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Part IA high-level overviewThe title of this survey refers to two types of objects (i.e., codes and proofs) and two adjectives:local testability and being short. A clari�cation of these terms is in place.Codes, proofs and their length. Codes are sets of strings (of equal length), typically, havinga large pairwise distance. Equivalently, codes are viewed as mappings from short (k-bit) strings tolonger (n-bit) strings, called codewords, such that the codewords are distant from one another. Wewill focus on codes with relative constant distance; that is, every two n-bit codewords are at distance
(n) apart. The length of the code is measured in terms of the length of the pre-image (i.e., we areinterested in the growth of n as a function of k). Turning to proofs, these are de�ned with respectto a veri�cation procedure for assertions of a certain length, and their length is measured in termsof the length of the assertion. The veri�cation procedure must satisfy the natural completeness andsoundness properties: For valid assertions there should be strings, called proofs, that are accepted(in conjunction with the assertion) by the veri�cation procedures, whereas for false assertions nosuch strings may exist. The reader may envision proof systems for the set of satis�able propositionalformulae (i.e., assertions of satis�ability of given formulae).Local testability. By local testability we mean that the object can be tested for the naturalproperty (i.e., being a codeword or a valid proof) using a small (typically constant) number ofprobes, each recovering individual bits in a standard representation of the object. Thus, localtestability allows for super-fast testing of the corresponding fundamental objects. The tests areprobabilistic and hence the result is correct only with high probability.1 Furthermore, correctnessrefers to a relaxed notion of deciding (which was formulated, in general terms, in the context ofproperty testing [44, 32]): It is required that valid objects be accepted with high probability, whereasobjects that are \far" from being valid should be rejected with high probability. Speci�cally, incase of codes, codewords should be accepted (with high probability), whereas strings that are \far"from the code should be rejected (with high probability). In case of proofs, valid proofs (whichexist for correct assertions) should be accepted (with high probability), whereas strings that are\far" from being valid proofs (and, in particular, all strings in case no valid proofs exist) should berejected (with high probability).2Our notion of locally testable proofs is very related to the notion of a PCP (i.e., probabilisticallycheckable proof)3, and we will ignore the di�erence in the sequel. The di�erence is that in thede�nition of locally testable proofs we required rejection of strings that are far from any validproof, also in the case that valid proofs exists (i.e., the assertion is valid). In contrast, the standardrejection criteria of PCPs refers only to false assertions. Still, all known PCP constructions actuallysatisfy the stronger de�nition.41Indeed, it is easy to see that deterministic tests will perform very poorly, and the same holds with respect toprobabilistic tests that make no error.2Indeed, in the case the assertion is false, there exist no valid proofs. In this case all strings are de�ned to be farfrom a valid proof.3Needless to say, the new term \locally testable proof" was introduced to match the term \locally testable codes".In retrospect, \locally testable proofs" seems a more �tting term than \probabilistically checkable proofs", because itstresses the positive aspect (of locality) rather than the negative aspect (of being probabilistic). The latter perspectivehas been frequently advocated by Leonid Levin.4In some cases this holds only under a weighted version of the Hamming distance, rather under the standard2



The very possibility of local testability. Indeed, local testability of either codes or proofs isquite challenging, regardless of the issue of length:� For codes, the simplest example of a locally testable code (of constant relative distance) isthe Hadamard code and testing it reduces to linearity testing. However, the analysis of thenatural linearity tester (of Blum, Luby and Rubinfeld [21]) turned out to be highly complex(cf. [21, 6, 27, 12, 13, 10]).� For proofs, the simplest example of a locally testable proof is the \inner veri�er" of the PCPconstruction of Arora, Lund, Motwani, Sudan and Szegedy [4], which in turn is based on theHadamard code.In both cases, the constructed object has exponential length in terms of the relevant parameter(i.e., the amount of information being encoded in the code or the length of the assertion beingproved).Local testability at a polynomial blow-up. Achieving local testability by codes and proofsthat have polynomial length turns out to be even more challenging.� In the case of codes, a direct interpretation of low-degree tests (cf. [6, 7, 31, 44, 30]), proposedin [30, 44], yields a locally testable code of quadratic length over a su�ciently large alphabet.Similar (and actually better) results for binary codes required additional ideas, and haveappeared only later (cf. [34]).� The case of proofs is far more complex: Achieving locally testable proof of polynomial lengthis essentially the contents of the celebrated PCP Theorem of Arora, Lund, Motwani, Safra,Sudan and Szegedy [5, 4].We focus on even shorter codes and proofs; speci�cally, codes and proofs of nearly linear length.The latter term has been given quite di�erent interpretations, and we start by sorting these out.Types of nearly linear functions: A few common interpretations of this term are listed below(going from the most liberal to the most strict one).T1-nearly linear: A very liberal notion, at the verge of an abuse of the term, refers to a sequenceof functions f� : N ! N such that, for every � > 0, it holds that f�(n) � n1+�. That is, eachfunction is actually of the form n 7! nc, for some constant c > 1, but the sequence as a wholecan be viewed as approaching linearity.T2-nearly linear: A more reasonable notion of nearly linear functions refers to individual func-tions f such that f(n) = n1+o(1). Speci�cally, for some function � : N ! [0; 1] that goesto zero, it holds that f(n) � n1+�(n). Common sub-types include the case that �(n) =1= log log n, the case that �(n) = 1=(log n)c for some c 2 (0; 1), and the case that �(n) =exp((log log log n)c)= log n for some c 2 (0; 1). Indeed, the case in which �(n) = O(log log n)= log n(or so) deserves a special category.Hamming distance. Alternatively, these constructions can be easily modi�ed to work under the standard Hammingdistance. 3



T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmic(or quasi-poly-logarithmic) factor. In the former case f(n) � poly(log n) � n, which cor-responds to the aforementioned case of f(n) � n1+�(n) with �(n) = O(log log n)= log n,whereas the latter case corresponds to �(n) = poly(log log n)= log n (i.e., in which case f(n) =(log n)poly(log log n) � n).Using the above notation, we summarize the state of the art with respect to local testability ofcodes and proofs.Local testability with nearly linear length: The ultimate goal may be to obtain locallytestable codes and proofs that are T3-nearly linear (i.e., nearly linear in the sense of Type T3).We conjecture that locally testable codes and proofs of (strictly) linear length cannot be achieved.Currently, locally testable codes and proofs of nearly linear length are known when nearly linear isinterpreted as Type T2 (i.e., T2-nearly linear).Theorem 1 (Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [15]): There exist locally testablecodes and proofs of length f(n) � n1+�(n), where �(n) = 1=(log n)0:99. Actually, for every constantc 2 (0; 1), one can achieve length f(n) � n1+�(n), where �(n) = 1=(log n)c.Open Problem 2 Do there exist locally testable codes and proofs of length f(n) � poly(log n) �n?In the rest of this part, we motivate the study of short locally testable objects, comment on therelation between such codes and proofs, and discuss a somewhat related coding problem.Motivation to the study of short locally testable codes and proofsLocal testability o�ers an extremely strong notion of e�cient testing: The tester makes only aconstant number of bit probes, and determining the probed locations (as well as the �nal decision)is typically done in time that is poly-logarithmic in the length of the probed object.The length of an error-correcting code is widely recognized as one of the two most fundamentalparameters of the code (the second one being its distance). In particular, the length of the codeis of major importance in applications, because it determines the overhead involved in encodinginformation.The same considerations apply also to proofs. However, in the case of proofs, this obvious pointwas blurred by the indirect, unexpected and highly in
uential applications of locally testable proofs(known as PCPs) to the theory of approximation algorithms. In our view, the signi�cance of locallytestable proofs (i.e., PCPs) extends far beyond their applicability to deriving non-approximabilityresults. The mere fact that proofs can be transformed into a format that supports super-fast prob-abilistic veri�cation is remarkable. From this perspective, the question of how much redundancyis introduced by such a transformation is a fundamental one. Furthermore, locally testable proofs(i.e., PCPs) have been used not only to derive non-approximability results but also for obtainingpositive results (e.g., CS-proofs [39, 42] and their applications [8, 23]), and the length of the PCPa�ects the complexity of those applications.In any case, the length of PCPs is also relevant to non-approximability results; speci�cally, ita�ects their tightness with respect to the running time. For example, suppose (exact) SAT hascomplexity 2
(n). The original PCP Theorem [5, 4] only implies that approximating MaxSAT
4



requires time 2n� , for some (small) � > 0. The work of [43] makes � arbitrarily close to 1, whereasthe results of [34, 20] further improve the lower-bound to 2n1�o(1) .5On the relation between locally testable codes and proofsLocally testable codes seem related to locally testable proofs (PCPs). In fact, the use of codes withrelated \local testability" features is implicit in known PCP constructions. Furthermore, the knownconstructions of locally testable proofs (PCPs) provides a transformation of standard proofs (forsay SAT) to locally testable proofs (i.e., PCP-oracles), such that transformed strings are acceptedwith probability one by the PCP veri�er. Moreover, starting from di�erent standard proofs, oneobtains locally testable proofs that are far apart, and hence constitute a good code. It is temptingto think that the PCP veri�er yields a codeword tester, but this is not really the case. Note thatour de�nition of a locally testable proof requires rejection of strings that are far from any validproof, but it is not clear that the only valid proofs (w.r.t the constructed PCP veri�er) are thosethat are obtained by the aforementioned transformation of standard proofs to locally testable ones.6In fact, the standard PCP constructions accept also valid proofs that are not in the range of thecorresponding transformation.In spite of the above, locally testable codes and proofs are related, and the feeling is that locallytestable codes are the combinatorial counterparts of locally testable proofs (PCPs), which arecomplexity theoretic in nature. From that perspective, one should expect (or hope) that it wouldbe easier to construct locally testable codes than it is to construct PCPs. This feeling was amongthe main motivations of Goldreich and Sudan, and indeed their �rst result was along this vein:They showed a relatively simple construction (i.e., simple in comparison to PCP constructions) ofa locally testable code of T1-nearly linear length [34, Sec. 3]. Unfortunately, their stronger result,providing a locally testable code of T2-nearly linear length is obtained by constructing and usinga T2-nearly linear locally testable proof (i.e., PCP). Subsequent works [20, 15] have followed thisroute, and only the recent work of Ben-Sasson and Sudan [19] (which achieves a more relaxednotion of local testability) reversed the course to the \right one": First codes are constructed, andnext they are used towards the construction of proofs (rather than the other way around).Locally Decodable CodesLocally decodable codes are in some sense complimentary to local testable codes. Here, one isgiven a slightly corrupted codeword (i.e., a string close to some unique codeword), and is requiredto recover individual bits of the encoded information based on a constant number of probes (perrecovered bit). That is, a code is said to be locally decodable if whenever relatively few locationare corrupted, the decoder is able to recover each information-bit, with high probability, based ona constant number of probes to the (corrupted) codeword.The best known locally decodable codes are of sub-exponential length. Speci�cally, k infor-mation bits can be encoded by codewords of length n = exp(kO(log log q)=q log q) that are locallydecodable using q bit-probes (cf. [9]). It is conjectured that, for every q there exists an � > 0, suchthat locally decodability based on q queries (i.e., probes) requires codewords of length n > exp(k�).The problem is related to the construction of (information theoretic secure) Private InformationRetrieval schemes, introduced in [24].5A caveat: it is currently not known whether these improved lower-bounds can be achieved simultaneously withoptimal approximation ratios, but the hope is that this can eventually be done.6Let alone that the standard de�nition of PCP refers only to the case of false assertions, in which case all stringsare far from a valid proof (which does not exist). 5



