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Abstract

We show simple constant-round interactive proof systems for problems capturing the approx-
imability, to within a factor of /n, of optimization problems in integer lattices; specifically, the
closest vector problem (CVP), and the shortest vector problem (SVP). These interactive proofs
are for the “coNP direction”; that is, we give an interactive protocol showing that a vector is
“far” from the lattice (for CVP), and an interactive protocol showing that the shortest-lattice-
vector is “long” (for SVP). Furthermore, these interactive proof systems are Honest-Verifier
Perfect Zero-Knowledge.

We conclude that approximating CVP (resp., SVP) within a factor of v/n is in N P NcoAM.
Thus, it seems unlikely that approximating these problems to within a \/n factor is NP-
hard. Previously, for the CVP (resp., SVP) problem, Lagarias et. al., Hastad and Banaszczyk
showed that the gap problem corresponding to approximating CVP (resp., SVP) within n is in
NP NcoNP. On the other hand, Arora et. al. showed that the gap problem corresponding to
approximating CVP within 2log” " n ig quasi-NP-hard.
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1 Introduction

In recent years, many NP-hard optimization problems, have been shown to be hard even to approx-
imate. One current question of interest is how to know when the limit of inapproximability has
been reached, and the problem becomes either tractable or at least not NP-hard to approximate.
Two cases where the limits have been marked are the Min-Set-Cover problem and the Max-3SAT.
For the Min-Set-Cover problem, the greedy approximation algorithm achieves a factor of approxi-
mation In n, whereas achieving any factor of approximation smaller than it is infeasible [18], unless
NPCP (Quasi-Polynomial Time). For the Max-3SAT problem, a recent algorithm of [36] achieves
an approximation ratio of %, whereas by [33] achieving any better factor of approximation would
imply NP = P.

In this work, another possibility emerges as to how to show the limit of NP-Hardness of ap-
proximization. In particular, it is known that the Closest Vector Problem (CVP) is NP-Hard to
approximate within any constant factor, and is infeasible to approximate within 2'°8' " (Ve > 0)
unless AP is in P [6]. In this paper we show a constant-round interactive proof system for a
(promise) problem capturing the approximation of CVP to within a factor of /n. This seems to
indicate that it will be impossible to show an NP-Hardness type result for approximation factor
v/n. In particular, unless coNP C AM (which in particular would collapse the Polynomial-Time
Hierarchy [12]), such a result cannot be proven via a (randomized) many-to-one/Karp reduction.
Furthermore, one would need to use a Turing/Cook reduction which makes queries outside of the
promise — for further discussion see Section 6. We note that such reductions have not be used so
far in the context of proving non-approximability results.

1.1 The computational problems considered

We consider two computational problems regarding integer lattices. The closest vector problem
(CVP), and the shortest vector problem (SVP). In both cases, the dominant parameter seems to be
the dimension of the lattice, denoted n. The lattice is represented by a basis, denoted B, which is

an n-by-n non-singular matrix over R. The lattice, £(B), is the set of points which can be expressed

as integer linear combinations of the columns of B (i.e., £(B) = {Bc: c € 7).

The Closest Vector Problem (CVP). An input of the CVP problem consists of an n-
dimensional lattice £, and a target point ¢ in R®. The desired output is a point ¢ in £ which
is closest to ¢ (where ‘closest’ is defined with respect to a variety of norms).

The CVP problem is NP-hard for all [, norms, p > 1 (cf., van Emde Boas [46]). Furthermore, the
problem is NP-hard to approximate within any constant factor (cf., [6]). The latter work also shows
that if CVP could be approximated within any factor greater than 21087 then NP C P. On
the other hand, Babai showed that CVP can be approximated within factor 2" by a modification
of the LLL lattice reduction algorithm [8], and improvements by [45, 34] yield for every ¢ > 0
approximation within factor 2¢”.

The problem of verifying the “approximate-optimality” of a solution to the CVP problem has
also been considered. Given a point ¢ in the lattice, its distance to t clearly provides an upper bound
on the minimum distance of ¢ to the lattice, but there is no known way to verify in polynomial time
that this distance in indeed minimal. Lagarias et. al. [39] showed, using reductions to the problem
of computing Korkine-Zolotarev bases, that polynomial-size proofs exist that can be verified in
polynomial-time that a vector ¢ is within factor n'® of the closest (to t) lattice vector. An improved
bound of O(n) was obtained by Hastad [32] and Banaszczyk [9], using dual lattices.



The Shortest Vector Problem (SVP). The SVP problem was formulated by Dirichlet in 1842.
An input of the SVP problem is an n-dimensional lattice £, and the desired output is a non-zero
point ¢ in £ of minimum length (where ‘length’ is measured with respect to a variety of norms).!

The SVP problem has been known to be NP-hard in /., (cf., [46]), and recently proved by Ajtai
to be NP-hard (under randomized reductions) for the Euclidean I; norm [2]. Even more recently,
Micciancio [42] has proven that it is NP-Hard (again under randomized reductions) to approximate
the Shortest Vector Problem in [,-norm to within any constant factor smaller than v/2. The famous
LLL lattice reduction algorithm [40] provides a polynomial-time approximation for SVP with an
approximation factor of 27/2, and improvements by [45] achieve for every ¢ > 0 approximation
within factor 2¢".

The problem of verifying the “approximate optimality” of a solution to the SVP problem has
also been considered. The work of Lagarias et. al. [39] implies that polynomial-size proofs exist that
can be verified in polynomial-time that a vector ¢ in the lattice is within factor n of the shortest
vector in the lattice. An alternative proof was suggested by Cai [14].

1.2 New Results: Short Interactive Proofs for approximate CVP and SVP

Hardness of approximation results for an optimization problem ® are typically shown by reducing
some hard problem (e.g., an NP-hard language) to a promise problem? related to the approximation
of ®. The approximation promise problem consists of a pair of subsets, (1lygs, Iy ), so that instances
in Iy have a much “better value” than those in Il,. The gap between these values represents the
approximation slackness, and distinguishing YEs-instances from NoO-instances captures the approx-
imation task. In accordance with this methodology, which has been applied in all work regarding
“hardness of approximation”, we formulate promise problems capturing the approximation of CVP
(resp., SVP) within a factor of g(n).

