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Part IA high-level overviewThe title of this survey refers to two types of obje
ts (i.e., 
odes and proofs) and two adje
tives:lo
al testability and being short. A 
lari�
ation of these terms is in pla
e.Codes, proofs and their length. Codes are sets of strings (of equal length), typi
ally, havinga large pairwise distan
e. Equivalently, 
odes are viewed as mappings from short (k-bit) strings tolonger (n-bit) strings, 
alled 
odewords, su
h that the 
odewords are distant from one another. Wewill fo
us on 
odes with relative 
onstant distan
e; that is, every two n-bit 
odewords are at distan
e
(n) apart. The length of the 
ode is measured in terms of the length of the pre-image (i.e., we areinterested in the growth of n as a fun
tion of k). Turning to proofs, these are de�ned with respe
tto a veri�
ation pro
edure for assertions of a 
ertain length, and their length is measured in termsof the length of the assertion. The veri�
ation pro
edure must satisfy the natural 
ompleteness andsoundness properties: For valid assertions there should be strings, 
alled proofs, that are a

epted(in 
onjun
tion with the assertion) by the veri�
ation pro
edures, whereas for false assertions nosu
h strings may exist. The reader may envision proof systems for the set of satis�able propositionalformulae (i.e., assertions of satis�ability of given formulae).Lo
al testability. By lo
al testability we mean that the obje
t 
an be tested for the naturalproperty (i.e., being a 
odeword or a valid proof) using a small (typi
ally 
onstant) number ofprobes, ea
h re
overing individual bits in a standard representation of the obje
t. Thus, lo
altestability allows for super-fast testing of the 
orresponding fundamental obje
ts. The tests areprobabilisti
 and hen
e the result is 
orre
t only with high probability.1 Furthermore, 
orre
tnessrefers to a relaxed notion of de
iding (whi
h was formulated, in general terms, in the 
ontext ofproperty testing [41, 30℄): It is required that valid obje
ts be a

epted with high probability, whereasobje
ts that are \far" from being valid should be reje
ted with high probability. Spe
i�
ally, in
ase of 
odes, 
odewords should be a

epted (with high probability), whereas strings that are \far"from the 
ode should be reje
ted (with high probability). In 
ase of proofs, valid proofs (whi
hexist for 
orre
t assertions) should be a

epted (with high probability), whereas strings that are\far" from being valid proofs (and, in parti
ular, all strings in 
ase no valid proofs exist) should bereje
ted (with high probability).2Our notion of lo
ally testable proofs is very related to the notion of a PCP (i.e., probabilisti
ally
he
kable proof)3, and we will ignore the di�eren
e in the sequel. The di�eren
e is that in thede�nition of lo
ally testable proofs we required reje
tion of strings that are far from any validproof, also in the 
ase that valid proofs exists (i.e., the assertion is valid). In 
ontrast, the standardreje
tion 
riteria of PCPs refers only to false assertions. Still, all known PCP 
onstru
tions a
tuallysatisfy the stronger de�nition.41Indeed, it is easy to see that deterministi
 tests will perform very poorly, and the same holds with respe
t toprobabilisti
 tests that make no error.2Indeed, in the 
ase the assertion is false, there exist no valid proofs. In this 
ase all strings are de�ned to be farfrom a valid proof.3Needless to say, the new term \lo
ally testable proof" was introdu
ed to mat
h the term \lo
ally testable 
odes".In retrospe
t, \lo
ally testable proofs" seems a more �tting term than \probabilisti
ally 
he
kable proofs", be
ause itstresses the positive aspe
t (of lo
ality) rather than the negative aspe
t (of being probabilisti
). The latter perspe
tivehas been frequently advo
ated by Leonid Levin.4In some 
ases this holds only under a weighted version of the Hamming distan
e, rather under the standard2



The very possibility of lo
al testability. Indeed, lo
al testability of either 
odes or proofs isquite 
hallenging, regardless of the issue of length:� For 
odes, the simplest example of a lo
ally testable 
ode (of 
onstant relative distan
e) isthe Hadamard 
ode and testing it redu
es to linearity testing. However, the analysis of thenatural linearity tester (of Blum, Luby and Rubinfeld [19℄) turned out to be highly 
omplex(
f. [19, 6, 25, 12, 13, 10℄).� For proofs, the simplest example of a lo
ally testable proof is the \inner veri�er" of the PCP
onstru
tion of Arora, Lund, Motwani, Sudan and Szegedy [4℄, whi
h in turn is based on theHadamard 
ode.In both 
ases, the 
onstru
ted obje
t has exponential length in terms of the relevant parameter(i.e., the amount of information being en
oded in the 
ode or the length of the assertion beingproved).Lo
al testability at a polynomial blow-up. A
hieving lo
al testability by 
odes and proofsthat have polynomial length turns out to be even more 
hallenging.� In the 
ase of 
odes, a dire
t interpretation of low-degree tests (
f. [6, 7, 29, 41, 28℄), proposedin [28, 41℄, yields a lo
ally testable 
ode of quadrati
 length over a suÆ
iently large alphabet.Similar (and a
tually better) results for binary 
odes required additional ideas, and haveappeared only later (
f. [32℄).� The 
ase of proofs is far more 
omplex: A
hieving lo
ally testable proof of polynomial lengthis essentially the 
ontents of the 
elebrated PCP Theorem of Arora, Lund, Motwani, Safra,Sudan and Szegedy [5, 4℄.We fo
us on even shorter 
odes and proofs; spe
i�
ally, 
odes and proofs of nearly linear length.The latter term has been given quite di�erent interpretations, and we start by sorting these out.Types of nearly linear fun
tions: A few 
ommon interpretations of this term are listed below(going from the most liberal to the most stri
t one).T1-nearly linear: A very liberal notion, at the verge of an abuse of the term, refers to a sequen
eof fun
tions f� : N ! N su
h that, for every � > 0, it holds that f�(n) � n1+�. That is, ea
hfun
tion is a
tually of the form n 7! n
, for some 
onstant 
 > 1, but the sequen
e as a whole
an be viewed as approa
hing linearity.T2-nearly linear: A more reasonable notion of nearly linear fun
tions refers to individual fun
-tions f su
h that f(n) = n1+o(1). Spe
i�
ally, for some fun
tion � : N ! [0; 1℄ that goesto zero, it holds that f(n) � n1+�(n). Common sub-types in
lude the 
ase that �(n) =1= log logn, the 
ase that �(n) = 1=(log n)
 for some 
 2 (0; 1), and the 
ase that �(n) =exp((log log log n)
)= log n for some 
 2 (0; 1). Indeed, the 
ase in whi
h �(n) = O(log logn)= log n(or so) deserves a spe
ial 
ategory.Hamming distan
e. Alternatively, these 
onstru
tions 
an be easily modi�ed to work under the standard Hammingdistan
e. 3



T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmi
(or quasi-poly-logarithmi
) fa
tor. In the former 
ase f(n) � poly(log n) � n, whi
h 
or-responds to the aforementioned 
ase of f(n) � n1+�(n) with �(n) = O(log logn)= log n,whereas the latter 
ase 
orresponds to �(n) = poly(log log n)= log n (i.e., in whi
h 
ase f(n) =(log n)poly(log log n) � n).Using the above notation, we summarize the state of the art with respe
t to lo
al testability of
odes and proofs.Lo
al testability with nearly linear length: The ultimate goal may be to obtain lo
allytestable 
odes and proofs that are T3-nearly linear (i.e., nearly linear in the sense of Type T3).We 
onje
ture that lo
ally testable 
odes and proofs of (stri
tly) linear length 
annot be a
hieved.Currently, lo
ally testable 
odes and proofs of nearly linear length are known when nearly linear isinterpreted as Type T2 (i.e., T2-nearly linear).Theorem 1 (Ben-Sasson, Goldrei
h, Harsha, Sudan and Vadhan [15℄): There exist lo
ally testable
odes and proofs of length f(n) � n1+�(n), where �(n) = 1=(log n)0:99. A
tually, for every 
onstant
 2 (0; 1), one 
an a
hieve length f(n) � n1+�(n), where �(n) = 1=(log n)
.Open Problem 2 Do there exist lo
ally testable 
odes and proofs of length f(n) � poly(log n) �n?In the rest of this part, we motivate the study of short lo
ally testable obje
ts, 
omment on therelation between su
h 
odes and proofs, and dis
uss a somewhat related 
oding problem.Motivation to the study of short lo
ally testable 
odes and proofsLo
al testability o�ers an extremely strong notion of eÆ
ient testing: The tester makes only a
onstant number of bit probes, and determining the probed lo
ations (as well as the �nal de
ision)is typi
ally done in time that is poly-logarithmi
 in the length of the probed obje
t.The length of an error-
orre
ting 
ode is widely re
ognized as one of the two most fundamentalparameters of the 
ode (the se
ond one being its distan
e). In parti
ular, the length of the 
odeis of major importan
e in appli
ations, be
ause it determines the overhead involved in en
odinginformation.The same 
onsiderations apply also to proofs. However, in the 
ase of proofs, this obvious pointwas blurred by the indire
t, unexpe
ted and highly in
uential appli
ations of lo
ally testable proofs(known as PCPs) to the theory of approximation algorithms. In our view, the signi�
an
e of lo
allytestable proofs (i.e., PCPs) extends far beyond their appli
ability to deriving non-approximabilityresults. The mere fa
t that proofs 
an be transformed into a format that supports super-fast prob-abilisti
 veri�
ation is remarkable. From this perspe
tive, the question of how mu
h redundan
yis introdu
ed by su
h a transformation is a fundamental one. Furthermore, lo
ally testable proofs(i.e., PCPs) have been used not only to derive non-approximability results but also for obtainingpositive results (e.g., CS-proofs [36, 39℄ and their appli
ations [8, 21℄), and the length of the PCPa�e
ts the 
omplexity of those appli
ations.In any 
ase, the length of PCPs is also relevant to non-approximability results; spe
i�
ally, ita�e
ts their tightness with respe
t to the running time. For example, suppose (exa
t) SAT has
omplexity 2
(n). The original PCP Theorem [5, 4℄ only implies that approximating MaxSAT
4



requires time 2n� , for some (small) � > 0. The work of [40℄ makes � arbitrarily 
lose to 1, whereasthe results of [32, 18℄ further improve the lower-bound to 2n1�o(1) .5On the relation between lo
ally testable 
odes and proofsLo
ally testable 
odes seem related to lo
ally testable proofs (PCPs). In fa
t, the use of 
odes withrelated \lo
al testability" features is impli
it in known PCP 
onstru
tions. Furthermore, the known
onstru
tions of lo
ally testable proofs (PCPs) provides a transformation of standard proofs (forsay SAT) to lo
ally testable proofs (i.e., PCP-ora
les), su
h that transformed strings are a

eptedwith probability one by the PCP veri�er. Moreover, starting from di�erent standard proofs, oneobtains lo
ally testable proofs that are far apart, and hen
e 
onstitute a good 
ode. It is temptingto think that the PCP veri�er yields a 
odeword tester, but this is not really the 
ase. Note thatour de�nition of a lo
ally testable proof requires reje
tion of strings that are far from any validproof, but it is not 
lear that the only valid proofs (w.r.t the 
onstru
ted PCP veri�er) are thosethat are obtained by the aforementioned transformation of standard proofs to lo
ally testable ones.6In fa
t, the standard PCP 
onstru
tions a

