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1 IntroductionIn recent years, many NP-hard optimization problems, have been shown to be hard even to approx-imate. One current question of interest is how to know when the limit of inapproximability hasbeen reached, and the problem becomes either tractable or at least not NP-hard to approximate.Two cases where the limits have been marked are the Min-Set-Cover problem and the Max-3SAT.For the Min-Set-Cover problem, the greedy approximation algorithm achieves a factor of approxi-mation lnn, whereas achieving any factor of approximation smaller than it is infeasible [18], unlessNP � eP (Quasi-Polynomial Time). For the Max-3SAT problem, a recent algorithm of [36] achievesan approximation ratio of 87 , whereas by [33] achieving any better factor of approximation wouldimply NP = P .In this work, another possibility emerges as to how to show the limit of NP-Hardness of ap-proximization. In particular, it is known that the Closest Vector Problem (CVP) is NP-Hard toapproximate within any constant factor, and is infeasible to approximate within 2log1�� n (8� > 0)unless NP is in eP [6]. In this paper we show a constant-round interactive proof system for a(promise) problem capturing the approximation of CVP to within a factor of pn. This seems toindicate that it will be impossible to show an NP-Hardness type result for approximation factorpn. In particular, unless coNP � AM (which in particular would collapse the Polynomial-TimeHierarchy [12]), such a result cannot be proven via a (randomized) many-to-one/Karp reduction.Furthermore, one would need to use a Turing/Cook reduction which makes queries outside of thepromise { for further discussion see Section 6. We note that such reductions have not be used sofar in the context of proving non-approximability results.1.1 The computational problems consideredWe consider two computational problems regarding integer lattices. The closest vector problem(CVP), and the shortest vector problem (SVP). In both cases, the dominant parameter seems to bethe dimension of the lattice, denoted n. The lattice is represented by a basis, denoted B, which isan n-by-n non-singular matrix over R. The lattice, L(B), is the set of points which can be expressedas integer linear combinations of the columns of B (i.e., L(B) def= fBc : c 2 Zng).The Closest Vector Problem (CVP). An input of the CVP problem consists of an n-dimensional lattice L, and a target point t in Rn. The desired output is a point c in L whichis closest to t (where `closest' is de�ned with respect to a variety of norms).The CVP problem is NP-hard for all lp norms, p � 1 (cf., van Emde Boas [46]). Furthermore, theproblem is NP-hard to approximate within any constant factor (cf., [6]). The latter work also showsthat if CVP could be approximated within any factor greater than 2log1�� n, then NP � eP. Onthe other hand, Babai showed that CVP can be approximated within factor 2n by a modi�cationof the LLL lattice reduction algorithm [8], and improvements by [45, 34] yield for every � > 0approximation within factor 2�n.The problem of verifying the \approximate-optimality" of a solution to the CVP problem hasalso been considered. Given a point c in the lattice, its distance to t clearly provides an upper boundon the minimum distance of t to the lattice, but there is no known way to verify in polynomial timethat this distance in indeed minimal. Lagarias et. al. [39] showed, using reductions to the problemof computing Korkine{Zolotarev bases, that polynomial-size proofs exist that can be veri�ed inpolynomial-time that a vector c is within factor n1:5 of the closest (to t) lattice vector. An improvedbound of O(n) was obtained by H�astad [32] and Banaszczyk [9], using dual lattices.1



The Shortest Vector Problem (SVP). The SVP problem was formulated by Dirichlet in 1842.An input of the SVP problem is an n-dimensional lattice L, and the desired output is a non-zeropoint c in L of minimum length (where `length' is measured with respect to a variety of norms).1The SVP problem has been known to be NP-hard in l1 (cf., [46]), and recently proved by Ajtaito be NP-hard (under randomized reductions) for the Euclidean l2 norm [2]. Even more recently,Micciancio [42] has proven that it is NP-Hard (again under randomized reductions) to approximatethe Shortest Vector Problem in l2-norm to within any constant factor smaller than p2. The famousLLL lattice reduction algorithm [40] provides a polynomial-time approximation for SVP with anapproximation factor of 2n=2, and improvements by [45] achieve for every � > 0 approximationwithin factor 2�n.The problem of verifying the \approximate optimality" of a solution to the SVP problem hasalso been considered. The work of Lagarias et. al. [39] implies that polynomial-size proofs exist thatcan be veri�ed in polynomial-time that a vector c in the lattice is within factor n of the shortestvector in the lattice. An alternative proof was suggested by Cai [14].1.2 New Results: Short Interactive Proofs for approximate CVP and SVPHardness of approximation results for an optimization problem � are typically shown by reducingsome hard problem (e.g., an NP-hard language) to a promise problem2 related to the approximationof �. The approximation promise problem consists of a pair of subsets, (�yes;�no), so that instancesin �yes have a much \better value" than those in �no. The gap between these values represents theapproximation slackness, and distinguishing yes-instances from no-instances captures the approx-imation task. In accordance with this methodology, which has been applied in all work regarding\hardness of approximation", we formulate promise problems capturing the approximation of CVP(resp., SVP) within a factor of g(n).Notation: By dist(v; u) we denote the Euclidean distance between the vectors v; u 2 Rn. Ex-tending this notation, we let dist(v;L(B)) denote the distance of v from the lattice, L(B), spannedby the basis B. That is, dist(v;L(B)) def= minu2L(B)fdist(v; u)g :The CVP promise problem (GapCVP): We consider the promise problem GapCVPg, whereg (the gap function) is a function of the dimension.� yes instances (i.e., satisfying closeness) are triples (B; v; d) where B is a basis for a lattice inRn, v is a vector in Rn, d 2 R and dist(v;L(B)) � d.� no instances (i.e., \strongly violating" closeness) are triples (B; v; d) where B is a basis for alattice in Rn, v 2 Rn is a vector, d 2 R and dist(v;L(B)) > g(n) � d.For any g � 1, the promise problem GapCVPg is in NP (i.e., in the extension of NP to promiseproblems): The NP-witness for (B; v; d) being a yes-instance is merely a vector u 2 L(B) satisfyingdist(v; u) � d. By [40, 45, 34], GapCVP2�n is decidable in polynomial-time, for every � > 0. No1 An equivalent formulation used below refers to the minimum distance between a pair of distinct lattice points.2 A promise problem is a pair, (�yes;�no), of non-intersecting subsets of f0; 1g�. The subset �yes (resp., �no)corresponds to the yes-instances (resp., no-instances) of the problem. The promise is the union of the two subsets;that is, �yes [ �no. Promise problems are a generalization of standard decision problems (i.e., language recognitionproblems) in which the promise holds for all strings (i.e., �yes [�no = f0; 1g�).2



