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Part IA high-level overviewThe title of this survey refers to two types of objets (i.e., odes and proofs) and two adjetives:loal testability and being short. A lari�ation of these terms is in plae.Codes, proofs and their length. Codes are sets of strings (of equal length), typially, havinga large pairwise distane. Equivalently, odes are viewed as mappings from short (k-bit) strings tolonger (n-bit) strings, alled odewords, suh that the odewords are distant from one another. Wewill fous on odes with relative onstant distane; that is, every two n-bit odewords are at distane
(n) apart. The length of the ode is measured in terms of the length of the pre-image (i.e., we areinterested in the growth of n as a funtion of k). Turning to proofs, these are de�ned with respetto a veri�ation proedure for assertions of a ertain length, and their length is measured in termsof the length of the assertion. The veri�ation proedure must satisfy the natural ompleteness andsoundness properties: For valid assertions there should be strings, alled proofs, that are aepted(in onjuntion with the assertion) by the veri�ation proedures, whereas for false assertions nosuh strings may exist. The reader may envision proof systems for the set of satis�able propositionalformulae (i.e., assertions of satis�ability of given formulae).Loal testability. By loal testability we mean that the objet an be tested for the naturalproperty (i.e., being a odeword or a valid proof) using a small (typially onstant) number ofprobes, eah reovering individual bits in a standard representation of the objet. Thus, loaltestability allows for super-fast testing of the orresponding fundamental objets. The tests areprobabilisti and hene the result is orret only with high probability.1 Furthermore, orretnessrefers to a relaxed notion of deiding (whih was formulated, in general terms, in the ontext ofproperty testing [41, 30℄): It is required that valid objets be aepted with high probability, whereasobjets that are \far" from being valid should be rejeted with high probability. Spei�ally, inase of odes, odewords should be aepted (with high probability), whereas strings that are \far"from the ode should be rejeted (with high probability). In ase of proofs, valid proofs (whihexist for orret assertions) should be aepted (with high probability), whereas strings that are\far" from being valid proofs (and, in partiular, all strings in ase no valid proofs exist) should berejeted (with high probability).2Our notion of loally testable proofs is very related to the notion of a PCP (i.e., probabilistiallyhekable proof)3, and we will ignore the di�erene in the sequel. The di�erene is that in thede�nition of loally testable proofs we required rejetion of strings that are far from any validproof, also in the ase that valid proofs exists (i.e., the assertion is valid). In ontrast, the standardrejetion riteria of PCPs refers only to false assertions. Still, all known PCP onstrutions atuallysatisfy the stronger de�nition.41Indeed, it is easy to see that deterministi tests will perform very poorly, and the same holds with respet toprobabilisti tests that make no error.2Indeed, in the ase the assertion is false, there exist no valid proofs. In this ase all strings are de�ned to be farfrom a valid proof.3Needless to say, the new term \loally testable proof" was introdued to math the term \loally testable odes".In retrospet, \loally testable proofs" seems a more �tting term than \probabilistially hekable proofs", beause itstresses the positive aspet (of loality) rather than the negative aspet (of being probabilisti). The latter perspetivehas been frequently advoated by Leonid Levin.4In some ases this holds only under a weighted version of the Hamming distane, rather under the standard2



The very possibility of loal testability. Indeed, loal testability of either odes or proofs isquite hallenging, regardless of the issue of length:� For odes, the simplest example of a loally testable ode (of onstant relative distane) isthe Hadamard ode and testing it redues to linearity testing. However, the analysis of thenatural linearity tester (of Blum, Luby and Rubinfeld [19℄) turned out to be highly omplex(f. [19, 6, 25, 12, 13, 10℄).� For proofs, the simplest example of a loally testable proof is the \inner veri�er" of the PCPonstrution of Arora, Lund, Motwani, Sudan and Szegedy [4℄, whih in turn is based on theHadamard ode.In both ases, the onstruted objet has exponential length in terms of the relevant parameter(i.e., the amount of information being enoded in the ode or the length of the assertion beingproved).Loal testability at a polynomial blow-up. Ahieving loal testability by odes and proofsthat have polynomial length turns out to be even more hallenging.