Notation: By dist(v,u) we denote the Euclidean distance between the vectors v,u € R*. Ex-
tending this notation, we let dist(v, £(B)) denote the distance of v from the lattice, £(B), spanned
by the basis B. That is,

dist(v, £(B)) ' min {dist(v,u)} .

u€L(B)

The CVP promise problem (GapCVP): We consider the promise problem GapCVP , where
g (the gap function) is a function of the dimension.

e YES instances (i.e., satisfying closeness) are triples (B, v, d) where B is a basis for a lattice in
R”, v is a vector in R", d € R and dist(v, £(B)) < d.

e NO instances (i.e., “strongly violating” closeness) are triples (B, v, d) where B is a basis for a
lattice in R”, v € R™ is a vector, d € R and dist(v, £(B)) > g(n) - d.

For any g > 1, the promise problem GapCVP, is in NP (i.e., in the extension of AP to promise
problems): The NP-witness for (B, v,d) being a YEs-instance is merely a vector u € L( B) satisfying
dist(v,u) < d. By [40, 45, 34], GapCVP,., is decidable in polynomial-time, for every ¢ > 0. No

1 An equivalent formulation used below refers to the minimum distance between a pair of distinct lattice points.

2 A promise problem is a pair, (Iygs, yo), of non-intersecting subsets of {0,1}*. The subset Ilygs (resp., Hyo)
corresponds to the YEs-instances (resp., NO-instances) of the problem. The promise is the union of the two subsets;
that is, [Iygs U llyo. Promise problems are a generalization of standard decision problems (i.e., language recognition
problems) in which the promise holds for all strings (i.e., Iygs U o = {0,1}7).



polynomial-time algorithm is known for smaller gap factors, and the problem is NP-Hard for any
constant factor and quasi-NP-Hard for a 2°¢”*" factor (cf., [6]).

Here we present a constant-round interactive proof system for the complement of the above
promise problem with g(n) = o(y/n). That is, we’ll show an interactive procedure in which very-far
instances (NO-instances) are always accepted, whereas close instances (YEs-instances) are accepted
with negligible probability. Specifically, we show that

Theorem 1.1 GapCVPW is i coAM.

Recall that by [39, 32, 9], GapCVP, is in coNP. Thus, we have placed a potentially harder problem
(i.e., referring to smaller gaps) in a potentially bigger class (i.e., coNP C coAM). Unlike the
proofs of [39, 32, 9], which relies on deep results regarding lattices, our proof is totally elementary.

The SVP promise problem (GapSVP): We consider the promise problem GapSVP,, where g
(the gap function) is again a function of the dimension. Without loss of generality, one may set v,
(below) to be the origin, recovering the more standard formulation of the problem.

e YES instances (i.e., having short vectors) are pairs (B, d) where B is a basis for a lattice £(B)
in R”, d € R and dist(vy,v5) < d for some v; # vy in L(B).

e NO instances (i.e., “strongly violating” short vectors) are pairs (B, d) where B and d are as
above but dist(vy,v2) > g(n)-d for all v; # v, in L(B).

Again, for any g > 1, the promise problem GapSVP, is in NP, the problem GapCVP,., is decidable
in polynomial-time (for every ¢ > 0), but no polynomial-time algorithm is known for smaller gap
factors (and the problem is NP-Hard for any constant gap smaller than /2 [2, 42]).

We present a constant-round interactive proof system for the complement of the above promise
problem with g(n) = o(y/n). That is, we’ll show that No-instances are always accepted, whereas
YEs-instances are accepted with negligible probability.

Theorem 1.2 GapSVPW is i coAM.
Recall that by [39], GapCVP, is in coNP. Again, in contrast to [39], our proof is elementary.

On the complexity of unique-SVP: Using our results, Cai has recently proved that the fol-
lowing promise problem, called f(n)-unique SVP, is in coNP N AM for f(n) = /n/O(logn). The
input to the problem is a pair (B,v), and the promise is that the shortest vector in £L(B), denoted
u, is f(n)-unique in the sense that for every u' € L(B) if ||u/|] < f(n) - ||u|| then u’ is an integer
multiple of u. The problem is to distinguish the case when v is the shortest vector of £(b) from
the case it is not. Cai (cf., [14]) has shown a many-to-one reduction of f(n)-unique SVP to the
complement of GapSVP , for g(n) = f(n)-\/f(n)? — 0.25 (which is approximately f(n)*, provided

f(n) = w(1)).

Comment on Zero-Knowledge: Our constant-round interactive proofs for the complement of
GapCVPW and the complement of GapSVPW are actually Perfect Zero-Knowledge
(PZK) with respect to an Honest Verifier. Using recent results regarding zero-knowledge proof
systems [43, 44, 26], it follows that both these problems as well as their complements have (general)
Statistical Zero-Knowledge proof systems (i.e., are in SZK). Specifically, Honest-Verifier Statistical



Zero-Knowledge (SZK) proofs (of which Honest-Verifier PZK is a special case) are closed under
complementation [43], and this holds also for promise problems [44]. Furthermore, Honest-Verifier
SZK proofs can be transformed into ones of the public-coin type [43], and by a recent result of [26]
the latter can be transformed into general SZK proofs (i.e., robust against any verifier strategy).

Comment on other norms: Our proof systems can be adapted to any [, norm (and in particular
to [; and [, ). Specifically, we obtain constant-round (HVPZK) interactive proof systems for gap
n/O(logn) (rather than gap \/n/O(logn) as in [, norm). The result extend to any computationally
tractable norm as defined in Section 5. (Except for Section 5, the rest of the paper refers to CVP
and SVP in [, norm.)