polynomial-time algorithm is known for smaller gap factors, and the problem is NP-Hard for anyconstant factor and quasi-NP-Hard for a 2log0:999 n factor (cf., [6]).Here we present a constant-round interactive proof system for the complement of the abovepromise problem with g(n) = o(pn). That is, we'll show an interactive procedure in which very-farinstances (no-instances) are always accepted, whereas close instances (yes-instances) are acceptedwith negligible probability. Speci�cally, we show thatTheorem 1.1 GapCVPpn=O(logn) is in coAM.Recall that by [39, 32, 9], GapCVPn is in coNP. Thus, we have placed a potentially harder problem(i.e., referring to smaller gaps) in a potentially bigger class (i.e., coNP � coAM). Unlike theproofs of [39, 32, 9], which relies on deep results regarding lattices, our proof is totally elementary.The SVP promise problem (GapSVP): We consider the promise problem GapSVPg, where g(the gap function) is again a function of the dimension. Without loss of generality, one may set v1(below) to be the origin, recovering the more standard formulation of the problem.� yes instances (i.e., having short vectors) are pairs (B; d) where B is a basis for a lattice L(B)in Rn, d 2 R and dist(v1; v2) � d for some v1 6= v2 in L(B).� no instances (i.e., \strongly violating" short vectors) are pairs (B; d) where B and d are asabove but dist(v1; v2) > g(n) � d for all v1 6= v2 in L(B).Again, for any g � 1, the promise problem GapSVPg is in NP, the problem GapCVP2�n is decidablein polynomial-time (for every � > 0), but no polynomial-time algorithm is known for smaller gapfactors (and the problem is NP-Hard for any constant gap smaller than p2 [2, 42]).We present a constant-round interactive proof system for the complement of the above promiseproblem with g(n) = o(pn). That is, we'll show that no-instances are always accepted, whereasyes-instances are accepted with negligible probability.Theorem 1.2 GapSVPpn=O(logn) is in coAM.Recall that by [39], GapCVPn is in coNP. Again, in contrast to [39], our proof is elementary.On the complexity of unique-SVP: Using our results, Cai has recently proved that the fol-lowing promise problem, called f(n)-unique SVP, is in coNP \AM for f(n) = 4pn=O(logn). Theinput to the problem is a pair (B; v), and the promise is that the shortest vector in L(B), denotedu, is f(n)-unique in the sense that for every u0 2 L(B) if ku0k � f(n) � kuk then u0 is an integermultiple of u. The problem is to distinguish the case when v is the shortest vector of L(b) fromthe case it is not. Cai (cf., [14]) has shown a many-to-one reduction of f(n)-unique SVP to thecomplement of GapSVPg, for g(n) = f(n) �pf(n)2 � 0:25 (which is approximately f(n)2, providedf(n) = !(1)).Comment on Zero-Knowledge: Our constant-round interactive proofs for the complement ofGapCVPpn=O(logn) and the complement of GapSVPpn=O(logn) are actually Perfect Zero-Knowledge(PZK) with respect to an Honest Veri�er. Using recent results regarding zero-knowledge proofsystems [43, 44, 26], it follows that both these problems as well as their complements have (general)Statistical Zero-Knowledge proof systems (i.e., are in SZK). Speci�cally, Honest-Veri�er Statistical3



Zero-Knowledge (SZK) proofs (of which Honest-Veri�er PZK is a special case) are closed undercomplementation [43], and this holds also for promise problems [44]. Furthermore, Honest-Veri�erSZK proofs can be transformed into ones of the public-coin type [43], and by a recent result of [26]the latter can be transformed into general SZK proofs (i.e., robust against any veri�er strategy).Comment on other norms: Our proof systems can be adapted to any lp norm (and in particularto l1 and l1). Speci�cally, we obtain constant-round (HVPZK) interactive proof systems for gapn=O(logn) (rather than gap pn=O(logn) as in l2 norm). The result extend to any computationallytractable norm as de�ned in Section 5. (Except for Section 5, the rest of the paper refers to CVPand SVP in l2 norm.)Comment on computational problems regarding Linear Codes: Our proof systems canbe easily adapted to the corresponding Nearest and Lightest codeword problems for linear codes.3In both cases the obtained gap is n=O(logn), where n is the length of the codewords. For theNearest Codeword Problem, a similar bound can be obtained by using the standard reduction ofthe coding problem to CVP in l1 norm.41.3 Implication on proving non-approximability of CVP and SVPIn [25], the existence of an AM-proof system for Graph Non-Isomorphism (GNI) was taken asevidence to the belief that Graph Isomorphism (GI) is unlikely to be NP-complete. The reasoningwas that a reduction (even a Cook reduction) of NP to GI would imply that coNP is in AM, andthus that the Polynomial-Time Hierarchy collapses [12].We have to be more careful when promise problems are concerned. If NP is Karp-reducible toGapCVPpn (or to any promise problem in NP\coAM) then it follows that coNP � AM. Howeverit is not clear what happens (in general) if NP is Cook-reducible to a promise problem in NP \coAM. The di�culty is with the case in which the Cook reduction makes some queries for whichthe promise does not hold. For such a query the validity of the answer is not necessarily provablevia an AM system. Thus, NP may be Cook-reducible to a promise problem in NP \ coAM andstill coNP � AM may not hold. In fact, Even et. al. [17, Thm. 4] constructed an NP-Hard promiseproblem in NP \ coNP (and coNP � NP does not seem to follow). Restricting our attentionto smart reductions [30], which are Cook reductions for which all queries satisfy the promise, weshow that if NP is reducible to a promise problem in NP \ coAM via a smart reduction, thencoNP � AM.Our results thus imply that (at least) one of the following three must hold:1. (Most Probable): GapCVPpn is not NP-hard.2. GapCVPpn is NP-hard but (only) with a reduction which is not many-to-one and furthermoremakes queries which violate the promise.3. (Most improbable): coNP � AM and in particular the Polynomial-Time Hierarchy collapses.Ruling out the third possibility, we view our results as establishing limits on results regarding thehardness of approximating CVP and SVP: Approximations to within a factor of pn are either not3 This fact, not stated in our preliminary posting on ECCC, was discovered independently by Alekhnovich [4].4 This fact was pointed out to us by Madhu Sudan (priv. comm. 1997).4



