Contents

Probabilistic Proof Systems — Part II

Lecture 1. Introduction to PCPs
1. Overview
Definitions and Formal Statement of Results
Broad Skeleton of the proof
Gap Problems and Polynomial Constraint Satisfaction
Low-degree Testing
Self-correction of polynomials
7. Obtaining a non-trivial PCP

S otk W

Lecture 2. NP-Hardness of PCS
1. Multivariate polynomials
2. Hardness of Gap-PCS
3. Low-degree Testing
4. Self-correction

Lecture 3. A couple of digressions
1. A 3-prover MIP for NP
2. NP C PCPJpoly, O(1)]

Lecture 4. Proof Composition and the PCP Theorem
1. Where are we?

2. Composing the Verifiers

3. The PCP Theorem

4. Towards Optimal PCPs

5. Roadmap to the Optimal PCP
Bibliography

IAS/Park City Mathematics Series
Volume 00, 0000

Probabilistically Checkable Proofs

Madhu Sudan

Scribe: Venkatesan Guruswami

LECTURE 1
Introduction to PCPs

1. Overview

Research in the 1990’s has led to the following striking theorem: There is a format
of writing proofs and a probabilistic method of verifying their validity, such that
the verifier needs to reads only 3 bits of the proof (irrespective of the length of the
proof) to obtain probabilistic confidence in the correctness of the proof. Specifically,
the verifier accepts correct proofs with probability 1 (Completeness) and given any
purported “proof” of an incorrect assertions it accepts with probability at most
3/4 (Soundness). In fact, this probability can be made arbitrarily close to 1/2.
Furthermore, the proof in the new format is only polynomially longer than the
original “classical” proof.!

In addition to being a surprising result bridging probability and logic, the above
result also turns out to have applications to proving intractability results for finding
near-optimal solutions to many NP-hard optimization problems. Our goal in these
lectures will be to provide insight into the construction of these proof systems
and the associated probabilistic verifiers. We will not pursue the applications to
hardness of approximations (i.e., solving optimization problems near-optimally).
The interested reader is referred to the survey article of Arora and Lund [1] for
more information on such consequences. Our specific target will be to describe the
main steps that lead to a weaker result (which we call the PCP Theorem) that the
complexity class NP has Probabilistically Checkable Proofs in which the verifier uses
logarithmic randomness, queries the proof in only O(1) locations, accepts correct
proofs with probability 1, and accepts false proofs with probability bounded away

IThe result alluded to here is that of Hastad [20]. The picky reader may note some minor
discrepancies between result as claimed above and the main result of [20]. Such a reader is
directed to the work of Guruswami et al. [19] (a derivative of [20]), which certainly achieves all
the claimed properties.

2 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

from 1 (say (1 — €) for some constant € > 0).? We will also outline some of the
ingredients that lead to the sharper result described in the opening sentence.

In the first lecture, we will formally define a Probabilistically Checkable Proof
(henceforth PCP). We will briefly discuss the history of its definition and the main
initial results in this area. We also define the notion of “gap problems” — the
NP-hardness of certain gap problems turns out to be equivalent to the existence
of PCPs of the type we seek. Our goal thus leads us to the task of establishing
NP-hardness of some convenient (and yet interesting) gap problem. To this end we
will define a constraint satisfaction problem based on polynomials that we call PCS
(for Polynomial Constraint Satisfaction). We will then state an NP-hardness result
of a gap version of PCS and two algorithmic results about polynomials. We will
then show that putting these ingredients together, we will see how we can build a
non-trivial (but not our final) PCP.

Looking ahead to future lectures, in the second lecture we will show how to
establish the hardness of PCS with a gap; as well as some overview of the algorithmic
results for polynomials. This will conclude the first phase of our task — that of
establishing a non-trivial PCP construction. In the third lecture, we will launch
into a second phase of PCP constructions. We will see how to construct a variety
of PCPs with very different parameters using algebraic methods. None of these
PCPs will come close to our specific target PCP. However, they give an idea of the
nature of the tools that are available and useful to build PCPs. In the fourth and
final lecture, we will introduce a non-algebraic tool in the construction of PCPs,
specifically a composition theorem for PCPs. We will show how the composition
theorem allows us to use the PCPs constructed in the third lecture (or to close
variants of the same) and compose them with each other to get a new PCP that
has all the desired properties (for our specific target).

2. Definitions and Formal Statement of Results

The central ingredient of a PCP system is the verifier: a probabilistic polynomial
time machine with oracle access to a proof w. The primary resources used by the
verifier that are of interest to PCP are the amount of randomness used, and the
number of bits of 7 that are queried by the verifier (once the random coins tossed
by the verifier are fixed). This leads to the notion of an (r,q)-restricted verifier:
For integer valued functions r(-) and ¢(+), a verifier is said to be (r, ¢)-restricted if
on every input of length n, it tosses at most r(n) coins and queries the proof for at
most g(n) bits.

Definition 1. For integer valued functions r(-),q(-) defined on integers, and func-
tions c(+),s(*) , the class PCP. [r,q] consists of all languages L for which there
exists a (r,q)-restricted verifier V. with the following properties:

e [COMPLETENESS]: ¢ € L = 3 7 s.t V™(z) accepts with probability at least
¢ (over the coin tosses of V).

e [SOUNDNESS]: © ¢ L = ¥V m V™ (z) accepts with probability < s (over the
coin tosses of V).

2This result was proven by [8, 2]. Our presentation of even this result will not be complete
— the reader is referred to the original articles for full details. However, we do hope to give a
fairly detailed overview of the steps involved. It may be pointed out that the presentation here is
somewhat different than in the original works.

LECTURE 1. INTRODUCTION TO PCPS 3

In this notation the PCP Theorem states that there exists a constant g such
that

NP = PCP, 1 [O(logn),q] .

At this point some explanation of the role and interrelationships of the param-
eters may be in order. Note that the definition has four parameters: ¢,s,r and
g. Of these four, the randomness (r)and query (¢q) parameters are the ones of pri-
mary interest. Usually, the other two parameters will be of subordinate interest. In
particular, most PCP constructions today set ¢ = 1. Such PCPs are said to have
perfect completeness, so that “correct” proofs are accepted with probability 1. It
is sometimes useful to have the extra flexibility of having ¢ < 1 as offered by the
definition. However, we won’t construct any such PCPs in these lectures. so that
is one less parameter to worry about. The soundness of a PCP, in turn, is related
to the query complexity and the two can be traded of against each other. Stan-
dard techniques used for amplication of error in probabilistic algorithms show how
soundness may be reduced by increasing the number of queries. On the other hand,
the classical reduction from SAT to 3SAT can be employed to reduce the queries to
3, from any constant, while increasing the soundness but preserving boundedness
away from one. Thus to simplify our study we may fix the soundness to some fixed
value and then try to minimize the randomness and query complexity. Our choice
for this value will be s = % When we omit subscripts in the notation PCP[r,], it
is implied that ¢ =1 and s = % Finally, we remark on a parameter that we seem
to have omitted in the definition, namely the size of the proof. While some papers
in the literature study this parameter explicitly, we don’t do so here. Instead we
let this parameter be captured implicitly by the other parameters. Note that a
(r,q)-restricted verifier can make at most 2777 distinct queries to the proof, and
thus the proof size need not be larger than 2”77, Thus the randomness complexity
and query complexity implicitly capture the size of the proof required by a PCP
verifier, and we will be satisfied with studying this rough upper bound.

2.1. Some History of Definitions

The definition of PCP actually evolved over a series of surprising developments in
the late 80s and early 90s. The notion of checking proofs in a probabilistic sense
(where the verification process is allowed to err with small probability) dates back to
the seminal work of Goldwasser, Micali and Rackoft [18] and Babai [4] on Interactive
Proofs (IP). In the IP proof system, a probabilistic verifier interacts with a prover
who wishes to convince the verifier that some assertion is true. The model of the
interactive proofs evolved over time, partly motivated by efforts to understand the
model better. One such model was that of “multi-prover interactive proof systems”
(MIP) introduced by Ben-Or, Goldwasser, Kilian and Wigderson [12]. In this
model, a single verifier interacts with multiple provers to verify a given assertion.
The MIP proof systems influenced the development of PCPs in two significant
ways. On the one hand, many technical results about PCPs go through MIP proof
systems, in essential ways. More important to our current context, it led to the
definition of the notion of the PCP verifier (though it was not so named then),
i.e., a probabilistic verifier with access to an oracle. This notion originated in the
work of Fortnow, Rompel and Sipser [16] as part of an effort to understand the
complexity of MIP proof systems.

4 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

All the above works did not place any explicit restrictions on the resources used
by the verifier, except the minimal one that it run in (probabilistic) polynomial time.
Focus on the efficiency of the verification process started with the work of Babai,
Fortnow, Levin and Szegedy [5]. Their work focussed on the computation time
of the verifier and the size of the proof. They defined the notion of transparent
or holographic proofs, which are proofs that can be checked very efficiently (in
polylogarithmic time). The resources of focus in Definition 1 were highlighted by
the seminal paper of Feige, Goldwasser, Lovéasz, Safra and Szegedy [14]. Feige et al.
established an astonishing connection between probabilistic proof systems for NP
and the hardness of approximate solutions to the MAX CLIQUE problem. It became
evident from their work that the randomness and query complexity of proof systems
were parameters of central interest to inapproximability. However, their work did
not abstract a definition of the complexity class PCP. Such a definition was finally
abstracted in the work of Arora and Safra [3]. Their work explicitly defines the two
resources: randomness and query complexity; and maintains them as parameters
(rather than placing absolute bounds on them), reflecting the importance of the
two resources and the very distinguishable impact that they tend to have on the
verification capabilities of the PCP.

2.2. History of Results

The sequence of results culminating in the PCP Theorem is a long one. We will
attempt to give a bird’s eye view of this history, presenting some of the landmark
results. We break this history into four phases.

Phase 0. Some properties of PCPs follow immediately from their definition.
These properties, typically attributed to folklore, include results such as NP =
PCP|0, poly(n)]. This is the case because, for any language L € NP, the veri-
fier can deterministically read the entire polynomial size witness of the member-
ship of x € L and then choose to accept or reject. It is also easy to see that
NP = PCP[logn, poly(n)] since once the proof oracle is fixed, one can enumerate
all logarithmically long random coin toss sequences of the verifier and compute its
acceptance probability deterministically. Thus a little bit of randomness does not
increase the power of the PCP verifiers in terms of the languages for which they can
verify membership. However it does allow them to be significantly more efficient.
(A collection of these and other such folklore results about PCPs may be found in

[9].)

Phase 1. The first non-trivial result on PCPs did not talk about the class NP but
rather about the class NEXP. This result, due to Babai, Fortnow, and Lund [6],
showed that NEXP = PCP|poly(n), poly(n)]. Note that the traditional verifier of
NEXP languages looks at a proof in exponentially many places, while the PCP veri-
fier is only allowed to look at it in polynomially many places. Thus this landmark re-
sult reduced the number of queries by a poly-logarithmic amount by using the power
of randomness. Subsequently, scaling this result down to NP, Babai, Fortnow, Levin
and Szegedy [5], NP C PCP [poly log n, poly log n] The result of [5] actually got
extremely small blowups, nearly linear, in proof size too, though the implicit bound
promised by examining the randomness and query complexity is not even polyno-
mially bounded. The next improvement in the parameters was brought about by
Feige et al. who improved the result to NP C PCP[lognloglogn,lognloglogn]|.

