such that
ipping a few bits of the codeword, still allows forrecovery of the message. Our strategy to endow the PCP proofs with redundancywill exploit the theory directly. We will simply encode traditional proofs using well-known error-correcting encodings and this will bring about the necessary resilience.However an arbitrary error-correcting code will not su�ce for our purposes. We willuse a special construction of error-correcting codes: those obtained by employing(multivariate) polynomials over �nite �elds.Polynomials (over a �eld) are known to have excellent error-correction proper-ties (in addition to their nice algebraic structure). As an example, consider the fol-lowing encoding of a string a1; : : : ; an 2 f0; 1gn. Pick a �nite �eld F of size about n211

12 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSand let f be a polynomial of degree less than n such that f(1) = a1; � � � ; f(n) = an1.Note that such a polynomial does indeed exist, and can be found be interpolation.Then hf(x)ix2F is a redundant encoding of a1; : : : ; an in the following sense: Giventhe value of f at any subset of F of size n, we can interpolate to �nd f and thusthe coe�cients a1; : : : ; an. The original string can be reconstructed even if jF�nj2of the symbols in its encoding are in error.Codes based on univariate polynomials gives robustness against a huge fractionof errors and is extremely e�cient in this sense. For our purposes the primarydisadvantage of these codes is that to encode an n-bit string, it needs degree
(n).In particular, this implies that any version of the Low-degree test would need toquery the value of any function f at
(n) places at the very least, before being ableto conclude that the given function is not a degree n polynomial.To get better low-degree tests, one needs to �nd functions whose algebraicdegree is somehow smaller than the number of degrees of freedom that the functionexhibits. Bivariate polynomials already exhibit better tradeo�s. For example wemay pick a �eld F of cardinality � n and pick a polynomial f in two variablesx and y of degree at most pn in each such that the value of f at the pointsf(i; j)j0 � i � sqrtng correspond to the values a1; : : : ; an 2 f0; 1g. (Again, oneneeds to verify that such an f exists, and can be found. This task is left to thereader as an exercise.) Now the sequence hf(x; y)ix;y2F forms another redundantencoding of the string a1; : : : ; an.We can now generalize this idea further to m-variate polynomials over a largeenough �eld F as follows: Pick a subset H � F of size n1=m so that the informationa1; : : : ; an can be viewed as a function a : Hm ! f0; 1g. In this case, it can be shown(again left as an exercise to the reader) that there exists an m-variate polynomialf of degree less than jH j in each variable such that f(x) = a(x) for each x 2 Hm.Now encode a by hf(x)ix2Fm . This construction will be invoked often in the sequel,and it will be useful to give it a name | we call f the low-degree extension of a.The redundancy of this encoding follows by the following lemma, referred to in thecomputer science literature as the Schwartz-Zippel lemma.Lemma 5. For every integer m, d, �eld F and �nite subset S � F, if P : Fm ! Fis a polynomial of total degree at most d, then the probability that P (x) = 0, whenx is chosen uniformly at random from Sm, is at most d=jSj.The lemma is easy to prove by induction on the number of variables and weskip the proof.For our application to PCS, we will pickm(n) = O(lognlog logn) and jH j = poly logn.Thus the degree of the low-degree extension of a is poly logn (which is good) andwe can work with a �eld F of size poly logn and still have jFjm = poly(n) so thatthe size of encoding is polynomial in n.
1Note that we are abusing notation by using integers to represent elements of the �nite �eld. Wedo so only for notational convenience.

LECTURE 2. NP-HARDNESS OF PCS 132. Hardness of Gap-PCS2.1. Arithmetizing 3-SATWe will establish the NP-hardness of Gap-PCS by reducing from 3-SAT. We beginby describing the powerful idea of arithmetizing 3-SAT which is at the heart of thereduction.An instance � of 3-SAT consists of n variables and t clauses C1; : : : ; Ct whereeach clause Cj is of the form � xi1 = b1 or xi2 = b2 or xi3 = b3 � where each bj 2f0; 1g. We �nd it convenient to view � as an indicator function � : f1; 2; : : : ; ng3 �f0; 1g3 ! f0; 1g where �(i1; i2; i3; b1; b2; b3) = 1 exactly if the clause � xi1 =b1 or xi2 = b2 or xi3 = b3 � is present in the instance �.To arithmetize �, we begin by picking h;m where h = poly logn and m =O(log n= log logn) such that hm = m. Now, set H = f1; 2; : : : ; hg and identifyf1; : : : ; ng with Hm in some canonical way. Extending f0; 1g to H , the instance �can be viewed as a function � : H` ! f0; 1g where ` = 3m+ 3 (we set �(� � �) = 0if the arguments do not make sense).In this language, 3-SAT can be restated as follows: we want an \assignment"a : Hm ! f0; 1g such that 8i1; i2; i3 2 Hm and 8b1; b2; b3 2 H ,�(i1; i2; i3; b1; b2; b3) = 0 or a(i1) = b1 or a(i2) = b2 or a(i3) = b3 :Let F be a �eld that contains H and let �̂ and A be low-degree extensions of �and a respectively. Now the \proof" of satis�ability is an m-variate polynomial (ofdegree h in each variable) A : Fm ! F and the goal of the veri�er is to check thatfor all z = hi1; i2; i3; b1; b2; b3i 2 H`,�̂(z) � (A(i1)� b1) � (A(i2)� b2) � (A(i3)� b3) = 0 :(1) It is easy to see that such an m-variate polynomial A exists i� � is satis�able.Thus if we consider the instance of the PCS problem, consisting of t = jH j` con-straints of the form (refeqn:c0) for every z 2 H`, we obtain an instance of the PCSproblem for which it is NP-hard to decide if all constraints are satis�able or not.Thus we have the NP-hardness of a PCS problem. However, there is no gap in thenumber of constraints (1) that can be satis�ed.2.2. Making Constraints RobustWe now show how to make the constraints above robust, i.e., transform theminto a di�erent collection in which either all of them can be satis�ed, or few canbe satis�ed. To this end we de�ne an `-variate polynomial ~P0 as follows: 8z =hi1; i2; i3; b1; b2; b3i,~P0(z) def= �̂(z) � (A(i1)� b1) � (A(i2)� b2) � (A(i3)� b3) = 0 :(2)Since �̂ and A have degree at most jH j in each variable, ~P0(z) is an `-variatepolynomial of degree at most 2jH j in each variable and thus has (total) degree atmost 2`jH j. Let us assume that the prover gives not only the polynomial A, butalso a polynomial P0 (of degree at most 2`jH j) that is supposedly ~P0. The goal ofthe veri�er is now to check the constraints1. (C0): 8z 2 F` P0(z) = ~P0(z) (note that the veri�er can e�ciently compute�̂(z) and thus also ~P0(z) once it is given the assignment polynomial A).2. (C00) 8z 2 H` P0(z) = 0.

14 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSSince both P0 and ~P0 are low-degree polynomials (they have degree at most2`jH j), the constraints (C0) are robust (either all of them are satis�ed or a smallfraction (at most 2`jHjjFj : see lemma below) of them are satis�ed.Lemma 6. If P0, ~P0 are degree d polynomials that violate (C0) for some z, thenthey violate (C0) for at least �1� djFj� fraction of the z's.Proof: Follows from the Schwartz-Zippel Lemma applied to P0� ~P0 since a degreed polynomial is zero on at most djFj fraction of the domain.The constraints (C00) are not robust, since it is possible for a degree 2`jH jpolynomial to be zero on all but one point of H`. Our idea would be to increase thesize of the domain on which we would like the polynomial to be zero. Speci�cally wewill de�ne a sequence of (low-degree) polynomials P1; P2; : : : ; P` such that P1 = 0over F � H`�1 i� P0 = 0 over H`, and similarly for 1 < i � `, Pi = 0 overF i �H`�i i� Pi�1 = 0 over F i�1 �H`�i+1. Hence P` will be identically zero onF ` i� P0(z) = 0 8z 2 H`. Each of these constraints (and in particular P`(z) = 08z 2 F ` are all robust constraints and this will give us the desired \gap" in thePCS instance.As a motivation for de�ning these polynomials, let us �rst look at an analogoustransformation for univariate polynomials. Let fh1; h2; : : : ; hjHjg be an enumerationof the elements of H . Given a univariate polynomial p 2 F[X], de�ne a polynomialq by: q(y) = jHjXj=1 p(hj)yj :Clearly, if p(h) = 0 for all h 2 H , the q � 0. Conversely, if pjH 6� 0, then q is somenon-zero polynomial of degree at most jH j and so is non-zero on at least jF n H jpoints. Thus q is identically zero on F i� p is identically zero on H .In the multivariate case, we will apply the above transformation, once in eachvariable. Starting with a polynomial P0 in formal variables (x1; x2; : : : ; x`), we willobtain a sequence of polynomialsP1(y1; x2; : : : ; x`)P2(y1; y2; x3; : : : ; x`)...Pi(y1; y2; : : : ; yi; xi+1; : : : ; x`)...P`(y1:y2; : : : ; y`)where each transition from an x-variable to a y-variable follows the scheme describedabove for univariate polynomials, namely, for 1 � i � `, de�nePi(y1; : : : ; yi; xi+1; : : : ; x`) = jHjXj=1 Pi�1(y1; : : : ; yi�1; hj ; xi+1; : : : ; x`)yji :(3)Note that if Pi�1 has degree di�1, then the degree di of Pi is at most di�1 + jH j.Since P0 has degree at most 2`jH j, the degree of each Pi for i 2 f0; 1; : : : ; `g isclearly at most 3`jH j. By the same reasoning as in the univariate case, we havePi jF i�H`�i � 0() Pi�1 jF i�1�H`�i+1 � 0 :