Comment on computational problems regarding Linear Codes: Our proof systems can
be easily adapted to the corresponding Nearest and Lightest codeword problems for linear codes.?
In both cases the obtained gap is n/O(logn), where n is the length of the codewords. For the
Nearest Codeword Problem, a similar bound can be obtained by using the standard reduction of
the coding problem to CVP in /; norm.*

1.3 Implication on proving non-approximability of CVP and SVP

In [25], the existence of an AM-proof system for Graph Non-Isomorphism (GNI) was taken as
evidence to the belief that Graph Isomorphism (GI) is unlikely to be A"P-complete. The reasoning
was that a reduction (even a Cook reduction) of AP to GI would imply that coNP is in AM, and
thus that the Polynomial-Time Hierarchy collapses [12].

We have to be more careful when promise problems are concerned. If NP is KarP-reducible to
GapCVP - (or to any promise problem in AP NcoAM) then it follows that coN’P C AM. However
it is not clear what happens (in general) if AP is Cook-reducible to a promise problem in NP N
coAM. The difficulty is with the case in which the Cook reduction makes some queries for which
the promise does not hold. For such a query the validity of the answer is not necessarily provable
via an AM system. Thus, NP may be CooK-reducible to a promise problem in NP N coAM and
still coN'P C AM may not hold. In fact, Even et. al. [17, Thm. 4] constructed an NP-Hard promise
problem in NP N coN'P (and coNP C NP does not seem to follow). Restricting our attention
to smart reductions [30], which are Cook reductions for which all queries satisfy the promise, we
show that if A"P is reducible to a promise problem in NP N coAM via a smart reduction, then
coN'P C AM.

Our results thus imply that (at least) oNE of the following three MUST HOLD:
L. (Most Probable): GapCVP . is NOT N'P-hard.

2. GapCVP . is A"P-hard but (only) with a reduction which is NOT many-to-one and furthermore
makes queries which violate the promise.

3. (Most improbable): coN'P C AM and in particular the Polynomial-Time Hierarchy collapses.

Ruling out the third possibility, we view our results as establishing limits on results regarding the
hardness of approximating CVP and SVP: Approximations to within a factor of \/n are either not

? This fact, not stated in our preliminary posting on ECCC, was discovered independently by Alekhnovich [4].
* This fact was pointed out to us by Madhu Sudan (priv. comm. 1997).



NP-hard or their NP-hardness must be established via reductions which make queries violating the
promise (of the target promise problem). See Section 6 for further discussion.

We note that Arora et. al. [6] have essentially conjectured that GapCVP . is NP-hard. The
above can be taken as evidence that the conjecture is false.

Remark: We note that in discussions in the literature (cf. [6]), the result of Lagarias et. al. [39] is
taken mistakenly to mean that approximating CVP within n!'-5 cannot be NP-hard, unless coNP C
NP. The possibility of NP-Hardness via non-smart Cook-reductions is ignored, although it does
apply there as well. What can be said is that [39] implies that a proof that approximating CVP

within n'® is NP-Hard either will employ non-smart Cook-reductions or would imply that coNP C
NP.

The cryptographic angle: Interest in the complexity of GapCVP and GapSVP has increased
recently as versions of both problems have been suggested as basis for Cryptographic primitives
and schemes (cf., [1, 23, 3]). In particular, in a pioneering work [1],° Ajtai has constructed a one-
way function assuming that GapSVP, . is hard (in worst case), where ¢ > 11.° Ajtai and Dwork [3]
proposed a public-key encryption scheme whose security is reduced to a special case of (a search
version of ) GapSVP, . (with some big ¢). Interestingly, the trapdoor permutation suggested in [23]
relies on the conjectured difficulty of the Closest Vector Problem. On the other hand, GapCVP, 1< .,
is quasi-NP-hard [6], and GapSVP 5_, is NP-hard [2, 42], for any ¢ > 0. An immediate question
which arises is whether the security of a cryptographic system can be based on the difficulty of
GapCVP, ) or GapSVP for a function ¢ for which these approximation problems are NP-hard (or,
say, quasi-NP-hard). Our results indicate that g(n) may need be o(y/n/logn).

The above raises again an old question, regarding the possibility — in general — of basing the
security of cryptosystems on the assumption that P # AP. We discuss this question in Section 7.

2 Preliminaries

In this section we present some preliminaries regarding computational problems in the geometry
of numbers. We also recall and extend to promise problems the standard definitions of complexity

classes such as AM.

2.1 On the geometry of numbers

Throughout the paper we let dist(v, u) denote the Euclidean distance between the vectors v, u € R™.

Extending this notation to sets of vectors, we let dist(V, U) ! minyep pev{dist(v,u)}. In particular,

we will be interested in dist(v, £(B)), the distance of v from the lattice, £L(B) = {Bec : ¢ € 7"},
spanned by the basis B. Unless stated otherwise (i.e., in Section 5), we denote by ||v|| the Euclidean
length of the vector v € R” (i.e., ||v|| = dist(v,0")).

For a set of vectors U C R” and a vector » € R”, we denote by U + v the set of vectors obtained
by adding a single vector from U to ». That is,

U—I—vdﬁf{v—l—u:ueU} (1)

Thus, for example, dist(u, L(B) + v), is the minimum over all ¢ € Z" of dist(u, Be + v).

® The fundamental aspect of that work, not discussed here, is the reduction of a worst-case problem to an average-
case one.
® The constant has been recently reduced to ¢ > 5 by Cai and Nerurkar [15].



Finite versus infinite precision: To facilitate the exposition, we assume that all operations
are done with infinite precision. This is neither possible nor needed. In reality the inputs (i.e., the
vectors), are given in rational representation, so let m denote the number of bits in the largest of the
corresponding integers. Then making all calculations with poly(n) - m bits of precision, introduces
an additional stochastic deviation of less than 27" in our bounds.

Uniformly selectiing a point in the unit sphere: One may just invoke the general algorithm
of Dyer et. al. [16]. Using this algorithm, it is possible to select almost uniformly a point in any
convex body (given by a membership oracle). Alternatively, one may select the point by generating
n samples from the standard normal distribution, and normalize the result so that a vector of
length r < 1 appears with probability proportional to =" (see, e.g., [38, Sec. 3.4.1]).