LECTURE 1. INTRODUCTION TO PCPS 5

The good news about results in this phase was that they reduce the number
of queries made by the verifier by a poly-logarithmic amount (from poly(n) to
polylogn), a result that was completely unexpected at the time. However the bad
news, is that the randomness and query complexities were still super-logarithmic
and hence the above containment are not equalities and thus these do not give
characterizations of NP in terms of (non-trivial) PCP classes.

Phase 2. The first exact characterization of NP came in the work of Arora and
Safra [3] who showed that NP = PCP[O(logn),o(logn)]. This work also intro-
duced the powerful idea of recursive composition of proofs which played a critical
role in their and all subsequent improvements to PCP constructions. The PCP The-
orem itself (i.e., NP = PCP[O(logn), O(1)]) was proved by Arora, Lund, Motwani,
Sudan and Szegedy [2].%

As in the results of Phase 1, the results of Phase 2 were startling surprises.
The query complexity is independent of the proof size! And both parameters can
be reduced to functions which were within constant factors away from the smallest
amount conceivable.’ However these were not yet the ultimate possible PCP results.
Specifically, they were not tight in either the randomness complexity (or equivalently
the proof size) or the query complexity.

Phase 3. Examination of the (non-asymptotic) tightness of the parameters of
the PCP theorem was initiated by Bellare, Goldwasser, Lund and Russell [10].
Several intermediate results improved the constants in the parameters [15, 11,
9]. Eventually near-tight results which optimize both these parameters (but not
simultaneously!) were shown. Specifically:

e Polishchuk and Spielman [23] showed that Sat € PCP[(1 + ¢)logn, O(1)]
for every € > 0.

o It is a folklore result that the number of queries required in the PCP Theorem
is at least 3. Hastad [20] proved the tight result that for every ¢ > 0, NP =
PCP,_, 1[O(logn),3]. (Note that this result does not have perfect com-

pleteness: a later result in [19] shows that NP = PCP, 1, [O(logn),3].)

The result of Hastad, once again, was a startling development. A folklore result
shows that any PCP for an NP-complete language must use ¢ > 3 to attain perfect
completeness. It was also believed that such a PCP could not have soundness s < %
(though this was not proven till much later). Work prior to Hastad’s however were
far from show that any s > 1/2 could be achieved with ¢ = 3. In fact, if any-
thing, the belief in days just prior to Hastad’s works tended to the conjecture that
PCP; 5[O(logn), 3] may be contained in P for some s > 1/2. These beliefs were
bolstered by the strong algorithmic techniques, based on “semidefinite program-
ming”, introduced in the work of Goemans and Williamson [17]. Hastad’s results
thus brought about (yet another) unexpected settlement of these conjectures. Sub-
sequently, Karloff and Zwick [22] used semidefinite programming methods to show
the optimality of Hastad’s results by showing that PCPy ;,5[O(logn), 3] = P. Our

3Actually a careful analysis of the protocol in [5] shows that the randomness can be made log-
arithmic; a fact that is related to the fact that the proof size can be made nlt® for arbitrarily
small € > 0.

4More formally, by a statement like NP = PCP[O(logn), O(1)], we mean the following: Jcg such
that VL € NP, J¢, such that L € PCP[c, - logn, ¢q].

5That (1) queries are required is clear, and a result in [3] shows that if NP C
PCP[o(log n), o(log n)] then NP = P.

6 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

lectures will unfortunately not be able to go into this phase of developments in the
constructions of PCPs; however, we will attempt to provide pointers to this in the
concluding lecture.

3. Broad Skeleton of the proof

We now move towards the proof of the PCP theorem. The proof that we present
will roughly follow the historical path to the proof. We will start by proving
a statement similar in spirit to the principal results of Phase 1. Namely, we
will first prove (modulo some technical theorems that we will only state) NP =
PCP [O(logn),poly logn]. Two fundamental techniques that will be used in its
proof are Arithmetization and Low-degree testing. This will occupy the first two
lectures. We will then take some digressions. The first one will take us into MIPs
and show how the polylogn queries in the above PCP can be “aggregated” so that
the verifier needs to read only O(1) locations of the proof (and receive poly logn size
answers from each location). This will be very useful for us in the final step(s) when
we will apply proof composition to reduce the number of queries down to O(1). As
a second digression we will show a new PCP verifier for NP that makes only O(1)
queries (thus is very good from this perspective) but uses poly(n) randomness (and
hence results in exponential sized proofs). Finally, in the final lecture, we will sketch
how to prove the PCP Theorem itself by applying the idea of proof composition to
the MIP system and this verifier, and show NP = PCP[O(logn), O(1)].

4. Gap Problems and Polynomial Constraint Satisfaction
4.1. Constraint Satisfaction Problems

Constraint satisfaction problems are a special category of optimization problems
that arise naturally in the study of PCP. An instance of the problem consists
of a collection of constraints on some variables that take values from some set
[B] ={1,...,B}. The goalis to find an assignment to the variables that maximizes
the number of satisfied constraints. More formally, an instance of Max w-CSP(B)
consists of n B-ary variables V' = {z1,...,2,} and t w-ary constraints Cy,...,C}
defined on subsets of V' of size w. The goal is to find an assignment a4,... ,a, € B
to the variables V that maximizes the number of satisfied constraints. A well-known
example of a constraint satisfaction problem is Max 3-SAT where w = 3, B = 2
and the constraints are of the form (¢;, V €3, V ¢;;) where each ¢;; is either z;; or

" As mentioned earlier the Constraints Satisfaction Problems (henceforth, CSPs)
arise naturally in the study of PCP. Informally, PCP[r, ¢q] “corresponds” to Max w-
CSP(2) with appropriate relation between the parameters. Roughly, the bits of the
proof correspond to the variables (which is why B = 2). Each condition checked by
the verifier corresponds to a constraint (thus the number of constraints is ¢t = 27).
The number of queries q equals the “width” w of the CSP. Finally, the acceptance
probability of the verifier on a proof equals the fraction of satisfied constraints in the
associated assignment to the variables. Thus computing (or even approximating)
the maximum number of satisfiable constraints amounts to answering the question:
Is the verifier’s acceptance probability greater than the completeness, or not? To
formally, study the correspondence one needs to work with the notion of gapped
problems.

LECTURE 1. INTRODUCTION TO PCPS 7

4.2. Gap problems

When dealing with hardness of approximations, it is useful to formulate optimiza-
tion problems as decision problems with “gaps” associated with them. Gap prob-
lems fall into the more general class of “promise” problems whose instances are
partitioned into disjoint YES, NO and Don’t Care sets. The computational ques-
tion associated with such a problem is that of deciding whether a given instance
is a YES or a NO instance under the promise that the given instance is either a
YES instance or a NO instance. (In particular, any answer on an instance from the
Don’t care set is acceptable.) For CSPs, the associated gap problem, called Gap
w-CSP. ,(B) where s < ¢, is the following:

YES instances: 3 assignment that satisfies at least ¢ fraction of the constraints.
NO instance: No assignment satisfies s fraction of the constraints.

The correspondence between PCP and CSP sketched above implies the follow-
ing which we leave as an (instructive) exercise:

Lemma 1 (Exercise). NP = PCPy;_.[O(logn), 3] if and only if Gap 3-CSP; 1_.(2)
w5 NP-hard.

(In proving the above, assume that NP-hardness is shown via a many-one
reduction from a standard NP-complete problem such as SAT.)

4.3. Polynomial Constraint Satisfaction

From the previous section, to construct PCPs we need to prove NP-hardness of
certain gap problems. But then this is only a restatement of the question, and to
prove NP-hardness of a gap problem, we need a CSP whose constraints are “robust”
in the sense that either all of them can be satisfied or at most a small fraction of
them can be satisfied. Low-degree polynomials (over fields) have such a robustness
property: if they are zero at “many” places, then are in fact zero everywhere. We
now define a CSP called Polynomial Constraint Satisfaction (henceforth referred to
as PCS).

Consider a Max w-CSP(B) problem where B = F is a finite field and the
number of variables n = |F|™ for some integer m. Thus assignments to the variables
can be viewed as functions f : F™ — F. The PCS problem is obtained by restricting
the assignments f to be some polynomial of (total) degree at most d over F. The
formal definition, formulated as a gap problem follows:

Polynomial Constraint Satisfiability Gap PCS; (¢, m,w, s, d, ¢):

Instance: Integer valued functions m,w, s, d, g; Finite field F with |F| = ¢(t);
Constraints Cy,Cy,...,Cy with each C; = (Cj; (ng),...,fﬂg()t)) € Fr)
where each C; : F*() — {0,1} is a w(t)-ary constraint over F that can be
computed by a size s(t) algebraic circuit).

YES instances: 3 a degree d(t) polynomial p : F"(!) — F such that for all

je{1,2, .t} C(pa),. . pl,)) =0.
NO instances: V degree d(t) polynomials p : F™(!) — F, the number of j €
{1,2,...,t} such that C; (p(x(lj)), ... ,p(xg()t))) =0 is less than et.

For notational convenience we will often omit the parameter ¢ and refer to m(t), w(t),
s(t), d(t), q(t) as simply m,w,d,q.

8 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

4.4. Hardness of Gap-PCS

The following Lemma (which will be proved in the next Lecture) shows that a Gap
version of the PCS problem is NP-hard and thus forms the stepping stone for our
PCP constructions.

Lemma 2. For all constants € > 0, Gap-PCS,.(m,w,s,d,q) is NP-hard, for

w, s,d,q = polylogt and m = O(lolg?itgt).

First note all the good things which the above Lemma gives us. To being
with we have a gap! Also by the choice of parameters in the NP-hardness, we
have |F|™ = poly(t) and thus the table of values of f is a reasonable proof to
ask the prover to provide. Also the verifier can just pick a random one of the ¢
constraints (which takes only logt¢ randomness), reading the corresponding w =
poly log t locations from the table for f and verify that the constraint is satisfied in
time poly(s(t)) = polylog¢. Thus by Lemma 1 we seem to have our first non-trivial
PCP characterization (namely NP C PCP[O(log), poly log]). There is a caveat,
however; namely the gap (and hence the soundness of the PCP) is guaranteed only
when f is restricted to a degree d polynomial, and there is no guarantee that the
prover will oblige by conforming to this restriction. Thus we need an efficient way
to enforce this low-degree restriction on f which is given by low-degree tests.

5. Low-degree Testing

Ideally, we would like a low-degree test to have the following specification:
Given: d € Z™; and oracle f : F™* —» F
Task: Verify that f is a degree < d polynomial in time poly(m,d); i.e.,
Completeness: If deg(f) < d then accept with probability 1.
Soundness: If deg(f) > d then reject with high probability.

The above, however, is not possible, since, for every a € F™, one can have an f
which disagrees with a degree d polynomial at a« € F™ and agrees with p everywhere
else, and thus will pass any test that only queries f at poly(m,d) places with high
probability. We thus need to relax the soundness condition.

Definition 2. Functions f,g: F™ — F are said to be §-close if Pr [f(z) # g(z)] <

0 when x is drawn uniformly at random from F™.

Low-degree Test (revised definition):

Given: § > 0,d € Z™; and oracle f : F* — F
Task: Verify that f is close to a degree < d polynomial; i.e.,

Completeness: If deg(f) < d then accept with probability 1.
Soundness: Reject with high probability if f is not -close to any
degree < d polynomial.