ept also valid proofs that are not in the range of the
orresponding transformation.In spite of the above, lo
ally testable 
odes and proofs are related, and the feeling is that lo
allytestable 
odes are the 
ombinatorial 
ounterparts of lo
ally testable proofs (PCPs), whi
h are
omplexity theoreti
 in nature. From that perspe
tive, one should expe
t (or hope) that it wouldbe easier to 
onstru
t lo
ally testable 
odes than it is to 
onstru
t PCPs. This feeling was amongthe main motivations of Goldrei
h and Sudan, and indeed their �rst result was along this vein:They showed a relatively simple 
onstru
tion (i.e., simple in 
omparison to PCP 
onstru
tions) ofa lo
ally testable 
ode of T1-nearly linear length [32, Se
. 3℄. Unfortunately, their stronger result,providing a lo
ally testable 
ode of T2-nearly linear length is obtained by 
onstru
ting and usinga T2-nearly linear lo
ally testable proof (i.e., PCP). Subsequent works [18, 15℄ have followed thisroute, and only the re
ent work of Ben-Sasson and Sudan [17℄ (whi
h a
hieves a more relaxednotion of lo
al testability) reversed the 
ourse to the \right one": First 
odes are 
onstru
ted, andnext they are used towards the 
onstru
tion of proofs (rather than the other way around).Lo
ally De
odable CodesLo
ally de
odable 
odes are in some sense 
omplimentary to lo
al testable 
odes. Here, one isgiven a slightly 
orrupted 
odeword (i.e., a string 
lose to some unique 
odeword), and is requiredto re
over individual bits of the en
oded information based on a 
onstant number of probes (perre
overed bit). That is, a 
ode is said to be lo
ally de
odable if whenever relatively few lo
ationare 
orrupted, the de
oder is able to re
over ea
h information-bit, with high probability, based ona 
onstant number of probes to the (
orrupted) 
odeword.The best known lo
ally de
odable 
odes are of sub-exponential length. Spe
i�
ally, k infor-mation bits 
an be en
oded by 
odewords of length n = exp(kO(log log q)=q log q) that are lo
allyde
odable using q bit-probes (
f. [9℄). It is 
onje
tured that, for every q there exists an � > 0, su
hthat lo
ally de
odability based on q queries (i.e., probes) requires 
odewords of length n > exp(k�).The problem is related to the 
onstru
tion of (information theoreti
 se
ure) Private InformationRetrieval s
hemes, introdu
ed in [22℄.5A 
aveat: it is 
urrently not known whether these improved lower-bounds 
an be a
hieved simultaneously withoptimal approximation ratios, but the hope is that this 
an eventually be done.6Let alone that the standard de�nition of PCP refers only to the 
ase of false assertions, in whi
h 
ase all stringsare far from a valid proof (whi
h does not exist). 5



A natural relaxation of the de�nition of lo
ally de
odable 
odes requires that, whenever fewlo
ation are 
orrupted, the de
oder should be able to re
over most of the individual information-bits(based on a 
onstant number of queries) and for the rest of the lo
ations, the de
oder may outputa fail symbol (but not the wrong value). That is, the de
oder must still avoid errors (with highprobability), but on a few bit-lo
ations it is allowed to sometimes say \don't know". This relaxednotion of lo
al de
odability 
an be supported by 
odes that have T1-nearly linear length (
f. [15℄).An obvious open problem is to separate lo
ally de
odable 
odes from relaxed lo
ally de
odable
odes. This may follow by either improving the 
(k1+ 1q�1 ) lower bound on the length of q-querylo
ally de
odable 
odes (of [34℄), or by providing relaxed lo
ally de
odable 
odes of T2-nearly linearlength.

6



Part IIA more detailed and rigorous a

ountIn this part we provide a general treatment of lo
al testability. In 
ontrast to Part I, here we allowthe tester to use a number of queries that is a (typi
ally small) predetermined fun
tion of the lengthparameter, rather than insisting on a 
onstant number of queries. The latter spe
ial 
ase is indeedan important one.1 Introdu
tionCodes (i.e., error 
orre
ting 
odes) and proofs (i.e., automati
ally veri�able proofs) are fundamentalto 
omputer s
ien
e as well as to related dis
iplines su
h as mathemati
s and 
omputer engineering.Redundan
y is inherent to error-
orre
ting 
odes, whereas testing validity is inherent to proofs. Inthis survey we also 
onsider less traditional 
ombinations su
h as testing validity of 
odewords andthe use of proofs that 
ontain redundan
y. The reader may wonder why we explore these non-traditional possibilities, and the answer is that they o�er various advantages (as will be elaboratednext).Testing the validity of 
odewords is natural in settings in whi
h one may want to take an a
tionin 
ase the 
odeword is 
orrupted. For example, when storing data in an error 
orre
ting format,one may want to re
over the data and re-en
ode it whenever one �nds that the 
urrent en
oding is
orrupted. Doing so may allow to maintain the data integrity over eternity, when en
oded bits doget 
orrupted in the 
ourse of time. Of 
ourse, one 
an use the error-
orre
ting de
oding pro
edureasso
iated with the 
ode in order to 
he
k whether the 
urrent en
oding is 
orrupted, but thequestion is whether one 
an 
he
k (or just approximately 
he
k) this property mu
h faster.Loosely speaking, lo
ally testable 
odes are error 
orre
ting 
odes that allow for a super-fasttesting of whether or not a give string is a valid 
odeword. In parti
ular, the tester works in sub-linear time and reads very few of the bits of the tested obje
t. Needless to say, the answer providedby su
h a tester 
an only be approximately 
orre
t, but this would suÆ
e in many appli
ations(in
luding the one sket
hed above).Similarly, lo
ally testable proofs are proofs that allow for a super-fast probabilisti
 veri�
ation.Again, the tester works in sub-linear time and reads very few of the bits of the tested obje
t. Thetester's (aka veri�er's) verdi
t is only 
orre
t with high probability, but this may suÆ
e for manyappli
ations. In parti
ular, it suÆ
es in appli
ations where proofs refer to the 
orre
tness of aspe
i�
 
omputation of pra
ti
al interest (rather than referring to Fermat's Theorem). Lastly, we
omment that su
h lo
ally testable proofs must be redundant (or else there would be no 
han
e forverifying them based on inspe
ting only a small portion of them).Our fo
us is on relatively short lo
ally testable 
odes and proofs, whi
h is not surprising in viewof the fa
t that we envision su
h obje
ts being a
tually used in pra
ti
e. Of 
ourse, we do not meanto suggest that one may use in pra
ti
e any of the 
onstru
tions surveyed here (espe
ially not theones that provide the stronger bounds). We rather argue that this dire
tion of resear
h may �ndappli
ations in pra
ti
e. Furthermore, it may even be the 
ase that some of the 
urrent 
on
eptsand te
hniques may lead to su
h appli
ations.Organization: In Se
tion 2 we provide a quite 
omprehensive de�nitional treatment of lo
allytestable 
odes and proofs, while relating these to PCPs, PCPs of proximity, and property testing.In Se
tion 3, we survey the main results regarding lo
ally testable 
odes and proofs as well as many7



of the underlying ideas. In Se
tion 4 we 
onsider lo
ally de
odable 
odes, whi
h are somewhat
omplementary to lo
ally testable 
odes.2 De�nitionsLo
al testability is formulated by 
onsidering ora
le ma
hines. That is, the tester is an ora
lema
hine, and the obje
t that it tests is viewed as an ora
le. For simpli
ity, we 
on�ne ourselvesto non-adaptive probabilisti
 ora
le ma
hines; that is, ma
hines that determine their queries basedon their expli
it input (whi
h in 
ase of 
odes is merely a length parameter) and their internal 
ointosses (but not depending on previous ora
le answers). When taking about ora
le a

ess to a stringw 2 f0; 1gn we viewed w as a fun
tion w : f1; :::; ng ! f0; 1g.2.1 Codeword testersWe 
onsider 
odes mapping sequen
es of k (input) bits into sequen
es of n � k (output) bits. Su
ha generi
 
ode is denoted by C : f0; 1gk ! f0; 1gn, and the elements of fC(x) : x2f0; 1gkg � f0; 1gnare 
alled 
odewords (of C).The distan
e of a 
ode C : f0; 1gk ! f0; 1gn is the minimum (Hamming) distan
e between its
odewords; that is, minx6=yf�(C(x);C(y))g, where �(u; v) denotes the number of bit-lo
ations onwhi
h u and v di�er. Throughout this work, we fo
us on 
odes of linear distan
e; that is, 
odesC : f0; 1gk ! f0; 1gn of distan
e 
(n).The distan
e of w 2 f0; 1gn from a 
ode C : f0; 1gk ! f0; 1gn, denoted �C(w), is the minimumdistan
e between w and the 
odewords; that is, �C(w) def= minxf�(w;C(x))g. For Æ 2 [0; 1℄, then-bit long strings u and v are said to be Æ-far (resp., Æ-
lose) if �(u; v) > Æ �n (resp., �(u; v) � Æ �n).Similarly, w is Æ-far from C (resp., Æ-
lose to C) if �C(w) > Æ � n (resp., �C(w) � Æ � n).De�nition 2.1 Let C : f0; 1gk ! f0; 1gn be a 
ode of distan
e d, and let q 2 N and Æ 2 (0; 1). Aq-lo
al (
odeword) Æ-tester for C is a probabilisti
 (non-adaptive) ora
le ma
hine M that makes atmost q queries and satis�es the following two 
onditions:A

epting 
odewords (aka 
ompleteness): For any x 2 f0; 1gk, given ora
le a

ess to w = C(x),ma
hine M a

epts with probability 1. That is, Pr[MC(x)(1k)=1℄ = 1, for any x 2 f0; 1gk.Reje
tion of non-
odeword (aka soundness): For any w 2 f0; 1gn that is Æ-far from C, given ora
lea

ess to w, ma
hine M reje
ts with probability at least 1=2. That is, Pr[Mw(1k)=1℄ � 1=2,for any w 2 f0; 1gn that is Æ-far from C.We 
all q the query 
omplexity of M , and Æ the proximity parameter.The above de�nition is interesting only in 
ase Æn is smaller than the 
overing radius of C (i.e., thesmallest r su
h that for every w 2 f0; 1gn it holds that �C(w) � r). Clearly, r � d=2, and so thede�nition is 
ertainly interesting in the 
ase that Æ < d=2n, and indeed we will fo
us on this 
ase.On the other hand, observe that q = 
(1=Æ) must hold, whi
h means that we fo
us on the 
asethat d=n = 
(1=q).We next 
onsider families of 
odes C = fCk : f0; 1gk ! f0; 1gn(k)gk2K , where n; d : N! N andK � N, su
h that Ck has distan
e d(k). In a

ordan
e with the above, we 
are most of the 
asethat Æ(k) < d(k)=2n(k). Furthermore, seeking 
onstant query 
omplexity, we fo
us on the 
ased = 
(n). 8



De�nition 2.2 For fun
tions n; d : N ! N, let C = fCk : f0; 1gk ! f0; 1gn(k)gk2K su
h that Ckis a 
ode of distan
e d(k). For fun
tion q : N ! N and Æ : N ! (0; 1), we say that M is q-lo
al(
odeword) Æ-tester for C = fCkgk2K if, for every k 2 K, ma
hine M is a q(k)-lo
al Æ(k)-tester forCk. Again, q is 
alled the query 
omplexity of M , and Æ the proximity parameter.Re
all that being parti
ularly interested in 
onstant query 
omplexity (and re
alling that d(k)=n(k) �2Æ(k) = 
(1=q(k))), we fo
us on the 
ase that d = 
(n) and 
onstant Æ < d=2n. In this 
ase, wemay 
onsider a stronger de�nition.De�nition 2.3 Let n; d and C be as in De�nition 2.2 and suppose that d = 
(n). We say that Cis lo
ally testable if for every 
onstant Æ > 0 there exists a 
onstant q and a probabilisti
 polynomial-time ora
le ma
hine M su
h that M is a q-lo
al Æ-tester for C.We will be 
on
erned of the growth rate of n as a fun
tion of k, for lo
ally testable 
odes C = fCk :f0; 1gk ! f0; 1gn(k)gk2K of distan
e d = 
(n). More generally, for d = 
(n), we will be interestedin the trade-o� between n, the proximity parameter Æ, and the query 
omplexity q.2.2 Proof testersWe start by re
alling the standard de�nition of PCP.De�nition 2.4 A probabilisti
ally 
he
kable proof (PCP) system for a set S is a probabilisti
 (non-adaptive) polynomial-time ora
le ma
hine (
alled veri�er), denoted V , satisfyingCompleteness: For every x 2 S there exists an ora
le �x su
h that V , on input x and a

ess toora
le �x, always a

epts x; that is, Pr[V �x(x)=1℄ = 1.Soundness: For every x 62 S and every ora
le �, ma
hine V , on input x and a