Selecting random lattice points: Intuitively, in our proof systems, we would like to select a
random lattice point. Given that the lattice is infinite, this is not really feasible. Instead, we will
select a lattice point almost uniformly among the lattice points in a huge sphere. The sphere will
be hugo with respect to the given basis, and so our selection will be almost independent of the
specific basis. Technically, we define the norm of a set of vectors (e.g., a basis for a lattice), V', as
the length of the longest vector in the set (i.e., ||V|| = max,ev{||v||}). Given a basis B C R™, we
consider the following procedure.

1. Uniformly select a point in the n-dimensional sphere of radius £ % 27 . || B|| centered at the

origin. Let » € R" be the resulting point.

2. Write r as a linear combination of the basis vectors (i.e., solve the linear system Bz = r for

3. Rounding z, in some canonical way, obtain a lattice point. For example, one may set ¢ to be
the integer vector closest to z, and obtain the lattice point Be.

We show that the above process produces lattice points with distribution which is statistically close
to the uniform distribution over the lattice points of length at most ¢. That is,

Proposition 2.1 Let B and £ be as above, and let { be a random variable representing the outcome
of the above random process. Let H Lt {v:||v|| < €}. Then, the statistical difference between ¢ and
the uniform distribution over H N L(B) is at most exp(—(n)).

Proof: The above procedure partitions the sphere H into cells, most of them are parallelepipeds
which are isomorphic to the basic cell/parallelepiped defined by the lattice £(B). The exceptions
are the partial parallelepipeds which are divided by the boundary of the sphere H. All the latter
parallelepipeds are contained between two co-centered spheres, the larger being of radius (+n-|| B|| <
(2" + n) - ||B|| and the smaller being of radius { — n - [|B|| > (2" — n) - || B||. Thus, the fraction of
these (“divided”) parallelepipeds in the total number of parallelepipeds is bounded above by the
volume encompassed between the above two spheres divided by the volume of the smaller sphere.
This relative volume is at most

(2" +n)" — (2" —n) _ <1+ 2n ) y
(2n —n)n 2" —n
- 3n?
omn

(Assuming n > 4.) It follows, that the above procedure generates random lattice points in a
distribution which is at most poly(n)-2~" away from the uniform distribution over L(B)NH. [



2.2 AM and constant-round interactive proofs

To simplify the exposition we extend the definition of standard complexity classes to promise
problem (cf. [17]). For example, a promise problem II = (Ilyg, IIy,) is said to be in NP if there
exists a polynomial-time recognizable (witness) relation R so that

o Lor every z € Il there exists a y € {0, 1}* such that (z,y) € R (and |y| = poly(|z])).

e Lor every z € Il and every y € {0,1}*, (z,y) € R.

Likewise, we extend the standard definition of interactive proof systems to promise problems

(cf., [24]) -

Definition 1 (Interactive Proof systems —IP [28]): An interactive proof system for a promise problem
II = (Mygs, Hyo) is a two-party game, between a verifier executing a probabilistic polynomial-time
strategy (denoted V') and a prover which executes a computationally unbounded strategy (denoted
P), satisfying

o (Perfect) Completeness: For every @ € llyg the verifier V' always accepts after interacting
with the prover P on common input x.

e Soundness: For some positive polynomial p, for every x € lly, and every potential strategy
P*, the verifier V rejects with probability at least m, after interacting with P* on common
inpul x.

In such a case, we say that the proof system has soundness error 1 — m.

The following special cases will be of interest to us.

e In case the verifier is such that for some constant ¢ > 0 and every « € {0,1}*, the verifier
decides after receiving at most ¢ messages (from the prover), we say that the verifier (or the
proof system) is constant-round. Specifically, we may say that it is ¢-round.

e In case the verifier is such that for some polynomial p and every a € {0,1}*, its messages
to the prover are uniformly distributed over {0, 1} we say that the verifier (or the proof
system) is of public-coin type.

o AM is defined as the class of promise problems having public-coin one-round proof systems
of soundness error 1/2.

We recall that soundness error in interactive proof systems (of perfect completeness) may be easily
reduced by parallel repetition.” Thus, given an arbitrary constant-round interactive proof system
for a problem 1I, we may convert it to a constant-round interactive proof system with exponentially
vanishing soundness error (for II). We also recall two more complex transformations.

1. Any constant-round interactive proof system can be converted into a constant-round public-
coin interactive proof system for the same promise problem. This transformation, presented
by Goldwasser and Sipser [29] in the context of languages, does extend to promise problems.
Furthermore, it preserves exponentially vanishing soundness error.

2. Any constant-round public-coin interactive proof system can be converted into one having
one-round. This transformation, presented by Babai [7] in the context of languages, also
extends to promise problems and preserves exponentially vanishing soundness error.

7 For a proof of this folklore theorem — see [21, Apdx. C.1]. We mention that a somewhat more involved argument
applies also to interactive proof systems with non-perfect completeness (which we did not define) [10].



Zero-knowledge

Our main results are the existence of certain constant-round interactive proof systems. It turns
out that these have some zero-knowledge [28] property (defined below). A reader who does not
care about this extra property may skip the following definition as well as any reference to zero-
knowledge made in the sequel.

Definition 2 (Honest-verifier perfect zero-knowledge — HVPZK): The view of an interactive ma-
chine consists of the common input, its internal coin tosses, and all messages it has received. An
interactive proof system (P, V') for a promise problem 11 = (Ilygs, Il ) is honest-verifier perfect zero-
knowledge if there exists a probabilistic polynomial-time machine (called a simulator), S, so that
for every x € llygs the output S(z) is distributed identically to the view of V' when interacting with
P on common input x.

Parallel repetition does preserve perfect zero-knowledge w.r.t the honest verifier. This will be
useful when decreasing the error probability, while preserving the number of rounds (via parallel
repetitions).

3 (HVPZK) constant-round proof for “non-closeness”

We consider the promise problem GapCVP, defined in the introduction, and present a constant-round
interactive proof system for the complement of the above problem for gap g(n) = \/n/O(logn).
Recall that the input is a triple (B,v,d), where B is a basis for a lattice, v is a vector and d € R.
That is, we’ll show that instances in which v is at distance greater than ¢g(n)-d from the lattice are
always accepted, whereas instances in which v is within distance d from L£(B) are accepted with
probability bounded away from 1.