The following result from [2] building upon the previous analyses in Rubinfeld and
Sudan [25] and Arora and Safra [3], shows that very efficient low-degree testers
do indeed exist. The proof of this result is complicated and we will not delve into
it here. We will describe the testing algorithm fully in the second lecture. The
interested reader can find all details of the proof in [2] and the references cited
therein.

LECTURE 1. INTRODUCTION TO PCPS 9

Lemma 3 ([2]). There exists a 6o > 0 such that for every 6 < &y there exists a
probabilistic solution to the low-degree test that has running time poly(m,d, %) and
that tosses O(mlog |F|) random coins.

6. Self-correction of polynomials

For the choice of parameters in the hardness result of Lemma 2, it follows that the
low-degree test of Lemma 3 uses O(logt) randomness and makes poly logt queries
to the oracle f. However the gap between the completeness and the soundness of
the low-degree test still leaves us with a problematic situation: What to do if the
prover provides as proof, a function that is d-close to a degree d polynomial, which
satisfies most constraints? In this case, we get around the problem by testing if
the degree d polynomial g that is §-close to the oracle f satisfies most constraints.
But how can we get our hands an oracle for g7 It turns out we can implement
such an oracle, probabilistically, using the oracle for f. The self-correction problem
formalizes the task at hand; and the subsequent lemma shows how efficiently this
problem can be solved.

Self-correction of Multivariate polynomials:

Given: § > 0; d € Z™; x € F™; oracle f : F™ — F such that f is d-close to
some degree d polynomial p. (We assume 6 < ﬁ so that a polynomial p
that is 6-close to f, if one exists, is unique.)

Task: Compute p(x).

The following result from [7] shows the existence of randomized self-correctors for
multivariate polynomials.

Lemma 4. There exists a randomized algorithm that solves the self-correction prob-
lem that runs in time poly(m,d, §) and tosses O(mlog|F|) random coins, and
outputs the right answer (for every x) with probability at least (1 — &) provided
o< min{ﬁ, ﬁ}

The proof of the above lemma is not difficult and will be presented in the next
lecture. For now we just assume this lemma for a fact and move towards the PCP
that gives us the result of Phase 1.

7. Obtaining a non-trivial PCP

Armed with Lemmas 2, 3 and 4 we can now give our first PCP verifier that works
as follows. Let L € NP. Given x purportedly in L, the verifier computes (in
polynomial) an instance ¢ of Gap-PCS as guaranteed in the NP-hardness result of
Lemma 2. The prover supplies an oracle for an assignment f : F™ — [F (plus other
auxiliary information which may be used by the low-degree test). The verification
process proceeds as follows:

1. Run the Low-degree test from Lemma 3 on f. Reject it the test rejects.

2. Pick a random constraint C' of ¢ and verify that Self-correct(f) satisfies C

(where the algorithm Self-correct is obtained from Lemma 4). Reject if not.
3. Accept otherwise.

From the statements of Lemmas 2, 3 and 4, it follows that the above verifier
queries poly log|z| bits in the proof, tosses O(log|z|) random coins, has perfect
completeness ¢ = 1 and soundness s < % We thus have our first step:

10 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Theorem 1. NP = PCP [O(log n), poly log n]

The agenda for the next lecture is to give further details on the proofs of Lemmas 2-
4 on the NP-hardness of Gap-PCS.

LECTURE 2
NP-Hardness of PCS

In this lecture we will set out and prove the NP-hardness of Gap-PCS (Lemma 2
from previous lecture) and present a self-corrector for multivariate polynomials
(Lemma 4 from previous lecture) and there by complete Phase I of the proof; i.e.,
establish NP = PCP[O(logn), poly log n]. (For the other result, Lemma 3, on low-
degree tests, we will only present a test and and take its analysis on faith.)

1. Multivariate polynomials

All of our lemmas seem to involve polynomials, while our original goal of construct-
ing PCPs (seemingly) had nothing to do with polynomials. Before, plunging into
the proofs of the lemmas, it may be worth our while to see why polynomials arise
naturally in this context.

We first note a robustness property that proofs in the PCP format seem to
have. Specifically, if we take a valid proof (accepted with probability 1) in the
3-query PCP of, say Hastad, the proof has the property that when 1% of the bits
are flipped at random then its acceptance probability is still at least 97%. Thus
PCP proofs are special in that they retain the power to convince a verifier even
when a reasonably large fraction of their bits are flipped, completely at random.
A natural question to ask is: How does the proof develop this resilience to error?
Turns out that a previous context in which similar resilience to error was explored
was in the context of information transmission over noisy channels. This research
led to the development of error-correcting codes. Informally, an error-correcting
code consists of an encoding function that maps a small string (message) into a
large one (codeword) such that flipping a few bits of the codeword, still allows for
recovery of the message. Our strategy to endow the PCP proofs with redundancy
will exploit the theory directly. We will simply encode traditional proofs using well-
known error-correcting encodings and this will bring about the necessary resilience.
However an arbitrary error-correcting code will not suffice for our purposes. We will
use a special construction of error-correcting codes: those obtained by employing
(multivariate) polynomials over finite fields.

Polynomials (over a field) are known to have excellent error-correction proper-
ties (in addition to their nice algebraic structure). As an example, consider the fol-
lowing encoding of a string ay, . .., a,, € {0,1}™. Pick a finite field IF of size about n?

11

12 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

and let f be a polynomial of degree less than n such that f(1) = ay,---, f(n) = a,'.
Note that such a polynomial does indeed exist, and can be found be interpolation.
Then (f(x))zer is a redundant encoding of aq,. .., a, in the following sense: Given
the value of f at any subset of F of size n, we can interpolate to find f and thus
the coefficients aq,... ,a,. The original string can be reconstructed even if M
of the symbols in its encoding are in error.

Codes based on univariate polynomials gives robustness against a huge fraction
of errors and is extremely efficient in this sense. For our purposes the primary
disadvantage of these codes is that to encode an n-bit string, it needs degree Q(n).
In particular, this implies that any version of the Low-degree test would need to
query the value of any function f at Q(n) places at the very least, before being able
to conclude that the given function is not a degree n polynomial.

To get better low-degree tests, one needs to find functions whose algebraic
degree is somehow smaller than the number of degrees of freedom that the function
exhibits. Bivariate polynomials already exhibit better tradeoffs. For example we
may pick a field F of cardinality ~ n and pick a polynomial f in two variables
x and y of degree at most \/n in each such that the value of f at the points
{(4,5)]0 < i < sgrtn} correspond to the values aq,...,a, € {0,1}. (Again, one
needs to verify that such an f exists, and can be found. This task is left to the
reader as an exercise.) Now the sequence (f(z,y))s yer forms another redundant
encoding of the string ay,... ,ay,.

We can now generalize this idea further to m-variate polynomials over a large
enough field IF as follows: Pick a subset H C [of size n!/™ so that the information
ai,...,a, can be viewed as a function a : H™ — {0, 1}. In this case, it can be shown
(again left as an exercise to the reader) that there exists an m-variate polynomial
f of degree less than |H| in each variable such that f(z) = a(z) for each z € H™.
Now encode a by (f(z))zern. This construction will be invoked often in the sequel,
and it will be useful to give it a name — we call f the low-degree extension of a.
The redundancy of this encoding follows by the following lemma, referred to in the
computer science literature as the Schwartz-Zippel lemma.

Lemma 5. For every integer m, d, field F and finite subset S CF, if P:F" — F
is a polynomial of total degree at most d, then the probability that P(x) = 0, when
x s chosen uniformly at random from S™, is at most d/|S|.

The lemma is easy to prove by induction on the number of variables and we
skip the proof.

For our application to PCS, we will pick m(n) = O(lolgoﬁ)gn
Thus the degree of the low-degree extension of a is poly logn (which is good) and
we can work with a field F of size poly logn and still have |F|™ = poly(n) so that
the size of encoding is polynomial in n.

) and |H| = poly logn.

INote that we are abusing notation by using integers to represent elements of the finite field. We
do so only for notational convenience.

LECTURE 2. NP-HARDNESS OF PCS 13

2. Hardness of Gap-PCS
2.1. Arithmetizing 3-SAT

We will establish the NP-hardness of Gap-PCS by reducing from 3-SAT. We begin
by describing the powerful idea of arithmetizing 3-SAT which is at the heart of the
reduction.

An instance ¢ of 3-SAT consists of n variables and t clauses Cy,...,C; where
each clause C; is of the form [Ty = by orx;,, =by orz;, = b3] where each b; €
{0,1}. We find it convenient to view ¢ as an indicator function ¢ : {1,2,...,n}> x
{0,1}3 — {0,1} where @(i1,i2,%3,b1,b9,b3) = 1 exactly if the clause [T, =
by or z;, = by or z;, = b3] is present in the instance ¢.

To arithmetize ¢, we begin by picking h,m where h = polylogn and m =
O(logn/loglogn) such that A™ = m. Now, set H = {1,2,...,h} and identify
{1,...,n} with H™ in some canonical way. Extending {0,1} to H, the instance ¢
can be viewed as a function ¢ : H* — {0,1} where £ = 3m + 3 (we set ¢(-++) =0
if the arguments do not make sense).

In this language, 3-SAT can be restated as follows: we want an “assignment”
a: H™ — {0,].} such that Viy, 12,793 € H™ and Vb, b, b3 € H,

¢(i1,i2,7;3,b1,b2,b3) =0or a(il) = b1 or CL(?&) = b2 or a(ig) = b3 .

Let IF be a field that contains H and let (Z) and A be low-degree extensions of ¢
and a respectively. Now the “proof” of satisfiability is an m-variate polynomial (of
degree h in each variable) A : F™ — F and the goal of the verifier is to check that
for all z = (il,i2,i3, b1,b2, bg) € HZ,

(1) $(2) - (A(i1) — by) - (A(iz) — ba) - (Alis) — b3) = 0.

It is easy to see that such an m-variate polynomial A exists iff ¢ is satisfiable.
Thus if we consider the instance of the PCS problem, consisting of t = |H|* con-
straints of the form (refeqn:c0) for every z € H*, we obtain an instance of the PCS
problem for which it is NP-hard to decide if all constraints are satisfiable or not.
Thus we have the NP-hardness of a PCS problem. However, there is no gap in the
number of constraints (1) that can be satisfied.

2.2. Making Constraints Robust

We now show how to make the constraints above robust, i.e., transform them
into a different collection in which either all of them can be satisfied, or few can
be satisfied. To this end we define an /-variate polynomial Py as follows: Vz =

(i1,12,13,b1,b2,b3),
(2) Po(2) % 3(2) - (A(ir) — by) - (A(in) — by) - (Ais) — b) =0 .

Since ¢ and A have degree at most |H| in each variable, Py(z) is an (-variate
polynomial of degree at most 2|H| in each variable and thus has (total) degree at
most 2¢|H|. Let us assume that the prover gives not only the polynomial A, but
also a polynomial Py (of degree at most 2¢|H|) that is supposedly Py. The goal of
the verifier is now to check the constraints

1. (C0): Vz € F* Py(z) = Py(2) (note that the verifier can efficiently compute

~

¢(z) and thus also Py(z) once it is given the assignment polynomial A).
2. (C0") Vz € H* Py(z) = 0.

14 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Since both Py and P, are low-degree polynomials (they have degree at most
2(|H]), the constraints (C0) are robust (either all of them are satisfied or a small
fraction (at most %: see lemma below) of them are satisfied.

Lemma 6. If Py, Py are degree d polynomials that violate (CO) for some z, then
they violate (CO) for at least (1 — %) fraction of the z’s.