A natural relaxation of the de�nition of locally decodable codes requires that, whenever fewlocation are corrupted, the decoder should be able to recover most of the individual information-bits(based on a constant number of queries) and for the rest of the locations, the decoder may outputa fail symbol (but not the wrong value). That is, the decoder must still avoid errors (with highprobability), but on a few bit-locations it is allowed to sometimes say \don't know". This relaxednotion of local decodability can be supported by codes that have T1-nearly linear length (cf. [15]).An obvious open problem is to separate locally decodable codes from relaxed locally decodablecodes. This may follow by either improving the 
(k1+ 1q�1 ) lower bound on the length of q-querylocally decodable codes (of [36]), or by providing relaxed locally decodable codes of T2-nearly linearlength.
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Part IIA more detailed and rigorous accountIn this part we provide a general treatment of local testability. In contrast to Part I, here we allowthe tester to use a number of queries that is a (typically small) predetermined function of the lengthparameter, rather than insisting on a constant number of queries. The latter special case is indeedan important one.1 IntroductionCodes (i.e., error correcting codes) and proofs (i.e., automatically veri�able proofs) are fundamentalto computer science as well as to related disciplines such as mathematics and computer engineering.Redundancy is inherent to error-correcting codes, whereas testing validity is inherent to proofs. Inthis survey we also consider less traditional combinations such as testing validity of codewords andthe use of proofs that contain redundancy. The reader may wonder why we explore these non-traditional possibilities, and the answer is that they o�er various advantages (as will be elaboratednext).Testing the validity of codewords is natural in settings in which one may want to take an actionin case the codeword is corrupted. For example, when storing data in an error correcting format,one may want to recover the data and re-encode it whenever one �nds that the current encoding iscorrupted. Doing so may allow to maintain the data integrity over eternity, when encoded bits doget corrupted in the course of time. Of course, one can use the error-correcting decoding procedureassociated with the code in order to check whether the current encoding is corrupted, but thequestion is whether one can check (or just approximately check) this property much faster.Loosely speaking, locally testable codes are error correcting codes that allow for a super-fasttesting of whether or not a give string is a valid codeword. In particular, the tester works in sub-linear time and reads very few of the bits of the tested object. Needless to say, the answer providedby such a tester can only be approximately correct, but this would su�ce in many applications(including the one sketched above).Similarly, locally testable proofs are proofs that allow for a super-fast probabilistic veri�cation.Again, the tester works in sub-linear time and reads very few of the bits of the tested object. Thetester's (aka veri�er's) verdict is only correct with high probability, but this may su�ce for manyapplications. In particular, it su�ces in applications where proofs refer to the correctness of aspeci�c computation of practical interest (rather than referring to Fermat's Theorem). Lastly, wecomment that such locally testable proofs must be redundant (or else there would be no chance forverifying them based on inspecting only a small portion of them).Our focus is on relatively short locally testable codes and proofs, which is not surprising in viewof the fact that we envision such objects being actually used in practice. Of course, we do not meanto suggest that one may use in practice any of the constructions surveyed here (especially not theones that provide the stronger bounds). We rather argue that this direction of research may �ndapplications in practice. Furthermore, it may even be the case that some of the current conceptsand techniques may lead to such applications.Organization: In Section 2 we provide a quite comprehensive de�nitional treatment of locallytestable codes and proofs, while relating these to PCPs, PCPs of proximity, and property testing.In Section 3, we survey the main results regarding locally testable codes and proofs as well as many7



of the underlying ideas. In Section 4 we consider locally decodable codes, which are somewhatcomplementary to locally testable codes.2 De�nitionsLocal testability is formulated by considering oracle machines. That is, the tester is an oraclemachine, and the object that it tests is viewed as an oracle. For simplicity, we con�ne ourselvesto non-adaptive probabilistic oracle machines; that is, machines that determine their queries basedon their explicit input (which in case of codes is merely a length parameter) and their internal cointosses (but not depending on previous oracle answers). When taking about oracle access to a stringw 2 f0; 1gn we viewed w as a function w : f1; :::; ng ! f0; 1g.2.1 Codeword testersWe consider codes mapping sequences of k (input) bits into sequences of n � k (output) bits. Sucha generic code is denoted by C : f0; 1gk ! f0; 1gn, and the elements of fC(x) : x2f0; 1gkg � f0; 1gnare called codewords (of C).The distance of a code C : f0; 1gk ! f0; 1gn is the minimum (Hamming) distance between itscodewords; that is, minx6=yf�(C(x);C(y))g, where �(u; v) denotes the number of bit-locations onwhich u and v di�er. Throughout this work, we focus on codes of linear distance; that is, codesC : f0; 1gk ! f0; 1gn of distance 
(n).The distance of w 2 f0; 1gn from a code C : f0; 1gk ! f0; 1gn, denoted �C(w), is the minimumdistance between w and the codewords; that is, �C(w) def= minxf�(w;C(x))g. For � 2 [0; 1], then-bit long strings u and v are said to be �-far (resp., �-close) if �(u; v) > � �n (resp., �(u; v) � � �n).Similarly, w is �-far from C (resp., �-close to C) if �C(w) > � � n (resp., �C(w) � � � n).De�nition 2.1 Let C : f0; 1gk ! f0; 1gn be a code of distance d, and let q 2 N and � 2 (0; 1). Aq-local (codeword) �-tester for C is a probabilistic (non-adaptive) oracle machine M that makes atmost q queries and satis�es the following two conditions:Accepting codewords (aka completeness): For any x 2 f0; 1gk, given oracle access to w = C(x),machine M accepts with probability 1. That is, Pr[MC(x)(1k)=1] = 1, for any x 2 f0; 1gk.Rejection of non-codeword (aka soundness): For any w 2 f0; 1gn that is �-far from C, given oracleaccess to w, machine M rejects with probability at least 1=2. That is, Pr[Mw(1k)=1] � 1=2,for any w 2 f0; 1gn that is �-far from C.We call q the query complexity of M , and � the proximity parameter.The above de�nition is interesting only in case �n is smaller than the covering radius of C (i.e., thesmallest r such that for every w 2 f0; 1gn it holds that �C(w) � r). Clearly, r � d=2, and so thede�nition is certainly interesting in the case that � < d=2n, and indeed we will focus on this case.On the other hand, observe that q = 
(1=�) must hold, which means that we focus on the casethat d=n = 
(1=q).We next consider families of codes C = fCk : f0; 1gk ! f0; 1gn(k)gk2K , where n; d : N! N andK � N, such that Ck has distance d(k). In accordance with the above, we care most of the casethat �(k) < d(k)=2n(k). Furthermore, seeking constant query complexity, we focus on the cased = 
(n). 8



De�nition 2.2 For functions n; d : N ! N, let C = fCk : f0; 1gk ! f0; 1gn(k)gk2K such that Ckis a code of distance d(k). For function q : N ! N and � : N ! (0; 1), we say that M is q-local(codeword) �-tester for C = fCkgk2K if, for every k 2 K, machine M is a q(k)-local �(k)-tester forCk. Again, q is called the query complexity of M , and � the proximity parameter.Recall that being particularly interested in constant query complexity (and recalling that d(k)=n(k) �2�(k) = 
(1=q(k))), we focus on the case that d = 
(n) and constant � < d=2n. In this case, wemay consider a stronger de�nition.De�nition 2.3 Let n; d and C be as in De�nition 2.2 and suppose that d = 
(n). We say that Cis locally testable if for every constant � > 0 there exists a constant q and a probabilistic polynomial-time oracle machine M such that M is a q-local �-tester for C.We will be concerned of the growth rate of n as a function of k, for locally testable codes C = fCk :f0; 1gk ! f0; 1gn(k)gk2K of distance d = 
(n). More generally, for d = 
(n), we will be interestedin the trade-o� between n, the proximity parameter �, and the query complexity q.2.2 Proof testersWe start by recalling the standard de�nition of PCP.De�nition 2.4 A probabilistically checkable proof (PCP) system for a set S is a probabilistic (non-adaptive) polynomial-time oracle machine (called veri�er), denoted V , satisfyingCompleteness: For every x 2 S there exists an oracle �x such that V , on input x and access tooracle �x, always accepts x; that is, Pr[V �x(x)=1] = 1.Soundness: For every x 62 S and every oracle �, machine V , on input x and access to oracle �,rejects x with probability at least 12 ; that is, Pr[M�(x)=1] � 1=2,Let Qx(r) denote the set of oracle positions inspected by V on input x and random-tape r 2f0; 1gpoly(jxj). The query complexity of V is de�ned as q(n) def= maxx2f0;1gn;r2f0;1gpoly(n)fjQx(r)jg.The proof complexity of V is de�ned as p(n) def= maxx2f0;1gnfj [r2f0;1gpoly(n) Qx(r)jg.Note that in the case that the veri�er V uses a logarithmic number of coin tosses, its proof com-plexity is polynomial. In general, the proof complexity is upper-bounded by 2r � q, where r (resp.,q) is the randomness (resp., query) complexity of the proof tester. Thus, the trade-o� between thequery complexity and the proof complexity is typically captured by the trade-o� between the querycomplexity and the randomness complexity. Furthermore, focusing on the randomness complexityallows for better bounds when composing proofs (cf. x3.2.2).All known PCP constructions can be easily modi�ed such that the oracle locations accessedby V are a pre�x of the oracle (i.e., [r2f0;1gpoly(jxj)Qx(r) � f1; :::; p(jxj)g, for every x).7 (Forsimplicity, the reader may assume that this is the case throughout the rest of this exposition.)More importantly, all known PCP constructions can be easily modi�ed to satisfy the followingde�nition, which is closer in spirit to the de�nition of locally testable codes.De�nition 2.5 For function q : N ! N and � : N ! (0; 1), we say that a PCP system V for aset S is a q-locally �-testable proof system if it has query complexity q and satis�es the followingcondition7In fact, for every x 2 f0; 1gn, it holds that [r2f0;1gpoly(n)Qx(r) = f1; :::; p(n)g.9