NP-hard or their NP-hardness must be established via reductions which make queries violating thepromise (of the target promise problem). See Section 6 for further discussion.We note that Arora et. al. [6] have essentially conjectured that GapCVPpn is NP-hard. Theabove can be taken as evidence that the conjecture is false.Remark: We note that in discussions in the literature (cf. [6]), the result of Lagarias et. al. [39] istaken mistakenly to mean that approximating CVP within n1:5 cannot be NP-hard, unless coNP �NP. The possibility of NP-Hardness via non-smart Cook-reductions is ignored, although it doesapply there as well. What can be said is that [39] implies that a proof that approximating CVPwithin n1:5 is NP-Hard either will employ non-smart Cook-reductions or would imply that coNP �NP.The cryptographic angle: Interest in the complexity of GapCVP and GapSVP has increasedrecently as versions of both problems have been suggested as basis for Cryptographic primitivesand schemes (cf., [1, 23, 3]). In particular, in a pioneering work [1],5 Ajtai has constructed a one-way function assuming that GapSVPnc is hard (in worst case), where c > 11.6 Ajtai and Dwork [3]proposed a public-key encryption scheme whose security is reduced to a special case of (a searchversion of) GapSVPnc (with some big c). Interestingly, the trapdoor permutation suggested in [23]relies on the conjectured di�culty of the Closest Vector Problem. On the other hand, GapCVP2log1�� nis quasi-NP-hard [6], and GapSVPp2�� is NP-hard [2, 42], for any � > 0. An immediate questionwhich arises is whether the security of a cryptographic system can be based on the di�culty ofGapCVPg(n) or GapSVPg(n) for a function g for which these approximation problems are NP-hard (or,say, quasi-NP-hard). Our results indicate that g(n) may need be o(pn= logn).The above raises again an old question, regarding the possibility { in general { of basing thesecurity of cryptosystems on the assumption that P 6= NP. We discuss this question in Section 7.2 PreliminariesIn this section we present some preliminaries regarding computational problems in the geometryof numbers. We also recall and extend to promise problems the standard de�nitions of complexityclasses such as AM.2.1 On the geometry of numbersThroughout the paper we let dist(v; u) denote the Euclidean distance between the vectors v; u 2 Rn.Extending this notation to sets of vectors, we let dist(V; U) def= minu2U;v2V fdist(v; u)g. In particular,we will be interested in dist(v;L(B)), the distance of v from the lattice, L(B) = fBc : c 2 Zng,spanned by the basis B. Unless stated otherwise (i.e., in Section 5), we denote by kvk the Euclideanlength of the vector v 2 Rn (i.e., kvk = dist(v; 0n)).For a set of vectors U � Rn and a vector v 2 Rn, we denote by U + v the set of vectors obtainedby adding a single vector from U to v. That is,U + v def= fv + u : u 2 Ug (1)Thus, for example, dist(u;L(B) + v), is the minimum over all c 2 Zn of dist(u;Bc+ v).5 The fundamental aspect of that work, not discussed here, is the reduction of a worst-case problem to an average-case one.6 The constant has been recently reduced to c > 5 by Cai and Nerurkar [15].5



Finite versus in�nite precision: To facilitate the exposition, we assume that all operationsare done with in�nite precision. This is neither possible nor needed. In reality the inputs (i.e., thevectors), are given in rational representation, so letm denote the number of bits in the largest of thecorresponding integers. Then making all calculations with poly(n) �m bits of precision, introducesan additional stochastic deviation of less than 2�n in our bounds.Uniformly selectiing a point in the unit sphere: One may just invoke the general algorithmof Dyer et. al. [16]. Using this algorithm, it is possible to select almost uniformly a point in anyconvex body (given by a membership oracle). Alternatively, one may select the point by generatingn samples from the standard normal distribution, and normalize the result so that a vector oflength r � 1 appears with probability proportional to r�n (see, e.g., [38, Sec. 3.4.1]).Selecting random lattice points: Intuitively, in our proof systems, we would like to select arandom lattice point. Given that the lattice is in�nite, this is not really feasible. Instead, we willselect a lattice point almost uniformly among the lattice points in a huge sphere. The sphere willbe hugo with respect to the given basis, and so our selection will be almost independent of thespeci�c basis. Technically, we de�ne the norm of a set of vectors (e.g., a basis for a lattice), V , asthe length of the longest vector in the set (i.e., kV k = maxv2V fkvkg). Given a basis B � Rn, weconsider the following procedure.1. Uniformly select a point in the n-dimensional sphere of radius ` def= 2n � kBk centered at theorigin. Let r 2 Rn be the resulting point.2. Write r as a linear combination of the basis vectors (i.e., solve the linear system Bx = r forx).3. Rounding x, in some canonical way, obtain a lattice point. For example, one may set c to bethe integer vector closest to x, and obtain the lattice point Bc.We show that the above process produces lattice points with distribution which is statistically closeto the uniform distribution over the lattice points of length at most `. That is,Proposition 2.1 Let B and ` be as above, and let � be a random variable representing the outcomeof the above random process. Let H def= fv : kvk � `g. Then, the statistical di�erence between � andthe uniform distribution over H \ L(B) is at most exp(�
(n)).Proof: The above procedure partitions the sphere H into cells, most of them are parallelepipedswhich are isomorphic to the basic cell/parallelepiped de�ned by the lattice L(B). The exceptionsare the partial parallelepipeds which are divided by the boundary of the sphere H . All the latterparallelepipeds are contained between two co-centered spheres, the larger being of radius `+n�kBk �(2n + n) � kBk and the smaller being of radius ` � n � kBk � (2n � n) � kBk. Thus, the fraction ofthese (\divided") parallelepipeds in the total number of parallelepipeds is bounded above by thevolume encompassed between the above two spheres divided by the volume of the smaller sphere.This relative volume is at most(2n + n)n � (2n � n)n(2n � n)n = �1 + 2n2n � n�n � 1< 3n22n(Assuming n � 4.) It follows, that the above procedure generates random lattice points in adistribution which is at most poly(n) �2�n away from the uniform distribution over L(B)\H .6