Proof: Follows from the Schwartz-Zippel Lemma applied to Py — Py since a degree

d polynomial is zero on at most \%I fraction of the domain.

The constraints (C0') are not robust, since it is possible for a degree 2¢|H|
polynomial to be zero on all but one point of H. Our idea would be to increase the
size of the domain on which we would like the polynomial to be zero. Specifically we
will define a sequence of (low-degree) polynomials P;, Ps, ..., Py such that P, =0
over F x H*=' iff Py = 0 over HY, and similarly for 1 < i < ¢, P; = 0 over
Fix HViff P,_, = 0 over F*" ! x H* "1, Hence P, will be identically zero on
FYiff Py(z) = 0 Vz € H*. Each of these constraints (and in particular P;(2) = 0
Vz € F' are all robust constraints and this will give us the desired “gap” in the
PCS instance.

As a motivation for defining these polynomials, let us first look at an analogous
transformation for univariate polynomials. Let {h1, hz, ...,y } be an enumeration
of the elements of H. Given a univariate polynomial p € F[X], define a polynomial
q by:

|H|

q(y) = Zp(hj)yj -

Clearly, if p(h) = 0 for all h € H, the ¢ = 0. Conversely, if pjz # 0, then ¢ is some
non-zero polynomial of degree at most |H| and so is non-zero on at least |F \ H]|
points. Thus ¢ is identically zero on F iff p is identically zero on H.

In the multivariate case, we will apply the above transformation, once in each
variable. Starting with a polynomial P, in formal variables (z1,x2,...,z,), we will
obtain a sequence of polynomials

Pl(yl,l‘g, e ,l?[)
Py(y1,Y2, 73, .-, T¢)

Pi(y1,y2,- -, Yi, Tig1,---,Tr)

Pi(y1-y2,---,9e)
where each transition from an z-variable to a y-variable follows the scheme described
above for univariate polynomials, namely, for 1 < i < ¢, define

|H| _
(3) Pi(yl; ey Yy Ti1y - - - ,CC[) = Z.Pz',l(yl, ey Yi—1, hj,CCH,l, . ,Cﬂg)yg .
j=1

Note that if P;_; has degree d;_1, then the degree d; of P; is at most d;_1 + |H|.
Since Py has degree at most 2¢|H|, the degree of each P; for i € {0,1,...,¢} is
clearly at most 3¢|H|. By the same reasoning as in the univariate case, we have

P |FixHt=i = 0= P |Fi-1x Ht—i+1 = 0.

LECTURE 2. NP-HARDNESS OF PCS 15

(By our definitions, we have

Pf(yla"wye): Z Po(hh:"':him)yil"'yzl .

1<i1,02,..0,20 <[H |

and this is another way of verifying that P, = 0 on F* iff P, is identically zero on
H*Y)

2.3. The Gap-PCS instance

We are now ready to describe the constraints of our Gap-PCS instance. Given a
3-SAT instance ¢, consider the following (polynomial) constraint satisfaction prob-
lem: The required “solution” consists of polynomials A, Py, Py,..., P, where A is
an m-variate polynomial of degree at most m|H| and Py, ..., P, are {-variate poly-
nomials of degree at most 3¢|H|. The “constraints” placed on the polynomials are
the following.

For all z = (21,...,2) € F%

(C0): Py(z) = Py(z) where Py(z) is defined based on ¢ and A : F* — F as in
Equation (2).
Fori=1,2,...,¢,
(C1): P21,y Ziy Zig1s00, 20) = leﬂ Pi1(z1,. o zic1, by 2zigny -, 20)2)
(the condition from Equation (3) at the point z).
(C(L+1)): Pz)=0.

By the “robustness” of all these constraints (see Lemma 6 above), we have the
following:

Lemma 7. If Py, ..., P, and Py are polynomials of degree at most d, then for each
set of |F|® constraints (C4), 0 < i < £+ 1, either all of them are satisfied or at most
a fraction (d + |H|)/|F| of them are satisfied.

Proof: Follows from Lemma 6 since all polynomials involved in the constraints
have degree at most d + |H]|.

Bundling polynomials into a single polynomial. Note that in a PCS instance
the “solution” asked for is a single low-degree polynomial, where as in the above
we have several polynomials (4, Py, ..., P;) involved in the constraints. There is a
simple trick to handle to this: we just require that all the polynomials be “bundled
together” and presented as a single degree D = (3¢|H| + ¢ + 1) polynomial @ :
F*! — F such that for 0 <@ < ¢, Q(i,-++) = Pi(---) and Q({ + 1,{z1,...,2)) =
A(z1,-.-,2zm). The existence of such a polynomial is guaranteed by the following
Lemma:

Lemma 8. Given polynomials qo, .. .,q : F* — F over a finite field F with |F| > t,
each of (total) degree at most «, there exists a degree o+t — 1 polynomial Q :
F*Y — I such that for i =0,1,...,t and all z € F*, Q(i, 2) = qi(2).

Proof: For each 7 € {0,1,...,t}, there is a unique univariate polynomial §; of
degree t such that

sy {1 =i
"l 0 if0<wv<tbutv#i.

16 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Now define the polynomial @ as

Clearly Q(i,---) = q;(---) for each i € {0,1,...,t}. |

Suppose such a polynomial @ is given (as a solution to the PCS instance con-
structed from ¢). We wish to describe the constraints of the PCS instance. First
we make explicit the definition of a polynomial P} from @ that will serve the role of
P, from definition (2). For z = (z1,...,2) € F* where £ = 3m + 3, P'(z) is defined
as:

Pi(z) ¥ d(2) (QUA1,(z1,.) 2m,0,...,0)) = Z3m11)

(4) - (Q(Z-F1,(Zm+1,...,sz,o,...,0>)—Z3m+2)
: (Q(€+17<Z2m+17"'7z3m707"'70>)_Z3m+3)
Note that Pj has total degree at most 10¢|H |+ 3¢ + 3 < 11¢|H|.

Sumimarizing the reduction from SAT to PCS. We are now ready to sum-
marize the reduction T3sar—pcs which maps instances of 3SAT to PCS: Given an
instance ¢ of 3SAT, the reducing algorithm sets m = IOE%OZTL and sets h = nt/™,
and ¢ = 3m + 3. It then picks a field F of size at least ¢ > h3. It then computes
the function ¢ : F* — F, and using this, it generates t = [F|* constraints (C)(2),
one for every z € F*. The constraint for z is:

41
(©)(2) = \(Ci)(z)

i=0
where (Ci) are the constraints described earlier in this section. The main exception
is that these cosntraints are defined over a single polynomial @ : F¢*! — F, and
thus every occurence of P;(-), 0 < i < ¢+ 1 is replaced with Q(7,-). Similarly
instead of the polynomial Py one uses the polynomial Pj defined in Equation (4).
All polynomials involved in constraints (C')(z) have degree at most 11¢|H|, and
hence we get by Lemma 6 that, for any degree D polynomial @, either all the
constraints (C)(z) are satisfied or at most a fraction 11¢|H|/|F| of the constraints
are satisfied. By choice of |F| this fraction is a o(1) function and thus is smaller
than e, for any € > 0, for sufficiently large n.

2.4. The hardness result
From the discussion in the preceding paragraph, we can now conclude:

Lemma 9. For every € > 0, the reduction Tssat—pcs maps an instance ¢ to an
instance of PCS with m = O(logn/loglogn) and m,d,q = poly logn such that the
following conditions are satisfied:

Completeness: If ¢ is satisfiable, then there exists a polynomial QQ of degree
at most d that satisfies all the constraints.

Soundness: If there exists a polynomial Q of degree at most D that satisfies
more than an e-fraction of the constraints, then ¢ is satisfiable.

LECTURE 2. NP-HARDNESS OF PCS 17

Proof: The completeness is clear since we can just take) to be the polynomial
such that Q(¢ +1,-) = A, Q(0,-) = Py(-) (where P, is defined in Equation (2))
and Q(i,-) = P;(-) (where P; is defined as in Equation (3)) for 1 < i < ¢. For the
soundness, we know by the discussion at the end of the previous subsection, that if
more than an e-fraction of the constraints are satisfied, then in fact all of them are
satisfied. This in turn implies that Py(-) = Q(0,) is identically zero on H*, which
implies that the assignment A def Q€+ 1,-) satisfies ¢. |

Note that by the choice of the parameters, we have m = O(log n/loglogn) and
w,d,q = polylogn as required. Finally, for each z € ', the constraint (C)(z) can
be checked in polylogarithmic time. We have thus proved the first of the lemmas
from last lecture that we set out to prove:

Lemma lem:gappcs: For all constants € > 0, Gap-PCS; .(m,w, s,d,q) is NP-

hard, for w,s,d,q = polylogt and m = O(lolg?itgt).

3. Low-degree Testing
Recall the following Lemma from the previous lecture:

Lemma lem:low-deg-test: There exists a 69 > 0 such that for every § < by
there exists a probabilistic solution to the low-degree test that has running time
poly(m,d, t) and that tosses O(mlog|F|) random coins.

We will not be able to prove the above lemma, but we will present the testing
algorithm which has the properties claimed in the lemma. The idea behind the test
is the following: For x,y € F™, define f, ,(t) = f(x + ty) (i-e., fo, is f restricted
to the “line” passing through z and y). If f is a degree d polynomial, then for every
z,y € F™, fu, is a (univariate) polynomial of degree d, and in fact the converse
also holds. This suggests the following test:

Pick random z,y and verify that f, , is a degree d polynomial.
We in fact consider the following weaker test Low-Deg-Test:
e Pick z,y € I and t € F at random.
e Ask prover for (the at most (d + 1)) coefficients of the “polynomial” f, ,
e Verify that f, ,(t) = f(z + ty).
The following theorem [25, 3, 2] shows that the above test indeed satisfies the
conditions of Lemma 3.

Theorem 2. Consider the test Low-Deg-Test specified above.

1. Easy part: If f is a degree d polynomial, then there exist responses f , such
that Low-Deg-Test always accepts.

2. Hard part: There exists a constant g > 0 such that for allm,d,F, if f is any
function such that there exist responses fs , that make Low-Deg-test reject
with probability 6 < &y, then f is 20-close to some degree d polynomial.

4. Self-correction

We now move to the third and final component we need to complete our first PCP
characterization (NP = PCP[O(logn), poly logn]), namely self-correction. Recall
the problem definition:

18 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Given: § > 0; d € Z™; x € F™; oracle f : F™ — F such that f is d-close to

some degree d polynomial p. (We assume 6 < ﬁ so that a polynomial p

that is 6-close to f, if one exists, is unique.)
Task: Compute p(x).
We will prove:

Lemma 4: There exists a randomized algorithm that solves the self-correction
problem that runs in time poly(m,d,) and tosses O(mlog|F|) random coins, and
outputs the right answer (for every z) with probability at least (1 — &) provided
0 < min{ﬁ, FEEE

Proof: Counsider the following self-correction procedure. Given z € F"* and oracle
for f which is é-close to a polynomial p, compute p(x) as follows:
1. Pick y € F™ at random.
2. Query f(z +y), f(x +2y), -, f(x+ (d+ 1)y) and let by,...,bsy1 be the
responses.
3. Find, by interpolation, a degree d (univariate) polynomial h such that k(i) =
b; for1 <i<d+1.
4. Output h(0) as the value of p(z).
Note that the algorithm tosses O(m log |F|) random coins, probes f in d + 1 places
and runs in time polynomial in m,d. It remains to prove the correctness of
the procedure. If f is a degree d polynomial, then the output is clearly cor-
rect. But f is only dé-close to a degree d polynomial p. However, for every
i, 1 < i < d+ 1, x4+ iy is a random point in ™ (we are ignoring the pos-
sibility that y = 0 here, but this happens with negligible probability). Thus,
l;r[f(x +1iy) # p(z + iy)] < 6 by the definition of §-closeness. Hence, by the

union bound, Pr[3i, f(z + iy) # p(z + iy)] < (d + 1) which is at most e since
Y

6 < e/(d+1). Thus, with probability at least (1 —¢€), b1,...,bs+1 are the “right”
values of p(x + y),...,p(x + (d + 1)y) and thus the interpolation step correctly
computes p(x).