LECTURE 2. NP-HARDNESS OF PCS 15(By our de�nitions, we haveP`(y1; : : : ; y`) = X1�i1;i2;:::;i`�jHjP0(hi1 ; : : : ; him)yi11 � � � yi`` :and this is another way of verifying that P` � 0 on F ` i� P0 is identically zero onH`.)2.3. The Gap-PCS instanceWe are now ready to describe the constraints of our Gap-PCS instance. Given a3-SAT instance �, consider the following (polynomial) constraint satisfaction prob-lem: The required \solution" consists of polynomials A;P0; P1; : : : ; P` where A isan m-variate polynomial of degree at most mjH j and P0; : : : ; P` are `-variate poly-nomials of degree at most 3`jH j. The \constraints" placed on the polynomials arethe following.For all z = (z1; : : : ; z`) 2 F `:(C0): P0(z) = ~P0(z) where ~P0(z) is de�ned based on � and A : Fm ! F as inEquation (2).For i = 1; 2; : : : ; `,(Ci): Pi(z1; : : : ; zi; zi+1; : : : ; z`) =PjHjj=1 Pi�1(z1; : : : ; zi�1; hj ; zi+1; : : : ; z`)zji(the condition from Equation (3) at the point z).(C(`+ 1)): P`(z) = 0.By the \robustness" of all these constraints (see Lemma 6 above), we have thefollowing:Lemma 7. If P0; : : : ; P` and ~P0 are polynomials of degree at most d, then for eachset of jFj` constraints (Ci), 0 � i � `+1, either all of them are satis�ed or at mosta fraction (d+ jH j)=jFj of them are satis�ed.Proof: Follows from Lemma 6 since all polynomials involved in the constraintshave degree at most d+ jH j.Bundling polynomials into a single polynomial. Note that in a PCS instancethe \solution" asked for is a single low-degree polynomial, where as in the abovewe have several polynomials (A;P0; : : : ; P`) involved in the constraints. There is asimple trick to handle to this: we just require that all the polynomials be \bundledtogether" and presented as a single degree D = (3`jH j + ` + 1) polynomial Q :F`+1 ! F such that for 0 � i � `, Q(i; � � �) = Pi(� � �) and Q(`+ 1; hz1; : : : ; z`i) =A(z1; : : : ; zm). The existence of such a polynomial is guaranteed by the followingLemma:Lemma 8. Given polynomials q0; : : : ; qt : F` ! F over a �nite �eld F with jFj > t,each of (total) degree at most �, there exists a degree � + t � 1 polynomial Q :F`+1 ! F such that for i = 0; 1; : : : ; t and all z 2 F` , Q(i; z) = qi(z).Proof: For each i 2 f0; 1; : : : ; tg, there is a unique univariate polynomial �i ofdegree t such that �i(v) = � 1 if v = i0 if 0 � v � t but v 6= i.

16 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSNow de�ne the polynomial Q asQ(v; z) = tXi=0 �i(v)qi(z) :Clearly Q(i; � � �) � qi(� � �) for each i 2 f0; 1; : : : ; tg.Suppose such a polynomial Q is given (as a solution to the PCS instance con-structed from �). We wish to describe the constraints of the PCS instance. Firstwe make explicit the de�nition of a polynomial P 00 from Q that will serve the role of~P0 from de�nition (2). For z = hz1; : : : ; z`i 2 F` where ` = 3m+3, P 0(z) is de�nedas: P 00(z) def= �̂(z) � �Q(`+ 1; hz1; : : : ; zm; 0; : : : ; 0i)� z3m+1�� �Q(`+ 1; hzm+1; : : : ; z2m; 0; : : : ; 0i)� z3m+2�(4) � �Q(`+ 1; hz2m+1; : : : ; z3m; 0; : : : ; 0i)� z3m+3�Note that P 00 has total degree at most 10`jH j+ 3`+ 3 < 11`jH j.Summarizing the reduction from SAT to PCS. We are now ready to sum-marize the reduction T3SAT!PCS which maps instances of 3SAT to PCS: Given aninstance � of 3SAT, the reducing algorithm sets m = lognlog logn and sets h = n1=m,and ` = 3m + 3. It then picks a �eld F of size at least q � h3. It then computesthe function �̂ : F` ! F, and using this, it generates t = jFj` constraints (C)(z),one for every z 2 F` . The constraint for z is:(C)(z) = `+1̂i=0(Ci)(z)where (Ci) are the constraints described earlier in this section. The main exceptionis that these cosntraints are de�ned over a single polynomial Q : F`+1 ! F, andthus every occurence of Pi(�), 0 � i � ` + 1 is replaced with Q(i; �). Similarlyinstead of the polynomial ~P0 one uses the polynomial P 00 de�ned in Equation (4).All polynomials involved in constraints (C)(z) have degree at most 11`jH j, andhence we get by Lemma 6 that, for any degree D polynomial Q, either all theconstraints (C)(z) are satis�ed or at most a fraction 11`jH j=jFj of the constraintsare satis�ed. By choice of jFj this fraction is a o(1) function and thus is smallerthan �, for any � > 0, for su�ciently large n.2.4. The hardness resultFrom the discussion in the preceding paragraph, we can now conclude:Lemma 9. For every � > 0, the reduction T3SAT!PCS maps an instance � to aninstance of PCS with m = O(log n= log logn) and m; d; q = poly logn such that thefollowing conditions are satis�ed:Completeness: If � is satis�able, then there exists a polynomial Q of degreeat most d that satis�es all the constraints.Soundness: If there exists a polynomial Q of degree at most D that satis�esmore than an �-fraction of the constraints, then � is satis�able.