2.2 AM and constant-round interactive proofsTo simplify the exposition we extend the de�nition of standard complexity classes to promiseproblem (cf. [17]). For example, a promise problem � = (�yes;�no) is said to be in NP if thereexists a polynomial-time recognizable (witness) relation R so that� For every x 2 �yes there exists a y 2 f0; 1g� such that (x; y) 2 R (and jyj = poly(jxj)).� For every x 2 �no and every y 2 f0; 1g�, (x; y) 62 R.Likewise, we extend the standard de�nition of interactive proof systems to promise problems(cf., [24]) {De�nition 1 (Interactive Proof systems { IP [28]): An interactive proof system for a promise problem� = (�yes;�no) is a two-party game, between a veri�er executing a probabilistic polynomial-timestrategy (denoted V ) and a prover which executes a computationally unbounded strategy (denotedP ), satisfying� (Perfect) Completeness: For every x 2 �yes the veri�er V always accepts after interactingwith the prover P on common input x.� Soundness: For some positive polynomial p, for every x 2 �no and every potential strategyP �, the veri�er V rejects with probability at least 1p(jxj) , after interacting with P � on commoninput x.In such a case, we say that the proof system has soundness error 1� 1p(jxj) .The following special cases will be of interest to us.� In case the veri�er is such that for some constant c > 0 and every x 2 f0; 1g�, the veri�erdecides after receiving at most c messages (from the prover), we say that the veri�er (or theproof system) is constant-round. Speci�cally, we may say that it is c-round.� In case the veri�er is such that for some polynomial p and every x 2 f0; 1g�, its messagesto the prover are uniformly distributed over f0; 1gp(jxj), we say that the veri�er (or the proofsystem) is of public-coin type.� AM is de�ned as the class of promise problems having public-coin one-round proof systemsof soundness error 1=2.We recall that soundness error in interactive proof systems (of perfect completeness) may be easilyreduced by parallel repetition.7 Thus, given an arbitrary constant-round interactive proof systemfor a problem �, we may convert it to a constant-round interactive proof system with exponentiallyvanishing soundness error (for �). We also recall two more complex transformations.1. Any constant-round interactive proof system can be converted into a constant-round public-coin interactive proof system for the same promise problem. This transformation, presentedby Goldwasser and Sipser [29] in the context of languages, does extend to promise problems.Furthermore, it preserves exponentially vanishing soundness error.2. Any constant-round public-coin interactive proof system can be converted into one havingone-round. This transformation, presented by Babai [7] in the context of languages, alsoextends to promise problems and preserves exponentially vanishing soundness error.7 For a proof of this folklore theorem { see [21, Apdx. C.1]. We mention that a somewhat more involved argumentapplies also to interactive proof systems with non-perfect completeness (which we did not de�ne) [10].7



Zero-knowledgeOur main results are the existence of certain constant-round interactive proof systems. It turnsout that these have some zero-knowledge [28] property (de�ned below). A reader who does notcare about this extra property may skip the following de�nition as well as any reference to zero-knowledge made in the sequel.De�nition 2 (Honest-veri�er perfect zero-knowledge { HVPZK): The view of an interactive ma-chine consists of the common input, its internal coin tosses, and all messages it has received. Aninteractive proof system (P; V ) for a promise problem � = (�yes;�no) is honest-veri�er perfect zero-knowledge if there exists a probabilistic polynomial-time machine (called a simulator), S, so thatfor every x 2 �yes the output S(x) is distributed identically to the view of V when interacting withP on common input x.Parallel repetition does preserve perfect zero-knowledge w.r.t the honest veri�er. This will beuseful when decreasing the error probability, while preserving the number of rounds (via parallelrepetitions).3 (HVPZK) constant-round proof for \non-closeness"We consider the promise problem GapCVPg de�ned in the introduction, and present a constant-roundinteractive proof system for the complement of the above problem for gap g(n) = pn=O(logn).Recall that the input is a triple (B; v; d), where B is a basis for a lattice, v is a vector and d 2 R.That is, we'll show that instances in which v is at distance greater than g(n) �d from the lattice arealways accepted, whereas instances in which v is within distance d from L(B) are accepted withprobability bounded away from 1.The proof system: Consider a \huge" sphere, denoted H . Speci�cally, we consider a sphere ofradius 2n � k(B; v)k centered at the origin, where k(B; v)k denotes the length of the largest vectorin B [ v. Let g = g(n).1. The veri�er uniformly selects � 2 f0; 1g, a random lattice point in H , denoted r, and an errorvector, �, uniformly distributed in a sphere of radius gd=2. The veri�er sends x def= r+ �v+ �to the prover.2. The prover responses with � = 0 if dist(x;L(B)) < dist(x;L(B) + v) and � = 1 otherwise.3. The veri�er accepts if and only if � = �.Analysis of the protocol. By the above, it should be clear that the veri�er's actions in theprotocol can be implemented in probabilistic polynomial-time. We will show that, for g(n) =pn=O(logn), the above protocol constitutes a (Honest Veri�er Perfect Zero-Knowledge) proofsystem for the promise problem GapCVPg , with perfect completeness and soundness error boundedaway from 1.Claim 3.1 (perfect completeness): If dist(v;L(B)) > g(n)�d then the veri�er always accepts (wheninteracting with the prover speci�ed above). 8