Rejecting invalid proofs: For every x 2 f0; 1g� and every oracle � that is �-far from �x def= fw :Pr[V w(x)=1] = 1g, machine V , on input x and access to oracle �, rejects x with probabilityat least 12 .8The proof complexity of V is de�ned as in De�nition 2.4.Note that De�nition 2.5 uses the tester V itself in order to de�ne the set (denoted �x) of valid proofs(for x 2 S). That is, V is used both to de�ne the set of valid proofs and to test for the proximity ofa given oracle to this set. A more general de�nition (presented next), refers to an arbitrary proofsystem, and lets �x equal the set of valid proofs (in that system) for x 2 S. Obviously, it musthold that �x 6= ; if an only if x 2 S. Typically, one also requires the existence of a polynomial-timeprocedure that, on input a pair (x; �), determines whether or not � 2 �x.9 For simplicity weassume that, for some function p : N ! N and every x 2 f0; 1g�, it holds that �x � f0; 1gp(jxj).The resulting de�nition follows.De�nition 2.6 Suppose that, for some function p : N ! N and every x 2 f0; 1g�, it holds that�x � f0; 1gp(jxj). For functions q : N ! N and � : N ! (0; 1), we say that a probabilistic (non-adaptive) polynomial-time oracle machine V is a q-locally �-tester for the proof system f�xgx2f0;1g�if V has query complexity q and satis�es the following conditionsTechnical condition: On input x, machine V issues queries in f1; :::; p(jxj)g.Accepting valid proofs: For every x 2 f0; 1g� and every oracle � 2 �x, machine V , on input x andaccess to oracle �, accepts x with probability 1.Rejecting invalid proofs: For every x 2 f0; 1g� and every oracle � that is �-far from �x, machineV , on input x and access to oracle �, rejects x with probability at least 12 .The proof complexity of V is de�ned as p,10 and � is called the proximity parameter. In such acase, we say that � = f�xgx2f0;1g� is q-locally �-testable, and that S = fx 2 f0; 1g� : �x 6= ;g hasq-locally �-testable proofs of length p.We say that � is locally testable if for every constant � > 0 there exists a constant q such that � isq-locally �-testable. In such a case, we say that S has locally testable proofs of length p.2.3 DiscussionWe �rst comment about a few de�nitional choices made above. Firstly, we chose to present testersthat always accept valid objects (i.e., accept valid codewords (resp., valid proofs) with probability 1).This is more appealing than allowing two-sided error, but the latter weaker notion is meaningful8The above de�nition relies on two natural conventions:1. All strings in �x are of the same length, which equals j[r2f0;1gpoly(n) Qx(r)j, where Qx(r) is as in De�nition 2.4.Furthermore, we consider only �'s of this length.2. If �x = ; then every � is considered �-far from �x.9We comment that in the case that the veri�er V uses a logarithmic number of coin tosses, its proof complexity ispolynomial (and so the \e�ective length" of the strings in �x must be polynomial in jxj). Furthermore, if in additionit holds that �x = fw : Pr[V w(x)= 1] = 1g, then (scanning all possible coin tosses of) V yields a polynomial-timeprocedure for determining whether a given pair (x; �) satis�es � 2 �x.10Note that by the technical condition, the current de�nition of the proof complexity of V is lower-bounded by thede�nition used in De�nition 2.4. 10



too. A second choice was to �x the error probability (i.e., probability of accepting far from validobjects), rather than introducing yet another parameter. Needless to say, the error probability canbe reduced by sequential applications of the tester.In the rest of this section, we consider an array of de�nitional issues. First, we consider twonatural strengthenings of the de�nition of local testability (cf. x2.3.1). We next we discuss therelation of local testability to property testing (cf. x2.3.2), and the relation of locality testableproofs to PCP of proximity (as de�ned in [15], cf. x2.3.3). Finally, we discuss the relation betweenlocal testable codes and proofs (cf. x2.3.4), and the motivation to the study of short local testablecodes and proofs (cf. x2.3.5). (The text regarding the last issue is almost identical to a correspondingtext that appears in Part I.) Finally (in x2.3.6), we mention a weaker de�nition, which seem naturalonly in the context of codes.2.3.1 Stronger de�nitionsThe de�nitions of testers presented so far, allow for the construction of a di�erent tester for eachrelevant value of the proximity parameter. However, whenever such testers are actually constructed,they tend to be \uniform" over all relevant values of the proximity parameter. Thus, it is naturalto present a single tester for all relevant values of the proximity parameter, provide this tester withthe said parameter, allow it to behave accordingly, and measure its query complexity as a functionof that parameter. For example, we may strengthen De�nition 2.3, by requiring the existence of afunction q : (0; 1)! N and an oracle machineM such that, for every constant � > 0, all (su�cientlylarge) k and all w 2 f0; 1gn(k), the following conditions hold:1. On input (1k; �), machine M makes q(�) queries.2. If w is a codeword of C then Pr[Mw(1k; �) = 1] = 1.3. If w is �-far from fC(x) : x 2 f0; 1gkg then Pr[Mw(1k; �) = 1] � 1=2.An analogous strengthening applies to De�nition 2.6. A special case of interest is when q(�) =O(1=�). In this case, it makes sense to ask whether or not an even stronger \uniformity" conditionmay hold. Like in De�nitions 2.1 and 2.2 (resp., De�nitions 2.5 and 2.6), the tester M is not giventhe proximity parameter (and so its query complexity cannot depend on it), but we only requireit to reject with probability proportional to the distance of the oracle from the relevant set. Forexample, we may strengthen De�nition 2.3, by requiring the existence of an oracle machine M anda constant q such that, for every constant � > 0, every (su�ciently large) k and w 2 f0; 1gn(k), thefollowing conditions hold:1. On input 1k, machine M makes q queries.2. If w is a codeword of C then Pr[Mw(1k; �) = 1] = 1.3. If w is �-far from fC(x) : x 2 f0; 1gkg then Pr[Mw(1k; �) = 1] < 1�O(�).2.3.2 Relation to Property TestingLocally testable codes (and their corresponding testers) are essentially special cases of property test-ing, as de�ned in [44, 32]. Speci�cally, the property being tested is membership in a predeterminedcode. The only di�erence between the de�nitions presented in Section 2.1 and the formulation thatis standard in the property testing literature is that in the latter the tester is given the proximity11



parameter as input and determines its behavior (and in particular the number of queries) accord-ingly. This di�erence is eliminated in x2.3.1. We note, however, that most of the property testingliterature is concerned with \natural" objects (e.g., graphs, sets of points, functions) presented ina \natural" form rather than with object designed arti�cially to withstand errors (i.e., codewordsof error correcting codes).Our general formulation of proof testing (i.e., De�nition 2.6) can be viewed as a generalizationof property testing. That is, we view the set �x as a set of objects having a certain x-dependentproperty (rather than as a set of valid proofs for some property of x). In other words, De�nition 2.6allows to consider properties that are parameterized by auxiliary information (i.e., x), whereastraditional property testing may be viewed as referring to the case that x only determines thelength of strings in �x (e.g., �x = ; for every x 62 f1g� or, equivalently, �x = �y for everyjxj = jyj).112.3.3 Relation to PCPs of ProximityOur de�nition of a locally testable proof is related but di�erent from the de�nition of a PCP ofproximity (appearing in [15]).12 We start by reviewing the de�nition of PCP of proximity.De�nition 2.7 A PCP of proximity for a set S with proximity parameter � is a probabilistic (non-adaptive) polynomial-time oracle machine, denoted V , satisfyingCompleteness: For every x 2 S there exists a string �x such that V always accepts when givenaccess to the oracle (x; �x); that is, Pr[V x;�x(1jxj)=1] = 1.Soundness: For every x that is �-far from S\f0; 1gjxj and for every string �, machine V rejects withprobability at least 12 when given access to the oracle (x; �); that is, Pr[Mx;�(1jxj)=1] � 1=2.The query complexity of V is de�ned as in case of PCP, but here also queries to the x-part arecounted.The oracle (x; �) is actually a concatenation of two oracles: the input-oracle x (which replaces anexplicitly given input in the de�nitions of PCPs and locally testable proofs), and a proof-oracle �(exactly as in the prior de�nitions). Note that De�nition 2.7 refers to the distance of the input-oracle to S, whereas locally testable proofs refer to the distance of the proof-oracle from the set �xof valid proofs of membership of x 2 S.Still, PCPs of proximity can be de�ned within the framework of locally testable codes. Speci�-cally, consider an extension of De�nition 2.6, where (relative) distances are measured according to aweighted Hamming distance; that is, for a weight function ! : f1; :::; ng ! [0; 1] and u; v 2 f0; 1gn,we let �!(u; v) = Pni=1 !(i) � �(ui; vi). (Indeed, the standard notion of relative distance betweenu; v 2 f0; 1gn is obtained by �!(u; v) when using the uniform weighting function (i.e., !(i) = 1=n forevery i 2 f1; :::; ng).) Now, De�nition 2.7 can be viewed as a special case of (the extended) De�ni-tion 2.6 when applied to the (rather arti�cial) set of proofs �1n = f(x; �) : x 2 S\f0; 1gn^� 2 �0xg,where �0x = f� : Pr[V x;�(1jxj) = 1] = 1g, by using the weighted Hamming distance �! for !that is uniform on the input-part of the oracle; that is, for (x; �); (x0; �0) 2 f0; 1gn+p, we use11In fact, in the context of property testing, the length of the oracle must always be given to the tester (althoughsome sources neglect to state this fact).12We mention that PCP of proximity are almost identical to Assignment Testers, de�ned independently by Dinurand Reingold [25]. Both notions are (important) special cases of the general de�nition of a \PCP spot-checker"formulated before in [26]. 12