LECTURE 2. NP-HARDNESS OF PCS 17Proof: The completeness is clear since we can just take Q to be the polynomialsuch that Q(` + 1; �) = A, Q(0; �) � ~P0(�) (where ~P0 is de�ned in Equation (2))and Q(i; �) = Pi(�) (where Pi is de�ned as in Equation (3)) for 1 � i � `. For thesoundness, we know by the discussion at the end of the previous subsection, that ifmore than an �-fraction of the constraints are satis�ed, then in fact all of them aresatis�ed. This in turn implies that ~P0(�) = Q(0; �) is identically zero on H`, whichimplies that the assignment A def= Q(`+ 1; �) satis�es �.Note that by the choice of the parameters, we have m = O(log n= log logn) andw; d; q = poly logn as required. Finally, for each z 2 Fl , the constraint (C)(z) canbe checked in polylogarithmic time. We have thus proved the �rst of the lemmasfrom last lecture that we set out to prove:Lemma lem:gappcs: For all constants " > 0, Gap-PCS1;"(m;w; s; d; q) is NP-hard, for w; s; d; q = poly log t and m = O� log tlog log t�.3. Low-degree TestingRecall the following Lemma from the previous lecture:Lemma lem:low-deg-test: There exists a �0 > 0 such that for every � < �0there exists a probabilistic solution to the low-degree test that has running timepoly(m; d; 1�) and that tosses O(m log jFj) random coins.We will not be able to prove the above lemma, but we will present the testingalgorithm which has the properties claimed in the lemma. The idea behind the testis the following: For x; y 2 Fm , de�ne fx;y(t) = f(x + ty) (i.e., fx;y is f restrictedto the \line" passing through x and y). If f is a degree d polynomial, then for everyx; y 2 Fm , fx;y is a (univariate) polynomial of degree d, and in fact the conversealso holds. This suggests the following test:Pick random x; y and verify that fx;y is a degree d polynomial.We in fact consider the following weaker test Low-Deg-Test:� Pick x; y 2 Fm and t 2 F at random.� Ask prover for (the at most (d+ 1)) coe�cients of the \polynomial" fx;y� Verify that fx;y(t) = f(x+ ty).The following theorem [25, 3, 2] shows that the above test indeed satis�es theconditions of Lemma 3.Theorem 2. Consider the test Low-Deg-Test speci�ed above.1. Easy part: If f is a degree d polynomial, then there exist responses fx;y suchthat Low-Deg-Test always accepts.2. Hard part: There exists a constant �0 > 0 such that for all m; d; F, if f is anyfunction such that there exist responses fx;y that make Low-Deg-test rejectwith probability � � �0, then f is 2�-close to some degree d polynomial.4. Self-correctionWe now move to the third and �nal component we need to complete our �rst PCPcharacterization (NP = PCP[O(log n); poly logn]), namely self-correction. Recallthe problem de�nition:

18 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSGiven: � > 0; d 2 Z+; x 2 Fm ; oracle f : Fm ! F such that f is �-close tosome degree d polynomial p. (We assume � < d2jFj so that a polynomial pthat is �-close to f , if one exists, is unique.)Task: Compute p(x).We will prove:Lemma 4: There exists a randomized algorithm that solves the self-correctionproblem that runs in time poly(m; d; 1�) and tosses O(m log jFj) random coins, andoutputs the right answer (for every x) with probability at least (1 � ") provided� < minf d2jFj ; "d+1g.Proof: Consider the following self-correction procedure. Given x 2 Fm and oraclefor f which is �-close to a polynomial p, compute p(x) as follows:1. Pick y 2 Fm at random.2. Query f(x + y), f(x + 2y); � � � ; f(x + (d + 1)y) and let b1; : : : ; bd+1 be theresponses.3. Find, by interpolation, a degree d (univariate) polynomial h such that h(i) =bi for 1 � i � d+ 1.4. Output h(0) as the value of p(x).Note that the algorithm tosses O(m log jFj) random coins, probes f in d+1 placesand runs in time polynomial in m; d. It remains to prove the correctness ofthe procedure. If f is a degree d polynomial, then the output is clearly cor-rect. But f is only �-close to a degree d polynomial p. However, for everyi, 1 � i � d + 1, x + iy is a random point in Fm (we are ignoring the pos-sibility that y = 0 here, but this happens with negligible probability). Thus,Pry [f(x + iy) 6= p(x + iy)] � � by the de�nition of �-closeness. Hence, by theunion bound, Pry [9i; f(x + iy) 6= p(x + iy)] � (d + 1)� which is at most " since� < "=(d+ 1). Thus, with probability at least (1� "), b1; : : : ; bd+1 are the \right"values of p(x + y); : : : ; p(x + (d + 1)y) and thus the interpolation step correctlycomputes p(x).This completes the proof of the PCP characterization NP = PCP[O(log n); poly logn],thus Phase 1 of our goals.

LECTURE 3A couple of digressionsWe now move on Phase 2 of the proof of the PCP Theorem. We will approachthis phase somewhat tangentially. In this lecture, we will show two results, that willessentially be digressions for now, and then linked to Phase 2 in the �nal lecture.The �rst result will be an \MIP" characterization of NP. We will show how thePCP veri�er of Phase 1 can be modi�ed into an MIP veri�er that \aggregates" thepoly logn queries of the PCP veri�er into a constant number of queries that it willsend to multiple (mutually non-interacting) provers that respond with poly lognbits each. While the advantage of this modi�cation will be unclear for now, wewill exploit this MIP veri�er in the �nal lecture. The second result will give ahighly query-e�cient PCP veri�er for NP: speci�cally we will prove that NP =PCP[poly(n); O(1)]. Note that this veri�er just makes a constant number of queries(as is our �nal goal), however that the randomness used by the veri�er is very large.Part I: Multiprover Interactive Proofs (MIP)The informal question behind the de�nition of MIP is the following: Whatcan a probabilistic veri�er interacting with p non-communicating provers verify, ifallowed to ask one question to each prover? More formally, we have the followingde�nition:De�nition 3. For an integer p and integer valued functions r; a : Z+ ! Z+, a(p; r; a)-restricted MIP veri�er is a probabilistic veri�er that tosses r(n) coins, asksone question to each of p provers and receives a(n)-bit answers, on inputs of lengthn.We can now de�ne MIP classes similar to PCP classes.De�nition 4. For an integer p and integer valued functions r; a : Z+ ! Z+, alanguage L is said to be in MIPc;s[p; r; a] if there is a (p; r; a)-restricted MIP veri�erthat checks x 2 L with completeness c and soundness s.A p-prover MIP is also called a p-prover 1-round protocol, since there is onlyone round of veri�er-prover interaction. A few comments on the MIP model. MIPseems to be a natural model within the context of interactive proofs. It is morerestrictive than PCP as MIPc;s[p; r; a] � PCPc;s[r; pa] (since the responses of the19

20 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSp provers can be written down as one big proof, and the veri�er will query pa(n)bits from this proof), and thus good MIP constructions su�ce to construct goodPCPs. We will now do the opposite and show how to covert a PCP into a MIP(with some loss in parameters), and this will be a central intermediate step in ourgoal of proving the PCP Theorem.1. A 3-prover MIP for NPWe will construct a 3-prover MIP from the PCP[O(log n); poly logn] veri�er ofPhase 1. To do this, let us �rst recall how the veri�er worked (at a high level).The veri�er is based on a hard instance of PCS with a \gap". It expects as proofa low-degree polynomial expressed as a table of values f : Fm ! F, and a \linesoracle" flines that it uses for performing a low-degree test. Given access to oraclesfor f and flines, the veri�er worked in two steps:1. Perform a low-degree test on f .2. Pick a random constraint of the PCS instance and check it is satis�ed bythe self-corrected version of the oracle f .The �rst step above is already structured as a 2-prover 1-round protocol: Theveri�er asks one prover for the value of f at a point and a second prover for thecoe�cients of the polynomial fx;y for a line `x;y = fx + ty : t 2 Fg for somex; y 2 Fm . The second step, however, queries the table f in many places, and wesomehow need a way to \aggregate" these queries into one \big" query.1.1. Parallelization: Reconstruction via curvesSuppose we need to query f : Fm ! F at w places x1; : : : ; xw. In this section we willshow how to �nd the value of f at all these points correctly, with high probability,using only a constant number of queries to two provers. This solution will workusing the \algebraic" and \randomness" properties of \curves" in m-dimensionalspace (where all terms in quotes will be explained later). Using such curves, ourstrategy can be described at a high-level as follows: We will pick a random curveC through x1; : : : ; xw and ask a third prover for a description of the function f onthe entire curve C. Denote this restriction by f jC . If the prover responds honestlywith fjC we are in good shape, while if it responds with a wrong polynomial h,then we will show that a random point we will have f(C(t)) 6= h(t) and we will beable to detect this.We now de�ne what we mean by a \random curve" in Fm . A curve is simply afunction C : F ! Fm . Note that this curve can be considered to be a collection ofm functions Ci : F ! F, where C(t) = hC1(t); : : : ; Cm(t)i. We can now de�ne thedegree of a curve: The degree of C is simply the maximum of the degrees of thefunctions Ci; i.e., deg(C) = maxi deg(Ci).Curves of low-degree turn out to be useful for this section, and the followingproposition asserts that curves of reasonably small degree do exist passing throughany small set of points. (The proof is omitted, but can be easily seen to be aconsequence of the interpolation theorem for univariate polynomials.)Proposition 1. For any set of (w1) points x0; x1; : : : ; xw 2 Fm , there exists aunique degree w curve C with C(j) = xj for j = 0; 1; : : : ; w.