Proof: Under the above hypothesis, for every point x (and in particular the messages sent by veri�erin Step 1), we have dist(x;L(B)) + dist(x;L(B) + v) > gd (or else dist(v;L(B)) = dist(L(B) +v;L(B)) � dist(x;L(B) + v) + dist(x;L(B)) � dg). Thus, for every message, x = r + �v + �, sentby the veri�er we have dist(x;L(B) + �v) = dist(r + �;L(B)) � k�k � dg2dist(x;L(B) + (1� �) � v) > gd� dist(x;L(B) + �v) � dg2Thus, it is always the case that dist(x;L(B) + �v) < dist(x;L(B) + (1� �) � v) and the proverresponses with � = �.Claim 3.2 (zero-knowledge): The above protocol is perfect honest-veri�er zero-knowledge overtriples (v; B; d) satisfying dist(v;L(B)) > g(n) � d.Proof: The simulator just reads the veri�er's choice for the bit �, and returns it as the prover'smessage. Thus, the simulator's output will consist of coins for the veri�er and the prover's response.By the above proof, this distribution is identical the veri�er's view in the real execution.Claim 3.3 (soundness): Let c > 0 and g(n) def= q nc lnn . If dist(v;L(B)) � d then, for su�cientlylarge n, no matter what the prover does, the veri�er accepts with probability at most 1� n�2c.The above asserts that for su�ciently large n, the soundness error of the proof system is boundedaway from 1. For smaller (�xed) dimension, one may replace the protocol by an immediate com-putation using Lenstra's algorithm [41]. The same holds for Claim 4.3 below.3.1 Proof of the soundness claimLet �0 (resp., �1) a random variable representing the message sent by the veri�er condition on � = 0(resp., � = 1). Below, we upper bound the statistical distance8 between the two random variablesby (1� 2n�2c). Given this bound, we have for any prover strategy P �Pr(P �(��) = �) = 12 � Pr(P �(�0) = 0) + 12 � Pr(P �(�1) = 1)= 12 + 12 � (Pr(P �(�0) = 0)� Pr(P �(�1) = 0))� 12 + 12 � (1� 2n�2c)= 1� n�2cThus, all that remains is to prove the above bound on the statistical distance between �0 and �1.Let u be a lattice vector closest to v, and v0 = v � u (i.e., u = v � v0 2 L(B) and kv0k � d). Then,the above random variables can be written as�0 = r + � (2)�1 = r + u+ v0 + � (3)8 The statistical di�erence between random variables X and Y is de�ned as the maximum over all sets S of theabsolute di�erence jPr(X 2 S)�Pr(Y 2 S)j. This de�nition is equivalent to another common formulation, by whichthe statistical di�erence equals 12 �Pa jPr(X = a) � Pr(Y = a)j.9



where (in both cases) r is uniformly distributed in H 0(B) def= L(B) \ H and � is as above. Thestatistical distance between these two random variables is due to two sources:1. The shift by the lattice vector u. In case � = 1 the point r + u may be out of the sphere H(whereas, by choice, r is alway in H). However, since H is much bigger than u this happensrarely (i.e., with probability at most 3n2�2�n; see proof of Proposition 2.1 above). Generalizingthe argument, one can see that the statistical di�erence between uniform distribution on H 0and the same distribution shifted by adding the lattice vector u is negligible; that is, it canbe bounded by 3n2 � 2�n < n�2c.2. The extra shift by the short vector v0. For each lattice point, p, we consider the statisticaldistance between p+� and p+v0+�, where � is as above. This is the main source of statisticaldistance between �0 and �1, and the rest of the proof is devoted to upper bound it.But �rst, let us turn the above discussion into a rigorous argument. Let �(X; Y ) denote thestatistical di�erence between the random variables X and Y . First observe that for every S,Pr(�1 2 S) = Xr2H0(B) 1jH 0(B)j � Pr(r+ u+ v0 + � 2 S)= Xr2H0(B)�u 1jH 0(B)j �Pr(r + v0 + � 2 S)where, as in Eq. (1), H 0(B)� u = fw� u : w2H 0(B)g. Thus,�(�0; �1) = maxS fPr(�0 2 S)� Pr(�1 2 S)g= maxS 8<: Xr2H0 (B) 1jH 0(B)j � Pr(r+ � 2 S)� Xr2H0 (B)�u 1jH 0(B)j �Pr(r + v0 + � 2 S)9=;� maxS 8<: Xr2H0 (B)\(H0(B)�u) 1jH 0(B)j � jPr(r + � 2 S)� Pr(r+ v0 + � 2 S)j9=;+ jH 0(B) n (H 0(B) � u)jjH 0(B)j� maxS;r fPr(r + � 2 S)� Pr(r + v0 + � 2 S)g+ n�2c� maxr f�(r+ �; r+ v0 + �)g+ n�2cWithout loss of generality, we may �x r = 0n. Thus, it su�ces to consider the statistical distancebetween � and v0 + �, where � is as above. In the �rst case the probability mass is uniformlydistributed in a sphere of radius gd=2 centered at 0n, whereas in the second case the probabilitymass is uniformly distributed in a sphere of radius gd=2 centered at v0. Without loss of generality,we consider v0 = (d; 0; ::::; 0). Normalizing the distributions (by division with gd=2), it su�ces toconsider the statistical distance between the following two distributions:(D1) Uniform distribution in a unit sphere centered at the origin.(D2) Uniform distribution in a unit sphere centered at point (�; 0; ::; 0), where � = dgd=2 = 2g .Observe that the statistical distance between the two distributions equals half the volume of thesymmetric di�erence of the two spheres divided by the volume of a sphere. Thus, we are interestedin the relative symmetric di�erence of the two spheres. Recall two basic facts {10