� In the ase of odes, a diret interpretation of low-degree tests (f. [6, 7, 29, 41, 28℄), proposedin [28, 41℄, yields a loally testable ode of quadrati length over a suÆiently large alphabet.Similar (and atually better) results for binary odes required additional ideas, and haveappeared only later (f. [32℄).� The ase of proofs is far more omplex: Ahieving loally testable proof of polynomial lengthis essentially the ontents of the elebrated PCP Theorem of Arora, Lund, Motwani, Safra,Sudan and Szegedy [5, 4℄.We fous on even shorter odes and proofs; spei�ally, odes and proofs of nearly linear length.The latter term has been given quite di�erent interpretations, and we start by sorting these out.Types of nearly linear funtions: A few ommon interpretations of this term are listed below(going from the most liberal to the most strit one).T1-nearly linear: A very liberal notion, at the verge of an abuse of the term, refers to a sequeneof funtions f� : N ! N suh that, for every � > 0, it holds that f�(n) � n1+�. That is, eahfuntion is atually of the form n 7! n, for some onstant  > 1, but the sequene as a wholean be viewed as approahing linearity.T2-nearly linear: A more reasonable notion of nearly linear funtions refers to individual fun-tions f suh that f(n) = n1+o(1). Spei�ally, for some funtion � : N ! [0; 1℄ that goesto zero, it holds that f(n) � n1+�(n). Common sub-types inlude the ase that �(n) =1= log logn, the ase that �(n) = 1=(log n) for some  2 (0; 1), and the ase that �(n) =exp((log log log n))= log n for some  2 (0; 1). Indeed, the ase in whih �(n) = O(log logn)= log n(or so) deserves a speial ategory.Hamming distane. Alternatively, these onstrutions an be easily modi�ed to work under the standard Hammingdistane. 3



T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmi(or quasi-poly-logarithmi) fator. In the former ase f(n) � poly(log n) � n, whih or-responds to the aforementioned ase of f(n) � n1+�(n) with �(n) = O(log logn)= log n,whereas the latter ase orresponds to �(n) = poly(log log n)= log n (i.e., in whih ase f(n) =(log n)poly(log log n) � n).Using the above notation, we summarize the state of the art with respet to loal testability ofodes and proofs.Loal testability with nearly linear length: The ultimate goal may be to obtain loallytestable odes and proofs that are T3-nearly linear (i.e., nearly linear in the sense of Type T3).We onjeture that loally testable odes and proofs of (stritly) linear length annot be ahieved.Currently, loally testable odes and proofs of nearly linear length are known when nearly linear isinterpreted as Type T2 (i.e., T2-nearly linear).Theorem 1 (Ben-Sasson, Goldreih, Harsha, Sudan and Vadhan [15℄): There exist loally testableodes and proofs of length f(n) � n1+�(n), where �(n) = 1=(log n)0:99. Atually, for every onstant 2 (0; 1), one an ahieve length f(n) � n1+�(n), where �(n) = 1=(log n).Open Problem 2 Do there exist loally testable odes and proofs of length f(n) � poly(log n) �n?In the rest of this part, we motivate the study of short loally testable objets, omment on therelation between suh odes and proofs, and disuss a somewhat related oding problem.Motivation to the study of short loally testable odes and proofsLoal testability o�ers an extremely strong notion of eÆient testing: The tester makes only aonstant number of bit probes, and determining the probed loations (as well as the �nal deision)is typially done in time that is poly-logarithmi in the length of the probed objet.The length of an error-orreting ode is widely reognized as one of the two most fundamentalparameters of the ode (the seond one being its distane). In partiular, the length of the odeis of major importane in appliations, beause it determines the overhead involved in enodinginformation.The same onsiderations apply also to proofs. However, in the ase of proofs, this obvious pointwas blurred by the indiret, unexpeted and highly inuential appliations of loally testable proofs(known as PCPs) to the theory of approximation algorithms. In our view, the signi�ane of loallytestable proofs (i.e., PCPs) extends far beyond their appliability to deriving non-approximabilityresults. The mere fat that proofs an be transformed into a format that supports super-fast prob-abilisti veri�ation is remarkable. From this perspetive, the question of how muh redundanyis introdued by suh a transformation is a fundamental one. Furthermore, loally testable proofs(i.e., PCPs) have been used not only to derive non-approximability results but also for obtainingpositive results (e.g., CS-proofs [36, 39℄ and their appliations [8, 21℄), and the length of the PCPa�ets the omplexity of those appliations.In any ase, the length of PCPs is also relevant to non-approximability results; spei�ally, ita�ets their tightness with respet to the running time. For example, suppose (exat) SAT hasomplexity 2