ess to ora
le �,reje
ts x with probability at least 12 ; that is, Pr[M�(x)=1℄ � 1=2,Let Qx(r) denote the set of ora
le positions inspe
ted by V on input x and random-tape r 2f0; 1gpoly(jxj). The query 
omplexity of V is de�ned as q(n) def= maxx2f0;1gn;r2f0;1gpoly(n)fjQx(r)jg.The proof 
omplexity of V is de�ned as p(n) def= maxx2f0;1gnfj [r2f0;1gpoly(n) Qx(r)jg.Note that in the 
ase that the veri�er V uses a logarithmi
 number of 
oin tosses, its proof 
om-plexity is polynomial. In general, the proof 
omplexity is upper-bounded by 2r � q, where r (resp.,q) is the randomness (resp., query) 
omplexity of the proof tester. Thus, the trade-o� between thequery 
omplexity and the proof 
omplexity is typi
ally 
aptured by the trade-o� between the query
omplexity and the randomness 
omplexity. Furthermore, fo
using on the randomness 
omplexityallows for better bounds when 
omposing proofs (
f. x3.2.2).All known PCP 
onstru
tions 
an be easily modi�ed su
h that the ora
le lo
ations a

essedby V are a pre�x of the ora
le (i.e., [r2f0;1gpoly(jxj)Qx(r) � f1; :::; p(jxj)g, for every x).7 (Forsimpli
ity, the reader may assume that this is the 
ase throughout the rest of this exposition.)More importantly, all known PCP 
onstru
tions 
an be easily modi�ed to satisfy the followingde�nition, whi
h is 
loser in spirit to the de�nition of lo
ally testable 
odes.De�nition 2.5 For fun
tion q : N ! N and Æ : N ! (0; 1), we say that a PCP system V for aset S is a q-lo
ally Æ-testable proof system if it has query 
omplexity q and satis�es the following
ondition7In fa
t, for every x 2 f0; 1gn, it holds that [r2f0;1gpoly(n)Qx(r) = f1; :::; p(n)g.9



Reje
ting invalid proofs: For every x 2 f0; 1g� and every ora
le � that is Æ-far from �x def= fw :Pr[V w(x)=1℄ = 1g, ma
hine V , on input x and a

ess to ora
le �, reje
ts x with probabilityat least 12 .8The proof 
omplexity of V is de�ned as in De�nition 2.4.Note that De�nition 2.5 uses the tester V itself in order to de�ne the set (denoted �x) of valid proofs(for x 2 S). That is, V is used both to de�ne the set of valid proofs and to test for the proximity ofa given ora
le to this set. A more general de�nition (presented next), refers to an arbitrary proofsystem, and lets �x equal the set of valid proofs (in that system) for x 2 S. Obviously, it musthold that �x 6= ; if an only if x 2 S. Typi
ally, one also requires the existen
e of a polynomial-timepro
edure that, on input a pair (x; �), determines whether or not � 2 �x.9 For simpli
ity weassume that, for some fun
tion p : N ! N and every x 2 f0; 1g�, it holds that �x � f0; 1gp(jxj).The resulting de�nition follows.De�nition 2.6 Suppose that, for some fun
tion p : N ! N and every x 2 f0; 1g�, it holds that�x � f0; 1gp(jxj). For fun
tions q : N ! N and Æ : N ! (0; 1), we say that a probabilisti
 (non-adaptive) polynomial-time ora
le ma
hine V is a q-lo
ally Æ-tester for the proof system f�xgx2f0;1g�if V has query 
omplexity q and satis�es the following 
onditionsTe
hni
al 
ondition: On input x, ma
hine V issues queries in f1; :::; p(jxj)g.A

epting valid proofs: For every x 2 f0; 1g� and every ora
le � 2 �x, ma
hine V , on input x anda

ess to ora
le �, a

epts x with probability 1.Reje
ting invalid proofs: For every x 2 f0; 1g� and every ora
le � that is Æ-far from �x, ma
hineV , on input x and a

ess to ora
le �, reje
ts x with probability at least 12 .The proof 
omplexity of V is de�ned as p,10 and Æ is 
alled the proximity parameter. In su
h a
ase, we say that � = f�xgx2f0;1g� is q-lo
ally Æ-testable, and that S = fx 2 f0; 1g� : �x 6= ;g hasq-lo
ally Æ-testable proofs of length p.We say that � is lo
ally testable if for every 
onstant Æ > 0 there exists a 
onstant q su
h that � isq-lo
ally Æ-testable. In su
h a 
ase, we say that S has lo
ally testable proofs of length p.2.3 Dis
ussionWe �rst 
omment about a few de�nitional 
hoi
es made above. Firstly, we 
hose to present testersthat always a

ept valid obje
ts (i.e., a

ept valid 
odewords (resp., valid proofs) with probability 1).This is more appealing than allowing two-sided error, but the latter weaker notion is meaningful8The above de�nition relies on two natural 
onventions:1. All strings in �x are of the same length, whi
h equals j[r2f0;1gpoly(n) Qx(r)j, where Qx(r) is as in De�nition 2.4.Furthermore, we 
onsider only �'s of this length.2. If �x = ; then every � is 
onsidered Æ-far from �x.9We 
omment that in the 
ase that the veri�er V uses a logarithmi
 number of 
oin tosses, its proof 
omplexity ispolynomial (and so the \e�e
tive length" of the strings in �x must be polynomial in jxj). Furthermore, if in additionit holds that �x = fw : Pr[V w(x)= 1℄ = 1g, then (s
anning all possible 
oin tosses of) V yields a polynomial-timepro
edure for determining whether a given pair (x; �) satis�es � 2 �x.10Note that by the te
hni
al 
ondition, the 
urrent de�nition of the proof 
omplexity of V is lower-bounded by thede�nition used in De�nition 2.4. 10



too. A se
ond 
hoi
e was to �x the error probability (i.e., probability of a

epting far from validobje
ts), rather than introdu
ing yet another parameter. Needless to say, the error probability 
anbe redu
ed by sequential appli
ations of the tester.In the rest of this se
tion, we 
onsider an array of de�nitional issues. First, we 
onsider twonatural strengthenings of the de�nition of lo
al testability (
f. x2.3.1). We next we dis
uss therelation of lo
al testability to property testing (
f. x2.3.2), and the relation of lo
ality testableproofs to PCP of proximity (as de�ned in [15℄, 
f. x2.3.3). Finally, we dis
uss the relation betweenlo
al testable 
odes and proofs (
f. x2.3.4), and the motivation to the study of short lo
al testable
odes and proofs (
f. x2.3.5). (The text regarding the last issue is almost identi
al to a 
orrespondingtext that appears in Part I.)2.3.1 Stronger de�nitionsThe de�nitions of testers presented so far, allow for the 
onstru
tion of a di�erent tester for ea
hrelevant value of the proximity parameter. However, whenever su
h testers are a
tually 
onstru
ted,they tend to be \uniform" over all relevant values of the proximity parameter. Thus, it is naturalto present a single tester for all relevant values of the proximity parameter, provide this tester withthe said parameter, allow it to behave a

ordingly, and measure its query 
omplexity as a fun
tionof that parameter. For example, we may strengthen De�nition 2.3, by requiring the existen
e of afun
tion q : (0; 1)! N and an ora
le ma
hineM su
h that, for every 
onstant Æ > 0, all (suÆ
ientlylarge) k and all w 2 f0; 1gn(k), the following 
onditions hold:1. On input (1k; Æ), ma
hine M makes q(Æ) queries.2. If w is a 
odeword of C then Pr[Mw(1k; Æ) = 1℄ = 1.3. If w is Æ-far from fC(x) : x 2 f0; 1gkg then Pr[Mw(1k; Æ) = 1℄ � 1=2.An analogous strengthening applies to De�nition 2.6. A spe
ial 
ase of interest is when q(Æ) =O(1=Æ). In this 
ase, it makes sense to ask whether or not an even stronger \uniformity" 
onditionmay hold. Like in De�nitions 2.1 and 2.2 (resp., De�nitions 2.5 and 2.6), the tester M is not giventhe proximity parameter (and so its query 
omplexity 
annot depend on it), but we only requireit to reje
t with probability proportional to the distan
e of the ora
le from the relevant set. Forexample, we may strengthen De�nition 2.3, by requiring the existen
e of an ora
le ma
hine M anda 
onstant q su
h that, for every 
onstant Æ > 0, every (suÆ
iently large) k and w 2 f0; 1gn(k), thefollowing 
onditions hold:1. On input 1k, ma
hine M makes q queries.2. If w is a 
odeword of C then Pr[Mw(1k; Æ) = 1℄ = 1.3. If w is Æ-far from fC(x) : x 2 f0; 1gkg then Pr[Mw(1k; Æ) = 1℄ < 1�O(Æ).2.3.2 Relation to Property TestingLo
ally testable 
odes (and their 
orresponding testers) are essentially spe
ial 
ases of property test-ing, as de�ned in [41, 30℄. Spe
i�
ally, the property being tested is membership in a predetermined
ode. The only di�eren
e between the de�nitions presented in Se
tion 2.1 and the formulation thatis standard in the property testing literature is that in the latter the tester is given the proximityparameter as input and determines its behavior (and in parti
ular the number of queries) a

ord-ingly. This di�eren
e is eliminated in x2.3.1. We note, however, that most of the property testing11



literature is 
on
erned with \natural" obje
ts (e.g., graphs, sets of points, fun
tions) presented ina \natural" form rather than with obje
t designed arti�
ially to withstand errors (i.e., 
odewordsof error 
orre
ting 
odes).Our general formulation of proof testing (i.e., De�nition 2.6) 
an be viewed as a generalizationof property testing. That is, we view the set �x as a set of obje
ts having a 
ertain x-dependentproperty (rather than as a set of valid proofs for some property of x). In other words, De�nition 2.6allows to 
onsider properties that are parameterized by auxiliary information (i.e., x), whereastraditional property testing may be viewed as referring to the 
ase that x only determines thelength of strings in �x (e.g., �x = ; for every x 62 f1g� or, equivalently, �x = �y for everyjxj = jyj).112.3.3 Relation to PCPs of ProximityOur de�nition of a lo
ally testable proof is related but di�erent from the de�nition of a PCP ofproximity (appearing in [15℄).12 We start by reviewing the de�nition of PCP of proximity.De�nition 2.7 A PCP of proximity for a set S with proximity parameter Æ is a probabilisti
 (non-adaptive) polynomial-time ora
le ma
hine, denoted V , satisfyingCompleteness: For every x 2 S there exists a string �x su
h that V always a

epts when givena

ess to the ora
le (x; �x); that is, Pr[V x;�x(1jxj)=1℄ = 1.Soundness: For every x that is Æ-far from S\f0; 1gjxj and for every string �, ma
hine V reje
ts withprobability at least 12 when given a

ess to the ora
le (x; �); that is, Pr[Mx;�(1jxj)=1℄ � 1=2.The query 
omplexity of V is de�ned as in 
ase of PCP, but here also queries to the x-part are
ounted.The ora
le (x; �) is a
tually a 
on
atenation of two ora
les: the input-ora
le x (whi
h repla
es anexpli
itly given input in the de�nitions of PCPs and lo
ally testable proofs), and a proof-ora
le �(exa
tly as in the prior de�nitions). Note that De�nition 2.7 refers to the distan
e of the input-ora
le to S, whereas lo
ally testable proofs refer to the distan
e of the proof-ora
le from the set �xof valid proofs of membership of x 2 S.Still, PCPs of proximity 
an be de�ned within the framework of lo
ally testable 
odes. Spe
i�-
ally, 
onsider an extension of De�nition 2.6, where (relative) distan
es are measured a