This completes the proof of the PCP characterization NP = PCP[O(log n), poly logn],
thus Phase 1 of our goals.

LECTURE 3

A couple of digressions

We now move on Phase 2 of the proof of the PCP Theorem. We will approach
this phase somewhat tangentially. In this lecture, we will show two results, that will
essentially be digressions for now, and then linked to Phase 2 in the final lecture.
The first result will be an “MIP” characterization of NP. We will show how the
PCP verifier of Phase 1 can be modified into an MIP verifier that “aggregates” the
poly logn queries of the PCP verifier into a constant number of queries that it will
send to multiple (mutually non-interacting) provers that respond with polylogn
bits each. While the advantage of this modification will be unclear for now, we
will exploit this MIP verifier in the final lecture. The second result will give a
highly query-efficient PCP verifier for NP: specifically we will prove that NP =
PCP[poly(n), O(1)]. Note that this verifier just makes a constant number of queries
(as is our final goal), however that the randomness used by the verifier is very large.

Part I: Multiprover Interactive Proofs (MIP)

The informal question behind the definition of MIP is the following: What
can a probabilistic verifier interacting with p non-communicating provers verify, if
allowed to ask one question to each prover? More formally, we have the following
definition:

Definition 3. For an integer p and integer valued functions r,a : ZT — Z7, a
(p,r,a)-restricted MIP verifier is a probabilistic verifier that tosses r(n) coins, asks
one question to each of p provers and receives a(n)-bit answers, on inputs of length
n.

We can now define MIP classes similar to PCP classes.

Definition 4. For an integer p and integer valued functions r,a : Zt — Z7T, a
language L is said to be in MIP. s[p,r,a] if there is a (p,r, a)-restricted MIP verifier
that checks x € L with completeness ¢ and soundness s.

A p-prover MIP is also called a p-prover 1-round protocol, since there is only
one round of verifier-prover interaction. A few comments on the MIP model. MIP
seems to be a natural model within the context of interactive proofs. It is more
restrictive than PCP as MIP, ,[p,r,a] C PCP. ,[r,pa] (since the responses of the

19

20 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

p provers can be written down as one big proof, and the verifier will query pa(n)
bits from this proof), and thus good MIP constructions suffice to construct good
PCPs. We will now do the opposite and show how to covert a PCP into a MIP
(with some loss in parameters), and this will be a central intermediate step in our
goal of proving the PCP Theorem.

1. A 3-prover MIP for NP

We will construct a 3-prover MIP from the PCP[O(logn), polylogn| verifier of
Phase 1. To do this, let us first recall how the verifier worked (at a high level).
The verifier is based on a hard instance of PCS with a “gap”. It expects as proof
a low-degree polynomial expressed as a table of values f : F"* — F, and a “lines
oracle” fines that it uses for performing a low-degree test. Given access to oracles
for f and fiines, the verifier worked in two steps:

1. Perform a low-degree test on f.
2. Pick a random constraint of the PCS instance and check it is satisfied by
the self-corrected version of the oracle f.

The first step above is already structured as a 2-prover 1-round protocol: The
verifier asks one prover for the value of f at a point and a second prover for the
coefficients of the polynomial f,, for a line ¢,, = {z +ty : t € F} for some
z,y € F™. The second step, however, queries the table f in many places, and we
somehow need a way to “aggregate” these queries into one “big” query.

1.1. Parallelization: Reconstruction via curves

Suppose we need to query f : '™ — F at w places 1, ..., Z,. In this section we will
show how to find the value of f at all these points correctly, with high probability,
using only a constant number of queries to two provers. This solution will work
using the “algebraic” and “randomness” properties of “curves” in m-dimensional
space (where all terms in quotes will be explained later). Using such curves, our
strategy can be described at a high-level as follows: We will pick a random curve
C through x4, ...,x, and ask a third prover for a description of the function f on
the entire curve C. Denote this restriction by f|c. If the prover responds honestly
with fic we are in good shape, while if it responds with a wrong polynomial A,
then we will show that a random point we will have f(C(t)) # h(t) and we will be
able to detect this.

We now define what we mean by a “random curve” in F™. A curve is simply a
function C' : F — F™. Note that this curve can be considered to be a collection of
m functions C; : F — F, where C(t) = (Ci(t),...,Cn(t)). We can now define the
degree of a curve: The degree of C is simply the maximum of the degrees of the
functions Cjy; i.e., deg(C) = max; deg(C)).

Curves of low-degree turn out to be useful for this section, and the following
proposition asserts that curves of reasonably small degree do exist passing through
any small set of points. (The proof is omitted, but can be easily seen to be a
consequence of the interpolation theorem for univariate polynomials.)

Proposition 1. For any set of (w1) points xo,x1,-..,T, € F™, there exists a
unique degree w curve C with C(j) = x; for 7 =0,1,...,w.

LECTURE 3. A COUPLE OF DIGRESSIONS 21

A “random curve” through zi,...,xz, is defined to the curve from the above
proposition for a random value of xy € F™. The reason we label such a curve to be
random, is that most points on this curve (all except the ones that are explicitly
determined) are randomly distributed (though not independently so) over F™. This
is claimed in the next proposition.

Proposition 2. For every x1,...,&y € F™, if xg € F™ is picked at random and
C is the unique degree w curve such that C(j) = x; for 0 < j < w, then for any
t¢{l,...,w}, C(t) is a random point in F™.

Recall that our intention is to ask a (third) prover for a description of the
function f|¢ for some curve C. How does the prover describe this function f|¢?
Turns out that for low degree polynomial functions, their restriction to a low-degree
durve is still a low-degree polynomials. This is asserted in the next lemma.

Lemma 10. If P : F™ — F is a degree d polynomial and C : F — F™ is a degree
w curve, then Po (defined by Pi¢(t) = P(C(t))) is a univariate polynomial over F
of degree wd.

Proof. Follows by susbstituting for each variable x; occuring in the polynomial P,
the polynomial C;(¢). O

1.2. The 3-prover MIP

We are now ready to present the promised 3-prover MIP for NP in full detail.
Input: An instance of Gap-PCS; ((t,m,w, s,d, q)

Provers: There will be 3 provers II;, IIy, II3. We will also refer to the II;’s as
proofs or oracles: the “proof” corresponding to a prover simply consists of all the
responses of that prover to the various questions it might be asked. The proof II;
will comprise of the values of the purported “polynomial” P that is a solution to
the Gap-PCS instance. II; will be the “lines oracle” used to perform the low-degree
test, and II3 will be the “curves oracle” used to perform the parallelization step.

The verifier operates as follows:
¢ [Random Choices:]

1. Pick a constraint C; of the Gap-PCS instance at random.

2. Pick arandom curve C through the w points z1,...,2, € F™ that C;
depends on. (Do this by picking a random xy € F™ and determining
the unique degree w curve C such that C(j) = z; for j =0,1,...,w.)

3. Pick a random point z on C by picking a random ¢' € F and setting
x=C(t).

4. Pick a random line ¢ through z (i.e., pick y € F™ at random and
random t"" € F and set £ = {z + (r —t")y : r € F}).

e [Queries:]

1. Queries II; for the value P(x); let response be a € F.

2. Queries II, for the polynomial P, ;let g be the (degree d univariate)
polynomial obtained as response.

3. Queries II3 for the degree wd polynomial P¢; let h be the response.

e [Action (Accept/Reject):]
— Reject unless g(t") = h(t') = a.
— Reject if (h(1),h(2),...,h(w)) € F¥ does not satisfy the constraint

C;.

22 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

— Accept otherwise.

1.3. Analysis

Presenting the analysis of the above (3-prover) MIP in full rigor with proper choice
of the several parameters involved will take too long; we therefore only sketch the
main ideas in the analysis. The reader is referred to [2] for a rigorous proof.

Completeness: It is clear that if the Gap-PCS instance is satisfiable, say by a
low-degree polynomial Py, then Iy = Py and I, II3 defined as the restrictions
of Py to lines and degree w curves respectively, will always satisfy the tests of the
verifier. We thus have perfect completeness ¢ = 1.

Soundness: Suppose we have a NO instance of Gap-PCS as input to the MIP
verifier, i.e., any degree d m-variate polynomial P satisfies at most an e fraction
of the t constraints. Let P be the response of IIy; if P is not é-close to a degree
d polynomial, then by the Lemma on low-degree testing from last lecture, we will
have g(t'") # a (recall that a e P(x)) with probability at least §/2, and thus the
verifier will reject with probability at least §/2.
Now suppose P is §-close to a (unique) degree d polynomial P. Since we have
a NO instance of Gap-PCS, with probability at least (1 — <), the verifier picks a
constraint C; that is not satisfied by P. Now two cases arise:
e If h = P, then (h(1),...,h(w)) = (P(z1),...,P(x,)) and thus does not
satisfy the constraint C;, and the verifier rejects in this case.
e If h # P, then since both h, P¢ are degree wd polynomials, h(t') # P(z)
with probability at least (1 — "‘jﬁl) by the Schwartz-Zippel Lemma (since
t" is a random element of F). Also P, P are 6-close, so P(z) = P(z) with
probability at least (1 —). Thus with probability at least (1 — 6 — wd/|F]),
we will have h(t') # a and the verifier will reject.
From the preceding discussion, there is a constant v > 0, such that the verifier
rejects NO instances of Gap-PCS with probability at least v, and this gives our
desired MIP characterization:

Theorem 3 ([2]). There exists v > 0 such that
NP C MIP; [3,0(logn),poly logn] .

Part II: A Query-efficient PCP Verifier

We now turn to giving a highly query-efficient PCP verifier for NP. The verifier
will only read O(1) bits from the proof. On the down side, it will use polynomial
randomness, and reducing the randomness to logarithmic while retaining the query
complexity at O(1) will be the subject of the next lecture.

2. NP C PCPJpoly, O(1)]

2.1. Quadratic Polynomials

Just as in the case of Gap-PCS, we will first show (sketch) the NP-hardness of an
algebraic problem, namely “Satisfiability of quadratic polynomials” QP-SAT which
tests if a set of multivariate degree two polynomials (over Fy), say Q1, ..., Q:, have

LECTURE 3. A COUPLE OF DIGRESSIONS 23

a common zero. This problem will form the basis of our new PCP verifier. We first
formally define the QP-SAT problem:

QP-SAT (Satisfiability for Quadratic Polynomials)

Instance: ¢ quadratic (degree 2) polynomials @1, ...,Q+ on n variables x1,...,x,
over Fy.

Question: Do these polynomials have a common zero? l.e., is there an assignment
a=(ai,...,a,) to x1,...,x, such that Pj(a) =0for j =1,2,...,¢t.

Lemma 11. QP-SAT is NP-complete.