(n). The original PCP Theorem [5, 4℄ only implies that approximating MaxSAT
4



requires time 2n� , for some (small) � > 0. The work of [40℄ makes � arbitrarily lose to 1, whereasthe results of [32, 18℄ further improve the lower-bound to 2n1�o(1) .5On the relation between loally testable odes and proofsLoally testable odes seem related to loally testable proofs (PCPs). In fat, the use of odes withrelated \loal testability" features is impliit in known PCP onstrutions. Furthermore, the knownonstrutions of loally testable proofs (PCPs) provides a transformation of standard proofs (forsay SAT) to loally testable proofs (i.e., PCP-orales), suh that transformed strings are aeptedwith probability one by the PCP veri�er. Moreover, starting from di�erent standard proofs, oneobtains loally testable proofs that are far apart, and hene onstitute a good ode. It is temptingto think that the PCP veri�er yields a odeword tester, but this is not really the ase. Note thatour de�nition of a loally testable proof requires rejetion of strings that are far from any validproof, but it is not lear that the only valid proofs (w.r.t the onstruted PCP veri�er) are thosethat are obtained by the aforementioned transformation of standard proofs to loally testable ones.6In fat, the standard PCP onstrutions aept also valid proofs that are not in the range of theorresponding transformation.In spite of the above, loally testable odes and proofs are related, and the feeling is that loallytestable odes are the ombinatorial ounterparts of loally testable proofs (PCPs), whih areomplexity theoreti in nature. From that perspetive, one should expet (or hope) that it wouldbe easier to onstrut loally testable odes than it is to onstrut PCPs. This feeling was amongthe main motivations of Goldreih and Sudan, and indeed their �rst result was along this vein:They showed a relatively simple onstrution (i.e., simple in omparison to PCP onstrutions) ofa loally testable ode of T1-nearly linear length [32, Se. 3℄. Unfortunately, their stronger result,providing a loally testable ode of T2-nearly linear length is obtained by onstruting and usinga T2-nearly linear loally testable proof (i.e., PCP). Subsequent works [18, 15℄ have followed thisroute, and only the reent work of Ben-Sasson and Sudan [17℄ (whih ahieves a more relaxednotion of loal testability) reversed the ourse to the \right one": First odes are onstruted, andnext they are used towards the onstrution of proofs (rather than the other way around).Loally Deodable CodesLoally deodable odes are in some sense omplimentary to loal testable odes. Here, one isgiven a slightly orrupted odeword (i.e., a string lose to some unique odeword), and is requiredto reover individual bits of the enoded information based on a onstant number of probes (perreovered bit). That is, a ode is said to be loally deodable if whenever relatively few loationare orrupted, the deoder is able to reover eah information-bit, with high probability, based ona onstant number of probes to the (orrupted) odeword.The best known loally deodable odes are of sub-exponential length. Spei�ally, k infor-mation bits an be enoded by odewords of length n = exp(kO(log log q)=q log q) that are loallydeodable using q bit-probes (f. [9℄). It is onjetured that, for every q there exists an � > 0, suhthat loally deodability based on q queries (i.e., probes) requires odewords of length n > exp(k�).The problem is related to the onstrution of (information theoreti seure) Private InformationRetrieval shemes, introdued in [22℄.5A aveat: it is urrently not known whether these improved lower-bounds an be ahieved simultaneously withoptimal approximation ratios, but the hope is that this an eventually be done.6Let alone that the standard de�nition of PCP refers only to the ase of false assertions, in whih ase all stringsare far from a valid proof (whih does not exist). 5



A natural relaxation of the de�nition of loally deodable odes requires that, whenever fewloation are orrupted, the deoder should be able to reover most of the individual information-bits(based on a onstant number of queries) and for the rest of the loations, the deoder may outputa fail symbol (but not the wrong value). That is, the deoder must still avoid errors (with highprobability), but on a few bit-loations it is allowed to sometimes say \don't know". This relaxednotion of loal deodability an be supported by odes that have T1-nearly linear length (f. [15℄).An obvious open problem is to separate loally deodable odes from relaxed loally deodableodes. This may follow by either improving the 
(k1+ 1q�1 ) lower bound on the length of q-queryloally deodable odes (of [34℄), or by providing relaxed loally deodable odes of T2-nearly linearlength.