ording to aweighted Hamming distan
e; that is, for a weight fun
tion ! : f1; :::; ng ! [0; 1℄ and u; v 2 f0; 1gn,we let Æ!(u; v) = Pni=1 !(i) � �(ui; vi). (Indeed, the standard notion of relative distan
e betweenu; v 2 f0; 1gn is obtained by Æ!(u; v) when using the uniform weighting fun
tion (i.e., !(i) = 1=n forevery i 2 f1; :::; ng).) Now, De�nition 2.7 
an be viewed as a spe
ial 
ase of (the extended) De�ni-tion 2.6 when applied to the (rather arti�
ial) set of proofs �1n = f(x; �) : x 2 S\f0; 1gn^� 2 �0xg,where �0x = f� : Pr[V x;�(1jxj) = 1℄ = 1g, by using the weighted Hamming distan
e Æ! for !that is uniform on the input-part of the ora
le; that is, for (x; �); (x0; �0) 2 f0; 1gn+p, we useÆ!((x; �); (x0; �0)) def= �(x; x0)=n, whi
h 
orresponds to !(i) = 1=n if i 2 f1; :::; ng and !(i) = 011In fa
t, in the 
ontext of property testing, the length of the ora
le must always be given to the tester (althoughsome sour
es negle
t to state this fa
t).12We mention that PCP of proximity are almost identi
al to Assignment Testers, de�ned independently by Dinurand Reingold [23℄. Both notions are (important) spe
ial 
ases of the general de�nition of a \PCP spot-
he
ker"formulated before in [24℄. 12



otherwise. Alternatively, weights 
an be approximately repla
ed by repetitions (provided that thetester 
he
ks the 
onsisten
y of the repetitions).13We mention that PCPs of proximity (of 
onstant query 
omplexity) yield a simple way ofobtaining lo
ally testable 
odes. More generally, we 
an 
ombine any 
ode C0 with any PCP ofproximity V , and obtain a q-lo
ally testable 
ode with distan
e essentially determined by C0 andrate determined by V , where q is the query 
omplexity of V . Spe
i�
ally, x will be en
oded byappending 
 = C0(x) by a proof that 
 is a 
odeword of C0, and distan
es will be determined bythe weighted Hamming distan
e that assigns uniform weights to the �rst part of the new 
ode. Asin the previous paragraph, these weights 
an be implemented by making suitable repetitions.Finally, we 
omment that the de�nition of a PCP of proximity 
an be extended by providingthe veri�er with part of the input in an expli
it form. That is, referring to De�nition 2.7, we letx = (x0; x00), and provide V with expli
it input (x0; 1jxj) and input-ora
le x00 (rather than withexpli
it input 1jxj and input-ora
le x). Clearly, the extended formulation implies PCP as a spe
ial
ase (i.e., x00 = �). More interestingly, an extended PCP of proximity for a set of pairs R (e.g., thewitness relation of an NP-set), yields a PCP for the set S def= fx0 : 9x00 s.t. (x0; x00) 2 Rg.2.3.4 Relating lo
ally testable 
odes and proofsLo
ally testable 
odes 
an be thought of as the 
ombinatorial 
ounterparts of the 
omplexity theo-reti
 notion of lo
ally testable proofs (PCPs). This perspe
tive raises the question of whether oneof these notions implies (or is useful towards the understanding of) the other.Do PCPs imply lo
ally testable 
odes? The use of 
odes with features related to lo
altestability is impli
it in known PCP 
onstru
tions. Furthermore, the known 
onstru
tions of lo
allytestable proofs (PCPs) provides a transformation of standard proofs (for say SAT) to lo
ally testableproofs (i.e., PCP-ora
les), su
h that transformed strings are a

epted with probability one by thePCP veri�er. Spe
i�
ally, denoting by Sx the set of standard proofs referring to an assertion x,there exists a polynomial-time mapping fx of Sx to Rx def= ffx(y) : y 2 Sxg su
h that for every� 2 Rx it holds that Pr[V �(x) = 1℄ = 1, where V is the PCP veri�er. Moreover, starting fromdi�erent standard proofs, one obtains lo
ally testable proofs that are far apart, and hen
e 
onstitutea good 
ode (i.e., for every x and every y 6= y0 2 Sx, it holds that �(fx(y); fx(y0)) � 
(jfx(y)j)).It is tempting to think that the PCP veri�er yields a 
odeword tester, but this is not really the
ase. Note that De�nition 2.5 requires reje
tion of strings that are far from any valid proof (i.e.,any string far from �x), but it is not 
lear that the only valid proofs (w.r.t V ) are those in Rx(i.e., the proofs obtained by the transformation fx of standard proofs (in Sx) to lo
ally testableones).14 In fa
t, the standard PCP 
onstru
tions a

ept also valid proofs that are not in the rangeof the 
orresponding transformation (i.e., fx); that is, �x as in De�nition 2.5 is a stri
t subset of Rx(rather than �x = Rx). We 
omment that most known PCP 
onstru
tions 
an be (non-trivially)1513That is, given a veri�er V as in De�nition 2.7, and denoting by n and p = p(n) the sizes of the two parts ofits ora
le, we 
onsider proofs of length t � n + p, where t = p=o(n) (e.g., t = (p=n) � log n). We 
onsider a veri�erV 0 with syntax as in De�nition 2.6 that, on input 1n and ora
le a

ess to w = (u1; :::; ut; v) 2 f0; 1gt�n+p, whereui 2 f0; 1gn and v 2 f0; 1gp, sele
ts uniformly i 2 f1; :::; tg and invokes V ui;v(1n). In addition, V 0 performs a numberof repetition tests that is inversely proportional to the proximity parameter, where in ea
h test V 0 sele
ts uniformlyi; i0 2 f1; :::; tg and j 2 f1; :::; ng and 
he
ks that ui and ui0 agree on their j-th bit. Thus, V 0 essentially emulatesthe PCP of proximity V , and the fa
t that V satis�es De�nition 2.7 
an be 
aptured by saying that V 0 satis�esDe�nition 2.6.14Let alone that De�nition 2.4 refers only to the 
ase of false assertions, in whi
h 
ase all strings are far from avalid proof (whi
h does not exist).15The interested reader is referred to [32, Se
. 5.2℄ for a dis
ussion of typi
al problems that arise.13



modi�ed to yield �x = Rx, and thus to yield a lo
ally testable 
ode (but this is not ne
essarily thebest way to design lo
ally testable 
odes, see one alternative in x2.3.3).Do lo
ally testable 
odes PCPs? Saying that lo
ally testable 
odes are the 
ombinatorial
ounterparts of lo
ally testable proofs (PCPs), raises the expe
tation (or hope) that it would beeasier to 
onstru
t lo
ally testable 
odes than it is to 
onstru
t PCPs. The reason being that
ombinatorial obje
ts (e.g., 
odes) should be easier to understand than 
omplexity theoreti
 ones(e.g., PCPs). Indeed, this feeling was among the main motivations of Goldrei
h and Sudan, andtheir �rst result (
f. [32, Se
. 3℄) was along this vein: They showed a relatively simple 
onstru
tion(i.e., simple in 
omparison to PCP 
onstru
tions) of a lo
ally testable 
ode of T1-nearly linearlength. Unfortunately, their stronger result, providing a lo
ally testable 
ode of T2-nearly linearlength is obtained by 
onstru
ting (
f. [32, Se
. 4℄) and using (
f. [32, Se
. 5℄) a T2-nearly linearlo
ally testable proof (i.e., a PCP). Subsequent works [18, 15℄ have followed this route, and only there
ent work of Ben-Sasson and Sudan [17℄ (whi
h a
hieves a more relaxed notion of lo
al testability)reversed the 
ourse to the \right one": First 
odes are 
onstru
ted, and next they (or a
tually theiranalysis) are used towards the 
onstru
tion of proofs (rather than the other way around).2.3.5 Motivation to the study of short lo
ally testable 
odes and proofsLo
al testability o�ers an extremely strong notion of eÆ
ient testing: The tester makes only a
onstant number of bit probes, and determining the probed lo
ations (as well as the �nal de
ision)is typi
ally done in time that is poly-logarithmi
 in the length of the probed obje
t.The length of an error-
orre
ting 
ode is widely re
ognized as one of the two most fundamentalparameters of the 
ode (the se
ond one being its distan
e). In parti
ular, the length of the 
odeis of major importan
e in appli
ations, be
ause it determines the overhead involved in en
odinginformation.As argued in the Introdu
tion, the same 
onsiderations apply also to proofs. However, in the
ase of proofs, this obvious point was blurred by the indire
t, unexpe
ted and highly in
uential ap-pli
ations of PCPs to the theory of approximation algorithms. In our view, the signi�
an
e of lo
allytestable proofs (or PCPs) extends far beyond their appli
ability to deriving non-approximabilityresults. The mere fa
t that proofs 
an be transformed into a format that supports super-fast prob-abilisti
 veri�
ation is remarkable. From this perspe
tive, the question of how mu
h redundan
yis introdu
ed by su
h a transformation is a fundamental one. Furthermore, lo
ally testable proofs(i.e., PCPs) have been used not only to derive non-approximability results but also for obtainingpositive results (e.g., CS-proofs [36, 39℄ and their appli
ations [8, 21℄), and the length of the PCPa�e
ts the 
omplexity of those appli
ations.In any 
ase, the length of PCPs is also relevant to non-approximability results; spe
i�
ally, ita�e
ts their tightness with respe
t to the running time. For example, suppose (exa
t) SAT has
omplexity 2
(n). The original PCP Theorem [5, 4℄ only implies that approximating MaxSATrequires time 2n� , for some (small) � > 0. The work of [40℄ makes � arbitrarily 
lose to 1, whereasthe results of [32, 18℄ further improve the lower-bound to 2n1�o(1) . We mention that it is 
urrentlynot known whether these improved lower-bounds 
an be a
hieved simultaneously with optimalapproximation ratios, but the hope is that this 
an eventually be done.
14



2.4 A 
onfused historyThere is a great deal of 
onfusion regarding 
redits for some of the de�nitions presented in thisse
tion.16 We refer mainly to the de�nition of lo
ally testable 
odes. This de�nition (or at leasta related notion)17 is arguably impli
it in [7℄ as well as in subsequent works on PCP (see x2.3.4).Furthermore, the de�nition of lo
ally testable 
odes has appeared independently in the works ofFriedl and Sudan [28℄ and Rubinfeld and Sudan [41℄ as well as in the PhD Thesis of Arora [3℄.3 Results and IdeasWe review the know 
onstru
tions of lo
ally testable 
odes and proofs, starting from 
odes andproofs of exponential length and 
on
luding with 
odes and proofs of nearly linear length.3.1 The mere existen
e of lo
ally testable 
odes and proofsThe mere existen
e of lo
ally testable 
odes and proofs, regardless of their length, is non-obvious.Thus, we start by re
alling the simplest 
onstru
tions known.3.1.1 The Hadamard Code is lo
ally testableThe simplest example of a lo
ally testable 
ode (of 
onstant relative distan
e) is the Hadamard
ode. This 
ode, denoted CHad, maps x 2 f0; 1gk to a string, of length n = 2k, that providesthe evaluation of all GF(2)-linear fun
tions at x; that is, the 
oordinates of the 
odeword areasso
iated with linear fun
tions `(z) = Pki=1 `izi and so CHad(x)` = `(x) = Pki=1 `ixi. Testingwhether a string w 2 f0; 1g2k is a 
odeword redu
es to linearity testing. This is the 
ase be
ausew is a 
odeword of CHad if and only if, when viewed as a fun
tion w : f0; 1gk ! f0; 1g, it islinear (i.e., w(z) = Pki=1 
izi for some 
i's or equivalently w(y + z) = w(y) + w(z) for all y; z).Spe
i�
ally, lo
al testability is a
hieved by uniformly sele
ting y; z 2 f0; 1gk and 
he
king whetherw(y+ z) = w(y)+w(z). The analysis of this natural tester, due to Blum, Luby and Rubinfeld [19℄,turned out to be highly 
omplex (
f. [19, 6, 25, 12, 13, 10℄). In parti
ular, it is known that if wis Æ-far from linear then the aforementioned (3-query) test reje
ts with probability at least �(Æ),where the fun
tion � : [0; 0:5℄ ! [0; 1℄ is de�ned as follows:�(x) def= 8><>: 3x� 6x2 0 � x � 5=1645=128 5=16 � x � 45=128x 45=128 � x � 1=2:The above lower bound is 
omposed of three di�erent bounds with \phase transitions" at x = 516and x = 45128 . It was shown in [10℄ that this 
ombined lower bound is 
lose to the best one possible.We believe is that this strange behavior of the reje
tion probability is a strong indi
ation of thenon-triviality of the nature of this \inno
ent looking" test.16Some 
onfusion exists also with respe
t to some of the results and 
onstru
tions des
ribed in Se
tion 3, but in
omparison to what is going to be dis
ussed here the latter 
onfusion is minor.17The related notion refers to the following relaxed notion of 
odeword testing: For two �xed good 
odes C1 �C2 � f0; 1gn, one has to a

ept (with high probability) every 
odeword of C1, but reje
t (with high probability)every string that is far from being a 
odeword of C2. Indeed, our de�nitions refer to the spe
ial (natural) 
ase thatC2 = C1, but the more general 
ase suÆ
es for the 
onstru
tion of PCPs (and is impli
itly a
hieved in most of them).15