�!((x; �); (x0; �0)) def= �(x; x0)=n, which corresponds to !(i) = 1=n if i 2 f1; :::; ng and !(i) = 0otherwise. Alternatively, weights can be approximately replaced by repetitions (provided that thetester checks the consistency of the repetitions).13We mention that PCPs of proximity (of constant query complexity) yield a simple way ofobtaining locally testable codes. More generally, we can combine any code C0 with any PCP ofproximity V , and obtain a q-locally testable code with distance essentially determined by C0 andrate determined by V , where q is the query complexity of V . Speci�cally, x will be encoded byappending c = C0(x) by a proof that c is a codeword of C0, and distances will be determined bythe weighted Hamming distance that assigns uniform weights to the �rst part of the new code. Asin the previous paragraph, these weights can be implemented by making suitable repetitions.Finally, we comment that the de�nition of a PCP of proximity can be extended by providingthe veri�er with part of the input in an explicit form. That is, referring to De�nition 2.7, we letx = (x0; x00), and provide V with explicit input (x0; 1jxj) and input-oracle x00 (rather than withexplicit input 1jxj and input-oracle x). Clearly, the extended formulation implies PCP as a specialcase (i.e., x00 = �). More interestingly, an extended PCP of proximity for a set of pairs R (e.g., thewitness relation of an NP-set), yields a PCP for the set S def= fx0 : 9x00 s.t. (x0; x00) 2 Rg.2.3.4 Relating locally testable codes and proofsLocally testable codes can be thought of as the combinatorial counterparts of the complexity theo-retic notion of locally testable proofs (PCPs). This perspective raises the question of whether oneof these notions implies (or is useful towards the understanding of) the other.Do PCPs imply locally testable codes? The use of codes with features related to localtestability is implicit in known PCP constructions. Furthermore, the known constructions of locallytestable proofs (PCPs) provides a transformation of standard proofs (for say SAT) to locally testableproofs (i.e., PCP-oracles), such that transformed strings are accepted with probability one by thePCP veri�er. Speci�cally, denoting by Sx the set of standard proofs referring to an assertion x,there exists a polynomial-time mapping fx of Sx to Rx def= ffx(y) : y 2 Sxg such that for every� 2 Rx it holds that Pr[V �(x) = 1] = 1, where V is the PCP veri�er. Moreover, starting fromdi�erent standard proofs, one obtains locally testable proofs that are far apart, and hence constitutea good code (i.e., for every x and every y 6= y0 2 Sx, it holds that �(fx(y); fx(y0)) � 
(jfx(y)j)).It is tempting to think that the PCP veri�er yields a codeword tester, but this is not really thecase. Note that De�nition 2.5 requires rejection of strings that are far from any valid proof (i.e.,any string far from �x), but it is not clear that the only valid proofs (w.r.t V ) are those in Rx(i.e., the proofs obtained by the transformation fx of standard proofs (in Sx) to locally testableones).14 In fact, the standard PCP constructions accept also valid proofs that are not in the rangeof the corresponding transformation (i.e., fx); that is, �x as in De�nition 2.5 is a strict subset of Rx13That is, given a veri�er V as in De�nition 2.7, and denoting by n and p = p(n) the sizes of the two parts ofits oracle, we consider proofs of length t � n + p, where t = p=o(n) (e.g., t = (p=n) � log n). We consider a veri�erV 0 with syntax as in De�nition 2.6 that, on input 1n and oracle access to w = (u1; :::; ut; v) 2 f0; 1gt�n+p, whereui 2 f0; 1gn and v 2 f0; 1gp, selects uniformly i 2 f1; :::; tg and invokes V ui;v(1n). In addition, V 0 performs a numberof repetition tests that is inversely proportional to the proximity parameter, where in each test V 0 selects uniformlyi; i0 2 f1; :::; tg and j 2 f1; :::; ng and checks that ui and ui0 agree on their j-th bit. Thus, V 0 essentially emulatesthe PCP of proximity V , and the fact that V satis�es De�nition 2.7 can be captured by saying that V 0 satis�esDe�nition 2.6.14Let alone that De�nition 2.4 refers only to the case of false assertions, in which case all strings are far from avalid proof (which does not exist). 13



(rather than �x = Rx). We comment that most known PCP constructions can be (non-trivially)15modi�ed to yield �x = Rx, and thus to yield a locally testable code (but this is not necessarily thebest way to design locally testable codes, see one alternative in x2.3.3).Do locally testable codes PCPs? Saying that locally testable codes are the combinatorialcounterparts of locally testable proofs (PCPs), raises the expectation (or hope) that it would beeasier to construct locally testable codes than it is to construct PCPs. The reason being thatcombinatorial objects (e.g., codes) should be easier to understand than complexity theoretic ones(e.g., PCPs). Indeed, this feeling was among the main motivations of Goldreich and Sudan, andtheir �rst result (cf. [34, Sec. 3]) was along this vein: They showed a relatively simple construction(i.e., simple in comparison to PCP constructions) of a locally testable code of T1-nearly linearlength. Unfortunately, their stronger result, providing a locally testable code of T2-nearly linearlength is obtained by constructing (cf. [34, Sec. 4]) and using (cf. [34, Sec. 5]) a T2-nearly linearlocally testable proof (i.e., a PCP). Subsequent works [20, 15] have followed this route, and only therecent work of Ben-Sasson and Sudan [19] (which achieves a more relaxed notion of local testability)reversed the course to the \right one": First codes are constructed, and next they (or actually theiranalysis) are used towards the construction of proofs (rather than the other way around).2.3.5 Motivation to the study of short locally testable codes and proofsLocal testability o�ers an extremely strong notion of e�cient testing: The tester makes only aconstant number of bit probes, and determining the probed locations (as well as the �nal decision)is typically done in time that is poly-logarithmic in the length of the probed object.The length of an error-correcting code is widely recognized as one of the two most fundamentalparameters of the code (the second one being its distance). In particular, the length of the codeis of major importance in applications, because it determines the overhead involved in encodinginformation.As argued in the Introduction, the same considerations apply also to proofs. However, in thecase of proofs, this obvious point was blurred by the indirect, unexpected and highly in
uential ap-plications of PCPs to the theory of approximation algorithms. In our view, the signi�cance of locallytestable proofs (or PCPs) extends far beyond their applicability to deriving non-approximabilityresults. The mere fact that proofs can be transformed into a format that supports super-fast prob-abilistic veri�cation is remarkable. From this perspective, the question of how much redundancyis introduced by such a transformation is a fundamental one. Furthermore, locally testable proofs(i.e., PCPs) have been used not only to derive non-approximability results but also for obtainingpositive results (e.g., CS-proofs [39, 42] and their applications [8, 23]), and the length of the PCPa�ects the complexity of those applications.In any case, the length of PCPs is also relevant to non-approximability results; speci�cally, ita�ects their tightness with respect to the running time. For example, suppose (exact) SAT hascomplexity 2
(n). The original PCP Theorem [5, 4] only implies that approximating MaxSATrequires time 2n� , for some (small) � > 0. The work of [43] makes � arbitrarily close to 1, whereasthe results of [34, 20] further improve the lower-bound to 2n1�o(1) . We mention that it is currentlynot known whether these improved lower-bounds can be achieved simultaneously with optimalapproximation ratios, but the hope is that this can eventually be done.15The interested reader is referred to [34, Sec. 5.2] for a discussion of typical problems that arise.14



2.3.6 A weaker de�nitionOne of the concrete motivations for local testable codes refers to settings in which one may wantto re-encode the information when discovering that the codeword is corrupted. In such a case,assuming that re-encoding is based solely on the corrupted codeword, one may assume (or ratherneeds to assume) that the corrupted codeword is not too far from the code. Thus, the followingversion of De�nition 2.1 may make sense.De�nition 2.8 Let C : f0; 1gk ! f0; 1gn be a code of distance d, and let q 2 N and �1; �2 2 (0; 1).A weak q-local (codeword) (�1; �2)-tester for C is a probabilistic (non-adaptive) oracle machine Mthat makes at most q queries, accepts any codeword, and rejects non-codewords that are both �1-farand �2-close to C. That is, the rejection condition of De�nition 2.1 is modi�ed as follows.Rejection of non-codeword (weak version): For any w 2 f0; 1gn such that �C(w) 2 [�1n; �2n],given oracle access to w, machine M rejects with probability at least 1=2.Needless to say, there is something highly non-intuitive in this de�nition: It requires rejection ofnon-codewords that are somewhat far from the code, but not the rejection of codewords that are veryfar from the code. Still, such weak codeword testers may su�ce in some applications. Interestingly,such weak codeword testers do exists and even achieve linear length (cf. [45, Chap. 5]). We notethat the non-monotonicity of the rejection probability of testers has been observed before, the mostfamous example being linearity testing (cf. [21] and [10]).2.4 A confused historyThere is a great deal of confusion regarding credits for some of the de�nitions presented in thissection.16 We refer mainly to the de�nition of locally testable codes. This de�nition (or at leasta related notion)17 is arguably implicit in [7] as well as in subsequent works on PCP (see x2.3.4).Furthermore, the de�nition of locally testable codes has appeared independently in the works ofFriedl and Sudan [30] and Rubinfeld and Sudan [44] as well as in the PhD Thesis of Arora [3].3 Results and IdeasWe review the know constructions of locally testable codes and proofs, starting from codes andproofs of exponential length and concluding with codes and proofs of nearly linear length.3.1 The mere existence of locally testable codes and proofsThe mere existence of locally testable codes and proofs, regardless of their length, is non-obvious.Thus, we start by recalling the simplest constructions known.16Some confusion exists also with respect to some of the results and constructions described in Section 3, but incomparison to what is going to be discussed here the latter confusion is minor.17The related notion refers to the following relaxed notion of codeword testing: For two �xed good codes C1 �C2 � f0; 1gn, one has to accept (with high probability) every codeword of C1, but reject (with high probability)every string that is far from being a codeword of C2. Indeed, our de�nitions refer to the special (natural) case thatC2 = C1, but the more general case su�ces for the construction of PCPs (and is implicitly achieved in most of them).
15