The proof system: Consider a “huge” sphere, denoted H. Specifically, we consider a sphere of
radius 2" - ||(B,v)|| centered at the origin, where [|( B, v)|| denotes the length of the largest vector
in BUwv. Let g = g(n).

1. The verifier uniformly selects ¢ € {0,1}, a random lattice point in H, denoted r, and an error

vector, 77, uniformly distributed in a sphere of radius gd/2. The verifier sends « = N
to the prover.

2. The prover responses with 7 = 0 if dist(z, £(B)) < dist(z, L(B) 4 v) and 7 = 1 otherwise.

3. The verifier accepts if and only if 7 = o.

Analysis of the protocol. By the above, it should be clear that the verifier’s actions in the
protocol can be implemented in probabilistic polynomial-time. We will show that, for g(n) =
/1n/O(logn), the above protocol constitutes a (Honest Verifier Perfect Zero-Knowledge) proof
system for the promise problem mg, with perfect completeness and soundness error bounded
away from 1.

Claim 3.1 (perfect completeness): Ifdist(v, L(B)) > g(n)-d then the verifier always accepts (when
interacting with the prover specified above).



Proof: Under the above hypothesis, for every point z (and in particular the messages sent by verifier
in Step 1), we have dist(z, L(B)) + dist(z, L(B) 4+ v) > g¢d (or else dist(v, £(B)) = dist(L(B) +
v, L(B)) < dist(z, L(B) + v) + dist(z, £L(B)) < dg). Thus, for every message, = r + ov + 7, sent

by the verifier we have

d
dist(z, L(B) + ov) = dist(r+n.L(B)) < || <
dist(z,L(B)+ (1 —0)-v) > gd—dist(z,L(B)+ ov) > d2_g

Thus, it is always the case that dist(z, £L(B) + ov) < dist(z,L(B)+ (1 — o) - v) and the prover
responses with 7 = 0. [

Claim 3.2 (zero-knowledge): The above protocol is perfect honest-verifier zero-knowledge over
triples (v, B,d) satisfying dist(v, L(B)) > g(n) - d.

Proof: The simulator just reads the verifier’s choice for the bit o, and returns it as the prover’s
message. Thus, the simulator’s output will consist of coins for the verifier and the prover’s response.
By the above proof, this distribution is identical the verifier’s view in the real execution. W

Claim 3.3 (soundness): Let ¢ > 0 and g(n) = /=2, If dist(v, L(B)) < d then, for sufficiently

clnn
2c

large n, no matter what the prover does, the verifier accepts with probability at most 1 — n~

The above asserts that for sufficiently large n, the soundness error of the proof system is bounded
away from 1. For smaller (fixed) dimension, one may replace the protocol by an immediate com-
putation using Lenstra’s algorithm [41]. The same holds for Claim 4.3 below.

3.1 Proof of the soundness claim

Let & (resp., &) a random variable representing the message sent by the verifier condition on o = 0
(resp., o = 1). Below, we upper bound the statistical distance® between the two random variables
by (1 —2n72¢). Given this bound, we have for any prover strategy P*

PHP(E) = 0) = 5o Pr(PM(E) = 0) 4+ 5 Pr(P(6) = 1)
= Sty (PH(P(&) = 0) = Pr(P*(6) = 0)
< lJrl-(1—2n—20)
- 2 2
= 1—n7%

Thus, all that remains is to prove the above bound on the statistical distance between £; and &;.
Let u be a lattice vector closest to v, and v = v — u (i.e., u = v — v € L(B) and ||v'|| < d). Then,
the above random variables can be written as

o = 17+7 (2)
& o= r+utv 4y (3)

& The statistical difference between random variables X and Y is defined as the maximum over all sets S of the
absolute difference |Pr(X € 5) — Pr(Y € S)|. This definition is equivalent to another common formulation, by which
the statistical difference equals £ -5 [Pr(X =a) — Pr(Y =a)|.



where (in both cases) r is uniformly distributed in H'(B) € £(B) N H and 5 is as above. The
statistical distance between these two random variables is due to two sources:

1. The shift by the lattice vector u. In case ¢ = 1 the point r + uw may be out of the sphere H
(whereas, by choice, r is alway in H). However, since H is much bigger than u this happens
rarely (i.e., with probability at most 3n?-27"; see proof of Proposition 2.1 above). Generalizing
the argument, one can see that the statistical difference between uniform distribution on H’
and the same distribution shifted by adding the lattice vector u is negligible; that is, it can
be bounded by 3n? - 27" < n=%°,

2. The extra shift by the short vector v'. For each lattice point, p, we consider the statistical
distance between p+n and p+v'+ 1, where 7 is as above. This is the main source of statistical
distance between &; and &;, and the rest of the proof is devoted to upper bound it.

But first, let us turn the above discussion into a rigorous argument. Let A(X,Y’) denote the
statistical difference between the random variables X and Y. First observe that for every S5,

1
Pr(¢&es) = > ——— Prr+utv +n€S)
1
= Y == Prr v + €S
reH'(B)—u |H (B)|

where, as in Eq. (1), H(B) —u ={w — u:wéeH'(B)}. Thus,
A&, &) = mg,LX{Pr(fo €5)—Pr(& e 9)}

1 1 ,
= mg,mx{ Z m-Pr(r—l—nES)— Z W-Pr(r—l—v —|—77€S)}

reH'(B) reH'(B)—u
1
< max Z W-|Pr(r—|—n€S)—Pr(r—l—v'—l—nES)|
reH (B)n(H'(B)—u) |H'(B)
|H'(B)\ (H'(B) —u|
|H'(B)|
< I%aX{Pr(r—l—nE S)—Pr(r+v +n€S)+n*

< max{A(r+n,r+0v +n)}+n""

Without loss of generality, we may fix » = 0". Thus, it suffices to consider the statistical distance
between n and v’ 4+ 5, where n is as above. In the first case the probability mass is uniformly
distributed in a sphere of radius gd/2 centered at 0", whereas in the second case the probability
mass is uniformly distributed in a sphere of radius gd/2 centered at »'. Without loss of generality,
we consider v = (d,0,....,0). Normalizing the distributions (by division with gd/2), it suffices to
consider the statistical distance between the following two distributions:

(D1) Uniform distribution in a unit sphere centered at the origin.