Other 
odes. We mention that Reed-Muller Codes of 
onstant order are also lo
ally testable [1℄.These 
odes have sub-exponential length, but are quite popular in pra
ti
e. The Long Code is alsolo
ally testable [11℄, but this 
ode has double-exponential length (and was introdu
ed merely forthe design of PCPs). Finally, we mention that random linear 
odes (of linear length) require any
odeword tester to read a linear number of bits of the 
odeword [16℄, thus providing an additionalindi
ation to the non-triviality of lo
al testability.3.1.2 The Hadamard-Based PCP of ALMSSThe simplest example of a lo
ally testable proof (for a set not known to be in BPP) is the \innerveri�er" of the PCP 
onstru
tion of Arora, Lund, Motwani, Sudan and Szegedy [4℄, whi
h in turn isbased on the Hadamard 
ode. Spe
i�
ally, proofs of the satis�ability of a given system of quadrati
equations over GF(2) are presented by providing a Hadamard en
oding of the outer-produ
t ofa satisfying assignment (i.e., a satisfying assignment � 2 f0; 1gn is presented by CHad(�), where� = (�i;j)i;j2[n℄ and �i;j = �i�j). Given an alleged proof � 2 f0; 1g2n2 , the proof-tester pro
eeds asfollows:1. Tests that � is indeed a 
odeword of the Hadamard Code. If the test passes then w is 
loseto some CHad(�), for an arbitrary � = (�i;j)i;j2[n℄.2. Tests that the aforementioned � is indeed an outer-produ
t of some � 2 f0; 1gn. Notethat the Hadamard en
oding of � is supposed to be part of the Hadamard en
oding of� (be
ause Pni=1 
i�i = Pni=1 
i�2i is supposed to equal Pni=1 
i�i;i). So we would liketo test that the latter 
odeword mat
hes the former one. Spe
i�
ally, we wish to testwhether (�i;j)i;j2[n℄ equals (�i�j)i;j2[n℄ (i.e., the equality of two matri
es). This 
an bedone by uniformly sele
ting (r1; :::; rn); (s1; :::; sn) 2 f0; 1gn, and 
omparing Pi;j risj�i;j andPi;j risj�i�j = (Pi ri�i)(Pj sj�j).The above would have been �ne if w = CHad(�), but we only know that w is 
lose to CHad(�).The Hadamard en
oding of � is a tiny part of the latter, and so we should not try to retrievethe latter dire
tly (be
ause this tiny part may be totally 
orrupted). Instead, we use theparadigm of self-
orre
tion (
f. [19℄): In general, for any �xed 
 = (
i;j)i;j2[n℄, whenever wewish to retrieve Pni=1 
i;j�i;j , we uniformly sele
t r = (ri;j)i;j2[n℄ and retrieve both w(r) andw(r + 
). Thus, we obtain a self-
orre
ted value of w(
); that is, if w is Æ-
lose to CHad(�)then w(r + 
)� w(r) =Pni=1 
i;j�i;j with probability at least 1� 2Æ.Using self-
orre
tion, we indire
tly obtain bits in CHad(�), for � = (�i)i2[n℄ = (�i;i)i2[n℄. Sim-ilarly, we 
an obtain any other desired bit in CHad(�), whi
h in turn allows us to test whether(�i;j)i;j2[n℄ = (�i�j)i;j2[n℄. In fa
t, we are 
he
king whether (�i;j)i;j2[n℄ = (�i;i�j;j)i;j2[n℄, by
omparingPi;j risj�i;j and (Pi ri�i;i)(Pj sj�j;j), for randomly sele
ted (r1; :::; rn); (s1; :::; sn) 2f0; 1gn.3. Finally, we need to 
he
k whether the aforementioned � satis�es the given system of equations.Towards this end, we uniformly sele
ts a linear 
ombination of the equations, and 
he
kwhether � satis�es the resulting (single) equation. Note that the value of the 
orrespondinglinear expression (in quadrati
 (and linear) forms) appears as a bit of the Hadamard en
odingof �, but again we retrieve it from w by using self 
orre
tion.One key observation underlying the analysis of Steps 2 and 3 is that for (u1; :::; un) 6= (v1; ::::; vn) 2f0; 1gn, if we uniformly sele
t (r1; ::::; rn) 2 f0; 1gn then Pr[Pi riui = Pi rivi℄ = 1=2. Similarly,16



for n-by-n matri
es A 6= B, when r; s 2 f0; 1gn are uniformly sele
ted (ve
tors), it holds thatPr[As = Bs℄ = 2�rank(A�B) and it follows that Pr[rAs = rBs℄ � 3=4.3.2 Lo
ally testable 
odes and proofs of polynomial lengthThe 
onstru
tions presented in Se
tion 3.1 have exponential length in terms of the relevant param-eter (i.e., the amount of information being en
oded in the 
ode or the length of the assertion beingproved). A
hieving lo
al testability by 
odes and proofs that have polynomial length turns out tobe even more 
hallenging.3.2.1 Lo
ally testable 
odes of quadrati
 lengthA dire
t interpretation of low-degree tests (
f. [6, 7, 29, 41, 28℄), proposed by Friedl and Sudan [28℄and Rubinfeld and Sudan [41℄, yields a lo
ally testable 
ode of quadrati
 length over a suÆ
ientlylarge alphabet. Similar (and a
tually better) results for binary 
odes required additional ideas,and have appeared only later (
f. [32℄). We sket
h both 
onstru
tions below, starting with lo
allytestable 
odes over very large alphabets (whi
h are de�ned analogously to the binary 
ase).We will 
onsider a 
ode C : �k ! �n of linear distan
e, with j�j � k and n > k2. Forparameters m � d < log k (su
h that k < dm), 
onsider a �nite �eld F of size O(d) and analphabet � = F d+1. Viewing the information as a m-variant polynomial p of total degree d overF , we en
ode it by providing its value on all possible lines over Fm, where ea
h su
h line is de�nedby two points in Fm. A
tually, the value of p on su
h a line 
an be represented by a univariantpolynomial of degree d. Thus, the 
ode maps log2 jF j(m+dd ) > (d=m)m log jF j bits of information(whi
h may be viewed as k def= (d=m)m=(d + 1) � dm�1=mm long sequen
es over � = F d+1) tosequen
es of length n def= jF j2m = O(d)2m over �. Note that the smaller m, the better the rate (i.e.,relation of n to k) is, but this 
omes at the expense of using a larger alphabet. In parti
ular, we
onsider two instantiations:1. Using d = mm, we get k � mm2�2m and n = m2m2+o(m), whi
h yields n � exp(plog k) � k2and log j�j = log jF jd+1 � d log d � exp(plog k).2. Letting d = m
 for any 
onstant 
 > 1, we get k � m(
�1)m and n = m2
m+o(m), whi
h yieldsn � k2
=(
�1) and log j�j � d log d � (log k)
.As for the 
odeword tester, it uniformly sele
ts two interse
ting lines and 
he
ks that the 
orre-sponding univarinat polynomials agree on the point of interse
tion. Thus, this tester makes twoqueries (to an ora
le over the alphabet �). The analysis of this tester redu
es to the analysis ofthe 
orresponding low degree test, undertaken in [4, 40℄.The above tester uses only two queries, but the entire des
ription (whi
h refers to 
odes over alarge alphabet) deviates from the bulk of our treatment, whi
h has fo
used on a binary alphabet.We 
omment that 2-query lo
ally testable binary 
odes are essentially impossible (
f., [14℄), butwe have already seem that 3-query tests are possible. A natural way of redu
ing the alphabet sizeof 
odes is via the well-known paradigm of 
on
atenated 
odes [26℄.18 However, lo
al testability
an be maintained only in spe
ial 
ases. In parti
ular, observe that, for ea
h of the two queries18A 
on
atenated 
ode is obtained by en
oding the symbols of an \outer 
ode" (using the 
oding method of the\inner 
ode"). Spe
i�
ally, let C1 : �k11 ! �n11 be the outer 
ode and C2 : �k22 ! �n22 be the inner 
ode, where�1 � �k22 . Then, the 
on
atenated 
ode C : �k1k22 ! �n1n22 is obtained by C(x1; :::; xk1) = (C2(y1); :::;C2(yn1 )),where xi 2 �k22 � �1 and (y1; :::; yn1 ) = C1(x1; :::; xk1). Using a good inner 
ode for relatively short sequen
es, allowsto transform good 
odes for a large alphabet into good 
odes for a smaller alphabet.17



made by the tester of C, the tester does not need the entire polynomial represented in � = F d+1,but rather only its value at a spe
i�
 point. Thus, en
oding � by an error 
orre
ting 
ode thatsupports re
overy of the said value while using a 
onstant number of probes will do.19 In parti
ular,Goldrei
h and Sudan used an en
oding of F d+1 = F he by sequen
es of length jF jeh over F , andprovided a testing and re
overy pro
edure that makes O(e) queries [32, Se
. 3.3℄. We mention thatthe 
ase of e = 1 and jF j = 2 
orresponds to the Hadamard 
ode, and that bigger 
onstant e allowfor shorter 
odes. The resulting 
on
atenated 
ode, C0, is a lo
ally testable 
ode over F , and haslength n �O(d)eh = n � exp((e log d) � d1=e). Using 
onstant e = 2
 and setting d = m
 � (log k)
, weget n � k2
=(
�1) � exp( eO(log k)1=2) and jF j = poly(log k). Finally, a binary lo
ally testable 
odeis obtained by 
on
atenating C0 with the Hadamard 
ode, while noting that the latter supportsa \lo
al re
overy" property that suÆ
es to emulate the tester for C0. In parti
ular, the tester ofC0 merely 
he
ks a linear (over F ) equation referring to a 
onstant number of F -elements, andfor F = GF (2`), this 
an be emulated by 
he
king related random linear 
ombinations of the bitsrepresenting these elements, whi
h in turn 
an be lo
al re
overed (or rather self-
orre
ted) from theHadamard 
ode. The �nal result is a lo
ally testable (binary) 
ode of nearly quadrati
 length.203.2.2 Lo
ally testable proofs of polynomial length: The PCP TheoremThe 
ase of proofs is far more 
omplex: A
hieving lo
ally testable proof of polynomial length isessentially the 
ontents of the 
elebrated PCP Theorem of Arora, Lund, Motwani, Safra, Sudanand Szegedy [5, 4℄. The 
onstru
tion is analogous to (but far more 
omplex than) the one presentedin the 
ase of 
odes:21 First one 
onstru
ts proofs over a large alphabet, and next one 
omposessu
h proofs with 
orresponding \inner" proofs (over a smaller alphabet, and �nally a binary one).The �rst step is to introdu
e the following NP-
omplete problem. The input to the problem
onsists of a �nite �eld F , a subset H � F of size bjF j1=15
, an integer m < jHj, and a (3m + 4)-variant polynomial P : F 3m+4 ! F of total degree 3mjHj + O(1). The problem is to determinewhether there exists an m-variant (\assignment") polynomial A : Fm ! F of total degree mjHjsu
h that P (x; z; y; �; A(x); A(y); A(z)) = 0 for every x; y; z 2 Hm and � 2 f0; 1g3 � H. Note thatthe problem-instan
e 
an be expli
itly des
ribed by a sequen
e of jF j3m+4 log2 jF j bits, whereas thesolution sought 
an be expli
itly des
ribed by a sequen
e of jF jm log2 jF j bits. We 
omment thatthe NP-
ompleteness of the aforementioned problem 
an be proved by a redu
tion from 3SAT, byidentifying the variables of the formula with Hm and essentially letting P be a low-degree extensionof a fun
tion f : H3m � f0; 1g3 ! f0; 1g that en
odes the stru
ture of the formula (by 
onsideringall possible 3-
lauses). In fa
t, the resulting P has degree jHj in ea
h of the �rst 3m variables and
onstant degree in ea
h of the other variables, and this fa
t 
an be used to improve the parametersbelow (but not in a fundamental way).The proof that P satis�es the aforementioned 
ondition 
onsists of an m-variant polynomialA : Fm ! F (whi
h is supposed to be of total degree mjHj) as well as 3m + 4 auxiliary poly-nomials Ai : F 3m+1 ! F , for i = 1; :::; 3m + 1 (ea
h supposedly of degree (3mjHj + O(1)) �mjHj). The polynomial A is supposed to satisfy the 
onditions of the problem, and in parti
ularP (x; z; y; �; A(x); A(y); A(z)) = 0 should hold for every x; y; z 2 Hm and � 2 f0; 1g3 � H. Fur-19Indeed, this property is related to lo
ally de
odable 
odes, to be dis
ussed in Se
tion 4. Here we need to re
overone out of jF j spe
i�
 linear 
ombinations of the en
oded (d + 1)-long sequen
e of F -symbols. In 
ontrast, lo
allyde
odable refers to re
overing one out of the original F -symbols of the (d+ 1)-long sequen
e.20A
tually, the aforementioned result is only impli
it in [32℄, be
ause Goldrei
h and Sudan apply these ideas dire
tlyto a trun
ated version of the low-degree based 
ode.21Our presentation reverses the histori
al order in whi
h the 
orresponding results (for 
odes and proofs) werea
hieved. That is, the 
onstru
tions of lo
ally testable proof of polynomial length predated the 
oding 
ounterparts.18