LECTURE 3. A COUPLE OF DIGRESSIONS 21A \random curve" through x1; : : : ; xw is de�ned to the curve from the aboveproposition for a random value of x0 2 Fm . The reason we label such a curve to berandom, is that most points on this curve (all except the ones that are explicitlydetermined) are randomly distributed (though not independently so) over Fm . Thisis claimed in the next proposition.Proposition 2. For every x1; : : : ; xw 2 Fm , if x0 2 Fm is picked at random andC is the unique degree w curve such that C(j) = xj for 0 � j � w, then for anyt =2 f1; : : : ; wg, C(t) is a random point in Fm .Recall that our intention is to ask a (third) prover for a description of thefunction f jC for some curve C. How does the prover describe this function f jC?Turns out that for low degree polynomial functions, their restriction to a low-degreedurve is still a low-degree polynomials. This is asserted in the next lemma.Lemma 10. If P : Fm ! F is a degree d polynomial and C : F ! Fm is a degreew curve, then PjC (de�ned by PjC(t) = P (C(t))) is a univariate polynomial over Fof degree wd.Proof. Follows by susbstituting for each variable xi occuring in the polynomial P ,the polynomial Ci(t).1.2. The 3-prover MIPWe are now ready to present the promised 3-prover MIP for NP in full detail.Input: An instance of Gap-PCS1;"(t;m;w; s; d; q)Provers: There will be 3 provers �1, �2, �3. We will also refer to the �i's asproofs or oracles: the \proof" corresponding to a prover simply consists of all theresponses of that prover to the various questions it might be asked. The proof �1will comprise of the values of the purported \polynomial" P that is a solution tothe Gap-PCS instance. �2 will be the \lines oracle" used to perform the low-degreetest, and �3 will be the \curves oracle" used to perform the parallelization step.The veri�er operates as follows:� [Random Choices:]1. Pick a constraint Cj of the Gap-PCS instance at random.2. Pick a random curve C through the w points x1; : : : ; xw 2 Fm that Cjdepends on. (Do this by picking a random x0 2 Fm and determiningthe unique degree w curve C such that C(j) = xj for j = 0; 1; : : : ; w.)3. Pick a random point x on C by picking a random t0 2 F and settingx = C(t0).4. Pick a random line ` through x (i.e., pick y 2 Fm at random andrandom t00 2 F and set ` = fx+ (r � t00)y : r 2 Fg).� [Queries:]1. Queries �1 for the value P (x); let response be a 2 F.2. Queries �2 for the polynomial Pj`x;y ; let g be the (degree d univariate)polynomial obtained as response.3. Queries �3 for the degree wd polynomial PjC ; let h be the response.� [Action (Accept/Reject):]{ Reject unless g(t00) = h(t0) = a.{ Reject if hh(1); h(2); : : : ; h(w)i 2 Fw does not satisfy the constraintCj .

22 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS{ Accept otherwise.1.3. AnalysisPresenting the analysis of the above (3-prover) MIP in full rigor with proper choiceof the several parameters involved will take too long; we therefore only sketch themain ideas in the analysis. The reader is referred to [2] for a rigorous proof.Completeness: It is clear that if the Gap-PCS instance is satis�able, say by alow-degree polynomial P0, then �1 = P0 and �2, �3 de�ned as the restrictionsof P0 to lines and degree w curves respectively, will always satisfy the tests of theveri�er. We thus have perfect completeness c = 1.Soundness: Suppose we have a NO instance of Gap-PCS as input to the MIPveri�er, i.e., any degree d m-variate polynomial P satis�es at most an " fractionof the t constraints. Let ~P be the response of �1; if ~P is not �-close to a degreed polynomial, then by the Lemma on low-degree testing from last lecture, we willhave g(t00) 6= a (recall that a def= ~P (x)) with probability at least �=2, and thus theveri�er will reject with probability at least �=2.Now suppose ~P is �-close to a (unique) degree d polynomial P . Since we havea NO instance of Gap-PCS, with probability at least (1 � "), the veri�er picks aconstraint Cj that is not satis�ed by P . Now two cases arise:� If h = PjC , then hh(1); : : : ; h(w)i = hP (x1); : : : ; P (xm)i and thus does notsatisfy the constraint Cj , and the veri�er rejects in this case.� If h 6= PjC , then since both h; PjC are degree wd polynomials, h(t0) 6= P (x)with probability at least �1 � wdjFj � by the Schwartz-Zippel Lemma (sincet0 is a random element of F). Also P; ~P are �-close, so P (x) = ~P (x) withprobability at least (1� �). Thus with probability at least (1� ��wd=jFj),we will have h(t0) 6= a and the veri�er will reject.From the preceding discussion, there is a constant
 > 0, such that the veri�errejects NO instances of Gap-PCS with probability at least
, and this gives ourdesired MIP characterization:Theorem 3 ([2]). There exists
 > 0 such thatNP � MIP1;1�
�3; O(log n); poly logn� :Part II: A Query-e�cient PCP Veri�erWe now turn to giving a highly query-e�cient PCP veri�er for NP. The veri�erwill only read O(1) bits from the proof. On the down side, it will use polynomialrandomness, and reducing the randomness to logarithmic while retaining the querycomplexity at O(1) will be the subject of the next lecture.2. NP � PCP[poly; O(1)]2.1. Quadratic PolynomialsJust as in the case of Gap-PCS, we will �rst show (sketch) the NP-hardness of analgebraic problem, namely \Satis�ability of quadratic polynomials" QP-SAT whichtests if a set of multivariate degree two polynomials (over F2), say Q1; : : : ; Qt, have

LECTURE 3. A COUPLE OF DIGRESSIONS 23a common zero. This problem will form the basis of our new PCP veri�er. We �rstformally de�ne the QP-SAT problem:QP-SAT (Satis�ability for Quadratic Polynomials)Instance: t quadratic (degree 2) polynomials Q1; : : : ; Qt on n variables x1; : : : ; xnover F2 .Question: Do these polynomials have a common zero? I.e., is there an assignmenta = (a1; : : : ; an) to x1; : : : ; xn such that Pj(a) = 0 for j = 1; 2; : : : ; t.Lemma 11. QP-SAT is NP-complete.Proof: The problem is clearly in NP since, for Yes instances, we can guess(a1; : : : ; an) and then verify that it is indeed a common zero. To prove NP-hardness,we reduce from Circuit Sat. An instance of Circuit Sat consists of a Booleancircuit C comprising of Not gates and And, Xor gates of fan-in two, and thegoal is to decide if C has a satisfying input. It is well-known that Circuit Sat isNP-complete.To reduce Circuit Sat to QP-SAT, we introduce one variable xi for eachinput and for each gate of the circuit. We place a constraint for each gate of thecircuit which enforces that the output of that gate is consistent with its inputs andthe operation of the gate. For example, for an And gate with associated variablexj that receives its inputs from the gates associated with variables xi1 and xi2 , wewould place the constraint xj � xi1xi2 = 0. Similar constraints are place for Xorand Not gates. We also place a constraint corresponding to the output gate whichforces it to equal 1 (so C is satis�ed). Note that these constraints check for theexistence of a common zero of certain degree 2 polynomial, and it is easy to seethat a common zero exists for these polynomials if and only if C was satis�able.This completes the proof.2.2. Intuition for the Veri�erGiven an instance of QP-SAT the veri�er must check that all there exists a suchthat Pj(a) = 0 for all j = 1; 2; : : : ; n. For now, pretend there were only onepolynomial P (we will see how the many polynomials case reduces to this situationlater). Since P is a degree two polynomial, it is of the form:P (x1; : : : ; xn) = s0 + nXi=1 sixi + X1�i;j�n cijxixj :(5)where s0; s1; : : : ; sn and the cij 's are all elements of F2 . We would like to checkthat P (a1; : : : ; an) = 0; since we want to read very few bits from the proof, justasking the prover to provide a1; : : : ; an will not work for us. Instead we will ask theprover to write down an appropriate encoding of a1; : : : ; an. Considering the formof P , encoding a1; : : : ; an using the Hadamard code and the Quadratic functionscode will be useful, and we turn to the description of these codes next.2.3. Hadamard and Quadratic Functions CodeThe Hadamard Code: The Hadamard code is the most redundant linear codeand consists of the evaluations of all linear functions at the message that is beingencoded. More formally, given a string (a1; : : : ; an) 2 Fn2 , de�ne A : Fn2 ! F2 asA(x) def= Pni=1 aixi. The Hadamard encoding of a is simply hA(x)ix2Fn2 . Note that