Proof: The problem is clearly in NP since, for YES instances, we can guess
(a1,.-.,ay,) and then verify that it is indeed a common zero. To prove NP-hardness,
we reduce from CIRCUIT SAT. An instance of CIRCUIT SAT counsists of a Boolean
circuit C' comprising of NOT gates and AND, XOR gates of fan-in two, and the
goal is to decide if C has a satisfying input. It is well-known that CIRCUIT SAT is
NP-complete.

To reduce CirculT SAT to QP-SAT, we introduce one variable x; for each
input and for each gate of the circuit. We place a constraint for each gate of the
circuit which enforces that the output of that gate is consistent with its inputs and
the operation of the gate. For example, for an AND gate with associated variable
x; that receives its inputs from the gates associated with variables z;, and z;,, we
would place the constraint x; — x;, x;, = 0. Similar constraints are place for XoR
and NoT gates. We also place a constraint corresponding to the output gate which
forces it to equal 1 (so C is satisfied). Note that these constraints check for the
existence of a common zero of certain degree 2 polynomial, and it is easy to see
that a common zero exists for these polynomials if and only if C was satisfiable.
This completes the proof. |

2.2. Intuition for the Verifier

Given an instance of QP-SAT the verifier must check that all there exists a such
that Pj(a) = 0 for all j = 1,2,...,n. For now, pretend there were only one
polynomial P (we will see how the many polynomials case reduces to this situation
later). Since P is a degree two polynomial, it is of the form:

(5) P(zy,...,z,) = S0 + Z sii + Z CijTiT; -
i=1 1<i,j<n

where sg,51,...,5, and the ¢;;’s are all elements of F». We would like to check
that P(ai,...,a,) = 0; since we want to read very few bits from the proof, just
asking the prover to provide ay, ..., a, will not work for us. Instead we will ask the
prover to write down an appropriate encoding of a1, ..., a,. Considering the form
of P, encoding a1, ...,a, using the Hadamard code and the Quadratic functions
code will be useful, and we turn to the description of these codes next.

2.3. Hadamard and Quadratic Functions Code

The Hadamard Code: The Hadamard code is the most redundant linear code
and consists of the evaluations of all linear functions at the message that is being
encoded. More formally, given a string (ay,...,a,) € Fy, define A : F} — Fy as

A(x) ef >y aiw;. The Hadamard encoding of a is simply (A(x)).cry. Note that

24 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

a message of length n is encoded into 2" bits under the Hadamard code. It is easy
to prove that the Hadamard encodings of distinct strings differ in exactly half the
bits.

Given the Hadamard encoding A of (a1,...,a,), we can compute the lin-
ear function ! | s;a; by just one query into A, since >, s,a;, = A(s) for
s = (s1,-..,8,) € Fy. Since we are interested in evaluating some degree two
polynomial P at (ay,...,a,), we will need a more redundant encoding that also
includes values of quadratic functions, and thus one uses the Quadratic functions
code.

The Quadratic Functions Code: Given ay,as,...,a,, the quadratic functions
code (henceforth, QF-code), encodes it by the 2"° long string (Q(a))g where @
ranges over all homogeneous degree 2 polynomials over F,. Note that such a poly-
nomial is specified by n? field elements Q;;, where Q(z) = Zm- Qijrix;. We

denote by B the QF-encoding of ay,...,a,, and B defines a map IF"'Z’2 — Fy by
B(Q) = B(Qll: ey an) = Zi,j QZJCI/ZCI/]

2.4. The “Proof”

The QP-SAT verifier will expect as proof the Hadamard and QF-encodings of a
common zero a = (a1, ..., a,) of the quadratic polynomials Py, ..., P; in the QP-
SAT instance. Note that for any degree 2 polynomial P as in Equation (5), the
verifier can check P(a) = 0 by reading A(s) and B(c) from the A and B tables,
thereby just making two queries. Of course, we have no guarantee that the proofs
will be legal Hadamard and QF-encodings of a, and therefore as in multivariate
polynomials case, we need a Testing procedure (called “Linearity Testing” in the
literature) and Self-correcting procedure for the Hadamard and QF-codes.

2.5. Self-correcting the Hadamard and QF-codes

We first deal with self-correction since, as in the low-degree polynomial case, this
is much easier than testing. We will present a self-correction algorithm for the
Hadamard code, and the extension to the QF-code is completely straightforward.
Note that Hadamard code is simply the encoding using multi-linear polynomial
code, and the reader can verify that the algorithm below is in fact the same as the
one for self-correcting multivariate polynomials specialized to the multi-linear case.
First let us formalize the self-correction question for the Hadamard code.

Self-Corr(A, x):

Given: z € F§ and an oracle A : F} — F, which is 6-close to a linear function A
(for some ¢ < 1/3 so that there is a unique §-close linear function A to A).

Task: Compute A(z).

Lemma 12. There is a self-correction procedure that uses O(n) random bits, makes
two queries and which, for every x € Fy, returns the correct value of A(x) with
probability at least (1 — 26).

Proof: Consider the following self-correction procedure. Given = € Fy and oracle
for A which is é-close to a linear function A, compute A(z) as follows:

1. Pick y € I} at random.

2. Output A(x +y) — A(z).

LECTURE 3. A COUPLE OF DIGRESSIONS 25

To prove the claim of the Lemma, note that since y and z+y are random points
in F}, we have Pr[A(y) # A(y)] < 6 and Pr[A(z +y) # A(z + y)] < 6. Thus with
y y

probability at least (1 — 26), we will have A(y) = A(y) and A(z +y) = A(z + y),
and by linearity of A, this implies we output A(z).

2.6. Linearity Testing

A function f :F}* — Fy is called linear if f(z +y) = f(z) + f(y) for all z,y € Fy*.
This is equivalent to < f(x) >.epy being a Hadamard codeword. The verifier for
QP-SAT we wish to construct, needs to check linearity of both the A and B tables
it is presented as proof, and thus Linearity Testing is a crucial component in this
construction. It is also a very natural combinatorial problem in its own right.
Formally, the specification of the linearity testing problem is the following:

Given: 6 > 0; oracle f : F* — Fy.

Task: Test if f is d-close to a linear function f.
The following asserts the existence of a good Linearity test:

Lemma 13. There is a Linearity Test which uses O(m) random bits, makes just
3 queries into f, and has the following properties:

(i) It accepts with probability 1 if f is linear.

(ii) It accepts with probability at most (1 — 8) if f is not 6-close to linear.

Proof: The test itself is quite simple:

1. Pick z,y € F3* at random

2. Accept iff f(z) = f(z+vy) — f(y).
It is clear that the test makes only 3 queries into f and that it always accepts if f is
a linear function. The soundness claim (ii) above is, however, not straightforward to
prove, and was first proved (with a weaker dependence of the acceptance probability
on the closeness to linearity) by Blum, Luby and Rubinfeld [13] in their seminal
paper. The result in the form claimed was shown by Bellare, Coppersmith, Hastad,
Kiwi and Sudan [8].

2.7. Testing “Consistency”

From the preceding two subsections, we are equipped to test that the tables A, B
which are purportedly the Hadamard and QF-encodings of some (ay, ... ,a,) (which
ought to be a common zero of the QP-SAT instance we are testing for satisfiability)
are close to linear functions and to self-correct them. Now, suppose we have linear
functions A : F} — F> and B: IF'QL2 — 5 that are §-close to A and B respectively.
Since A is linear, there exists a = (a1,...,a,) such that A = x,, i.e. A(z) =
St a;x; for all z € FY. Similarly there exists b= (b11,. .., bny,) such that B =,
ie. B(q) = > bijgij for all g € IE"g“ But we would like B to be the QF-encoding
of a, and thus we need to check “consistency”, namely that b;; = a;a; for all
1<4,5<n.

2

Lemma 14. Given oracle access to A : Fy — F and B : F} — Fy which are §-

close to Xa, X respectively for some a € Fy and b € F2”2, there is a probabilistic test
that uses O(n?) random bits, makes 6 queries and satisfies the following properties:

(i) If A = xa, B=xs and by; = a;a; for all i,j, then the test always accepts.

26 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

(ii) If there exist i,j such that b;; # a;a;, then the test rejects with probability
at least (3 — 66).

Proof: The test does the following:

1. Pick z,y € F3 at random; Let ¢ € ng such that ¢;; = z;y; for 1 <14,5 <n.

2. Accept iff Self-Corr(A, z)- Self-Corr(A,y) = Self-Corr(B, q).

(In the above Self-Corr(A, z) stands for the element returned by calling the self-
correction procedure from Lemma 12.) Clearly the above only uses O(n?) random
bits. Since the self-correction procedure makes 2 queries, the above test makes a
total of 6 queries. Also the completeness condition (i) is clearly met.

Now consider the soundness Case (ii). Define n x n matrices My, M2 over Fy
as: {Mi}i; = asa; and {M>};; = b;;. By hypothesis, there exist i,j such that
a;a; # bij, so we have M; # M. Since A is é-close to x, and B is d-close to xp,
by Lemma 12, with probability (1 — 66), the test in Step (2) above checks that
Xa(7) - Xa(y) = Xx3(q), or in other words >, - a;a;z;y; = >, bijz;y; which is the
same as 7 Myy = 7 Msy. Since M, # M>, this happens with probability at most
3/4 for a random choice of z,y € F} (this is easy to show). The overall probability
of acceptance is thus at most 3/4 + 68, as claimed. |

2.8. Putting Everything Together

To give the verifier in the final form, we need one more trick. To verify satisfiability
of the QP-SAT instance, we need to check Pj(a) for every j = 1,2,...,t. For
efficient checking, we need to “aggregate” these into a single constraint. This is
done as follows:
1. Pick r = (r1,...,r) € F5 at random.
2. Replace the constraints P;j(a) = 0 for all j = 1,...,¢ by the single constraint
P.(a) = 0 where

t
(6) PT déf Z ’I”ij .
Jj=1

The key fact about P, is captured by the following easy lemma.
Lemma 15. (i) If Pj(a) =0 for all j, then P.(a) =0.
(ii) If there exists j such that Pj(a) # 0, then P,(a) # 0 with probability (exactly)
1/2.

The Verifier: We (finally!) present the verifier with all components put together:
Input: An instance (n, Py, ..., P;) of QP-SAT.

Goal: Verify that the polynomials P; have a common zero a € Fy.

Expected Proof: Tables A : Fy — F, and B : ngz — F, which are supposedly the
Hadamard and QF encodings of a common zero a € Iy of the P;’s.

The verification procedure operates as follows:
1. Perform a Linearity Test on A, B (Lemma 13). Reject it the test fails.
2. Perform the “Consistency check” (Lemma 14) on A, B. Reject if the check
fails.
(We have now verified with good confidence that A, B are é-close to Xa, Xb
respectively where b;; = a;a; for all i,j.)

LECTURE 3. A COUPLE OF DIGRESSIONS 27

3. Pick 7 € F at random and compute the (coefficients of the) polynomial
Pr = Z]- rij. Let

P.(xy,...,x,) =50+ Zsiazi + Z CijTiTj .
i=1 1<i,j<n
Let s = (81,-.-,8n) and ¢ = (¢11,- -+, Can)-
4. Accept iff so + Self-Corr(A, s) + Self-Corr(B,c¢) = 0. (This corresponds to
checking that P.(a) =0.)