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Part IIA more detailed and rigorous aountIn this part we provide a general treatment of loal testability. In ontrast to Part I, here we allowthe tester to use a number of queries that is a (typially small) predetermined funtion of the lengthparameter, rather than insisting on a onstant number of queries. The latter speial ase is indeedan important one.1 IntrodutionCodes (i.e., error orreting odes) and proofs (i.e., automatially veri�able proofs) are fundamentalto omputer siene as well as to related disiplines suh as mathematis and omputer engineering.Redundany is inherent to error-orreting odes, whereas testing validity is inherent to proofs. Inthis survey we also onsider less traditional ombinations suh as testing validity of odewords andthe use of proofs that ontain redundany. The reader may wonder why we explore these non-traditional possibilities, and the answer is that they o�er various advantages (as will be elaboratednext).Testing the validity of odewords is natural in settings in whih one may want to take an ationin ase the odeword is orrupted. For example, when storing data in an error orreting format,one may want to reover the data and re-enode it whenever one �nds that the urrent enoding isorrupted. Doing so may allow to maintain the data integrity over eternity, when enoded bits doget orrupted in the ourse of time. Of ourse, one an use the error-orreting deoding proedureassoiated with the ode in order to hek whether the urrent enoding is orrupted, but thequestion is whether one an hek (or just approximately hek) this property muh faster.Loosely speaking, loally testable odes are error orreting odes that allow for a super-fasttesting of whether or not a give string is a valid odeword. In partiular, the tester works in sub-linear time and reads very few of the bits of the tested objet. Needless to say, the answer providedby suh a tester an only be approximately orret, but this would suÆe in many appliations(inluding the one skethed above).Similarly, loally testable proofs are proofs that allow for a super-fast probabilisti veri�ation.Again, the tester works in sub-linear time and reads very few of the bits of the tested objet. Thetester's (aka veri�er's) verdit is only orret with high probability, but this may suÆe for manyappliations. In partiular, it suÆes in appliations where proofs refer to the orretness of aspei� omputation of pratial interest (rather than referring to Fermat's Theorem). Lastly, weomment that suh loally testable proofs must be redundant (or else there would be no hane forverifying them based on inspeting only a small portion of them).Our fous is on relatively short loally testable odes and proofs, whih is not surprising in viewof the fat that we envision suh objets being atually used in pratie. Of ourse, we do not meanto suggest that one may use in pratie any of the onstrutions surveyed here (espeially not theones that provide the stronger bounds). We rather argue that this diretion of researh may �ndappliations in pratie. Furthermore, it may even be the ase that some of the urrent oneptsand tehniques may lead to suh appliations.Organization: In Setion 2 we provide a quite omprehensive de�nitional treatment of loallytestable odes and proofs, while relating these to PCPs, PCPs of proximity, and property testing.In Setion 3, we survey the main results regarding loally testable odes and proofs as well as many7



of the underlying ideas. In Setion 4 we onsider loally deodable odes, whih are somewhatomplementary to loally testable odes.2 De�nitionsLoal testability is formulated by onsidering orale mahines. That is, the tester is an oralemahine, and the objet that it tests is viewed as an orale. For simpliity, we on�ne ourselvesto non-adaptive probabilisti orale mahines; that is, mahines that determine their queries basedon their expliit input (whih in ase of odes is merely a length parameter) and their internal ointosses (but not depending on previous orale answers). When taking about orale aess to a stringw 2 f0; 1gn we viewed w as a funtion w : f1; :::; ng ! f0; 1g.2.1 Codeword testersWe onsider odes mapping sequenes of k (input) bits into sequenes of n � k (output) bits. Suha generi ode is denoted by C : f0; 1gk ! f0; 1gn, and the elements of fC(x) : x2f0; 1gkg � f0; 1gnare alled odewords (of C).The distane of a ode C : f0; 1gk ! f0; 1gn is the minimum (Hamming) distane between itsodewords; that is, minx6=yf�(C(x);C(y))g, where �(u; v) denotes the number of bit-loations onwhih u and v di�er. Throughout this work, we fous on odes of linear distane; that is, odesC : f0; 1gk ! f0; 1gn of distane 