24 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSa message of length n is encoded into 2n bits under the Hadamard code. It is easyto prove that the Hadamard encodings of distinct strings di�er in exactly half thebits.Given the Hadamard encoding A of (a1; : : : ; an), we can compute the lin-ear function Pni=1 siai by just one query into A, since Pni=1 siai = A(s) fors = (s1; : : : ; sn) 2 Fn2 . Since we are interested in evaluating some degree twopolynomial P at (a1; : : : ; an), we will need a more redundant encoding that alsoincludes values of quadratic functions, and thus one uses the Quadratic functionscode.The Quadratic Functions Code: Given a1; a2; : : : ; an, the quadratic functionscode (henceforth, QF-code), encodes it by the 2n2 long string hQ(a)iQ where Qranges over all homogeneous degree 2 polynomials over F2 . Note that such a poly-nomial is speci�ed by n2 �eld elements Qij , where Q(x) = Pi;j Qijxixj . Wedenote by B the QF-encoding of a1; : : : ; an, and B de�nes a map Fn22 ! F2 byB(Q) = B(Q11; : : : ; Qnn) =Pi;j Qijaiaj .2.4. The \Proof"The QP-SAT veri�er will expect as proof the Hadamard and QF-encodings of acommon zero a = (a1; : : : ; an) of the quadratic polynomials P1; : : : ; Pt in the QP-SAT instance. Note that for any degree 2 polynomial P as in Equation (5), theveri�er can check P (a) = 0 by reading A(s) and B(c) from the A and B tables,thereby just making two queries. Of course, we have no guarantee that the proofswill be legal Hadamard and QF-encodings of a, and therefore as in multivariatepolynomials case, we need a Testing procedure (called \Linearity Testing" in theliterature) and Self-correcting procedure for the Hadamard and QF-codes.2.5. Self-correcting the Hadamard and QF-codesWe �rst deal with self-correction since, as in the low-degree polynomial case, thisis much easier than testing. We will present a self-correction algorithm for theHadamard code, and the extension to the QF-code is completely straightforward.Note that Hadamard code is simply the encoding using multi-linear polynomialcode, and the reader can verify that the algorithm below is in fact the same as theone for self-correcting multivariate polynomials specialized to the multi-linear case.First let us formalize the self-correction question for the Hadamard code.Self-Corr(A; x):Given: x 2 Fn2 and an oracle A : Fn2 ! F2 which is �-close to a linear function ~A(for some � < 1=3 so that there is a unique �-close linear function ~A to A).Task: Compute ~A(x).Lemma 12. There is a self-correction procedure that uses O(n) random bits, makestwo queries and which, for every x 2 Fn2 , returns the correct value of ~A(x) withprobability at least (1� 2�).Proof: Consider the following self-correction procedure. Given x 2 Fn2 and oraclefor A which is �-close to a linear function ~A, compute ~A(x) as follows:1. Pick y 2 Fn2 at random.2. Output A(x + y)�A(x).

LECTURE 3. A COUPLE OF DIGRESSIONS 25To prove the claim of the Lemma, note that since y and x+y are random pointsin Fn2 , we have Pry [A(y) 6= ~A(y)] � � and Pry [A(x + y) 6= ~A(x+ y)] � �. Thus withprobability at least (1� 2�), we will have A(y) = ~A(y) and A(x + y) = ~A(x + y),and by linearity of ~A, this implies we output ~A(x).2.6. Linearity TestingA function f : Fm2 ! F2 is called linear if f(x+ y) = f(x) + f(y) for all x; y 2 Fm2 .This is equivalent to < f(x) >x2Fm2 being a Hadamard codeword. The veri�er forQP-SAT we wish to construct, needs to check linearity of both the A and B tablesit is presented as proof, and thus Linearity Testing is a crucial component in thisconstruction. It is also a very natural combinatorial problem in its own right.Formally, the speci�cation of the linearity testing problem is the following:Given: � > 0; oracle f : Fm2 ! F2 .Task: Test if f is �-close to a linear function ~f .The following asserts the existence of a good Linearity test:Lemma 13. There is a Linearity Test which uses O(m) random bits, makes just3 queries into f , and has the following properties:(i) It accepts with probability 1 if f is linear.(ii) It accepts with probability at most (1� �) if f is not �-close to linear.Proof: The test itself is quite simple:1. Pick x; y 2 Fm2 at random2. Accept i� f(x) = f(x+ y)� f(y).It is clear that the test makes only 3 queries into f and that it always accepts if f isa linear function. The soundness claim (ii) above is, however, not straightforward toprove, and was �rst proved (with a weaker dependence of the acceptance probabilityon the closeness to linearity) by Blum, Luby and Rubinfeld [13] in their seminalpaper. The result in the form claimed was shown by Bellare, Coppersmith, H�astad,Kiwi and Sudan [8].2.7. Testing \Consistency"From the preceding two subsections, we are equipped to test that the tables A;Bwhich are purportedly the Hadamard and QF-encodings of some (a1; : : : ; an) (whichought to be a common zero of the QP-SAT instance we are testing for satis�ability)are close to linear functions and to self-correct them. Now, suppose we have linearfunctions ~A : Fn2 ! F2 and ~B : Fn22 ! F2 that are �-close to A and B respectively.Since ~A is linear, there exists a = (a1; : : : ; an) such that ~A = �a, i.e. ~A(x) =Pni=1 aixi for all x 2 Fn2 . Similarly there exists b = (b11; : : : ; bnn) such that ~B = �b,i.e. ~B(q) =Pi;j bijqij for all q 2 Fn22 . But we would like ~B to be the QF-encodingof a, and thus we need to check \consistency", namely that bij = aiaj for all1 � i; j � n.Lemma 14. Given oracle access to A : Fn2 ! F and B : Fn22 ! F2 which are �-close to �a; �b respectively for some a 2 Fn2 and b 2 Fn22 , there is a probabilistic testthat uses O(n2) random bits, makes 6 queries and satis�es the following properties:(i) If A = �a, B = �b and bij = aiaj for all i; j, then the test always accepts.

26 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS(ii) If there exist i; j such that bij 6= aiaj , then the test rejects with probabilityat least (14 � 6�).Proof: The test does the following:1. Pick x; y 2 Fn2 at random; Let q 2 Fn22 such that qij = xiyj for 1 � i; j � n.2. Accept i� Self-Corr(A; x)� Self-Corr(A; y) = Self-Corr(B; q).(In the above Self-Corr(A; x) stands for the element returned by calling the self-correction procedure from Lemma 12.) Clearly the above only uses O(n2) randombits. Since the self-correction procedure makes 2 queries, the above test makes atotal of 6 queries. Also the completeness condition (i) is clearly met.Now consider the soundness Case (ii). De�ne n � n matrices M1;M2 over F2as: fM1gij = aiaj and fM2gij = bij . By hypothesis, there exist i; j such thataiaj 6= bij , so we have M1 6= M2. Since A is �-close to �a and B is �-close to �b,by Lemma 12, with probability (1 � 6�), the test in Step (2) above checks that�a(x) � �a(y) = �b(q), or in other words Pi;j aiajxiyj = Pi;j bijxiyj which is thesame as xTM1y = xTM2y. Since M1 6=M2, this happens with probability at most3=4 for a random choice of x; y 2 Fn2 (this is easy to show). The overall probabilityof acceptance is thus at most 3=4 + 6�, as claimed.2.8. Putting Everything TogetherTo give the veri�er in the �nal form, we need one more trick. To verify satis�abilityof the QP-SAT instance, we need to check Pj(a) for every j = 1; 2; : : : ; t. Fore�cient checking, we need to \aggregate" these into a single constraint. This isdone as follows:1. Pick r = (r1; : : : ; rt) 2 Ft2 at random.2. Replace the constraints Pj(a) = 0 for all j = 1; : : : ; t by the single constraintPr(a) = 0 where Pr def= tXj=1 rjPj :(6)The key fact about Pr is captured by the following easy lemma.Lemma 15. (i) If Pj(a) = 0 for all j, then Pr(a) = 0.(ii) If there exists j such that Pj(a) 6= 0, then Pr(a) 6= 0 with probability (exactly)1=2.The Veri�er: We (�nally!) present the veri�er with all components put together:Input: An instance (n; P1; : : : ; Pt) of QP-SAT.Goal: Verify that the polynomials Pj have a common zero a 2 Fn2 .Expected Proof: Tables A : Fn2 ! F2 and B : Fn22 ! F2 which are supposedly theHadamard and QF encodings of a common zero a 2 Fn2 of the Pj 's.The veri�cation procedure operates as follows:1. Perform a Linearity Test on A, B (Lemma 13). Reject it the test fails.2. Perform the \Consistency check" (Lemma 14) on A, B. Reject if the checkfails.(We have now veri�ed with good con�dence that A;B are �-close to �a, �brespectively where bij = aiaj for all i; j.)