thermore, A0(x; z; z; �) def= P (x; z; y; �; A(x); A(y); A(z)) should vanish on H3m+1. The auxiliarypolynomials are given to assist the veri�
ation of the latter 
ondition. In parti
ular, it should bethe 
ase that Ai vanishes on F iH3m+1�i, a 
ondition that is easy to test for A3m+1 (assuming thatA3m+1 is a low degree polynomial). Che
king that Ai�1 agrees with Ai on F i�1H3m+1�(i�1), fori = 1; :::; 3m + 1, and that all Ai's are low degree polynomials, establishes the 
laim for A0. Thus,testing an alleged proof (A;A1; :::; A3m+1) is performed as follows:1. Testing that A is a polynomial of total degree mjHj. This is done by sele
ting a randomline through Fm, and testing whether A restri
ted to this line agrees with a degree mjHjunivariant polynomial.2. Testing that, for i = 1; :::; 3m+ 1, the polynomial Ai is of total degree d def= (3mjHj+O(1)) �mjHj. Here we sele
t a random line through F 3m+1, and test whether Ai restri
ted to thisline agrees with a degree d univariant polynomial.3. Testing that, for i = 1; :::; 3m + 1, the polynomial Ai agrees with Ai�1 on F i�1H3m+1�(i�1).This is done by uniformly sele
ting r0 = (r1; :::; ri�1) 2 F i�1 and r00 = (ri+1; :::; r3m+1) 2F 3m+1�i, and 
omparing Ai�1(r0; e; r00) to Ai(r0; e; r00), for every e 2 H. In addition, we 
he
kthat both fun
tions when restri
ted to the axis-parallel line (r0; �; r00) agree with a univariantpolynomial of degree d.22 We stress that the values of A0 are 
omputed a

ording to the givenpolynomial P by a

essing A at the adequate lo
ations (i.e., by de�nition A0(x; z; z; �) =P (x; z; y; �; A(x); A(y); A(z))).4. Testing that A3m+1 vanishes on F 3m+1. This is done by uniformly sele
ting r 2 F 3m+1, andtesting whether F (r) = 0.The above des
ription (whi
h follows [42, Apdx. C℄) is somewhat di�erent than the original presen-tation in [4℄, whi
h in turn follows [6, 7, 25℄.23 The above tester may be viewed as making O(mjF j)queries to an ora
le over the alphabet F , or alternatively as makingO(mjF j log jF j) binary queries.24Note that we have already obtained a highly non-trivial tester. It makes O(mjF j log jF j) queries inorder to verify a 
laim regarding an input of length n def= jF j3m+4 log2 jF j. Usingm = log n= log logn,jHj = logn and jF j = poly(log n), we have obtained a tester of poly-logarithmi
 query 
omplexity.To further redu
e the query 
omplexity, one invokes the \proof 
omposition" paradigm, intro-du
ed by Arora and Safra [5℄. Spe
i�
ally, one 
omposes an \outer" tester (as des
ribed above)with an \inner" tester that 
he
ks the residual 
ondition that the \outer" tester determines for theanswers it obtains. This 
omposition is more problemati
 than one suspe
ts, be
ause we wish the\inner" tester to perform its task without reading its entire input (i.e., the answers to the \outer"tester). This seems quite paradoxi
al, as how 
an the \inner" tester operate without reading itsentire input. The problem 
an be resolved by using a \proximity tester" (i.e., a PCP of proximity)as an \inner" tester, provided that it suÆ
es to have su
h a proximity test (for the answers to the\outer" tester).� One approa
h, introdu
ed in [4℄, is to 
onvert the \outer" tester into one that makes a 
onstantnumber of queries over some larger alphabet, and furthermore have the answer be presented22Thus, e�e
tively, we are self-
orre
ting the values at H (on the said line), based on the values at F (on that line).23The point is that the sum-
he
k, whi
h originates in [38℄, is repla
ed by an analogous pro
ess (whi
h happens tobe non-adaptive).24Another alternative perspe
tive is obtained by applying so-
alled parallelization (
f. [37, 4℄). The result is a testmaking a 
onstant number of queries that are ea
h answered by strings of length poly(jF j).19



in an error 
orre
ting format. The implementation of this approa
h 
onsists of two stepsand is based on some spe
i�
s. The �rst step is to 
onvert the \outer" tester into one thatmakes a 
onstant number of queries over some larger alphabet. This step uses the so-
alledparallelization te
hnique (
f. [37, 4℄). Next, one applies an error 
orre
ting 
ode to these O(1)longer answers, and assumes that the \proximity tester" 
an handle inputs presented in thisformat (i.e., that it 
an test an input that is presented by an en
oding of a 
onstant numberof its parts).25� An alternative approa
h, pursued and advo
ated in [15℄, is to take advantage of the spe
i�
stru
ture of the queries, \bundle" the answers together and furthermore show that the \bun-dled" answers are \robust" in a sense that �ts proximity testing. In parti
ular, the (generi
)parallelization step is avoided, and is repla
ed by a 
loser analysis of the spe
i�
 (outer)tester.We will demonstrate the latter approa
h next.First, we show how the queries of the aforementioned tester 
an be \bundled" (into a 
onstantnumber of bundles). In parti
ular, we 
onsider the following \bundling" that a

ommodates alltypes of tests (and in parti
ular the m+1 di�erent sub-tests performed in Steps 2 and 3). ConsiderB(x1; ::::; x3m+1) = (A1(x1; x2; ::::; x3m+1); A2(x2; ::::; x3m+1; x1); :::; A3m+1(x3m+1; x1; ::::; x3m))and perform all 3m+ 1 tests of Step (3) by sele
ting uniformly (r2; :::; r3m+1) 2 F 3m and queryingB at (e; r2; :::; r3m+1) and (r3m+1; e; :::; r3m) for all e 2 F . Thus, all 3m + 1 tests of Step (3)
an be performed by retrieving the values of B on a single axis parallel random line throughF 3m+1. Furthermore, note that all 3m + 1 tests of Step (2) 
an be performed by retrieving thevalues of B on a single (arbitrary) random line through F 3m+1. Finally, observe that the testsare \robust" in the sense that if, for some i, the fun
tion Ai is (say) 0.01-far from satisfying the
ondition (i.e., being low-degree or agreeing with Ai�1) then with 
onstant probability many ofthe values of Ai on an adequate random line will not �t to what is needed. This robustnessproperty is inherited by B, as well as by B0 (resp., A0) that is obtained by applying a good binaryerror-
orre
ting 
ode on B (resp., on A). Thus, we may repla
e A and the Ai's by A0 and B0,and 
ondu
t all all tests by making O(m2jF j log jF j) queries to A0 : Fm � [O(log jF j)℄ ! f0; 1gand B0 : F 3m+1 � [O(log jF j3m+1)℄ ! f0; 1g. The robustness property asserts that if the originalpolynomial P had no solution (i.e., an A as above) then the answers obtained by the tester will befar from satisfying the residual de
ision predi
ate of the tester.On
e the robustness property of the resulting (\outer") tester �ts the proximity testing featureof the \inner tester", 
omposition is possible. Indeed, we 
ompose the \outer" tester with an\inner tester" that 
he
ks whether the residual de
ision predi
ate of the \outer tester" is satis�es.The bene�t of this 
omposition is that the query 
omplexity is redu
ed from poly-logarithmi
 topolynomial in a double-logarithm. At this point we 
an a�ord the Hadamard-Based proof tester(be
ause the overhead in the proof 
omplexity will only be exponential in a polynomial in a double-logarithmi
 fun
tion), and obtain a lo
ally testable proof of polynomial length.25The aforementioned assumption holds trivially in 
ase one uses a generi
 \proximity tester" (i.e., a PCP ofproximity or an Assignment Tester) as done in [23℄. But the aforementioned approa
h 
an be (and was in fa
toriginally) applied with a spe
i�
 \proximity tester" that 
an only handle inputs presented in one spe
i�
 format(
f. [4℄).
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3.3 Lo
ally testable 
odes and proofs of nearly linear lengthWe now move on to even shorter 
odes and proofs; spe
i�
ally, 
odes and proofs of nearly linearlength. The latter term has been given quite di�erent interpretations, and we start by sorting theseout.3.3.1 Types of nearly linear fun
tionsA few 
ommon interpretations of this term are listed below (going from the most liberal to themost stri
t one).T1-nearly linear: A very liberal notion, at the verge of an abuse of the term, refers to a sequen
eof fun
tions f� : N ! N su
h that, for every � > 0, it holds that f�(n) � n1+�. That is, ea
hfun
tion is a
tually of the form n 7! n
, for some 
onstant 
 > 1, but the sequen
e as a whole
an be viewed as approa
hing linearity.The PCP of Polish
huk and Spielman [40℄ and the simpler lo
ally testable 
ode of Goldrei
hand Sudan [32, Thm. 2.4℄ have nearly linear length in this sense.T2-nearly linear: A more reasonable notion of nearly linear fun
tions refers to individual fun
-tions f su
h that f(n) = n1+o(1). Spe
i�
ally, for some fun
tion � : N ! [0; 1℄ that goes tozero, it holds that f(n) � n1+�(n). Common sub-types in
lude the following:1. �(n) = 1= log log n.2. �(n) = 1=(log n)
 for some 
 2 (0; 1).The 
urrently best lo
ally testable 
odes and proofs [32, 18, 15℄ have nearly linear lengthin this sense.3. �(n) = exp((log log log n)
)= log n for some 
 2 (0; 1).Indeed, the 
ase in whi
h �(n) = O(log log n)= log n (or so) deserves a spe
ial 
ategory.T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmi
(or quasi-poly-logarithmi
) fa
tor. In the former 
ase f(n) � poly(logn) � n, whi
h 
orre-sponds to the 
ase of f(n) � n1+�(n) with �(n) = O(log log n)= log n, whereas the latter 
ase
orresponds to �(n) = poly(log log n)= log n (i.e., in whi
h 
ase f(n) � (log n)poly(log log n) � n).Using the above notation, we summarize the state of the art with respe
t to lo
al testability of
odes and proofs.3.3.2 Lo
al testability with nearly linear lengthCurrently, lo
ally testable 
odes and proofs of nearly linear length are known when nearly linear isinterpreted as Type T2 (i.e., T2-nearly linear). More generally, we have:Theorem 3.1 (Ben-Sasson, Goldrei
h, Harsha, Sudan and Vadhan [15℄): There exists a universal
onstant 
 > 2 su
h that for every fun
tion q : N! N satisfying 2
 � q(k) � 2
 log log klog log log k there existsa q-lo
ally testable proof of length Fq(k) � k for satis�ability (of formulae of length k), whereFq(k) def= exp "�q(k)
 + (log k) 
q(k)� � (log log k) + (log k) 2
q(k) + q(k)2
2 � poly log log log k# (1)The same length bound holds for q-lo
ally testable 
odes, where k denotes the length of the infor-mation being en
oded. 21