(n).The distane of w 2 f0; 1gn from a ode C : f0; 1gk ! f0; 1gn, denoted �C(w), is the minimumdistane between w and the odewords; that is, �C(w) def= minxf�(w;C(x))g. For Æ 2 [0; 1℄, then-bit long strings u and v are said to be Æ-far (resp., Æ-lose) if �(u; v) > Æ �n (resp., �(u; v) � Æ �n).Similarly, w is Æ-far from C (resp., Æ-lose to C) if �C(w) > Æ � n (resp., �C(w) � Æ � n).De�nition 2.1 Let C : f0; 1gk ! f0; 1gn be a ode of distane d, and let q 2 N and Æ 2 (0; 1). Aq-loal (odeword) Æ-tester for C is a probabilisti (non-adaptive) orale mahine M that makes atmost q queries and satis�es the following two onditions:Aepting odewords (aka ompleteness): For any x 2 f0; 1gk, given orale aess to w = C(x),mahine M aepts with probability 1. That is, Pr[MC(x)(1k)=1℄ = 1, for any x 2 f0; 1gk.Rejetion of non-odeword (aka soundness): For any w 2 f0; 1gn that is Æ-far from C, given oraleaess to w, mahine M rejets with probability at least 1=2. That is, Pr[Mw(1k)=1℄ � 1=2,for any w 2 f0; 1gn that is Æ-far from C.We all q the query omplexity of M , and Æ the proximity parameter.The above de�nition is interesting only in ase Æn is smaller than the overing radius of C (i.e., thesmallest r suh that for every w 2 f0; 1gn it holds that �C(w) � r). Clearly, r � d=2, and so thede�nition is ertainly interesting in the ase that Æ < d=2n, and indeed we will fous on this ase.On the other hand, observe that q = 
(1=Æ) must hold, whih means that we fous on the asethat d=n = 
(1=q).We next onsider families of odes C = fCk : f0; 1gk ! f0; 1gn(k)gk2K , where n; d : N! N andK � N, suh that Ck has distane d(k). In aordane with the above, we are most of the asethat Æ(k) < d(k)=2n(k). Furthermore, seeking onstant query omplexity, we fous on the ased = 
(n). 8



De�nition 2.2 For funtions n; d : N ! N, let C = fCk : f0; 1gk ! f0; 1gn(k)gk2K suh that Ckis a ode of distane d(k). For funtion q : N ! N and Æ : N ! (0; 1), we say that M is q-loal(odeword) Æ-tester for C = fCkgk2K if, for every k 2 K, mahine M is a q(k)-loal Æ(k)-tester forCk. Again, q is alled the query omplexity of M , and Æ the proximity parameter.Reall that being partiularly interested in onstant query omplexity (and realling that d(k)=n(k) �2Æ(k) = 
(1=q(k))), we fous on the ase that d = 
(n) and onstant Æ < d=2n. In this ase, wemay onsider a stronger de�nition.De�nition 2.3 Let n; d and C be as in De�nition 2.2 and suppose that d = 
(n). We say that Cis loally testable if for every onstant Æ > 0 there exists a onstant q and a probabilisti polynomial-time orale mahine M suh that M is a q-loal Æ-tester for C.We will be onerned of the growth rate of n as a funtion of k, for loally testable odes C = fCk :f0; 1gk ! f0; 1gn(k)gk2K of distane d = 
(n). More generally, for d = 
(n), we will be interestedin the trade-o� between n, the proximity parameter Æ, and the query omplexity q.2.2 Proof testersWe start by realling the standard de�nition of PCP.De�nition 2.4 A probabilistially hekable proof (PCP) system for a set S is a probabilisti (non-adaptive) polynomial-time orale mahine (alled veri�er), denoted V , satisfyingCompleteness: For every x 2 S there exists an orale �x suh that V , on input x and aess toorale �x, always aepts x; that is, Pr[V �x(x)=1℄ = 1.Soundness: For every x 62 S and every orale �, mahine V , on input x and aess to orale �,rejets x with probability at least 12 ; that is, Pr[M�(x)=1℄ � 1=2,Let Qx(r) denote the set of orale positions inspeted by V on input x and random-tape r 2f0; 