Fact 3.4 (e.g., [5, Vol. 2, Sec. 11.33, Ex. 4]): The volume of an n-dimensional sphere of radius ris vn(r) def= �n=2�((n=2)+1) � rn, where �(x) = (x� 1) � �(x� 1), �(1) = 1, and �(0:5) = p�.Fact 3.5 (e.g., [37, Sec. 1.2.11.2, Exer. 6]): For su�ciently large real x > 2, �(x + 1) � p2�x �(x=e)x. Thus, for su�ciently large integer, m > 2,�(m+ 0:5)�(m) � pm � �(m+ 1)�(m + 0:5)Lemma 3.6 (symmetric di�erence between close spheres): Let S0 (resp., S�) be a unit sphere atthe origin (resp., at distance � from the origin). Then relative volume of the symmetric di�erencebetween the spheres (i.e., the volume of the symmetric di�erence divided by the volume of the sphere)is at most 2� � � (1� �2)(n�1)=23 � pnOur upper bound is not tight. Still, as shown below, the upper bound cannot be decreased below2 � 2 � (1� (�=2)2)(n�1)=2 � pn, and both expressions are equivalent as far as our application goes(i.e., setting � = pn=O(logn), both expressions yield 2� n�O(1)).
x

1

εFigure 1: The cylinder encompassed by S0 and S�. The axis of the cylinder is marked in bold andthe radius of its base x = (1� �2)0:5 is computed from the center of the left sphere.Proof: We will lower bound the volume of the intersection of S0 and S�. Speci�cally, we look atthe maximal (n� 1)-dimensional cylinder of height �, which is centered at the axis connecting thecenters of S0 and S� and is encompassed by S0 \ S�. See Figure 3.1. The radius of this cylinder isp1� �2. Thus, its volume (which is a strict lower bound on the volume of S0\S�) is ��vn�1(p1� �2).11



Using Facts 3.4 and 3.5 we havevol(S0 \ S�)vol(S0) > � � vn�1(p1� �2)vn(1)= � � (1� �2)(n�1)=2 � vn�1(1)vn(1)= � � (1� �2)(n�1)=2 � �((n=2) + 1)p� � �((n=2) + 0:5)� � � (1� �2)(n�1)=2 � pn=2p� > � � (1� �2)(n�1)=2 � pn3The lemma follows.Using Lemma 3.6, with � = 2g(n) = q4c ln nn , we upper bound the statistical distance betweendistributions (D1) and (D2) by12 �  2� �pn � (1� �2)(n�1)=23 ! = 1� p4c lnn6 � �1� 4c lnnn �(n�1)=2< 1� pc lnn3 � �1� 2c lnnn=2 �n=2< 1� 3 � n�2cwhere the last inequality uses pc lnn > 9. Thus, the statistical distance between �0 and �1 isbounded by n�2c + 1 � 3 � n�2c (where the extra n�2c term comes from the contribution of theu-shift analyzed above). The soundness claim follows.On the relative tightness of Lemma 3.6: Let S0 (resp., S�) be as in the lemma. Recall thatthe lemma asserts that vol(S0 \ S�) > � � vn�1(p1� �2). In contrast, we show that vol(S0 \ S�) <2 � vn�1(p1� (�=2)2). We consider the minimal (n � 1)-dimensional cylinder centered at the axisconnecting the centers of S0 and S� and encompassing their intersection. Its height is at most 2and its radius is p1� (�=2)2, and so the claim follows.3.2 ConclusionCombining Claims 3.1{3.3, we conclude that the complement of GapCVPpn=O(logn) has a (HVPZK)constant-round proof system (with soundness error 1� 1poly(n)). Employing known transformations(see Section 2), we getTheorem 3 The promise problem GapCVPpn=O(logn) is in NP \ coAM. Furthermore, the comple-ment of GapCVPpn=O(logn) has a HVPZK constant-round proof system.The interesting part is the membership of GapCVPpn in coAM. This reduces the gap factor forwhich \e�cient proof systems" exists: Lagarias et. al. [39], H�astad [32] and Banaszczyk [9] havepreviously shown that GapCVPn is in coNP. 12



4 (HVPZK) constant-round proof for \no short-vector"We consider the promise problem GapSVPg de�ned in the introduction, and present a constant-roundinteractive proof system for the complement of the above problem for gap g(n) = pn=O(logn).Recall that the input is a pair (B; d), where B is a basis for a lattice and d 2 R. That is, we'llshow that instances in which the shortest vector in L(B) has length greater than g(n) �d are alwaysaccepted, whereas instances in which L(B) has a non-zero vector of length at most d are acceptedwith probability bounded away from 1.The proof system: Consider a huge sphere, denotedH (as in Section 3). Speci�cally, we considera sphere of radius 2n � kBk centered at the origin. Let g = g(n).1. The veri�er uniformly selects a random lattice point, p, in H , and an error vector, �, uniformlydistributed in a sphere of radius gd=2. The veri�er sends ep def= p+ � to the prover.2. The prover sends back the closest lattice point to ep.3. The veri�er accepts i� the prover has answered with p.Claim 4.1 (perfect completeness): If every two distinct lattice points are at distance greater thangd then the veri�er always accepts.Proof: Under the above hypothesis, for every point x (and in particular the message sent by veri�erin step 1), we have at most one lattice vector v so that dist(x; v) � gd=2 (or else dist(v1; v2) �dist(x; v1) + dist(x; v2) � gd). Since we have dist(ep; p) � gd=2, the prover always returns p, wherep and ep are as in Step 1.Claim 4.2 (zero-knowledge): The above protocol is perfect honest-veri�er zero-knowledge overpairs (B; d) for which every two distinct points in L(B) are at distance greater than gd.Proof: The simulator just reads the veri�er's choice p, and returns it as the prover's message.Thus, the simulator's output will consist of coins for the veri�er and the prover's response. By theabove proof, this distribution is identical the veri�er's view in the real execution.Claim 4.3 (soundness): Let c > 0 and g(n) def= q nc lnn . If for some v1 6= v2 in L(B) we havedist(v1; v2) � d then, for su�ciently large n, no matter what the prover does, the veri�er acceptswith probability at most 1� n�2c.Proof: Let p0 def= p+(v1�v2), where p is the lattice point chosen by the veri�er in Step 1. Clearly,dist(p; p0) � d. Let � be a random variable representing the message actually sent by the veri�er,and let �0 = � + (v1 � v2). Using the analysis in the proof of Claim 3.3, we bound the statisticaldistance between these two random variables by (1 � 3n�2n). (Note that � corresponds to �0 and�0 corresponds to �1 with v0 = v1 � v2.) Given this bound, we have for any prover strategy P �Pr(P �(�) = p) � (1� 3n�2n) + Pr(P �(�0) = p)� 2� 3n�2n � Pr(P �(�0) = p0)13