Note that the above verifier used O(t + n?) = O(n?) random bits (from the
proof of Lemma 11, we can assume ¢ < n? — in fact t = O(n) — for the hard instance
of QP-SAT). The verifier also makes only 16 queries in all (6 in Step 1, 6 in Step
2, and 4 in Step 4 above). From the NP-hardness of QP-SAT (Lemma 11) and
Lemmas 15, 13, 12 and 14, we can show that the verifier has completeness 1 and
soundness at most (1 — €) for some ¢ > 0 (we leave it to the reader to fill in the
details, or see [2]). We thus get:

Theorem 4 ([2]). There exists € > 0 such that
NP C PCPy;_. [O(n*),16] .

LECTURE 4
Proof Composition and the PCP Theorem

1. Where are we?

Recall from the last lecture that we now have the following two proof systems for
NP. The first is a 3-prover MIP for NP whose verifier uses O(log n) randomness,
receives answers of poly logn bits from each of the 3 provers, and decides to accept
or reject based on the verdict of a circuit of size poly logn on the (concatenation
of the) received answers. The second is a PCP for NP whose verifier makes only
16 queries into the proof and uses O(n?) randomness. From the high level, the
former proof system has small randomness, but large query complexity; while the
latter has small query complexity, but large randomness. In contrast, our goal is
to have small randomness and small query complexity, and it seems neither the
PCPs obtained so far give us what we want. In this lecture we describe a method
of composing proofs together that magically puts the two PCPs together to get
(close) to our goal. Specifically composition takes an “outer PCP” with small
randomness and an “inner PCP” with small query complexity and combines them
to get a “composed PCP” with small randomness and small query complexity.
Composition also maintains some basic properties on completeness and soundness,
and in particular it preserves perfect completeness and the property of soundness
being bounded away from 1.

In this lecture, we first illustrate composition with an example. This example
already builds a PCP with much better parameters than we know of. But compo-
sition can take us further. We describe from a high-level how composition applies
to a fairly general class of PCPs, and assert that the PCPs we have seen so far are
amenable to composition. Modulo this assertion, we then obtain a proof of the PCP
theorem. In fact, the composition theorem even takes us further — to the optimal
PCP theorem, and we list some of the steps that yield this stronger conclusion.

2. Composing the Verifiers
2.1. A first attempt

Composition is based on the following simple observation. Suppose we have a
power PCP (call it the inner verifier) that knows how to verify that circuits are
satisfiable. Maybe we can use this PCP to make the verification step of another

29

30 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

PCP (called the outer verifier) easier. Note that the outer verifier typically behaves
as follows: It tosses some random coins and based on these it devises a strategy on
how to check the proof. In particular it generates some queries, and then prepares a
Boolean predicate that will determine if a collection of responses to the queries are
acceptable or not. Typically this Boolean predicate is described by a small circuit
C. The outer verifier then sends the queries to some provers, and then obtains
responses to these queries. It then plugs in these responses into the circuit C, to
determine whether to accept or not. The composition paradigm is motivated by
the intuition that it should be possible to use the inner verifier to verify that C' is
satisfied by these responses. However the exact description of this paradigm involves
some surprisingly subtle issues and we motivate this by describing an attempt to
compose the two PCP verifiers of the previous lecture together.

1. Start with the verification procedure of the 3-prover MIP.

2. Prepare queries ¢i1,¢2,q3 and a small circuit C' that determines the ac-
cept/reject decision of the verifier.

3. Send the queries to the provers, but now instead of just receiving the re-
spouses a1, as,ag from the three provers (which would cause the query com-
plexity to be poly logn), ask the prover to write down a proof that (a1, az,as)
is a satisfying assignment to the circuit C' using the encoding standard of
the 16 query PCP verifier. (Here we are using the fact that CIRCUIT SAT is
in NP and thus there exists a PCP for the fact that a;, a2, as satisfies C'.)

Note that above applies a PCP recursively to the task of checking that ay,az, a3
is a satisfying assignment to C, and thus the above is also referred to in the literature
as “recursive proof checking” or “recursive composition of proofs”. The idea of proof
composition originated in the work of Arora and Safra [3] and has been a crucial
component in all PCP constructions that followed.

Analyzing the above Composition: The above composed verifier makes only
16 queries and uses O(logn) randomness for the initial verification process in Steps
1 and 2 (called “outer” verification) and another O((poly logn)?) = poly logn ran-
domness when it simulates the second verifier in Step 3 (called “inner” verification),
for a total of polylogn randomness. Thus it at least has better quantitative pa-
rameters than both of the verifiers we started with! The verifier, however, does
not inherit the soundness of the two original verifiers. The reason is that we are
asking the prover for a proof that there exists an input (a1, as,as) that satisfies
C, which is not the same as asking the prover to prove that a given triple a1, as,
and as combine together to satisfy C. In particular, when the query ¢; is asked
in a different context, we do not check to verify that the answer to ¢; in the other
context is the same as the answer in the current context. Thus the prover can
“cheat” by using a satisfying assignment for C' that has nothing to do with the
3 answers that would have been given by the MIP prover. (To consider a simple
but illustrative example, consider a single prover verifier for 3SAT, who just picks
a random clause in a given formula, whose satisfiability is to be verified, and then
asks a prover for the value of the literals in the clause. Clearly the prover would
have no problem convincing the verifier that this clause can be satisfied, and so the
verifier accepts with probability 1, independent of the satisfiability of the formula.
The composition method described above is functioning analogous to this verifier
and hence does not have a hope to testing anything.)

LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 31

To fix the bug above, somehow we need to make sure that the various answers
given by the prover for the various tests are all “consistent” (i.e. the different
clauses referring to the same variable use the same assignment to that variable)
and would hence “glue together” to give a single global assignment that satisfies all
(or most of) the clauses.

In a nutshell, we need to ensure consistency between the answers committed
to by the prover in response to various different circuit tests C, so that we can
argue that if the composed verifier accepts with large probability then one can fix
responses for the three provers in the “outer” MIP that will cause the MIP verifier
to accept with large probability. Together with the soundness of the MIP, this will
imply the soundness of the composed verifier.

2.2. A modified composition scheme

We now discuss at an intuitive level the way to fix this problem in the composed
verifier. The idea is to force the prover to commit to responses to individual queries
(e.g. ¢1) by writing down an appropriate (e.g. the Hadamard) encoding of the
answers. We will view such an encoding as a table (denoted II,,) that we wish
to probe minimally, but something that already commits to the answer to query
¢1- In addition to providing such a table for every query that the 3-prover MIP
can possible ask, the prover for the composed verifier is also asked to write down
proofs II that (a;,as, as) satisfies C (for various choices of q1, ¢z, g3, C made by the
MIP verifier in the first stage of the composed verification). The verifier will now
check that C'(ay,a2,as3) accepts by making queries to the corresponding proof I of
the inner (16-query) PCP, and in addition will perform consistency checks between
the various components of II and the proofs 11, ,1I,,,II,,. More specifically, for
the verifiers we have, we can require Il,, to be the Hadamard encoding A; of
the response a;, and recall from the last lecture that the proof II for the “inner”
PCP includes the Hadamard encoding, say B, of a; o as o ag (here o denotes the
concatenation operation). The consistency check between II and II,, will now check
that A, (z) = Self-Corr(B(z00%)) for a random z of length |a;| (here b is the suitable
number of zeroes padded at the end of). Note that the query complexity of this
composed verifier will be 16 plus the 3 queries made in each of the three consistency
checks, for a total of 25 queries.

We have been very informal in our description of proof composition, and the
interested reader can find the formal details in [3, 2]. We now give a semi-formal
summary of the composed verifier for easy reference.

Composed PCP verifier for NP:

Structure of expected proof: The verifier has oracle access to a proof II which is
expected to have the encodings of all the answers of the 3 provers of the MIP (as
per some suitable error-correcting code) for the various possible queries of the MIP
verifier. More specifically, for 1 < ¢ < 3 and query ¢; of the MIP verifier to prover
i, I1(4, ¢i, -) is the encoding of the response a; of prover i to query ¢;. In addition,
for each random choice R of the MIP verifier, II(0, R, -) will be the encoded proof
(for the inner PCP system) of the satisfiability of the circuit Cr corresponding to
R computed by the MIP verifier.

Given access to the oracle II, the verifier operates as follows:

32 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

e Pick random string R as per the 3-prover MIP verifier (from last lecture)
and generate queries qi, ¢z, g3 to the three provers and a circuit C.
e Let Az() = H(Z, qi,) and B() = H(O,R,)
e Now perform “inner verification” for (the satisfiability of) C' with oracles
Al, A2, A3, B as below:
— Run the 16 query PCP verifier (from last lecture) on oracle B with
input C (we are testing that B encodes a satisfying assignment to C).
— Perform consistency checks on oracle pairs (A;, B), (A2, B) and (43, B).

One can formalize the discussion of the preceding sections and prove that the above
verifier (which we already argued uses poly logn randomness and makes only O(1)
queries — in fact it makes only 25 queries) also has soundness bounded away from
1, and this gives us:

Theorem 5. There exists a v > 0 such that NP C PCPy;_, [poly logn, 21].

Composition as a paradigm: The basic ingredients of composition abstracted
from the preceding construction are the outer and inner verifiers. The outer verifier
is an MIP verifier with a small number of provers p and whose acceptance predicate
is computed by a small circuit, and which has very low soundness error. The answer
size of the MIP governs the size of the problem passed on to the inner verifier.

The inner verifier has low query complexity ¢ and must be able to verify the
commitment to a proof rather than the mere existence of one. The composed
verifier starts out by simulating the outer verifier and after the outer verifier picks
a circuit C' which computes its acceptance predicate, the composed verifier uses the
inner verifier on input C'. If suitable conditions are met, then one can compose the
outer and inner verifier to get a verifier that combines the randomness efficiency of
the outer verifier with the query efficiency of the inner verifier.

Formalism of the notion of outer and inner verifiers and exactly how they
compose together can be found in work of Arora and Safra [3]. Several refinements
to their “Composition Theorem” can be found in several later works like [2, 9].

3. The PCP Theorem

To prove the PCP Theorem we need to reduce the randomness of the verifier from
Theorem 5 to logarithmic from poly-logarithmic. The reason we had poly logn
randomness was that the outer MIP in the above composition had poly logn answer
and circuit size and the inner verifier used a quadratic number of random bits (as
a function of its input length). Thus in order to reduce the overall randomness, we
would like to reduce the answer size of the outer MIP.

It turns out that the 3-prover MIP construction from the last lecture also yields
an inner verifier which can be used to show that Ve > 0, 36 > 0 such that

MIP; 1_¢[p,7,a] € MIP; 1_s[p + 3,r + O(log a), poly loga] .

(Such a result is shown in [2].) Combining with the MIP characterization NP =
MIP[3, O(logn), poly log n] from the previous lecture, this gives, upon compos-
ing the MIP verifier with itself as the inner verifier (it is shown in [2] how to
modify this verifier to also function as an inner verifier), the characterization
NP = MIP[6,O(logn), poly loglogn]. Composing this 6-prover MIP verifier with
the O(1)-bit, quadratic randomness verifier from [2] which was discussed in the last
lecture, gives a logarithmic randomness, O(1) query complexity verifier for NP with

LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 33

perfect completeness and soundness bounded away from 1, or in other words the
PCP Theorem! We would thus get:

Theorem 6 ([3, 2]). There exists an € > 0 such that
NP = PCPy,1-.[O(logn), 34] .