Let us derive two extreme 
ases of Theorem 3.1, while setting t = q(k)=
.1. Constant query 
omplexity: For t 2 [2; :::; 0:99 log log klog log log k ℄, we have (log k) 1t > (log log k)1=0:99 andso Ft(k) = exp((log k) 2t ). In parti
ular, for any 
onstant t, we get lo
ally testable proofs and
odes (i.e., 
 � t-lo
ally testable proofs and 
odes) of length exp((log k) 2t ) � k = k1+�(k), where�(k) = 1=(log k)1� 2t .2. T3-nearly linear length: For t � 1:01 log log klog log log k , we have (log k) 1t � (log log k)1=1:01 and so Ft(k) =exp(t2 � poly log log log k) = exp( eO(log log k)2). In parti
ular, setting t = 2 log log klog log log k , we geto(log log k)-lo
ally testable proofs and 
odes of length exp( eO(log log k)2) � k.For an even stri
ter notion of T3-nearly linear (i.e., a poly-logarithmi
 fa
tor rather than a quasi-poly-logarithmi
 one), testers of poly-logarithmi
 query 
omplexity are known.query 
omplexity length overhead 
ommentspoly(log k) poly(log k) Theorem 3.2.o(log log k) exp(poly(log log k)) These are two extreme 
asesAny 
onstant q exp((log k)O(1=q)) of Theorem 3.1.Figure 1: The best known q(�)-lo
ally testable 
odes and proofsTheorem 3.2 (Ben-Sasson and Sudan [17℄): There exists a poly-logarithmi
 fun
tion f : N ! Nsu
h that there exist f -lo
ally testable 
odes and proofs of length f(k) �k, where k denotes the lengthof the a
tual information (i.e., the assertion in 
ase of proofs and the en
oded information in 
aseof 
odes).The known results are summarized in Figure 1, where k is as in Theorems 3.1 and 3.2. The ultimategoal may be to obtain lo
ally testable (i.e., O(1)-lo
ally testable) 
odes and proofs of T3-nearlylinear length. Indeed, we 
onje
ture that this is possible.Conje
ture 3.3 There exist lo
ally testable 
odes and proofs of length poly(log k) � k.We 
onje
ture that lo
ally testable 
odes and proofs of (stri
tly) linear length 
annot be a
hieved.Conje
ture 3.4 There exist no lo
ally testable 
odes and proofs of linear length.3.3.3 The ideas underlying the 
onstru
tionsWe brie
y mention some of the ideas that underly the proofs of Theorems 3.1 and 3.2.A nearly linear arithmeti
 representation of SAT. The proof of the PCP Theorem starts bya redu
tion of 3SAT to an arithmeti
 problem, but the redu
tion (as sket
hed in x3.2.2) representsan n-variable input formula as a binary string of length O(n3). Thus, this very �rst step already
ubes the length of the 
onstru
ted proof. An alternative arithmetization, whi
h only in
urs apoly-logarithmi
 in
rease in length, is obtained by �rst \embedding" the formula in a de-Bruijn22



graph su
h that the variables and 
lauses are pla
ed at verti
es of the opposite ends of the graph(
f. [7, 40℄). The spe
i�
 formula will be en
oded in an adequate routing of the variables to the
lauses in whi
h they appear, and the arithmetization will \hard-wire" this routing in an adequatepolynomial (of the type used in x3.2.2). Extra 
ompli
ations arises when one seeks to performthis pro
ess \optimally" (i.e., with the minimal number of variables), whi
h is important whenusing large �elds (as seems required for deriving the results of Theorem 3.1). These diÆ
ulties areresolved in di�erent ways in [40℄ and in [15℄, respe
tively.Derandomizing low-degree tests. Another sour
e of polynomial blow-up in the proof length isthe low-degree tests, whi
h play a key role in all PCP 
onstru
tions (
f. x3.2.2). Re
all that to testthat a fun
tion of the form f : Fm ! F is low degree, we fet
hed its values on points of a randomline. Sin
e a sub-proof will be (eventually) appended per ea
h su
h a 
hoi
e (of a line), we willneed jF 2mj su
h sub-proofs squaring the size of the original fun
tion f . Thus, a derandomizationof this test (as done non-
onstru
tively in [32℄ and 
onstru
tively in [18, 15℄) is of key importan
e.In parti
ular, it turns out that it suÆ
es to 
onsider a set of eO(jFm�1j) lines; spe
i�
ally, ea
hline is spe
i�ed by a 
anoni
al point (residing on this line) and a slope that belongs to a subset ofpoly-logarithmi
 many slopes (out of all jFmj possible slopes) [18℄.Avoiding parallelization. As explained in x3.2.2, parallelization play a key role in all previousPCP 
onstru
tions, and applying it in
reases the size of the proof by a fa
tor that is at leastproportional to the query 
omplexity of the original PCP. But this is too mu
h in the 
ontext ofproving Theorem 3.1, and so the alternative \bundling" te
hnique was introdu
ed and used (in [15℄)in order to support a new proof 
omposition method (sket
hed already in x3.2.2). Similarly, othertypes of pa
king various polynomials into a single polynomial (by using an auxiliary variable),whi
h were used in prior 
onstru
tions, have to be avoided.Unbounded number of proof 
ompositions. As mentioned above, proof 
omposition plays a
entral role in the 
onstru
tion of PCPs. The reason being that a PCP must satisfy two 
on
i
ting
onditions; spe
i�
ally, have relatively small query 
omplexity and still be short. Trying to optimizeboth 
omplexity measures simultaneously turns out to be very hard, and proof 
omposition allowsto make progress based on \non-optimal" 
onstru
tions. Typi
ally, the more we 
an apply proof
omposition, the better. Indeed, signi�
ant progress was a
hieved by using a non-
onstant (e.g.,double-logarithmi
) number of proof 
ompositions [15, 23℄. In the 
ontext of providing short PCPs,the new 
omposition method of [15℄ has played an important role. The result, stated in Theorem 3.1,is a PCP with query 
omplexity that is linear in the number of proof 
ompositions (denoted t),and length overhead that de
reases double-exponentially with this number (i.e., the overhead isessentially exp((log k)2=t)).Re
ursive 
onstru
tion of a spe
ial purpose PCPP. The aforementioned proof 
ompositionparadigm seems to in
ur an unavoidable poly-logarithmi
 blow-up in the proof length, per ea
happli
ation. This is the sour
e of the (log k)t fa
tor in Eq. (1), where t = q(k)=
 is the numberof proof 
ompositions. This overhead is due to the fa
t that we redu
e a spe
i�
 problem (i.e.,evaluating the residual tester de
ision regarding the ora
le's answers) to a generi
 one, and thenarithmetize the latter.26 An alternative approa
h was taken in [17℄, resulting in Theorem 3.2:They �rst 
onstru
t a q(k)-lo
al 
odeword tester, for q(k) = pk, and then redu
e the residual test26Our feeling is that a poly-logarithmi
 blow-up is unavoidable when redu
ing a spe
i�
 problem to a generi
 one.23



to testing the same 
odeword property on sequen
es of length q(k). Unfortunately, the redu
tionuses a 
onstant number of re
ursive 
alls, and so the end result uses a number of queries that isexponential (rather than linear) in the number of 
ompositions, whi
h in turn is double-logarithmi
.4 Lo
ally De
odable CodesLo
ally de
odable 
odes are 
omplimentary to lo
al testable 
odes. Re
all that the latter are requiredto allow for super-fast reje
tion of strings that are far from being 
odewords (while a

epting all
odewords). In 
ontrast, in 
ase of lo
ally de
odable 
odes, we are guaranteed that the input is
lose to a 
odeword, and are required to re
over individual bits of the en
oded information basedon a small number of probes (per re
overed bit). As in 
ase of lo
al testability, the 
ase when theoperation (in this 
ase de
oding) is performed based on a 
onstant number of probes is of spe
ialinterest.Lo
al de
odability is of natural pra
ti
al appeal, whi
h in turn provides additional motivationfor lo
al testability. The point being that it makes little sense to try re
over part of the data, in
ase the 
odeword is too 
orrupted. Thus, one should �rst apply lo
al testability to 
he
k that there
eived 
odeword is not too 
orrupted, and apply lo
al de
odability only in 
ase the 
odeword testpasses.4.1 De�nitionsWe follow the 
onventions of Se
tion 2.1, but extend the treatment to 
odes over any �nite alphabet� (rather than insisting on � = f0; 1g). In the following, we use the notation [k℄ def= f1; 2; :::; kg.De�nition 4.1 Let C : �k ! �n be a 
ode, and let q 2 N and Æ 2 (0; 1). A q-lo
al Æ-de
oder for Cis a probabilisti
 (non-adaptive) ora
le ma
hine M that makes at most q queries and satis�es thefollowing 
ondition:Lo
al re
overy from somewhat 
orrupted 
odewords: For every i 2 [k℄ and x = (x1; :::; xk) 2 �k,and any w 2 �n that is Æ-
lose to C(x), on input i and ora
le a

ess to w, ma
hine M outputsxi with probability at least 2=3. That is, Pr[Mw(1k; i) =xi℄ > 2=3, for any w 2 �n that isÆ-far from C(x).We 
all q the query 
omplexity of M , and Æ the proximity parameter.Note that the proximity parameter must be smaller than the 
overing radius of the 
ode (as oth-erwise the de�nition 
annot possibly be satis�es (at least for some w and i)). One may strengthenDe�nition 4.1 by requiring that the bits of an un
orrupted 
odeword be always re
overed 
orre
tly(rather than with high probability); that is, for every i 2 [k℄ and x = (x1; :::; xk) 2 �k, it musthold that Pr[MC(x)(1k; i)=xi℄ = 1. Turning to families of 
odes, we make the following de�nition(whi
h potentially allows the alphabet to grow with k).De�nition 4.2 For fun
tions n; � : N ! N, let C = fCk : [�(k)℄k ! [�(k)℄n(k)gk2K . We say thatC is a lo
al de
odable 
ode if there exist 
onstants Æ > 0 and q and a ma
hine M that is a q-lo
alÆ-de
oder for Ck, for every k 2 K.We mention that lo
ally de
odable 
odes are related to (information theoreti
 se
ure) PrivateInformation Retrieval s
hemes, introdu
ed in [22℄. In the latter a user wishes to re
over a bit24