2

(D2) Uniform distribution in a unit sphere centered at point (¢,0,..,0), where ¢ = # =2

Observe that the statistical distance between the two distributions equals half the volume of the
symmetric difference of the two spheres divided by the volume of a sphere. Thus, we are interested
in the relative symmetric difference of the two spheres. Recall two basic facts —

10



Fact 3.4 (e.g., [5, Vol. 2, Sec. 11.33, Ex. 4]): The volume of an n-dimensional sphere of radius r
Y2 where T(z) = (z — 1) -T(z — 1), T(1) = 1, and T(0.5) = /7.

is va(r) = Trearaen

Fact 3.5 (e.g., [37, Sec. 1.2.11.2, Exer. 6]): For sufficiently large real > 2, I'(x + 1) = /271a -
(z/e)®. Thus, for sufficiently large integer, m > 2,

T(m + 0.5)
I'(m)

I'(m+1)

NV )

Lemma 3.6 (symmetric difference between close spheres): Let Sy (resp., S.) be a unit sphere at
the origin (resp., at distance € from the origin). Then relative volume of the symmetric difference
between the spheres (i.e., the volume of the symmetric difference divided by the volume of the sphere)

1s at most
(1- €2)(71—1)/2
2—€¢-———.\/n

3

Our upper bound is not tight. Still, as shown below, the upper bound cannot be decreased below
2 —2-(1—(e/2))"~1/2. /n, and both expressions are equivalent as far as our application goes

(i.e., setting € = \/n/O(log n), both expressions yield 2 — n=9W)).

Figure 1: The cylinder encompassed by Sy and .. The axis of the cylinder is marked in bold and
the radius of its base = (1 — €)%® is computed from the center of the left sphere.

Proof: We will lower bound the volume of the intersection of 5y and .. Specifically, we look at
the maximal (n — 1)-dimensional cylinder of height €, which is centered at the axis connecting the
centers of Sy and 5. and is encompassed by 5, N S.. See Figure 3.1. The radius of this cylinder is
V1 — €2, Thus, its volume (which is a strict lower bound on the volume of $4NS.)is €-v,_1(v/1 — €2).

11



Using Facts 3.4 and 3.5 we have
vol(So N S.) € vp_1(V1—¢€?)
—_— Y >
vol(.Sy) v,(1)
€ - (1 — 62)(“‘_1)/2 . vn—l(l)
(1)
= - (1—é&)n-brz.

I'((n/2)+1)
VT - T((n/2) +0.5)

(1 ez Y2 g-(1—€2)<“—1>/2-@
NZ3 3

4
-~

The lemma follows. I}

Using Lemma 3.6, with ¢ = Ln = 401%, we upper bound the statistical distance between

distributions (D1) and (D2) by

— 2)(n-1)/2 (n—1)/2
1 2_6\/5‘(1 €’) _ 1_\/4clnn‘<1_4clnn)
2 3 6 n
| Velnn (1 QClnn)"/2
3 n/2

< 1-3.n77%

where the last inequality uses velnn > 9. Thus, the statistical distance between & and &; is
bounded by n=%¢ + 1 — 3. n=2% (where the extra n~% term comes from the contribution of the
u-shift analyzed above). The soundness claim follows. W

On the relative tightness of Lemma 3.6: Let Sy (resp., 5¢) be as in the lemma. Recall that
the lemma asserts that vol(5o N .S.) > ¢-v,_1(v/1 — ¢?). In contrast, we show that vol(S5, N 9.) <
2-v,-1(v/1—(€¢/2)?). We consider the minimal (n — 1)-dimensional cylinder centered at the axis
connecting the centers of Sy and 5, and encompassing their intersection. Its height is at most 2

and its radius is /1 — (¢/2)?, and so the claim follows.

3.2 Conclusion

Combining Claims 3.1-3.3, we conclude that the complement of GapCVP\/i) has a (HVPZK)

n/O(logn

constant-round proof system (with soundness error 1 — . Employing known transformations

1
pOW(n))
(see Section 2), we get

Theorem 3 The promise problem GapCVPW is in NPNcoAM. Furthermore, the comple-

ment of GapCVPW has a HVPZK constant-round proof system.
The interesting part is the membership of GapCVP . in coAM. This reduces the gap factor for

which “efficient proof systems” exists: Lagarias et. al. [39], Hastad [32] and Banaszczyk [9] have
previously shown that GapCVP, is in coNP.

12



4 (HVPZK) constant-round proof for “no short-vector”

We consider the promise problem GapSVP, defined in the introduction, and present a constant-round
interactive proof system for the complement of the above problem for gap g(n) = /n/O(logn).
Recall that the input is a pair (B,d), where B is a basis for a lattice and d € R. That is, we’ll
show that instances in which the shortest vector in £(B) has length greater than g(n)-d are always
accepted, whereas instances in which £(B) has a non-zero vector of length at most d are accepted
with probability bounded away from 1.

The proof system: Consider a huge sphere, denoted H (as in Section 3). Specifically, we consider
a sphere of radius 2" - || B|| centered at the origin. Let ¢ = g(n).

1. The verifier uniformly selects a random lattice point, p,in H, and an error vector, n, uniformly
distributed in a sphere of radius gd/2. The verifier sends ﬁdéf p+ n to the prover.

2. The prover sends back the closest lattice point to p.

3. The verifier accepts iff the prover has answered with p.

Claim 4.1 (perfect completeness): If every two distinct lattice points are at distance greater than
gd then the verifier always accepts.