3.1.1 The Hadamard Code is locally testableThe simplest example of a locally testable code (of constant relative distance) is the Hadamardcode. This code, denoted CHad, maps x 2 f0; 1gk to a string, of length n = 2k, that providesthe evaluation of all GF(2)-linear functions at x; that is, the coordinates of the codeword areassociated with linear functions `(z) = Pki=1 `izi and so CHad(x)` = `(x) = Pki=1 `ixi. Testingwhether a string w 2 f0; 1g2k is a codeword reduces to linearity testing. This is the case becausew is a codeword of CHad if and only if, when viewed as a function w : f0; 1gk ! f0; 1g, it islinear (i.e., w(z) = Pki=1 cizi for some ci's or equivalently w(y + z) = w(y) + w(z) for all y; z).Speci�cally, local testability is achieved by uniformly selecting y; z 2 f0; 1gk and checking whetherw(y+ z) = w(y)+w(z). The analysis of this natural tester, due to Blum, Luby and Rubinfeld [21],turned out to be highly complex (cf. [21, 6, 27, 12, 13, 10]). In particular, it is known that if wis �-far from linear then the aforementioned (3-query) test rejects with probability at least �(�),where the function � : [0; 0:5] ! [0; 1] is de�ned as follows:�(x) def= 8><>: 3x� 6x2 0 � x � 5=1645=128 5=16 � x � 45=128x 45=128 � x � 1=2:The above lower bound is composed of three di�erent bounds with \phase transitions" at x = 516and x = 45128 . It was shown in [10] that this combined lower bound is close to the best one possible.We believe is that this strange behavior of the rejection probability is a strong indication of thenon-triviality of the nature of this \innocent looking" test.Other codes. We mention that Reed-Muller Codes of constant order are also locally testable [1].These codes have sub-exponential length, but are quite popular in practice. The Long Code is alsolocally testable [11], but this code has double-exponential length (and was introduced merely forthe design of PCPs). Finally, we mention that random linear codes (of linear length) require anycodeword tester to read a linear number of bits of the codeword [17], thus providing an additionalindication to the non-triviality of local testability.3.1.2 The Hadamard-Based PCP of [4]The simplest example of a locally testable proof (for a set not known to be in BPP) is the \innerveri�er" of the PCP construction of Arora, Lund, Motwani, Sudan and Szegedy [4], which in turn isbased on the Hadamard code. Speci�cally, proofs of the satis�ability of a given system of quadraticequations over GF(2) are presented by providing a Hadamard encoding of the outer-product ofa satisfying assignment (i.e., a satisfying assignment � 2 f0; 1gn is presented by CHad(�), where� = (�i;j)i;j2[n] and �i;j = �i�j). Given an alleged proof � 2 f0; 1g2n2 , the proof-tester proceeds asfollows:1. Tests that � is indeed a codeword of the Hadamard Code. If the test passes then w is closeto some CHad(�), for an arbitrary � = (�i;j)i;j2[n].2. Tests that the aforementioned � is indeed an outer-product of some � 2 f0; 1gn. Notethat the Hadamard encoding of � is supposed to be part of the Hadamard encoding of� (because Pni=1 ci�i = Pni=1 ci�2i is supposed to equal Pni=1 ci�i;i). So we would liketo test that the latter codeword matches the former one. Speci�cally, we wish to testwhether (�i;j)i;j2[n] equals (�i�j)i;j2[n] (i.e., the equality of two matrices). This can be16



done by uniformly selecting (r1; :::; rn); (s1; :::; sn) 2 f0; 1gn, and comparing Pi;j risj�i;j andPi;j risj�i�j = (Pi ri�i)(Pj sj�j).The above would have been �ne if w = CHad(�), but we only know that w is close to CHad(�).The Hadamard encoding of � is a tiny part of the latter, and so we should not try to retrievethe latter directly (because this tiny part may be totally corrupted). Instead, we use theparadigm of self-correction (cf. [21]): In general, for any �xed c = (ci;j)i;j2[n], whenever wewish to retrieve Pni=1 ci;j�i;j , we uniformly select r = (ri;j)i;j2[n] and retrieve both w(r) andw(r + c). Thus, we obtain a self-corrected value of w(c); that is, if w is �-close to CHad(�)then w(r + c)� w(r) =Pni=1 ci;j�i;j with probability at least 1� 2�.Using self-correction, we indirectly obtain bits in CHad(�), for � = (�i)i2[n] = (�i;i)i2[n]. Sim-ilarly, we can obtain any other desired bit in CHad(�), which in turn allows us to test whether(�i;j)i;j2[n] = (�i�j)i;j2[n]. In fact, we are checking whether (�i;j)i;j2[n] = (�i;i�j;j)i;j2[n], bycomparingPi;j risj�i;j and (Pi ri�i;i)(Pj sj�j;j), for randomly selected (r1; :::; rn); (s1; :::; sn) 2f0; 1gn.3. Finally, we need to check whether the aforementioned � satis�es the given system of equations.Towards this end, we uniformly selects a linear combination of the equations, and checkwhether � satis�es the resulting (single) equation. Note that the value of the correspondinglinear expression (in quadratic (and linear) forms) appears as a bit of the Hadamard encodingof �, but again we retrieve it from w by using self correction.One key observation underlying the analysis of Steps 2 and 3 is that for (u1; :::; un) 6= (v1; ::::; vn) 2f0; 1gn, if we uniformly select (r1; ::::; rn) 2 f0; 1gn then Pr[Pi riui = Pi rivi] = 1=2. Similarly,for n-by-n matrices A 6= B, when r; s 2 f0; 1gn are uniformly selected (vectors), it holds thatPr[As = Bs] = 2�rank(A�B) and it follows that Pr[rAs = rBs] � 3=4.3.2 Locally testable codes and proofs of polynomial lengthThe constructions presented in Section 3.1 have exponential length in terms of the relevant param-eter (i.e., the amount of information being encoded in the code or the length of the assertion beingproved). Achieving local testability by codes and proofs that have polynomial length turns out tobe even more challenging.3.2.1 Locally testable codes of quadratic lengthA direct interpretation of low-degree tests (cf. [6, 7, 31, 44, 30]), proposed by Friedl and Sudan [30]and Rubinfeld and Sudan [44], yields a locally testable code of quadratic length over a su�cientlylarge alphabet. Similar (and actually better) results for binary codes required additional ideas,and have appeared only later (cf. [34]). We sketch both constructions below, starting with locallytestable codes over very large alphabets (which are de�ned analogously to the binary case).We will consider a code C : �k ! �n of linear distance, with j�j � k and n > k2. Forparameters m � d < log k (such that k < dm), consider a �nite �eld F of size O(d) and analphabet � = F d+1. Viewing the information as a m-variant polynomial p of total degree d overF , we encode it by providing its value on all possible lines over Fm, where each such line is de�nedby two points in Fm. Actually, the value of p on such a line can be represented by a univariatepolynomial of degree d. Thus, the code maps log2 jF j(m+dd ) > (d=m)m log jF j bits of information(which may be viewed as k def= (d=m)m=(d + 1) � dm�1=mm long sequences over � = F d+1) to17



sequences of length n def= jF j2m = O(d)2m over �. Note that the smaller m, the better the rate (i.e.,relation of n to k) is, but this comes at the expense of using a larger alphabet. In particular, weconsider two instantiations:1. Using d = mm, we get k � mm2�2m and n = m2m2+o(m), which yields n � exp(plog k) � k2and log j�j = log jF jd+1 � d log d � exp(plog k).2. Letting d = mc for any constant c > 1, we get k � m(c�1)m and n = m2cm+o(m), which yieldsn � k2c=(c�1) and log j�j � d log d � (log k)c.As for the codeword tester, it uniformly selects two intersecting lines and checks that the corre-sponding univariate polynomials agree on the point of intersection. Thus, this tester makes twoqueries (to an oracle over the alphabet �). The analysis of this tester reduces to the analysis ofthe corresponding low degree test, undertaken in [4, 43].The above tester uses only two queries, but the entire description (which refers to codes over alarge alphabet) deviates from the bulk of our treatment, which has focused on a binary alphabet.We comment that 2-query locally testable binary codes are essentially impossible (cf., [14]), butwe have already seem that 3-query tests are possible. A natural way of reducing the alphabet sizeof codes is via the well-known paradigm of concatenated codes [28].18 However, local testabilitycan be maintained only in special cases. In particular, observe that, for each of the two queriesmade by the tester of C, the tester does not need the entire polynomial represented in � = F d+1,but rather only its value at a speci�c point. Thus, encoding � by an error correcting code thatsupports recovery of the said value while using a constant number of probes will do.19 In particular,Goldreich and Sudan used an encoding of F d+1 = F he by sequences of length jF jeh over F , andprovided a testing and recovery procedure that makes O(e) queries [34, Sec. 3.3]. We mention thatthe case of e = 1 and jF j = 2 corresponds to the Hadamard code, and that bigger constant e allowfor shorter codes. The resulting concatenated code, C0, is a locally testable code over F , and haslength n �O(d)eh = n � exp((e log d) � d1=e). Using constant e = 2c and setting d = mc � (log k)c, weget n � k2c=(c�1) � exp( eO(log k)1=2) and jF j = poly(log k). Finally, a binary locally testable codeis obtained by concatenating C0 with the Hadamard code, while noting that the latter supportsa \local recovery" property that su�ces to emulate the tester for C0. In particular, the tester ofC0 merely checks a linear (over F ) equation referring to a constant number of F -elements, andfor F = GF (2`), this can be emulated by checking related random linear combinations of the bitsrepresenting these elements, which in turn can be local recovered (or rather self-corrected) from theHadamard code. The �nal result is a locally testable (binary) code of nearly quadratic length.203.2.2 Locally testable proofs of polynomial length: The PCP TheoremThe case of proofs is far more complex: Achieving locally testable proof of polynomial length isessentially the contents of the celebrated PCP Theorem of Arora, Lund, Motwani, Safra, Sudan18A concatenated code is obtained by encoding the symbols of an \outer code" (using the coding method of the\inner code"). Speci�cally, let C1 : �k11 ! �n11 be the outer code and C2 : �k22 ! �n22 be the inner code, where�1 � �k22 . Then, the concatenated code C : �k1k22 ! �n1n22 is obtained by C(x1; :::; xk1) = (C2(y1); :::;C2(yn1 )),where xi 2 �k22 � �1 and (y1; :::; yn1 ) = C1(x1; :::; xk1). Using a good inner code for relatively short sequences, allowsto transform good codes for a large alphabet into good codes for a smaller alphabet.19Indeed, this property is related to locally decodable codes, to be discussed in Section 4. Here we need to recoverone out of jF j speci�c linear combinations of the encoded (d + 1)-long sequence of F -symbols. In contrast, locallydecodable refers to recovering one out of the original F -symbols of the (d+ 1)-long sequence.20Actually, the aforementioned result is only implicit in [34], because Goldreich and Sudan apply these ideas directlyto a truncated version of the low-degree based code. 18