LECTURE 3. A COUPLE OF DIGRESSIONS 273. Pick r 2 Ft2 at random and compute the (coe�cients of the) polynomialPr =Pj rjPj . LetPr(x1; : : : ; xn) = s0 + nXi=1 sixi + X1�i;j�n cijxixj :Let s = (s1; : : : ; sn) and c = (c11; : : : ; cnn).4. Accept i� s0 + Self-Corr(A; s) + Self-Corr(B; c) = 0. (This corresponds tochecking that Pr(a) = 0.)Note that the above veri�er used O(t + n2) = O(n2) random bits (from theproof of Lemma 11, we can assume t � n2 { in fact t = O(n) { for the hard instanceof QP-SAT). The veri�er also makes only 16 queries in all (6 in Step 1, 6 in Step2, and 4 in Step 4 above). From the NP-hardness of QP-SAT (Lemma 11) andLemmas 15, 13, 12 and 14, we can show that the veri�er has completeness 1 andsoundness at most (1 � ") for some " > 0 (we leave it to the reader to �ll in thedetails, or see [2]). We thus get:Theorem 4 ([2]). There exists " > 0 such thatNP � PCP1;1�"�O(n2); 16� :

LECTURE 4Proof Composition and the PCP Theorem1. Where are we?Recall from the last lecture that we now have the following two proof systems forNP. The �rst is a 3-prover MIP for NP whose veri�er uses O(log n) randomness,receives answers of poly logn bits from each of the 3 provers, and decides to acceptor reject based on the verdict of a circuit of size poly logn on the (concatenationof the) received answers. The second is a PCP for NP whose veri�er makes only16 queries into the proof and uses O(n2) randomness. From the high level, theformer proof system has small randomness, but large query complexity; while thelatter has small query complexity, but large randomness. In contrast, our goal isto have small randomness and small query complexity, and it seems neither thePCPs obtained so far give us what we want. In this lecture we describe a methodof composing proofs together that magically puts the two PCPs together to get(close) to our goal. Speci�cally composition takes an \outer PCP" with smallrandomness and an \inner PCP" with small query complexity and combines themto get a \composed PCP" with small randomness and small query complexity.Composition also maintains some basic properties on completeness and soundness,and in particular it preserves perfect completeness and the property of soundnessbeing bounded away from 1.In this lecture, we �rst illustrate composition with an example. This examplealready builds a PCP with much better parameters than we know of. But compo-sition can take us further. We describe from a high-level how composition appliesto a fairly general class of PCPs, and assert that the PCPs we have seen so far areamenable to composition. Modulo this assertion, we then obtain a proof of the PCPtheorem. In fact, the composition theorem even takes us further | to the optimalPCP theorem, and we list some of the steps that yield this stronger conclusion.2. Composing the Veri�ers2.1. A �rst attemptComposition is based on the following simple observation. Suppose we have apower PCP (call it the inner veri�er) that knows how to verify that circuits aresatis�able. Maybe we can use this PCP to make the veri�cation step of another29

30 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSPCP (called the outer veri�er) easier. Note that the outer veri�er typically behavesas follows: It tosses some random coins and based on these it devises a strategy onhow to check the proof. In particular it generates some queries, and then prepares aBoolean predicate that will determine if a collection of responses to the queries areacceptable or not. Typically this Boolean predicate is described by a small circuitC. The outer veri�er then sends the queries to some provers, and then obtainsresponses to these queries. It then plugs in these responses into the circuit C, todetermine whether to accept or not. The composition paradigm is motivated bythe intuition that it should be possible to use the inner veri�er to verify that C issatis�ed by these responses. However the exact description of this paradigm involvessome surprisingly subtle issues and we motivate this by describing an attempt tocompose the two PCP veri�ers of the previous lecture together.1. Start with the veri�cation procedure of the 3-prover MIP.2. Prepare queries q1; q2; q3 and a small circuit C that determines the ac-cept/reject decision of the veri�er.3. Send the queries to the provers, but now instead of just receiving the re-sponses a1; a2; a3 from the three provers (which would cause the query com-plexity to be poly logn), ask the prover to write down a proof that (a1; a2; a3)is a satisfying assignment to the circuit C using the encoding standard ofthe 16 query PCP veri�er. (Here we are using the fact that Circuit Sat isin NP and thus there exists a PCP for the fact that a1; a2; a3 satis�es C.)Note that above applies a PCP recursively to the task of checking that a1; a2; a3is a satisfying assignment to C, and thus the above is also referred to in the literatureas \recursive proof checking" or \recursive composition of proofs". The idea of proofcomposition originated in the work of Arora and Safra [3] and has been a crucialcomponent in all PCP constructions that followed.Analyzing the above Composition: The above composed veri�er makes only16 queries and uses O(log n) randomness for the initial veri�cation process in Steps1 and 2 (called \outer" veri�cation) and another O((poly logn)2) = poly logn ran-domness when it simulates the second veri�er in Step 3 (called \inner" veri�cation),for a total of poly logn randomness. Thus it at least has better quantitative pa-rameters than both of the veri�ers we started with! The veri�er, however, doesnot inherit the soundness of the two original veri�ers. The reason is that we areasking the prover for a proof that there exists an input (a1; a2; a3) that satis�esC, which is not the same as asking the prover to prove that a given triple a1, a2,and a3 combine together to satisfy C. In particular, when the query q1 is askedin a di�erent context, we do not check to verify that the answer to q1 in the othercontext is the same as the answer in the current context. Thus the prover can\cheat" by using a satisfying assignment for C that has nothing to do with the3 answers that would have been given by the MIP prover. (To consider a simplebut illustrative example, consider a single prover veri�er for 3SAT, who just picksa random clause in a given formula, whose satis�ability is to be veri�ed, and thenasks a prover for the value of the literals in the clause. Clearly the prover wouldhave no problem convincing the veri�er that this clause can be satis�ed, and so theveri�er accepts with probability 1, independent of the satis�ability of the formula.The composition method described above is functioning analogous to this veri�erand hence does not have a hope to testing anything.)

LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 31To �x the bug above, somehow we need to make sure that the various answersgiven by the prover for the various tests are all \consistent" (i.e. the di�erentclauses referring to the same variable use the same assignment to that variable)and would hence \glue together" to give a single global assignment that satis�es all(or most of) the clauses.In a nutshell, we need to ensure consistency between the answers committedto by the prover in response to various di�erent circuit tests C, so that we canargue that if the composed veri�er accepts with large probability then one can �xresponses for the three provers in the \outer" MIP that will cause the MIP veri�erto accept with large probability. Together with the soundness of the MIP, this willimply the soundness of the composed veri�er.2.2. A modi�ed composition schemeWe now discuss at an intuitive level the way to �x this problem in the composedveri�er. The idea is to force the prover to commit to responses to individual queries(e.g. q1) by writing down an appropriate (e.g. the Hadamard) encoding of theanswers. We will view such an encoding as a table (denoted �q1) that we wishto probe minimally, but something that already commits to the answer to queryq1. In addition to providing such a table for every query that the 3-prover MIPcan possible ask, the prover for the composed veri�er is also asked to write downproofs � that (a1; a2; a3) satis�es C (for various choices of q1; q2; q3; C made by theMIP veri�er in the �rst stage of the composed veri�cation). The veri�er will nowcheck that C(a1; a2; a3) accepts by making queries to the corresponding proof � ofthe inner (16-query) PCP, and in addition will perform consistency checks betweenthe various components of � and the proofs �q1 ;�q2 ;�q3 . More speci�cally, forthe veri�ers we have, we can require �q1 to be the Hadamard encoding A1 ofthe response a1, and recall from the last lecture that the proof � for the \inner"PCP includes the Hadamard encoding, say B, of a1 � a2 � a3 (here � denotes theconcatenation operation). The consistency check between � and �q1 will now checkthat A1(x) = Self-Corr(B(x�0b)) for a random x of length ja1j (here b is the suitablenumber of zeroes padded at the end of x). Note that the query complexity of thiscomposed veri�er will be 16 plus the 3 queries made in each of the three consistencychecks, for a total of 25 queries.We have been very informal in our description of proof composition, and theinterested reader can �nd the formal details in [3, 2]. We now give a semi-formalsummary of the composed veri�er for easy reference.Composed PCP veri�er for NP:Structure of expected proof: The veri�er has oracle access to a proof � which isexpected to have the encodings of all the answers of the 3 provers of the MIP (asper some suitable error-correcting code) for the various possible queries of the MIPveri�er. More speci�cally, for 1 � i � 3 and query qi of the MIP veri�er to proveri, �(i; qi; �) is the encoding of the response ai of prover i to query qi. In addition,for each random choice R of the MIP veri�er, �(0; R; �) will be the encoded proof(for the inner PCP system) of the satis�ability of the circuit CR corresponding toR computed by the MIP veri�er.Given access to the oracle �, the veri�er operates as follows:

32 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS� Pick random string R as per the 3-prover MIP veri�er (from last lecture)and generate queries q1; q2; q3 to the three provers and a circuit C.� Let Ai(�) = �(i; qi; �) and B(�) = �(0; R; �).� Now perform \inner veri�cation" for (the satis�ability of) C with oraclesA1; A2; A3; B as below:{ Run the 16 query PCP veri�er (from last lecture) on oracle B withinput C (we are testing that B encodes a satisfying assignment to C).{ Perform consistency checks on oracle pairs (A1; B), (A2; B) and (A3; B).One can formalize the discussion of the preceding sections and prove that the aboveveri�er (which we already argued uses poly logn randomness and makes only O(1)queries { in fact it makes only 25 queries) also has soundness bounded away from1, and this gives us:Theorem 5. There exists a
 > 0 such that NP � PCP1;1�
�poly logn; 21�.Composition as a paradigm: The basic ingredients of composition abstractedfrom the preceding construction are the outer and inner veri�ers. The outer veri�eris an MIP veri�er with a small number of provers p and whose acceptance predicateis computed by a small circuit, and which has very low soundness error. The answersize of the MIP governs the size of the problem passed on to the inner veri�er.The inner veri�er has low query complexity q and must be able to verify thecommitment to a proof rather than the mere existence of one. The composedveri�er starts out by simulating the outer veri�er and after the outer veri�er picksa circuit C which computes its acceptance predicate, the composed veri�er uses theinner veri�er on input C. If suitable conditions are met, then one can compose theouter and inner veri�er to get a veri�er that combines the randomness e�ciency ofthe outer veri�er with the query e�ciency of the inner veri�er.Formalism of the notion of outer and inner veri�ers and exactly how theycompose together can be found in work of Arora and Safra [3]. Several re�nementsto their \Composition Theorem" can be found in several later works like [2, 9].3. The PCP TheoremTo prove the PCP Theorem we need to reduce the randomness of the veri�er fromTheorem 5 to logarithmic from poly-logarithmic. The reason we had poly lognrandomness was that the outer MIP in the above composition had poly logn answerand circuit size and the inner veri�er used a quadratic number of random bits (asa function of its input length). Thus in order to reduce the overall randomness, wewould like to reduce the answer size of the outer MIP.It turns out that the 3-prover MIP construction from the last lecture also yieldsan inner veri�er which can be used to show that 8" > 0, 9� > 0 such thatMIP1;1�"[p; r; a] � MIP1;1��[p+ 3; r +O(log a); poly log a] :(Such a result is shown in [2].) Combining with the MIP characterization NP =MIP[3; O(log n); poly logn] from the previous lecture, this gives, upon compos-ing the MIP veri�er with itself as the inner veri�er (it is shown in [2] how tomodify this veri�er to also function as an inner veri�er), the characterizationNP = MIP[6; O(logn); poly log logn]. Composing this 6-prover MIP veri�er withthe O(1)-bit, quadratic randomness veri�er from [2] which was discussed in the lastlecture, gives a logarithmic randomness, O(1) query complexity veri�er for NP with

LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 33perfect completeness and soundness bounded away from 1, or in other words thePCP Theorem! We would thus get:Theorem 6 ([3, 2]). There exists an " > 0 such thatNP = PCP1;1�"[O(log n); 34] :4. Towards Optimal PCPsThere are a number of respects in which one can hope to improve Theorem 6.This has been the focus of a large body of works including [15, 11, 9, 20, 21,19, 28, 27, 26]. One speci�c question, for example, is: What is the minimumnumber of queries required to obtain a desired soundness error? The quest forbetter (and optimal) PCP constructions has also been motivated by applicationsto hardness of approximations where improvements in the underlying PCPs oftentranslate directly into improvements in the related inapproximability result that itgives.We will only give an overview of what is involved in obtaining optimal PCPsand not give any technical details or prove any of the claims. There are two mainingredients in obtaining optimal PCP constructions. The �rst one is improvedconstructions of MIPs, speci�cally those with very few provers, preferably 2 provers,with extremely low soundness error and at the same time having small answer sizesand logarithmic randomness. The second ingredient(s) are \optimal" inner veri�ersthat are tuned to simplifying veri�ers for 2-prover proof systems.We will now elaborate a little on constructions of 2-prover proof systems. Thestarting point for such a construction is the PCP theorem (Theorem 6) itself: NP �PCP1;1�"[O(log n); 34]. One can convert such a PCP veri�er into a veri�er for a2-prover proof system using a technique in [16] as follows:� Pick a random string R and generate queries q1; : : : ; q34 (as the PCP veri�erwould do). Send all queries to Prover 1.� Pick a random index i 2 f1; : : : ; 34g and send query qi to Prover 2.� Accept i� answers of Prover 1 make the PCP veri�er accept, and the answerof Prover 1 on query qi is consistent with the response of Prover 2.It is clear that the above veri�er has logarithmic randomness and receives O(1)size answers. It also clearly has perfect completeness since the original PCP hadperfect completeness. It is not di�cult to show that the soundness is boundedaway from 1, and thus this gives us a MIP with 2-provers as a starting point. Butthe soundness is very close to 1 and we would like to improve the soundness whilekeeping the answer size and randomness small.The natural approach to reducing the error is repeating the veri�er's actionseveral times with independent random tosses, but doing this sequentially wouldincrease the number of rounds of interaction between the veri�er and the provers.The approach instead is to repeat the veri�cation many times in parallel (withindependent coin tosses), but, unlike the sequential repetition case, it is now nolonger obvious that the soundness error goes down exponentially with the numberof repetitions.An important result of Raz [24], called the Parallel Repetition Theorem showsthat this is indeed the case (the result holds for all 2-prover systems where theveri�er is \canonical" in the sense that its acceptance condition is a check that acertain projection of the answer of Prover 1 equals the answer of Prover 2). The