Proof: Under the above hypothesis, for every point  (and in particular the message sent by verifier
in step 1), we have at most one lattice vector v so that dist(z,v) < gd/2 (or else dist(vy,vs) <
dist(x, v, ) + dist(x,v,) < gd). Since we have dist(p, p) < gd/2, the prover always returns p, where
p and p are as in Step 1. W

Claim 4.2 (zero-knowledge): The above protocol is perfect honest-verifier zero-knowledge over
pairs (B, d) for which every two distinct points in L(B) are at distance greater than gd.

Proof: The simulator just reads the verifier’s choice p, and returns it as the prover’s message.
Thus, the simulator’s output will consist of coins for the verifier and the prover’s response. By the
above proof, this distribution is identical the verifier’s view in the real execution. [l

Claim 4.3 (soundness): Let ¢ > 0 and g(n) € /=2—. If for some v, # v, in L(B) we have

eclnn®
dist(vy,ve) < d then, for sufficiently large n, no matter what the prover does, the verifier accepts
with probability at most 1 — n=%°.

Proof: Let p/ Lt p+ (v —vy), where p is the lattice point chosen by the verifier in Step 1. Clearly,
dist(p,p’) < d. Let € be a random variable representing the message actually sent by the verifier,
and let £ = € 4 (v; — vy). Using the analysis in the proof of Claim 3.3, we bound the statistical
distance between these two random variables by (1 — 3n™*"). (Note that £ corresponds to & and
& corresponds to & with v = vy — v;.) Given this bound, we have for any prover strategy P*

Pr(P7(£) = p) (1=3n7"") + Pr(P™(£) = p)

2 - 3072 — Pr(P*(€) = p)

IAN A

13



However, the event P*(£') = p’ is almost as probable as P*(£) = p (with the only difference in
probability due to the case where p’ is outside the sphere H, which happens with probability at
most n~?"). Thus, we have

2 Pr(P(€)=p) < Pr(P(€)=p)+ Pr(P"(€) = p') 40
< 2-—92p7m

and the claim follows. [}

Conclusion: Again, combining the above protocol with known transformations (see Section 2),
we get

Theorem 4 The promise problem GapSVPW is in NPNcoAM. Furthermore, the comple-

ment of GapSVPW has a HVPZK constant-round proof system.

Again, the interesting part is the membership of GapSVP ;5 in coAM. This reduces the gap factor
for which “efficient proof systems” exists: Lagarias et. al. [39] have previously shown that GapSVP,

is in coNP.

5 Treating other norms

The underlying ideas of Theorems 3 and 4 can be applied to provide (HVPZK) constant-round
proof systems for corresponding gap problems regarding any “computationally tractable” norm
and in particular for all {,-norms (e.g., the ¢; and (., norms). The gap factor is however larger:

n/O(log n) rather than \/n/O(logn).

Tractable norms: Recall the norm axioms (for a generic norm || - ||) —

(N1) For every v € R?, ||v|| > 0, with equality holding if and only if v is the zero vector.
(N2) For every v € R” and any a € R, [|av|| = |a] - ||v]].

(N3) For every v,u € R, ||v+ ul| = ||v]| + ||u]|. (Triangle Inequality).

To allow the verifier to conduct its actions in polynomial-time, we make the additional two require-
ments

(N4) The norm function is polynomial-time computable. That is, there exist a polynomial-time
algorithm that, given a vector v and an accuracy parameter é (in binary), outputs a number
in the interval [||v]| £ 6]. We stress that the algorithm is uniform over all dimensions.

(N5) The unit sphere defined by the norm contains a ball of radius 2-P°¥(") centered at the origin,
and is contained in a ball of radius 2P°W(") centered at the origin. That is, there exists a
polynomial p so that for all n’s,

weR ol <277} C {veR:|v|| <1} C {veR" |, < 2¢™)}

where ||v]|5 is the Euclidean ({5) norm of v.

14



Note that axioms (N4) and (N5) are satisfied by all (the standard) {,-norms.” On the other hand,
by [16], axioms (N4) and (N5) suffice for constructing a probabilistic algorithm which given n,
generates in time poly(n) a vector which is almost uniformly distributed in the n-dimensional unit
sphere w.r.t the norm. Specifically, by axioms (N2) and (N3), the unit sphere (defined by the norm)
is a convex body, and axioms (N4) and (N5) imply the existence of a so-called “well-guaranteed
weak membership oracle” (cf., [31]) as required by the convex body algorithm of Dyer et. al. [16]
(and its improvements — e.g., [35]).

Our protocols can be adapted to any norm satisfying the additional axioms (N4) and (N5).
Such norm is hereafter referred to as tractable. Fixing any tractable norm, we modify the protocols
of the previous sections so that the error vector, 5, is chosen uniformly among the vectors of norm
less than g(n)d/2 (rather than being chosen uniformly in a Euclidian sphere of radius g(n)d/2).
Here we use g(n) 2 n/O(logn). Clearly the completeness and zero-knowledge claims continue to
hold as they merely relied on the triangle inequality (i.e., Norm axiom (N3)). In the proof of the
soundness claims, we replace Lemma 3.6 by the following lemma in which distance refers to the
above norm (rather than to Euclidean norm):

Lemma 5.1 (symmetric difference between close spheres, general norm): For every ¢ > 0, let p
be a point at distance € < 1 from the origin. Then the relative symmetric difference between the
set of points of distance 1 from the origin and the set of points of distance 1 from p is at most

2. (1—(1—e)").

We comment that the bound is quite tight for both the ¢; and the £, norm. That is, in both cases
the (maximum possible) relative symmetric difference is at least 2 — (1 — (¢/2))".1°

Proof: Let By (resp., B;) denote the set of points of distance 7 from the origin (resp., from p). The
symmetric difference between By and B) equals twice the volume of B} \ Bj. This volume is clearly
upper bounded by the volume of B} \ B)~¢, since B)~° C Bj by norm axiom (N3). By the norm

WBNBT) _ ) (1 o

axioms (N1) and (N2), the volume of B is proportional to r". Thus, — 25

and the lemma follows. |

Using ¢ = ﬁ and g(n) = n/O(logn), we conclude that the proof systems have soundness error
bounded above by 1—(1— gl‘;ﬂl)” =1-

we get

m. Repeating it polynomially many times in parallel

Theorem 5 Both GapCVP and GapSVP, defined for any tractable norm and gap factor n/O(logn),
are in NP NcoAM. Furthermore, the complement promise problems have HVPZK constant-round
proof systems.