and Szegedy [5, 4]. The construction is analogous to (but far more complex than) the one presentedin the case of codes:21 First one constructs proofs over a large alphabet, and next one composessuch proofs with corresponding \inner" proofs (over a smaller alphabet, and �nally a binary one).The �rst step is to introduce the following NP-complete problem. The input to the problemconsists of a �nite �eld F , a subset H � F of size bjF j1=15c, an integer m < jHj, and a (3m + 4)-variant polynomial P : F 3m+4 ! F of total degree 3mjHj + O(1). The problem is to determinewhether there exists an m-variant (\assignment") polynomial A : Fm ! F of total degree mjHjsuch that P (x; z; y; �; A(x); A(y); A(z)) = 0 for every x; y; z 2 Hm and � 2 f0; 1g3 � H. Note thatthe problem-instance can be explicitly described by a sequence of jF j3m+4 log2 jF j bits, whereas thesolution sought can be explicitly described by a sequence of jF jm log2 jF j bits. We comment thatthe NP-completeness of the aforementioned problem can be proved by a reduction from 3SAT, byidentifying the variables of the formula with Hm and essentially letting P be a low-degree extensionof a function f : H3m � f0; 1g3 ! f0; 1g that encodes the structure of the formula (by consideringall possible 3-clauses). In fact, the resulting P has degree jHj in each of the �rst 3m variables andconstant degree in each of the other variables, and this fact can be used to improve the parametersbelow (but not in a fundamental way).The proof that P satis�es the aforementioned condition consists of an m-variant polynomialA : Fm ! F (which is supposed to be of total degree mjHj) as well as 3m + 4 auxiliary poly-nomials Ai : F 3m+1 ! F , for i = 1; :::; 3m + 1 (each supposedly of degree (3mjHj + O(1)) �mjHj). The polynomial A is supposed to satisfy the conditions of the problem, and in particularP (x; z; y; �; A(x); A(y); A(z)) = 0 should hold for every x; y; z 2 Hm and � 2 f0; 1g3 � H. Fur-thermore, A0(x; z; z; �) def= P (x; z; y; �; A(x); A(y); A(z)) should vanish on H3m+1. The auxiliarypolynomials are given to assist the veri�cation of the latter condition. In particular, it should bethe case that Ai vanishes on F iH3m+1�i, a condition that is easy to test for A3m+1 (assuming thatA3m+1 is a low degree polynomial). Checking that Ai�1 agrees with Ai on F i�1H3m+1�(i�1), fori = 1; :::; 3m + 1, and that all Ai's are low degree polynomials, establishes the claim for A0. Thus,testing an alleged proof (A;A1; :::; A3m+1) is performed as follows:1. Testing that A is a polynomial of total degree mjHj. This is done by selecting a randomline through Fm, and testing whether A restricted to this line agrees with a degree mjHjunivariate polynomial.2. Testing that, for i = 1; :::; 3m+ 1, the polynomial Ai is of total degree d def= (3mjHj+O(1)) �mjHj. Here we select a random line through F 3m+1, and test whether Ai restricted to thisline agrees with a degree d univariate polynomial.3. Testing that, for i = 1; :::; 3m + 1, the polynomial Ai agrees with Ai�1 on F i�1H3m+1�(i�1).This is done by uniformly selecting r0 = (r1; :::; ri�1) 2 F i�1 and r00 = (ri+1; :::; r3m+1) 2F 3m+1�i, and comparing Ai�1(r0; e; r00) to Ai(r0; e; r00), for every e 2 H. In addition, we checkthat both functions when restricted to the axis-parallel line (r0; �; r00) agree with a univariatepolynomial of degree d.22 We stress that the values of A0 are computed according to the givenpolynomial P by accessing A at the adequate locations (i.e., by de�nition A0(x; z; z; �) =P (x; z; y; �; A(x); A(y); A(z))).4. Testing that A3m+1 vanishes on F 3m+1. This is done by uniformly selecting r 2 F 3m+1, andtesting whether F (r) = 0.21Our presentation reverses the historical order in which the corresponding results (for codes and proofs) wereachieved. That is, the constructions of locally testable proof of polynomial length predated the coding counterparts.22Thus, e�ectively, we are self-correcting the values at H (on the said line), based on the values at F (on that line).19



The above description (which follows [46, Apdx. C]) is somewhat di�erent than the original presen-tation in [4], which in turn follows [6, 7, 27].23 The above tester may be viewed as making O(mjF j)queries to an oracle over the alphabet F , or alternatively as makingO(mjF j log jF j) binary queries.24Note that we have already obtained a highly non-trivial tester. It makes O(mjF j log jF j) queries inorder to verify a claim regarding an input of length n def= jF j3m+4 log2 jF j. Usingm = log n= log log n,jHj = log n and jF j = poly(log n), we have obtained a tester of poly-logarithmic query complexity.To further reduce the query complexity, one invokes the \proof composition" paradigm, intro-duced by Arora and Safra [5]. Speci�cally, one composes an \outer" tester (as described above)with an \inner" tester that checks the residual condition that the \outer" tester determines for theanswers it obtains. This composition is more problematic than one suspects, because we wish the\inner" tester to perform its task without reading its entire input (i.e., the answers to the \outer"tester). This seems quite paradoxical, as how can the \inner" tester operate without reading itsentire input. The problem can be resolved by using a \proximity tester" (i.e., a PCP of proximity)as an \inner" tester, provided that it su�ces to have such a proximity test (for the answers to the\outer" tester).� One approach, introduced in [4], is to convert the \outer" tester into one that makes a constantnumber of queries over some larger alphabet, and furthermore have the answer be presentedin an error correcting format. The implementation of this approach consists of two stepsand is based on some speci�cs. The �rst step is to convert the \outer" tester into one thatmakes a constant number of queries over some larger alphabet. This step uses the so-calledparallelization technique (cf. [40, 4]). Next, one applies an error correcting code to these O(1)longer answers, and assumes that the \proximity tester" can handle inputs presented in thisformat (i.e., that it can test an input that is presented by an encoding of a constant numberof its parts).25� An alternative approach, pursued and advocated in [15], is to take advantage of the speci�cstructure of the queries, \bundle" the answers together and furthermore show that the \bun-dled" answers are \robust" in a sense that �ts proximity testing. In particular, the (generic)parallelization step is avoided, and is replaced by a closer analysis of the speci�c (outer)tester.We will demonstrate the latter approach next.First, we show how the queries of the aforementioned tester can be \bundled" (into a constantnumber of bundles). In particular, we consider the following \bundling" that accommodates alltypes of tests (and in particular the m+1 di�erent sub-tests performed in Steps 2 and 3). ConsiderB(x1; ::::; x3m+1) = (A1(x1; x2; ::::; x3m+1); A2(x2; ::::; x3m+1; x1); :::; A3m+1(x3m+1; x1; ::::; x3m))and perform all 3m+ 1 tests of Step (3) by selecting uniformly (r2; :::; r3m+1) 2 F 3m and queryingB at (e; r2; :::; r3m+1) and (r3m+1; e; :::; r3m) for all e 2 F . Thus, all 3m + 1 tests of Step (3)can be performed by retrieving the values of B on a single axis parallel random line through23The point is that the sum-check, which originates in [41], is replaced by an analogous process (which happens tobe non-adaptive).24Another alternative perspective is obtained by applying so-called parallelization (cf. [40, 4]). The result is a testmaking a constant number of queries that are each answered by strings of length poly(jF j).25The aforementioned assumption holds trivially in case one uses a generic \proximity tester" (i.e., a PCP ofproximity or an Assignment Tester) as done in [25]. But the aforementioned approach can be (and was in factoriginally) applied with a speci�c \proximity tester" that can only handle inputs presented in one speci�c format(cf. [4]). 20



F 3m+1. Furthermore, note that all 3m + 1 tests of Step (2) can be performed by retrieving thevalues of B on a single (arbitrary) random line through F 3m+1. Finally, observe that the testsare \robust" in the sense that if, for some i, the function Ai is (say) 0.01-far from satisfying thecondition (i.e., being low-degree or agreeing with Ai�1) then with constant probability many ofthe values of Ai on an adequate random line will not �t to what is needed. This robustnessproperty is inherited by B, as well as by B0 (resp., A0) that is obtained by applying a good binaryerror-correcting code on B (resp., on A). Thus, we may replace A and the Ai's by A0 and B0,and conduct all all tests by making O(m2jF j log jF j) queries to A0 : Fm � [O(log jF j)] ! f0; 1gand B0 : F 3m+1 � [O(log jF j3m+1)] ! f0; 1g. The robustness property asserts that if the originalpolynomial P had no solution (i.e., an A as above) then the answers obtained by the tester will befar from satisfying the residual decision predicate of the tester.Once the robustness property of the resulting (\outer") tester �ts the proximity testing featureof the \inner tester", composition is possible. Indeed, we compose the \outer" tester with an\inner tester" that checks whether the residual decision predicate of the \outer tester" is satis�es.The bene�t of this composition is that the query complexity is reduced from poly-logarithmic topolynomial in a double-logarithm. At this point we can a�ord the Hadamard-Based proof tester(because the overhead in the proof complexity will only be exponential in a polynomial in a double-logarithmic function), and obtain a locally testable proof of polynomial length.3.3 Locally testable codes and proofs of nearly linear lengthWe now move on to even shorter codes and proofs; speci�cally, codes and proofs of nearly linearlength. The latter term has been given quite di�erent interpretations, and we start by sorting theseout.3.3.1 Types of nearly linear functionsA few common interpretations of this term are listed below (going from the most liberal to themost strict one).T1-nearly linear: A very liberal notion, at the verge of an abuse of the term, refers to a sequenceof functions f� : N ! N such that, for every � > 0, it holds that f�(n) � n1+�. That is, eachfunction is actually of the form n 7! nc, for some constant c > 1, but the sequence as a wholecan be viewed as approaching linearity.The PCP of Polishchuk and Spielman [43] and the simpler locally testable code of Goldreichand Sudan [34, Thm. 2.4] have nearly linear length in this sense.T2-nearly linear: A more reasonable notion of nearly linear functions refers to individual func-tions f such that f(n) = n1+o(1). Speci�cally, for some function � : N ! [0; 1] that goes tozero, it holds that f(n) � n1+�(n). Common sub-types include the following:1. �(n) = 1= log log n.2. �(n) = 1=(log n)c for some c 2 (0; 1).The currently best locally testable codes and proofs [34, 20, 15] have nearly linear lengthin this sense.3. �(n) = exp((log log log n)c)= log n for some c 2 (0; 1).Indeed, the case in which �(n) = O(log log n)= log n (or so) deserves a special category.21