34 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSproof of this result is complicated, but for our purposes it su�ces to understandthat it implies the following error reduction fact for MIPs: For every " > 0 andinteger a, there exists an "0 > 0 such that for all k � 2, a canonical veri�er for a2-prover MIP with randomness r and which receives answers of size a and 1 fromthe two provers and has soundness (1� "), can be converted into one with answersize at most ka, randomness at most kr, and soundness error (1� "0)k. Informally,the transformation isMIP1;1�"[2; r; a] �! MIP1;(1�"0)k [2; kr; ka] :The above enables us to construct 2-prover MIPs for NP with very low sound-ness error and constant answer sizes. We do not elaborate on the inner veri�ers,but to obtain improved PCPs one takes such a 2-prover MIP and composes it witha suitable inner veri�er. For the optimal constructions, it turns out that one usesinner veri�ers which take the encoding of the answers of the 2 provers of the outerMIP by a code called the Long Code (�rst de�ned in [9]) and then verify , usingextremely query-e�cient procedures, that these are indeed \close to" encodings ofvalid answers that would make the veri�er of the outer MIP accept. It turns outthat using some machinery from Discrete Fourier Analysis, such Long Code basedinner veri�ers can often be analyzed optimally, and this approach was pioneered byH�astad in a series of striking results [20, 21]. We do not elaborate on this further,but just mention that one such tight result from [20] is the following, which showsthat just 3 queries are enough to obtain a soundness error close to 1=2 (it is knownthat one cannot do better [29]).Theorem 7 ([20]). For any " > 0, we have NP = PCP1�";1=2[O(log n); 3].5. Roadmap to the Optimal PCPBefore winding up, we give a quick high-level recap of the road to a complete proofof the optimal PCP construction from Theorem 7 above. The main steps are thefollowing:1. 3-prover MIP veri�er for NP (NP = MIP1;1�
 [3; O(log n); poly logn]) [2]2. Compose the above veri�er with itself (using the paradigm of compositionfrom [3]) to getNP = MIP1;1�
0 [6; O(logn); poly log logn] [2].3. An O(1) query, O(n2) randomness veri�er for NP from [2] (NP � PCP1;1�"[O(n2); O(1)]).4. Compose the veri�er from Step 2 with the veri�er from the previous stepto get NP � PCP1;1�"0 [O(log n); O(1)]. At this stage we have the PCPTheorem [3, 2].5. Obtain a 2-prover MIP for NP from the above PCP veri�er (as in [16])and then apply Raz's Parallel Repetition Theorem [24] to prove that for all� > 0, NP � MIP1;�[2; c� logn; a�] where c� and a� are constants dependingonly on �.6. Compose the veri�er from above 2-prover proof system with a 3-query innerveri�er from [20] to get (one) optimal PCP Theorem: NP = PCP1�";1=2[O(log n); 3]for every " > 0.Note that the main omissions from the above path in our discussion has beenthe Parallel Repetition Theorem and a description and analysis of H�astad's optimalinner veri�er.

LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 35The proof of the PCP Theorem is thus quite complicated and puts togetherseveral ingredients. It is an important open question whether any portions (or all)of the proof can be simpli�ed. A good starting point in approaching this questionwould be to �rst look at simpler constructions of what are called locally checkablecodes. These are codes with polynomially small rate such that given a string onecan determine if it is a codeword or is su�ciently far o� from any codeword by justlooking at the symbols in O(1) positions of the string. Such codes are implied bythe PCP Theorem and the only construction we know of such codes goes via thePCP Theorem. An alternative, simpler construction of such codes might enable ashot at simpler proofs of the PCP Theorem, and would also be extremely interestingand important in its own right.

BIBLIOGRAPHY1. Sanjeev Arora and Carsten Lund. Hardness of approximations. In Approxima-tion Algorithms for NP-hard Problems, D. Hochbaum (Ed.), PWS Publishing,1996.2. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and MarioSzegedy. Proof veri�cation and hardness of approximation problems. Journal ofthe ACM, 45(3):501{555, 1998. Preliminary version in Proceedings of FOCS'92.3. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new char-acterization of NP. Journal of the ACM, 45(1):70{122, 1998. Preliminary ver-sion in Proceedings of FOCS'92.4. L�aszl�o Babai. Trading group theory for randomness. In Proceedings of the Sev-enteenth Annual ACM Symposium on Theory of Computing, pages 421-429,Providence, Rhode Island, 6-8 May 1985.5. L�aszl�o Babai, Lance Fortnow, Leonid Levin, and Mario Szegedy. Checkingcomputations in polylogarithmic time. In Proceedings of the Twenty ThirdAnnual ACM Symposium on Theory of Computing, pages 21-31, New Orleans,Louisiana, 6-8 May 1991.6. L�aszl�o Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponen-tial time has two-prover interactive protocols. Computational Complexity, 1:3{40, 1991. Preliminary version in Proceedings of FOCS'90.7. Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries.Proc. of the 7th Annual Symposium on Theoretical Aspects of Computer Sci-ence, LNCS Vol. 415, Springer-Verlag, 1990.8. Mihir Bellare, Don Coppersmith, Johan H�astad, Marcos Kiwi and MadhuSudan. Linearity testing over characteristic two. IEEE Transactions on Infor-mation Theory, 42(6), pp. 1781-1795, 1996.9. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCP's andnon-approximability { towards tight results. SIAM Journal on Computing,27(3):804{915, 1998. Preliminary version in Proceedings of FOCS'95.10. Mihir Bellare, Sha� Goldwasser, Carsten Lund, and Alexander Russell. E�-cient probabilistically checkable proofs and applications to approximation. InProceedings of the Twenty-Fifth Annual ACM Symposium on the Theory ofComputing, pages 294-304, San Diego, California, 16-18 May 1993.11. Mihir Bellare and Madhu Sudan. Improved non-approximability results. InProceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of37

38 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFSComputing, pages 184-193, Montreal, Quebec, Canada, 23-25 May 1994.12. Michael Ben-Or, Sha� Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive proofs: How to remove intractability assumptions. In Pro-ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,pages 113-131, Chicago, Illinois, 2-4 May 1988.13. Manuel Blum, Michael Luby and Ronitt Rubinfeld. Self-testing/correctingwith applications to numerical problems. Journal of Computer and SystemSciences, 47:549{595, 1993.14. Uriel Feige, Sha� Goldwasser, L�aszl�o Lov�asz, Shmuel Safra and Mario Szegedy.Interactive proofs and the hardness of approximating cliques. Journal of theACM, 43(2):268{292, 1996. Preliminary version in Proceedings of FOCS'91.15. Uriel Feige and Joe Kilian. Two prover protocols { low error at a�ordablerates (preliminary version). In Proceedings of the Twenty-Sixth Annual ACMSymposium on the Theory of Computing, pages 172-183, Montreal, Quebec,Canada, 23-25 May 1994.16. Lance Fortnow, John Rompel, and Michael Sipser. On the power of multiproverinteractive protocols. Theoretical Computer Science, 134:545{557, 1994.17. Michel X. Goemans and David P. Williamson. Improved approximation algo-rithms for maximum cut and satis�ability problems using semide�nite pro-gramming. Journal of the ACM, 42(6):1115-1145, November 1995.18. Sha� Goldwasser, Silvio Micali and Charles Racko�. The knowledge complexityof interactive proofs. SIAM Journal on Computing, 18:186{208, 1989.19. Venkatesan Guruswami, Daniel Lewin, Madhu Sudan and Luca Trevisan. Atight characterization of NP with 3-query PCPs. Proceedings of the 39th IEEESymposium on Foundations of Computer Science, 1998.20. Johan H�astad. Some optimal inapproximability results. Technical ReportTR97-037, Electronic Colloquium on Computational Complexity, 1997. Pre-liminary version in Proceedings of STOC'97.21. Johan H�astad. Clique is hard to approximate within n1��. ECCC Techni-cal Report TR97-038. (Preliminary versions in Proceedings of FOCS '96 andSTOC'96).22. Howard Karlo� and Uri Zwick. A 7/8-approximation algorithm for MAX3SAT? In 38th Annual Symposium on Foundations of Computer Science, pages406-415, Miami Beach, Florida, 20-22 October 1997.23. Alexander Polishchuk and Daniel Spielman. Nearly-linear size holographicproofs. In Proceedings of the Twenty-Sixth Annual ACM Symposium on theTheory of Computing, pages 194-203, Montral, Qubec, Canada, 23-25 May1994.24. Ran Raz. A parallel repetition theorem. SIAM Journal on Computing,27(3):763{803, 1998. Preliminary version in Proceedings of STOC'95.25. Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomialswith applications to program testing. SIAM Journal on Computing, 25(2):252{271, 1996.26. Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP withoptimal amortized query complexity. In Proceedings of the 32nd Annual ACMSymposium on Theory of Computing, pages 191{199, Portland, Oregon, 21-23May, 2000.191{199.27. Madhu Sudan and Luca Trevisan. Probabilistically checkable proofs with low

BIBLIOGRAPHY 39amortized query complexity. In Proceedings of the 39th Annual Symposiumon Foundations of Computer Science, pages 18{27, Palo Alto, California, 8-11November, 1998.28. Luca Trevisan. Recycling queries in PCPs and in linearity tests. In Proceedingsof the 30th Annual ACM Symposium on Theory of Computing, pages 299{308,Dallas, Texas, 23-26 May, 1998.29. Uri Zwick. Approximation algorithms for constraint satisfaction problems in-volving at most three variables per constraint. In Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, 1998.