4. Towards Optimal PCPs

There are a number of respects in which one can hope to improve Theorem 6.
This has been the focus of a large body of works including [15, 11, 9, 20, 21,
19, 28, 27, 26]. One specific question, for example, is: What is the minimum
number of queries required to obtain a desired soundness error? The quest for
better (and optimal) PCP constructions has also been motivated by applications
to hardness of approximations where improvements in the underlying PCPs often
translate directly into improvements in the related inapproximability result that it
gives.

We will only give an overview of what is involved in obtaining optimal PCPs
and not give any technical details or prove any of the claims. There are two main
ingredients in obtaining optimal PCP constructions. The first one is improved
constructions of MIPs, specifically those with very few provers, preferably 2 provers,
with extremely low soundness error and at the same time having small answer sizes
and logarithmic randomness. The second ingredient(s) are “optimal” inner verifiers
that are tuned to simplifying verifiers for 2-prover proof systems.

We will now elaborate a little on constructions of 2-prover proof systems. The
starting point for such a construction is the PCP theorem (Theorem 6) itself: NP C
PCP;,1_.[O(logn),34]. One can convert such a PCP verifier into a verifier for a
2-prover proof system using a technique in [16] as follows:

e Pick a random string R and generate queries gy, . .., gs4 (as the PCP verifier
would do). Send all queries to Prover 1.

e Pick a random index i € {1,...,34} and send query ¢; to Prover 2.

e Accept iff answers of Prover 1 make the PCP verifier accept, and the answer
of Prover 1 on query g; is consistent with the response of Prover 2.

It is clear that the above verifier has logarithmic randomness and receives O(1)
size answers. It also clearly has perfect completeness since the original PCP had
perfect completeness. It is not difficult to show that the soundness is bounded
away from 1, and thus this gives us a MIP with 2-provers as a starting point. But
the soundness is very close to 1 and we would like to improve the soundness while
keeping the answer size and randomness small.

The natural approach to reducing the error is repeating the verifier’s action
several times with independent random tosses, but doing this sequentially would
increase the number of rounds of interaction between the verifier and the provers.
The approach instead is to repeat the verification many times in parallel (with
independent coin tosses), but, unlike the sequential repetition case, it is now no
longer obvious that the soundness error goes down exponentially with the number
of repetitions.

An important result of Raz [24], called the Parallel Repetition Theorem shows
that this is indeed the case (the result holds for all 2-prover systems where the
verifier is “canonical” in the sense that its acceptance condition is a check that a
certain projection of the answer of Prover 1 equals the answer of Prover 2). The

34 MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

proof of this result is complicated, but for our purposes it suffices to understand
that it implies the following error reduction fact for MIPs: For every ¢ > 0 and
integer a, there exists an ¢’ > 0 such that for all k¥ > 2, a canonical verifier for a
2-prover MIP with randomness r and which receives answers of size a¢ and 1 from
the two provers and has soundness (1 — €), can be converted into one with answer
size at most ka, randomness at most kr, and soundness error (1 —¢')*. Informally,
the transformation is

MIP171_5[2,7‘, a] e MIPL(le/)k[Z,k’I”, kCL] .

The above enables us to construct 2-prover MIPs for NP with very low sound-
ness error and constant answer sizes. We do not elaborate on the inner verifiers,
but to obtain improved PCPs one takes such a 2-prover MIP and composes it with
a suitable inner verifier. For the optimal constructions, it turns out that one uses
inner verifiers which take the encoding of the answers of the 2 provers of the outer
MIP by a code called the Long Code (first defined in [9]) and then verify , using
extremely query-efficient procedures, that these are indeed “close to” encodings of
valid answers that would make the verifier of the outer MIP accept. It turns out
that using some machinery from Discrete Fourier Analysis, such Long Code based
inner verifiers can often be analyzed optimally, and this approach was pioneered by
Hastad in a series of striking results [20, 21]. We do not elaborate on this further,
but just mention that one such tight result from [20] is the following, which shows
that just 3 queries are enough to obtain a soundness error close to 1/2 (it is known
that one cannot do better [29]).

Theorem 7 ([20]). For any ¢ > 0, we have NP = PCP;_, 1/2[O(logn), 3].

5. Roadmap to the Optimal PCP

Before winding up, we give a quick high-level recap of the road to a complete proof
of the optimal PCP construction from Theorem 7 above. The main steps are the
following:

1. 3-prover MIP verifier for NP (NP = MIP, ;_,[3, O(log n), poly log n]) [2]
2. Compose the above verifier with itself (using the paradigm of composition
from [3]) to get
NP = MIP; 1 _[6,0(logn), poly loglog n] [2].
An O(1) query, O(n?) randomness verifier for NP from [2] (NP C PCP; ;_.[O(n?),O(1)]).
4. Compose the verifier from Step 2 with the verifier from the previous step
to get NP C PCPq,1_./[O(logn),O(1)]. At this stage we have the PCP
Theorem [3, 2].
5. Obtain a 2-prover MIP for NP from the above PCP verifier (as in [16])
and then apply Raz’s Parallel Repetition Theorem [24] to prove that for all
6 > 0, NP C MIP, 5[2,¢s logn,as] where ¢s and as are constants depending
only on ¢.
6. Compose the verifier from above 2-prover proof system with a 3-query inner
verifier from [20] to get (one) optimal PCP Theorem: NP = PCP;_. ;/5[O(logn), 3]
for every € > 0.

w

Note that the main omissions from the above path in our discussion has been
the Parallel Repetition Theorem and a description and analysis of Hastad’s optimal
inner verifier.

LECTURE 4. PROOF COMPOSITION AND THE PCP THEOREM 35

The proof of the PCP Theorem is thus quite complicated and puts together
several ingredients. It is an important open question whether any portions (or all)
of the proof can be simplified. A good starting point in approaching this question
would be to first look at simpler constructions of what are called locally checkable
codes. These are codes with polynomially small rate such that given a string one
can determine if it is a codeword or is sufficiently far off from any codeword by just
looking at the symbols in O(1) positions of the string. Such codes are implied by
the PCP Theorem and the only construction we know of such codes goes via the
PCP Theorem. An alternative, simpler construction of such codes might enable a
shot at simpler proofs of the PCP Theorem, and would also be extremely interesting
and important in its own right.

10.

11.

BIBLIOGRAPHY

. Sanjeev Arora and Carsten Lund. Hardness of approximations. In Approzima-

tion Algorithms for NP-hard Problems, D. Hochbaum (Ed.), PWS Publishing,
1996.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and hardness of approximation problems. Journal of
the ACM, 45(3):501-555, 1998. Preliminary version in Proceedings of FOCS’92.
Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new char-
acterization of NP. Journal of the ACM, 45(1):70-122, 1998. Preliminary ver-
sion in Proceedings of FOCS’92.

Léaszl6 Babai. Trading group theory for randomness. In Proceedings of the Sev-
enteenth Annual ACM Symposium on Theory of Computing, pages 421-429,
Providence, Rhode Island, 6-8 May 1985.

. Laszl6 Babai, Lance Fortnow, Leonid Levin, and Mario Szegedy. Checking

computations in polylogarithmic time. In Proceedings of the Twenty Third
Annual ACM Symposium on Theory of Computing, pages 21-31, New Orleans,
Louisiana, 6-8 May 1991.

Lészl6 Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponen-
tial time has two-prover interactive protocols. Computational Complexity, 1:3—
40, 1991. Preliminary version in Proceedings of FOCS’90.

Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries.
Proc. of the Tth Annual Symposium on Theoretical Aspects of Computer Sci-
ence, LNCS Vol. 415, Springer-Verlag, 1990.

Mihir Bellare, Don Coppersmith, Johan Hastad, Marcos Kiwi and Madhu
Sudan. Linearity testing over characteristic two. IEEE Transactions on Infor-
mation Theory, 42(6), pp. 1781-1795, 1996.

. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCP’s and

non-approximability — towards tight results. SIAM Journal on Computing,
27(3):804-915, 1998. Preliminary version in Proceedings of FOCS’95.

Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Effi-
cient probabilistically checkable proofs and applications to approximation. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of
Computing, pages 294-304, San Diego, California, 16-18 May 1993.

Mihir Bellare and Madhu Sudan. Improved non-approximability results. In
Proceedings of the Twenty-Sizth Annual ACM Symposium on the Theory of

37

38

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

MADHU SUDAN, PROBABILISTICALLY CHECKABLE PROOFS

Computing, pages 184-193, Montreal, Quebec, Canada, 23-25 May 1994.
Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-
prover interactive proofs: How to remove intractability assumptions. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
pages 113-131, Chicago, Illinois, 2-4 May 1988.
Manuel Blum, Michael Luby and Ronitt Rubinfeld. Self-testing/correcting
with applications to numerical problems. Journal of Computer and System
Sciences, 47:549-595, 1993.
Uriel Feige, Shafi Goldwasser, Laszlé Lovéasz, Shmuel Safra and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the
ACM, 43(2):268-292, 1996. Preliminary version in Proceedings of FOCS’91.
Uriel Feige and Joe Kilian. Two prover protocols — low error at affordable
rates (preliminary version). In Proceedings of the Twenty-Sizth Annual ACM
Symposium on the Theory of Computing, pages 172-183, Montreal, Quebec,
Canada, 23-25 May 1994.
Lance Fortnow, John Rompel, and Michael Sipser. On the power of multiprover
interactive protocols. Theoretical Computer Science, 134:545-557, 1994.
Michel X. Goemans and David P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite pro-
gramming. Journal of the ACM, 42(6):1115-1145, November 1995.
Shafi Goldwasser, Silvio Micali and Charles Rackoff. The knowledge complexity
of interactive proofs. SIAM Journal on Computing, 18:186-208, 1989.
Venkatesan Guruswami, Daniel Lewin, Madhu Sudan and Luca Trevisan. A
tight characterization of NP with 3-query PCPs. Proceedings of the 39th IEEE
Symposium on Foundations of Computer Science, 1998.
Johan Hastad. Some optimal inapproximability results. Technical Report
TR97-037, Electronic Colloquium on Computational Complexity, 1997. Pre-
liminary version in Proceedings of STOC’97.
Johan Hastad. Clique is hard to approximate within n'=¢. ECCC Techni-
cal Report TR97-038. (Preliminary versions in Proceedings of FOCS 96 and
STOC’96).
Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for MAX
3SAT? In 38th Annual Symposium on Foundations of Computer Science, pages
406-415, Miami Beach, Florida, 20-22 October 1997.
Alexander Polishchuk and Daniel Spielman. Nearly-linear size holographic
proofs. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the
Theory of Computing, pages 194-203, Montral, Qubec, Canada, 23-25 May
1994.
Ran Raz. A parallel repetition theorem. SIAM Journal on Computing,
27(3):763-803, 1998. Preliminary version in Proceedings of STOC’95.
Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM Journal on Computing, 25(2):252—
271, 1996.
Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with
optimal amortized query complexity. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, pages 191-199, Portland, Oregon, 21-23
May, 2000.

191-199.
Madhu Sudan and Luca Trevisan. Probabilistically checkable proofs with low

28.

29.

BIBLIOGRAPHY 39

amortized query complexity. In Proceedings of the 39th Annual Symposium
on Foundations of Computer Science, pages 18-27, Palo Alto, California, 8-11
November, 1998.

Luca Trevisan. Recycling queries in PCPs and in linearity tests. In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing, pages 299-308,
Dallas, Texas, 23-26 May, 1998.

Uri Zwick. Approximation algorithms for constraint satisfaction problems in-
volving at most three variables per constraint. In Proceedings of the 9th ACM-
SIAM Symposium on Discrete Algorithms, 1998.