T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmic(or quasi-poly-logarithmic) factor. In the former case f(n) � poly(log n) � n, which corre-sponds to the case of f(n) � n1+�(n) with �(n) = O(log log n)= log n, whereas the latter casecorresponds to �(n) = poly(log log n)= log n (i.e., in which case f(n) � (log n)poly(log log n) � n).Using the above notation, we summarize the state of the art with respect to local testability ofcodes and proofs.3.3.2 Local testability with nearly linear lengthCurrently, locally testable codes and proofs of nearly linear length are known when nearly linear isinterpreted as Type T2 (i.e., T2-nearly linear). More generally, we have:Theorem 3.1 (Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [15]): There exists a universalconstant c > 2 such that for every function q : N! N satisfying 2c � q(k) � 2c log log klog log log k there existsa q-locally testable proof of length Fq(k) � k for satis�ability (of formulae of length k), whereFq(k) def= exp "�q(k)c + (log k) cq(k)� � (log log k) + (log k) 2cq(k) + q(k)2c2 � poly log log log k# (1)The same length bound holds for q-locally testable codes, where k denotes the length of the infor-mation being encoded.Let us derive two extreme cases of Theorem 3.1, while setting t = q(k)=c.1. Constant query complexity: For t 2 [2; :::; 0:99 log log klog log log k ], we have (log k) 1t > (log log k)1=0:99 andso Ft(k) = exp((log k) 2t ). In particular, for any constant t, we get locally testable proofs andcodes (i.e., c � t-locally testable proofs and codes) of length exp((log k) 2t ) � k = k1+�(k), where�(k) = 1=(log k)1� 2t .2. T3-nearly linear length: For t � 1:01 log log klog log log k , we have (log k) 1t � (log log k)1=1:01 and so Ft(k) =exp(t2 � poly log log log k) = exp( eO(log log k)2). In particular, setting t = 2 log log klog log log k , we geto(log log k)-locally testable proofs and codes of length exp( eO(log log k)2) � k.For an even stricter notion of T3-nearly linear (i.e., a poly-logarithmic factor rather than a quasi-poly-logarithmic one), testers of poly-logarithmic query complexity are known.query complexity length overhead commentspoly(log k) poly(log k) Theorem 3.2.o(log log k) exp(poly(log log k)) These are two extreme casesAny constant q exp((log k)O(1=q)) of Theorem 3.1.Figure 1: The best known q(�)-locally testable codes and proofsTheorem 3.2 (Ben-Sasson and Sudan [19]): There exists a poly-logarithmic function f : N ! Nsuch that there exist f -locally testable codes and proofs of length f(k) �k, where k denotes the lengthof the actual information (i.e., the assertion in case of proofs and the encoded information in caseof codes). 22



The known results are summarized in Figure 1, where k is as in Theorems 3.1 and 3.2. The ultimategoal may be to obtain locally testable (i.e., O(1)-locally testable) codes and proofs of T3-nearlylinear length. Indeed, we conjecture that this is possible.Conjecture 3.3 There exist locally testable codes and proofs of length poly(log k) � k.We conjecture that locally testable codes and proofs of (strictly) linear length cannot be achieved.Conjecture 3.4 There exist no locally testable codes and proofs of linear length.3.3.3 The ideas underlying the constructionsWe brie
y mention some of the ideas that underly the proofs of Theorems 3.1 and 3.2.A nearly linear arithmetic representation of SAT. The proof of the PCP Theorem starts bya reduction of 3SAT to an arithmetic problem, but the reduction (as sketched in x3.2.2) representsan n-variable input formula as a binary string of length O(n3). Thus, this very �rst step alreadycubes the length of the constructed proof. An alternative arithmetization, which only incurs apoly-logarithmic increase in length, is obtained by �rst \embedding" the formula in a de-Bruijngraph such that the variables and clauses are placed at vertices of the opposite ends of the graph(cf. [7, 43]). The speci�c formula will be encoded in an adequate routing of the variables to theclauses in which they appear, and the arithmetization will \hard-wire" this routing in an adequatepolynomial (of the type used in x3.2.2). Extra complications arises when one seeks to performthis process \optimally" (i.e., with the minimal number of variables), which is important whenusing large �elds (as seems required for deriving the results of Theorem 3.1). These di�culties areresolved in di�erent ways in [43] and in [15], respectively.Derandomizing low-degree tests. Another source of polynomial blow-up in the proof length isthe low-degree tests, which play a key role in all PCP constructions (cf. x3.2.2). Recall that to testthat a function of the form f : Fm ! F is low degree, we fetched its values on points of a randomline. Since a sub-proof will be (eventually) appended per each such a choice (of a line), we willneed jF 2mj such sub-proofs squaring the size of the original function f . Thus, a derandomizationof this test (as done non-constructively in [34] and constructively in [20, 15]) is of key importance.In particular, it turns out that it su�ces to consider a set of eO(jFm�1j) lines; speci�cally, eachline is speci�ed by a canonical point (residing on this line) and a slope that belongs to a subset ofpoly-logarithmic many slopes (out of all jFmj possible slopes) [20].Avoiding parallelization. As explained in x3.2.2, parallelization play a key role in all previousPCP constructions, and applying it increases the size of the proof by a factor that is at leastproportional to the query complexity of the original PCP. But this is too much in the context ofproving Theorem 3.1, and so the alternative \bundling" technique was introduced and used (in [15])in order to support a new proof composition method (sketched already in x3.2.2). Similarly, othertypes of packing various polynomials into a single polynomial (by using an auxiliary variable),which were used in prior constructions, have to be avoided.
23



Unbounded number of proof compositions. As mentioned above, proof composition plays acentral role in the construction of PCPs. The reason being that a PCP must satisfy two con
ictingconditions; speci�cally, have relatively small query complexity and still be short. Trying to optimizeboth complexity measures simultaneously turns out to be very hard, and proof composition allowsto make progress based on \non-optimal" constructions. Typically, the more we can apply proofcomposition, the better. Indeed, signi�cant progress was achieved by using a non-constant (e.g.,double-logarithmic) number of proof compositions [15, 25]. In the context of providing short PCPs,the new composition method of [15] has played an important role. The result, stated in Theorem 3.1,is a PCP with query complexity that is linear in the number of proof compositions (denoted t),and length overhead that decreases double-exponentially with this number (i.e., the overhead isessentially exp((log k)2=t)).Recursive construction of a special purpose PCPP. The aforementioned proof compositionparadigm seems to incur an unavoidable poly-logarithmic blow-up in the proof length, per eachapplication. This is the source of the (log k)t factor in Eq. (1), where t = q(k)=c is the numberof proof compositions. This overhead is due to the fact that we reduce a speci�c problem (i.e.,evaluating the residual tester decision regarding the oracle's answers) to a generic one, and thenarithmetize the latter.26 An alternative approach was taken in [19], resulting in Theorem 3.2:They �rst construct a q(k)-local codeword tester, for q(k) = pk, and then reduce the residual testto testing the same codeword property on sequences of length q(k). Unfortunately, the reductionuses a constant number of recursive calls, and so the end result uses a number of queries that isexponential (rather than linear) in the number of compositions, which in turn is double-logarithmic.3.4 Additional considerationsOur presentation, so far, has focused at obtaining the best possible trade-o�s between the querycomplexity and the length overhead of locally testable codes and proofs. However, given the fun-damental nature of these codes (resp. proofs), it is natural to investigate (generic) transformationsbetween such codes (resp. proofs). A �rst step in this direction is taken in [18], which studies thee�ect of taking tensor products of locally testable codes. Their results refer to linear codes andcome at the cost of decreasing the relative distance of the code.Our motivation to studying locally testable codes and proofs referred to super-fast testing,but our actual de�nitions have focused on the query complexity of these testers. In the case ofcodes, it is indeed the case that (in all known testers) the testing time is related to the querycomplexity. However, in the case of proofs there is a seemingly unavoidable (linear) dependence ofthe veri�cation time on the input length. This (linear) dependence can be avoided if one considersPCP-of-Proximity (see Section 2.3.3) rather than standard PCP. But even in this case, additionalwork is needed in order to derive testers that work is sub-linear time. Speci�cally, in [16], resultsanalogous to Theorems 3.1 and 3.2 are derived for PCP-of-Proximity using veri�ers that run inpolylogarithmic time.4 Locally Decodable CodesLocally decodable codes are complimentary to local testable codes. Recall that the latter are requiredto allow for super-fast rejection of strings that are far from being codewords (while accepting all26Our feeling is that a poly-logarithmic blow-up is unavoidable when reducing a speci�c problem to a generic one.24