However, the event P �(�0) = p0 is almost as probable as P �(�) = p (with the only di�erence inprobability due to the case where p0 is outside the sphere H , which happens with probability atmost n�2n). Thus, we have2 � Pr(P �(�) = p) < Pr(P �(�) = p) + Pr(P �(�0) = p0) + n�2n� 2� 2n�2nand the claim follows.Conclusion: Again, combining the above protocol with known transformations (see Section 2),we getTheorem 4 The promise problem GapSVPpn=O(logn) is in NP \ coAM. Furthermore, the comple-ment of GapSVPpn=O(logn) has a HVPZK constant-round proof system.Again, the interesting part is the membership of GapSVPpn in coAM. This reduces the gap factorfor which \e�cient proof systems" exists: Lagarias et. al. [39] have previously shown that GapSVPnis in coNP.5 Treating other normsThe underlying ideas of Theorems 3 and 4 can be applied to provide (HVPZK) constant-roundproof systems for corresponding gap problems regarding any \computationally tractable" normand in particular for all `p-norms (e.g., the `1 and `1 norms). The gap factor is however larger:n=O(logn) rather than pn=O(logn).Tractable norms: Recall the norm axioms (for a generic norm k � k) {(N1) For every v 2 Rn, kvk � 0, with equality holding if and only if v is the zero vector.(N2) For every v 2 Rn and any � 2 R, k�vk = j�j � kvk.(N3) For every v; u 2 Rn, kv + uk = kvk+ kuk. (Triangle Inequality).To allow the veri�er to conduct its actions in polynomial-time, we make the additional two require-ments(N4) The norm function is polynomial-time computable. That is, there exist a polynomial-timealgorithm that, given a vector v and an accuracy parameter � (in binary), outputs a numberin the interval [kvk � �]. We stress that the algorithm is uniform over all dimensions.(N5) The unit sphere de�ned by the norm contains a ball of radius 2�poly(n) centered at the origin,and is contained in a ball of radius 2poly(n) centered at the origin. That is, there exists apolynomial p so that for all n's,fv 2 Rn : kvk2 � 2�p(n)g � fv 2 Rn : kvk � 1g � fv 2 Rn : kvk2 � 2p(n)gwhere kvk2 is the Euclidean (`2) norm of v.14



Note that axioms (N4) and (N5) are satis�ed by all (the standard) `p-norms.9 On the other hand,by [16], axioms (N4) and (N5) su�ce for constructing a probabilistic algorithm which given n,generates in time poly(n) a vector which is almost uniformly distributed in the n-dimensional unitsphere w.r.t the norm. Speci�cally, by axioms (N2) and (N3), the unit sphere (de�ned by the norm)is a convex body, and axioms (N4) and (N5) imply the existence of a so-called \well-guaranteedweak membership oracle" (cf., [31]) as required by the convex body algorithm of Dyer et. al. [16](and its improvements { e.g., [35]).Our protocols can be adapted to any norm satisfying the additional axioms (N4) and (N5).Such norm is hereafter referred to as tractable. Fixing any tractable norm, we modify the protocolsof the previous sections so that the error vector, �, is chosen uniformly among the vectors of normless than g(n)d=2 (rather than being chosen uniformly in a Euclidian sphere of radius g(n)d=2).Here we use g(n) def= n=O(logn). Clearly the completeness and zero-knowledge claims continue tohold as they merely relied on the triangle inequality (i.e., Norm axiom (N3)). In the proof of thesoundness claims, we replace Lemma 3.6 by the following lemma in which distance refers to theabove norm (rather than to Euclidean norm):Lemma 5.1 (symmetric di�erence between close spheres, general norm): For every c > 0, let pbe a point at distance � < 1 from the origin. Then the relative symmetric di�erence between theset of points of distance 1 from the origin and the set of points of distance 1 from p is at most2 � (1� (1� �)n).We comment that the bound is quite tight for both the `1 and the `1 norm. That is, in both casesthe (maximum possible) relative symmetric di�erence is at least 2� (1� (�=2))n.10Proof: Let Br0 (resp., Brp) denote the set of points of distance r from the origin (resp., from p). Thesymmetric di�erence between B10 and B1p equals twice the volume of B1p nB10 . This volume is clearlyupper bounded by the volume of B1p n B1��p , since B1��p � B10 by norm axiom (N3). By the normaxioms (N1) and (N2), the volume of Brp is proportional to rn. Thus, vol(B1pnB1��p )vol(B1p) = 1 � (1� �)n,and the lemma follows.Using � = 2g(n) and g(n) = n=O(logn), we conclude that the proof systems have soundness errorbounded above by 1� (1� O(logn)n )n = 1� 1poly(n) . Repeating it polynomially many times in parallelwe getTheorem 5 Both GapCVP and GapSVP, de�ned for any tractable norm and gap factor n=O(logn),are in NP \ coAM. Furthermore, the complement promise problems have HVPZK constant-roundproof systems.6 What does it mean?Throughout this section, we refer to complexity classes of promise problems as de�ned in Section 2.As stated in the Introduction, the fact that a promise problem in NP\coNP (resp., AM\coAM)9 Furthermore, for any `p-norm, there is a simple algorithm for uniformly selecting a point, (x1; :::; xn), in thecorresponding unit sphere: Generate n independent samples, x1; :::; xn, each with density function e�xp , and normalizethe result so that a vector of norm r � 1 appears with probability proportional to r�n.10 To verify the \optimality" claim for `1, consider the point p = (�; �; :::; �). Clearly, the intersection of the unitsphere centered at the origin and the unit sphere centered at p is (2� �)n, whereas each sphere has volume 2n. For`1, consider the point p = (�; 0; :::;0). Again, the intersection is a sphere of radius 1� (�=2) (according to the normin consideration). 15