6 What does it mean?

Throughout this section, we refer to complexity classes of promise problems as defined in Section 2.
As stated in the Introduction, the fact that a promise problem in AP NcoNP (resp., AMNcoAM)

® Furthermore, for any fp-norm, there is a simple algorithm for uniformly selecting a point, (x1,...,%n), in the
corresponding unit sphere: Generate n independent samples, z1, ..., z,, each with density function e™ | and normalize
the result so that a vector of norm r < 1 appears with probability proportional to r="

10 Ty verify the “optimality” claim for £, consider the point p = (€, €,...,€). Clearly, the intersection of the unit
sphere centered at the origin and the unit sphere centered at pis (2 — €)", whereas each sphere has volume 2". For
£y, consider the point p = (€,0,...,0). Again, the intersection is a sphere of radius 1 — (¢/2) (according to the norm
in consideration).
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is NP-hard via arbitrary Cook reductions does not seem to imply that NP = coN'P (resp., coN'P C
AM). However, such a conclusion does hold in case NP-hardness is proven by a restricted type
of Cook-reductions, called smart reductions and defined by Grollmann and Selman [30]. Below,
we extend their definition to randomized reductions. To be concerete we require a randomized
reduction to be correct with probability at least 2/3. (Deterministic reductions are viewed as a
special case.)

Definition 6 (smart reduction): A smart reduction of a promise problem A to a promise problem
B is a probabilistic polynomial-time oracle machine that on any input which satisfies the promise
of A, with probability at least 2/3, decides correctly while only making queries which satisfy the
promise of B. Otherwise the reduction is called non-smart.!!

We note that any many-to-one/Karp (possibly randomized) reduction is smart, and that all known
inapproximability results were proven via such reductions of AP to a corresponding gap problem
(such as GapCVP). On the other hand, Grollmann and Selman proved [30, Thm. 2] that if a AP-
complete language has a smart deterministic reduction to a promise problem in AP N coN'P then
NP = coNP. Tt is quite straightforward to adapt their argument to obtain —

Theorem 7 Suppose that a N'P-complete language has a smart (possibly randomized) reduction

to a promise problem in AM N coAM. Then coN'P C AM.

Proof: We start with the case of a deterministic reduction. Here, given any coNP-language L,
we use the smart (deterministic) reduction to the promise problem II in order to construct an
AM-proof system for L. On input x, the prover sends to the verifier a transcript of an accepting
computation of the reduction (i.e., the oracle-machine). This transcript includes queries to the
II-oracle and presumed answers of this oracle. In addition, the prover proves that each of these
answers is correct by running the adequate AM-proof system (for either II or its complement).
Here we use the hypothesis that the reduction is smart (which implies that the prover can always
succeed in case x € L). We stress that all these AM-proofs are run in parallel (cf., [21, Apdx. C.1]),
and so the result is an MAM-proof system (which can be converted into an AM-proof system [7]).

In case of a randomized (smart) reduction, we let the verifier select the random input (to the
reduction) and continue as above. This yields a proof system with non-perfect completeness, but
the (exponentially vanishing) completeness error can be eliminated using [20]. [l

Combining Theorems 3, 4 and 7, we have:
Corollary 8 If either GapCVP ,; or GapSVP . is NP-hard via smart reductions then coN'P C AM.

It is known that the CVP is NP-Hard to approximate within any constant factor, and is hard
to approximate within 2°6' """ unless AP is in P (Quasi-Polynomial time) [6]. (Both reductions
are many-to-one.) Arora et. al. [6] set as a challenge to prove that GapCVP . is A'P-hard. The
corollary above, however, can be taken as evidence of the impossibility of proving such a NP-
Hardness result. Specifically, unless coNP C AM, such a result will have to be derived via a
non-smart Cook reduction.

11 Unfortunately, the term “non-smart” is somewhat misleading — to be non-smart (in an essential way) and yet
work the reduction must be quite “clever”. A term like “safe” or “honest” may have been more suitable than smart;
however “honest” is taken and using “safe” may be confusing when talking about cryptography.
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7 On the possibility of basing Cryptography on the assumption
that P £ NP

The discussion of the “cryptographic angle” in the introduction raises again an old question:
Is it possible to base the security of cryptosystems on the difficulty of NP-hard problems.

A claim of impossibility is commonly attributed to Brassard. However, what Brassard actually
showed [13, Thm. 2, Item (2)ii] can be stated as follows

Brassard’s Theorem: Consider a public-key encryption scheme with a deterministic encryption
algorithm, and suppose that the set of valid public-keys is in coN'P. Then, if the problem of
retrieving the plaintext from the (ciphertext, public-key) pair is NP-Hard, then it follows that

NP = coNP.

There are two problems with the hypothesis of this tmpossibility result, aside from the well
known fact that worst-case hardness of retrieving the plaintext is an inadequate notion of secu-
rity of encryption schemes. The problems are, firstly, that the encryption algorithm is postulated
to be deterministic, and secondly that the set of valid public-keys for it is postulated to form a
coNP-set. While these preconditions are satisfied in certain encryption schemes (and in particular
in the schemes known at the time the claim was made, e.g., plain RSA), they are not satisfied
in probabilistic encryption schemes such as the Goldwasser—Micali [27] and the Blum—Goldwasser
scheme [11] (as well as to the recent “lattice-based” schemes of [3, 23]). We mention that proba-
bilistic encryption is essential to security as defined in [27].

Thus, Brassard’s Theorem does not rule out the possibility of “basing cryptography” (or even
public-key encryption) on the assumption that P # NP (even if NP # coN'P, as we do believe).
Furthermore, such a possibility is not ruled out even by extensions of Brassard’s Theorem of which
we are aware (cf., [22]), and which do cover some probabilistic encryption schemes (such as the
abovementioned [27, 11]).
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