codewords). In contrast, in case of locally decodable codes, we are guaranteed that the input isclose to a codeword, and are required to recover individual bits of the encoded information basedon a small number of probes (per recovered bit). As in case of local testability, the case when theoperation (in this case decoding) is performed based on a constant number of probes is of specialinterest.Local decodability is of natural practical appeal, which in turn provides additional motivationfor local testability. The point being that it makes little sense to try recover part of the data, incase the codeword is too corrupted. Thus, one should �rst apply local testability to check that thereceived codeword is not too corrupted, and apply local decodability only in case the codeword testpasses.4.1 De�nitionsWe follow the conventions of Section 2.1, but extend the treatment to codes over any �nite alphabet� (rather than insisting on � = f0; 1g). In the following, we use the notation [k] def= f1; 2; :::; kg.De�nition 4.1 Let C : �k ! �n be a code, and let q 2 N and � 2 (0; 1). A q-local �-decoder for Cis a probabilistic (non-adaptive) oracle machine M that makes at most q queries and satis�es thefollowing condition:Local recovery from somewhat corrupted codewords: For every i 2 [k] and x = (x1; :::; xk) 2 �k,and any w 2 �n that is �-close to C(x), on input i and oracle access to w, machine M outputsxi with probability at least 2=3. That is, Pr[Mw(1k; i) =xi] > 2=3, for any w 2 �n that is�-far from C(x).We call q the query complexity of M , and � the proximity parameter.Note that the proximity parameter must be smaller than the covering radius of the code (as oth-erwise the de�nition cannot possibly be satis�es (at least for some w and i)). One may strengthenDe�nition 4.1 by requiring that the bits of an uncorrupted codeword be always recovered correctly(rather than with high probability); that is, for every i 2 [k] and x = (x1; :::; xk) 2 �k, it musthold that Pr[MC(x)(1k; i)=xi] = 1. Turning to families of codes, we make the following de�nition(which potentially allows the alphabet to grow with k).De�nition 4.2 For functions n; � : N ! N, let C = fCk : [�(k)]k ! [�(k)]n(k)gk2K . We say thatC is a local decodable code if there exist constants � > 0 and q and a machine M that is a q-local�-decoder for Ck, for every k 2 K.We mention that locally decodable codes are related to (information theoretic secure) PrivateInformation Retrieval schemes, introduced in [24]. In the latter a user wishes to recover a bitof data from a k-bit long database, copies of which are held by s servers, without revealing anyinformation to any single server. To that end, the user (secretly) communicates with each of theservers, and the issue is to minimize the total amount of communication. As we shall see, certains-server PIR schemes yield 2s-locally decodable codes of length exponential in the communicationcomplexity of the PIR.
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Related notions of local recovery. The notion of local decodability is a special case of ageneral notion of local recovery, where one may be required to recover an arbitrary function ofthe original information based on a constant number of probes to the (corrupted) codeword. Thefunction f : �k ! f0; 1g� be better restricted in two ways: First it should have a small range (e.g.,its range may be �), and secondly it should come from a small predetermined set F of functions.De�nition 4.1 may be recast in these terms, by considering the set of projection functions (i.e.,ffi : �k ! �g where fi(x1; :::; xk) = xi). We believe that this is the most natural special caseof the general notion of local recovery. In x3.2.1 we referred to another special case, where thealphabet is associated with a �nite �eld F and the recovery function fe : F k ! F is one out of jF jpossible linear functions (speci�cally, fe(x1; :::; xk) = Pki=1 ei�1xi, for e 2 F ).27 Another naturalcase (also used in x3.2.1) is that of the recovery of (correct) symbols of the codeword, which may beviewed as self-correction. (In this case the set of functions correspond to the functions determiningeach codeword symbol as a function of the encoded message.)4.2 ResultsThe best known locally decodable codes are of sub-exponential length. Speci�cally, k informationbits can be encoded by codewords of length n = exp(kO(log log q)=q log q) that are locally decodableusing q bit-probes (cf. [9]). It is conjectured that, for every q there exists an � > 0, such that locallydecodability based on q queries (i.e., probes) requires codewords of length n > exp(k�).4.2.1 Locally decodable codes of sub-exponential lengthFor any d � 1, there is a simple construction of a 2d-locally 2�d�2-decodable binary code of lengthn = 2d�k1=d . For h = k1=d, we identify [k] with [h]d, and view x 2 f0; 1gk as (xi1;:::;id)i1;:::;id2[h].We encode x by providing the parity of all xi1;:::;id residing in each of the (2h)d sub-cubes of [h]d;that is, for every (S1; :::; Sd) 2 2[h] � � � � � 2[h], we provide C(x)S1;:::;Sd = �i12S1;:::;id2Sdxi1;:::;id.Indeed, the Hadamard code is the special case in which d = 1. To recover the value of xi1;:::;id,at any desired (i1; :::; id) 2 [h]d, the decoder uniformly selects (R1; :::; Rd) 2 2[h] � � � � � 2[h], andrecovers the (possibly corrupted) values C(x)S1;:::;Sd, where each Sj either equals Rj or equalsRj4fijg. The key observation is that each of the decoder's queries is uniformly distributed.Thus, with probability at least 3=4, XORing the 2d answers, yields the desired result (because�S12fR1;R14fi1gg;:::;Sd2fRd;Rd4fidggC(x)S1;:::;Sd equals C(x)fi1g;:::;fidg = xi1;:::;id).We comment that a related code (of length n = 2dd�k1=d) allows for recovery based on d +1 (rather 2d) queries. The original presentation, due to [2] (building on [24]), is in terms ofPIR schemes (with s = (d + 1)=2 servers and overall communication dd � k1=d = exp( eO(s)) �k1=(2s�1)). In particular, in the case d = 2, we use two servers, sending (R1; R2; R3) to one and(R14fi1g; R24fi2g; R34fi3g) to the other. Upon receiving (S1; S2; S3), each server replies with thebit C(x)S1;S2;S3 = �j12S1;j22S2;j32S3xj1;j2;j3 , as well as the sequences (C(x)S14f1g;S2;S3 ; :::;C(x)S14fk1=3g;S2;S3),(C(x)S1;S24f1g;S3 ; :::;C(x)S1 ;S24fk1=3g;S3), and (C(x)S1;S2;S34f1g; :::;C(x)S1 ;S2;S34fk1=3g), which al-low the user to recover C(x)S14fi1g;S2;S3 , C(x)S1;S24fi2g;S3 , and C(x)S1;S2;S34fi1g.The corresponding locally decodable code is obtained by a generic transformation that ap-plies to any PIR scheme with s servers, in which the user makes uniformly distributed queriesof length qst(k), gets answers of length ans(k), and recovers the desired value by XORing somepredetermined bits contained in the answers. In this case, the resulting code will contain the27Indeed, the value fe(x1; :::; xk) is the evaluation at e of the polynomial p(�) =Pki=1 xi�i�1 represented by thecoe�cients (x1; :::; xk). 26



Hadamard encoding of each of the possible answers provided by each of the servers; that is, if thej-th server answers according to Aj(x; q) 2 f0; 1gans(k), where x 2 f0; 1gk and q 2 f0; 1gqst(k), thenC(x)j;q;` = CHad(Aj(x; q))`, for every ` 2 f0; 1gans(k). Thus, the length of the code is s�2qst(k)�2ans(k).Now, on input i 2 [k], the decoder emulates the PIR user, obtaining the query sequence (q1; :::; qs)and the desired linear combinations (`1; ::::; `s). It uniformly selects r1; :::; rs 2 f0; 1gans(k), queriesthe (possibly corrupted) codeword at locations (1; q1; r1); (1; q1; r1� `1); :::; (s; qs; rs); (s; qs; rs� `s),and XORs the 2s answers.As mentioned above, better locally testable codes are known, but their construction is moreinvolved (cf. [9]). Again, it is instructive to consider �rst the construction of PIR schemes, in whichcase s servers allow for a scheme with overall communication k�(s), where �(s) = O(log log s)=s log s�1=(2s � 1). In particular, �(3) = 4=21 improving over the previous bound of 1=5.Theorem 4.3 [9]: For every constant q, there exist q-locally decodable binary codes of length n =exp(k�(q)), where �(q) = O(log log q)q log q :4.2.2 Polylog-local decoding for codes of nearly linear lengthWe will consider a code C : �k ! �n of linear distance, while identifying � with a �nite �eld. Forparameters h and m = logh k, consider a �nite �eld F of size O(m � h), and a subset H � F of sizeh. Viewing the information as a function f : Hm ! F , we encode it by providing the values of itslow-degree extension bf : Fm ! F on all points in F , where bf is a m-variant polynomial of degreejHj�1 in each variable. Thus, the code maps k = hm long sequences over F (which may be viewedas hm log jF j bits of information) to sequences of length n def= jF jm = O(mh)m = O(m)m �k over F .This code has relative distance mh=jF j. Note that the smaller m, the better the rate (i.e., relationof n to k) is, but this comes at the expense of using a larger alphabet F (as well as larger querycomplexity of the decoder presented below).The decoder works by applying the self-correction paradigm. Given a point x 2 Hm and accessto an oracle w : Fm ! F that is 1=2-close to bf , the value of f(x) is recovered by uniformly selectinga line through x, querying for the jF j values of w along the line, �nding the degree mh univariatepolynomial with the greatest agreement with these values, and evaluating it at the adequate point.Thus, we obtain an jF j-local decoder.Using a constant m, we obtain an O(k1=m)-locally decodable code of constant rate (i.e., n =O(k)), over an alphabet of size O(k1=m). On the other hand, using m = � log k= log log k (forany constant � > 0), we obtain a poly(log k)-locally decodable code of length n = k1+�, over analphabet of size poly(log k). Concatenation with any reasonable28 binary code (coupled with atrivial decoder that reads the entire codeword), yields a binary poly(log k)-locally decodable codeof length n = k1+�.4.2.3 Lower BoundsIt is known that locally decodable codes cannot be T2-nearly linear: Speci�cally, any q-locallydecodable code C : �k ! �n must satisfy n = 
(k1+ 1q�1 ) (cf. [36]). For q = 2 and � = f0; 1g, anexponential lower bound is known (cf. [38], following [33]). We conjecture that locally decodablecodes cannot have polynomial length. In fact, we conjecture that locally decodable codes musthave sub-exponential length.28Indeed, we may use any good code (i.e., linear length and linear distance), as such can be easily constructed forblock length O(log log k). But we can even use the Hadamard code, because the length overhead caused by it in thissetting is negligible. 27



Conjecture 4.4 For every q there exists an � > 0 such that, for every � > 0 and all su�cientlylarge k, if C : f0; 1gk ! f0; 1gn has a q-local �-decoder then n > exp(k�).We actually conjecture the same for families of codes over arbitrary alphabets, even when thealphabet size grows arbitrarily with k.4.3 RelaxationsIn light of the aforementioned conjecture it is natural to seek relaxations to the notion of locallydecodable codes. One natural relaxation requires local recovery of most individual information-bits, allowing for recovery-failure (but not error) on the rest [15]: That is, it is requires that,whenever few location are corrupted, based on a constant number of queries, the decoder shouldbe able to recover most of the individual information-bits, and for the rest of the locations, thedecoder may output a fail symbol (but not the wrong value). Augmenting these requirements bythe requirement that whenever the codeword is not corrupted { all bits are recovered correctly(with high probability), yields the following de�nition.De�nition 4.5 For functions n; � : N! N, let C = fCk : f0; 1gk ! f0; 1gn(k)gk2K. For q 2 N and�; � 2 (0; 1), a q-local relaxed (�; �)-decoder for C is a probabilistic (non-adaptive) oracle machineM that makes at most q queries and satis�es the following conditions:Local recovery from uncorrupted codewords: For every i 2 [k] and x = (x1; :::; xk) 2 �k, it holdsthat Pr[MC(x)(1k; i)=xi] > 2=3,Relaxed local recovery from somewhat corrupted codewords: For every x = (x1; :::; xk) 2 �k, andany w 2 �n that is �-close to C(x), the following two conditions hold:1. For every i 2 [k], it holds that Pr[MC(x)(1k; i)2 fxi;?g] > 2=3, where ? is a special(\failure") symbol.2. There exists a set Iw � [k] of size at least �k such that, for every i 2 Iw, it holds thatPr[MC(x)(1k; i)=xi] > 2=3.29In such a case, C is said to be locally relaxed-decodable.It turns out (cf. [15]) that Condition 2, in the relaxed recovery requirement, essentially follows fromthe other requirements. That is, codes satisfying the other requirements can be transformed intolocally relaxed-decodable codes, while essentially preserving their rate (and distance). Furthermore,the resulting codes satisfy the following stronger form of Condition 2: There exists a set Iw � [k]of density at least 1 � O(�(w;C(x))=n) such that for every i 2 Iw it holds that Pr[MC(x)(1k; i)=xi] > 2=3.Theorem 4.6 [15]: There exist locally relaxed-decodable codes of T1-nearly linear length. Specif-ically, for every � > 0, there exists codes of length n = k1+� that have a O(1=�2)-local relaxed(
(�); 1 �O(�))-decoder.An obvious open problem is to separate locally decodable codes from relaxed ones. This may followby either improving the aforementioned lower bound on the length of locally decodable codes or byproviding relaxed locally decodable codes of T2-nearly linear length.29We stress that it is not required that Pr[MC(x)(1k; i) = ?] > 2=3 for i 2 [k] n Iw. Adding this requirementcollapses the notion of relaxed-decodability to ordinary decodability (cf. [22]).28
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