is NP-hard via arbitrary Cook reductions does not seem to imply that NP = coNP (resp., coNP �AM). However, such a conclusion does hold in case NP-hardness is proven by a restricted typeof Cook-reductions, called smart reductions and de�ned by Grollmann and Selman [30]. Below,we extend their de�nition to randomized reductions. To be concerete we require a randomizedreduction to be correct with probability at least 2=3. (Deterministic reductions are viewed as aspecial case.)De�nition 6 (smart reduction): A smart reduction of a promise problem A to a promise problemB is a probabilistic polynomial-time oracle machine that on any input which satis�es the promiseof A, with probability at least 2=3, decides correctly while only making queries which satisfy thepromise of B. Otherwise the reduction is called non-smart.11We note that any many-to-one/Karp (possibly randomized) reduction is smart, and that all knowninapproximability results were proven via such reductions of NP to a corresponding gap problem(such as GapCVP). On the other hand, Grollmann and Selman proved [30, Thm. 2] that if a NP-complete language has a smart deterministic reduction to a promise problem in NP \ coNP thenNP = coNP. It is quite straightforward to adapt their argument to obtain {Theorem 7 Suppose that a NP-complete language has a smart (possibly randomized) reductionto a promise problem in AM\ coAM. Then coNP � AM.Proof: We start with the case of a deterministic reduction. Here, given any coNP-language L,we use the smart (deterministic) reduction to the promise problem � in order to construct anAM-proof system for L. On input x, the prover sends to the veri�er a transcript of an acceptingcomputation of the reduction (i.e., the oracle-machine). This transcript includes queries to the�-oracle and presumed answers of this oracle. In addition, the prover proves that each of theseanswers is correct by running the adequate AM-proof system (for either � or its complement).Here we use the hypothesis that the reduction is smart (which implies that the prover can alwayssucceed in case x 2 L). We stress that all these AM-proofs are run in parallel (cf., [21, Apdx. C.1]),and so the result is an MAM-proof system (which can be converted into an AM-proof system [7]).In case of a randomized (smart) reduction, we let the veri�er select the random input (to thereduction) and continue as above. This yields a proof system with non-perfect completeness, butthe (exponentially vanishing) completeness error can be eliminated using [20].Combining Theorems 3, 4 and 7, we have:Corollary 8 If either GapCVPpn or GapSVPpn is NP-hard via smart reductions then coNP � AM.It is known that the CVP is NP-Hard to approximate within any constant factor, and is hardto approximate within 2log1�� n unless NP is in eP (Quasi-Polynomial time) [6]. (Both reductionsare many-to-one.) Arora et. al. [6] set as a challenge to prove that GapCVPpn is NP-hard. Thecorollary above, however, can be taken as evidence of the impossibility of proving such a NP-Hardness result. Speci�cally, unless coNP � AM, such a result will have to be derived via anon-smart Cook reduction.11 Unfortunately, the term \non-smart" is somewhat misleading { to be non-smart (in an essential way) and yetwork the reduction must be quite \clever". A term like \safe" or \honest" may have been more suitable than smart;however \honest" is taken and using \safe" may be confusing when talking about cryptography.16



7 On the possibility of basing Cryptography on the assumptionthat P 6= NPThe discussion of the \cryptographic angle" in the introduction raises again an old question:Is it possible to base the security of cryptosystems on the di�culty of NP-hard problems.A claim of impossibility is commonly attributed to Brassard. However, what Brassard actuallyshowed [13, Thm. 2, Item (2)ii] can be stated as followsBrassard's Theorem: Consider a public-key encryption scheme with a deterministic encryptionalgorithm, and suppose that the set of valid public-keys is in coNP. Then, if the problem ofretrieving the plaintext from the (ciphertext, public-key) pair is NP-Hard, then it follows thatNP = coNP.There are two problems with the hypothesis of this impossibility result, aside from the wellknown fact that worst-case hardness of retrieving the plaintext is an inadequate notion of secu-rity of encryption schemes. The problems are, �rstly, that the encryption algorithm is postulatedto be deterministic, and secondly that the set of valid public-keys for it is postulated to form acoNP-set. While these preconditions are satis�ed in certain encryption schemes (and in particularin the schemes known at the time the claim was made, e.g., plain RSA), they are not satis�edin probabilistic encryption schemes such as the Goldwasser{Micali [27] and the Blum{Goldwasserscheme [11] (as well as to the recent \lattice-based" schemes of [3, 23]). We mention that proba-bilistic encryption is essential to security as de�ned in [27].Thus, Brassard's Theorem does not rule out the possibility of \basing cryptography" (or evenpublic-key encryption) on the assumption that P 6= NP (even if NP 6= coNP, as we do believe).Furthermore, such a possibility is not ruled out even by extensions of Brassard's Theorem of whichwe are aware (cf., [22]), and which do cover some probabilistic encryption schemes (such as theabovementioned [27, 11]).AcknowledgmentsWe are grateful to Mihir Bellare, Jin-Yi Cai, Yevgeniy Dodis, Shai Halevi, Johan H�astad, RaviKannan, L�aszl�o Lov�asz, Moni Naor, Muli Safra, Jean-Pierre Seifert, Alan Selman, Adi Shamir andMadhu Sudan for helpful discussions.
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