of data from a k-bit long database, 
opies of whi
h are held by s servers, without revealing anyinformation to any single server. To that end, the user (se
retly) 
ommuni
ates with ea
h of theservers, and the issue is to minimize the total amount of 
ommuni
ation. As we shall see, 
ertains-server PIR s
hemes yield 2s-lo
ally de
odable 
odes of length exponential in the 
ommuni
ation
omplexity of the PIR.Related notions of lo
al re
overy. The notion of lo
al de
odability is a spe
ial 
ase of ageneral notion of lo
al re
overy, where one may be required to re
over an arbitrary fun
tion ofthe original information based on a 
onstant number of probes to the (
orrupted) 
odeword. Thefun
tion f : �k ! f0; 1g� be better restri
ted in two ways: First it should have a small range (e.g.,its range may be �), and se
ondly it should 
ome from a small predetermined set F of fun
tions.De�nition 4.1 may be re
ast in these terms, by 
onsidering the set of proje
tion fun
tions (i.e.,ffi : �k ! �g where fi(x1; :::; xk) = xi). We believe that this is the most natural spe
ial 
aseof the general notion of lo
al re
overy. In x3.2.1 we referred to another spe
ial 
ase, where thealphabet is asso
iated with a �nite �eld F and the re
overy fun
tion fe : F k ! F is one out of jF jpossible linear fun
tions (spe
i�
ally, fe(x1; :::; xk) = Pki=1 ei�1xi, for e 2 F ).27 Another natural
ase (also used in x3.2.1) is that of the re
overy of (
orre
t) symbols of the 
odeword, whi
h may beviewed as self-
orre
tion. (In this 
ase the set of fun
tions 
orrespond to the fun
tions determiningea
h 
odeword symbol as a fun
tion of the en
oded message.)4.2 ResultsThe best known lo
ally de
odable 
odes are of sub-exponential length. Spe
i�
ally, k informationbits 
an be en
oded by 
odewords of length n = exp(kO(log log q)=q log q) that are lo
ally de
odableusing q bit-probes (
f. [9℄). It is 
onje
tured that, for every q there exists an � > 0, su
h that lo
allyde
odability based on q queries (i.e., probes) requires 
odewords of length n > exp(k�).4.2.1 Lo
ally de
odable 
odes of sub-exponential lengthFor any d � 1, there is a simple 
onstru
tion of a 2d-lo
ally 2�d�2-de
odable binary 
ode of lengthn = 2d�k1=d . For h = k1=d, we identify [k℄ with [h℄d, and view x 2 f0; 1gk as (xi1;:::;id)i1;:::;id2[h℄.We en
ode x by providing the parity of all xi1;:::;id residing in ea
h of the (2h)d sub-
ubes of [h℄d;that is, for every (S1; :::; Sd) 2 2[h℄ � � � � � 2[h℄, we provide C(x)S1;:::;Sd = �i12S1;:::;id2Sdxi1;:::;id.Indeed, the Hadamard 
ode is the spe
ial 
ase in whi
h d = 1. To re
over the value of xi1;:::;id,at any desired (i1; :::; id) 2 [h℄d, the de
oder uniformly sele
ts (R1; :::; Rd) 2 2[h℄ � � � � � 2[h℄, andre
overs the (possibly 
orrupted) values C(x)S1;:::;Sd, where ea
h Sj either equals Rj or equalsRj4fijg. The key observation is that ea
h of the de
oder's queries is uniformly distributed.Thus, with probability at least 3=4, XORing the 2d answers, yields the desired result (be
ause�S12fR1;R14fi1gg;:::;Sd2fRd;Rd4fidggC(x)S1;:::;Sd equals C(x)fi1g;:::;fidg = xi1;:::;id).We 
omment that a related 
ode (of length n = 2dd�k1=d) allows for re
overy based on d +1 (rather 2d) queries. The original presentation, due to [2℄ (building on [22℄), is in terms ofPIR s
hemes (with s = (d + 1)=2 servers and overall 
ommuni
ation dd � k1=d = exp( eO(s)) �k1=(2s�1)). In parti
ular, in the 
ase d = 2, we use two servers, sending (R1; R2; R3) to one and(R14fi1g; R24fi2g; R34fi3g) to the other. Upon re
eiving (S1; S2; S3), ea
h server replies with thebit C(x)S1;S2;S3 = �j12S1;j22S2;j32S3xj1;j2;j3 , as well as the sequen
es (C(x)S14f1g;S2;S3 ; :::;C(x)S14fk1=3g;S2;S3),27Indeed, the value fe(x1; :::; xk) is the evaluation at e of the polynomial p(�) =Pki=1 xi�i�1 represented by the
oeÆ
ients (x1; :::; xk). 25



(C(x)S1;S24f1g;S3 ; :::;C(x)S1 ;S24fk1=3g;S3), and (C(x)S1;S2;S34f1g; :::;C(x)S1 ;S2;S34fk1=3g), whi
h al-low the user to re
over C(x)S14fi1g;S2;S3 , C(x)S1;S24fi2g;S3 , and C(x)S1;S2;S34fi1g.The 
orresponding lo
ally de
odable 
ode is obtained by a generi
 transformation that ap-plies to any PIR s
heme with s servers, in whi
h the user makes uniformly distributed queriesof length qst(k), gets answers of length ans(k), and re
overs the desired value by XORing somepredetermined bits 
ontained in the answers. In this 
ase, the resulting 
ode will 
ontain theHadamard en
oding of ea
h of the possible answers provided by ea
h of the servers; that is, if thej-th server answers a

ording to Aj(x; q) 2 f0; 1gans(k), where x 2 f0; 1gk and q 2 f0; 1gqst(k), thenC(x)j;q;` = CHad(Aj(x; q))`, for every ` 2 f0; 1gans(k). Thus, the length of the 
ode is s�2qst(k)�2ans(k).Now, on input i 2 [k℄, the de
oder emulates the PIR user, obtaining the query sequen
e (q1; :::; qs)and the desired linear 
ombinations (`1; ::::; `s). It uniformly sele
ts r1; :::; rs 2 f0; 1gans(k), queriesthe (possibly 
orrupted) 
odeword at lo
ations (1; q1; r1); (1; q1; r1� `1); :::; (s; qs; rs); (s; qs; rs� `s),and XORs the 2s answers.As mentioned above, better lo
ally testable 
odes are known, but their 
onstru
tion is moreinvolved (
f. [9℄). Again, it is instru
tive to 
onsider �rst the 
onstru
tion of PIR s
hemes, in whi
h
ase s servers allow for a s
heme with overall 
ommuni
ation k�(s), where �(s) = O(log log s)=s log s�1=(2s � 1). In parti
ular, �(3) = 4=21 improving over the previous bound of 1=5.Theorem 4.3 [9℄: For every 
onstant q, there exist q-lo
ally de
odable binary 
odes of length n =exp(k�(q)), where �(q) = O(log log q)q log q :4.2.2 Polylog-lo
al de
oding for 
odes of nearly linear lengthWe will 
onsider a 
ode C : �k ! �n of linear distan
e, while identifying � with a �nite �eld. Forparameters h and m = logh k, 
onsider a �nite �eld F of size O(m � h), and a subset H � F of sizeh. Viewing the information as a fun
tion f : Hm ! F , we en
ode it by providing the values of itslow-degree extension bf : Fm ! F on all points in F , where bf is a m-variant polynomial of degreejHj�1 in ea
h variable. Thus, the 
ode maps k = hm long sequen
es over F (whi
h may be viewedas hm log jF j bits of information) to sequen
es of length n def= jF jm = O(mh)m = O(m)m �k over F .This 
ode has relative distan
e mh=jF j. Note that the smaller m, the better the rate (i.e., relationof n to k) is, but this 
omes at the expense of using a larger alphabet F (as well as larger query
omplexity of the de
oder presented below).The de
oder works by applying the self-
orre
tion paradigm. Given a point x 2 Hm and a

essto an ora
le w : Fm ! F that is 1=2-
lose to bf , the value of f(x) is re
overed by uniformly sele
tinga line through x, querying for the jF j values of w along the line, �nding the degree mh univariantpolynomial with the greatest agreement with these values, and evaluating it at the adequate point.Thus, we obtain an jF j-lo
al de
oder.Using a 
onstant m, we obtain an O(k1=m)-lo
ally de
odable 
ode of 
onstant rate (i.e., n =O(k)), over an alphabet of size O(k1=m). On the other hand, using m = � log k= log log k (forany 
onstant � > 0), we obtain a poly(log k)-lo
ally de
odable 
ode of length n = k1+�, over analphabet of size poly(log k). Con
atenation with any reasonable28 binary 
ode (
oupled with atrivial de
oder that reads the entire 
odeword), yields a binary poly(log k)-lo
ally de
odable 
odeof length n = k1+�.28Indeed, we may use any good 
ode (i.e., linear length and linear distan
e), as su
h 
an be easily 
onstru
ted forblo
k length O(log log k). But we 
an even use the Hadamard 
ode, be
ause the length overhead 
aused by it in thissetting is negligible. 26



4.2.3 Lower BoundsIt is known that lo
ally de
odable 
odes 
annot be T2-nearly linear: Spe
i�
ally, any q-lo
allyde
odable 
ode C : �k ! �n must satisfy n = 
(k1+ 1q�1 ) (
f. [34℄). For q = 2 and � = f0; 1g, anexponential lower bound is known (
f. [35℄, following [31℄). We 
onje
ture that lo
ally de
odable
odes 
annot have polynomial length. In fa
t, we 
onje
ture that lo
ally de
odable 
odes musthave sub-exponential length.Conje
ture 4.4 For every q there exists an � > 0 su
h that, for every Æ > 0 and all suÆ
ienlylarge k, if C : f0; 1gk ! f0; 1gn has a q-lo
al Æ-de
oder then n > exp(k�).We a
tually 
onje
ture the same for families of 
odes over arbitrary alphabets, even when thealphabet size grows arbitrarily with k.4.3 RelaxationsIn light of the aforementioned 
onje
ture it is natural to seek relaxations to the notion of lo
allyde
odable 
odes. One natural relaxation requires lo
al re
overy of most individual information-bits, allowing for re
overy-failure (but not error) on the rest [15℄: That is, it is requires that,whenever few lo
ation are 
orrupted, based on a 
onstant number of queries, the de
oder shouldbe able to re
over most of the individual information-bits, and for the rest of the lo
ations, thede
oder may output a fail symbol (but not the wrong value). Augmenting these requirements bythe requirement that whenever the 
odeword is not 
orrupted { all bits are re
overed 
orre
tly(with high probability), yields the following de�nition.De�nition 4.5 For fun
tions n; � : N! N, let C = fCk : f0; 1gk ! f0; 1gn(k)gk2K. For q 2 N andÆ; � 2 (0; 1), a q-lo
al relaxed (Æ; �)-de
oder for C is a probabilisti
 (non-adaptive) ora
le ma
hineM that makes at most q queries and satis�es the following 
onditions:Lo
al re
overy from un
orrupted 
odewords: For every i 2 [k℄ and x = (x1; :::; xk) 2 �k, it holdsthat Pr[MC(x)(1k; i)=xi℄ > 2=3,Relaxed lo
al re
overy from somewhat 
orrupted 
odewords: For every x = (x1; :::; xk) 2 �k, andany w 2 �n that is Æ-
lose to C(x), the following two 
onditions hold:1. For every i 2 [k℄, it holds that Pr[MC(x)(1k; i)2 fxi;?g℄ > 2=3, where ? is a spe
ial(\failure") symbol.2. There exists a set Iw � [k℄ of size at least �k su
h that, for every i 2 Iw, it holds thatPr[MC(x)(1k; i)=xi℄ > 2=3.29In su
h a 
ase, C is said to be lo
ally relaxed-de
odable.It turns out (
f. [15℄) that Condition 2, in the relaxed re
overy requirement, essentially follows fromthe other requirements. That is, 
odes satisfying the other requirements 
an be transformed intolo
ally relaxed-de
odable 
odes, while essentially preserving their rate (and distan
e). Furthermore,the resulting 
odes satisfy the following stronger form of Condition 2: There exists a set Iw � [k℄of density at least 1 � O(�(w;C(x))=n) su
h that for every i 2 Iw it holds that Pr[MC(x)(1k; i)=xi℄ > 2=3.29We stress that it is not required that Pr[MC(x)(1k; i) = ?℄ > 2=3 for i 2 [k℄ n Iw. Adding this requirement
ollapses the notion of relaxed-de
odability to ordinary de
odability (
f. [20℄).27



Theorem 4.6 [15℄: There exist lo
ally relaxed-de
odable 
odes of T1-nearly linear length. Spe
if-i
ally, for every � > 0, there exists 
odes of length n = k1+� that have a O(1=�2)-lo
al relaxed(
(�); 1 �O(�))-de
oder.An obvious open problem is to separate lo
ally de
odable 
odes from relaxed ones. This may followby either improving the aforementioned lower bound on the length of lo
ally de
odable 
odes or byproviding relaxed lo
ally de
odable 
odes of T2-nearly linear length.

28
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