1gpoly(jxj). The query omplexity of V is de�ned as q(n) def= maxx2f0;1gn;r2f0;1gpoly(n)fjQx(r)jg.The proof omplexity of V is de�ned as p(n) def= maxx2f0;1gnfj [r2f0;1gpoly(n) Qx(r)jg.Note that in the ase that the veri�er V uses a logarithmi number of oin tosses, its proof om-plexity is polynomial. In general, the proof omplexity is upper-bounded by 2r � q, where r (resp.,q) is the randomness (resp., query) omplexity of the proof tester. Thus, the trade-o� between thequery omplexity and the proof omplexity is typially aptured by the trade-o� between the queryomplexity and the randomness omplexity. Furthermore, fousing on the randomness omplexityallows for better bounds when omposing proofs (f. x3.2.2).All known PCP onstrutions an be easily modi�ed suh that the orale loations aessedby V are a pre�x of the orale (i.e., [r2f0;1gpoly(jxj)Qx(r) � f1; :::; p(jxj)g, for every x).7 (Forsimpliity, the reader may assume that this is the ase throughout the rest of this exposition.)More importantly, all known PCP onstrutions an be easily modi�ed to satisfy the followingde�nition, whih is loser in spirit to the de�nition of loally testable odes.De�nition 2.5 For funtion q : N ! N and Æ : N ! (0; 1), we say that a PCP system V for aset S is a q-loally Æ-testable proof system if it has query omplexity q and satis�es the followingondition7In fat, for every x 2 f0; 1gn, it holds that [r2f0;1gpoly(n)Qx(r) = f1; :::; p(n)g.9



Rejeting invalid proofs: For every x 2 f0; 1g� and every orale � that is Æ-far from �x def= fw :Pr[V w(x)=1℄ = 1g, mahine V , on input x and aess to orale �, rejets x with probabilityat least 12 .8The proof omplexity of V is de�ned as in De�nition 2.4.Note that De�nition 2.5 uses the tester V itself in order to de�ne the set (denoted �x) of valid proofs(for x 2 S). That is, V is used both to de�ne the set of valid proofs and to test for the proximity ofa given orale to this set. A more general de�nition (presented next), refers to an arbitrary proofsystem, and lets �x equal the set of valid proofs (in that system) for x 2 S. Obviously, it musthold that �x 6= ; if an only if x 2 S. Typially, one also requires the existene of a polynomial-timeproedure that, on input a pair (x; �), determines whether or not � 2 �x.9 For simpliity weassume that, for some funtion p : N ! N and every x 2 f0; 1g�, it holds that �x � f0; 1gp(jxj).The resulting de�nition follows.De�nition 2.6 Suppose that, for some funtion p : N ! N and every x 2 f0; 1g�, it holds that�x � f0; 1gp(jxj). For funtions q : N ! N and Æ : N ! (0; 1), we say that a probabilisti (non-adaptive) polynomial-time orale mahine V is a q-loally Æ-tester for the proof system f�xgx2f0;1g�if V has query omplexity q and satis�es the following onditionsTehnial ondition: On input x, mahine V issues queries in f1; :::; p(jxj)g.Aepting valid proofs: For every x 2 f0; 1g� and every orale � 2 �x, mahine V , on input x andaess to orale �, aepts x with probability 1.Rejeting invalid proofs: For every x 2 f0; 1g� and every orale � that is Æ-far from �x, mahineV , on input x and aess to orale �, rejets x with probability at least 12 .The proof omplexity of V is de�ned as p,10 and Æ is alled the proximity parameter. In suh aase, we say that � = f�xgx2f0;1g� is q-loally Æ-testable, and that S = fx 2 f0; 1g� : �x 6= ;g hasq-loally Æ-testable proofs of length p.We say that � is loally testable if for every onstant Æ > 0 there exists a onstant q suh that � isq-loally Æ-testable. In suh a ase, we say that S has loally testable proofs of length p.2.3 DisussionWe �rst omment about a few de�nitional hoies made above. Firstly, we hose to present testersthat always aept valid objets (i.e., aept valid odewords (resp., valid proofs) with probability 1).This is more appealing than allowing two-sided error, but the latter weaker notion is meaningful8The above de�nition relies on two natural onventions:1. All strings in �x are of the same length, whih equals j[r2f0;1gpoly(n) Qx(r)j, where Qx(r) is as in De�nition 2.4.Furthermore, we onsider only �'s of this length.2. If �x = ; then every � is onsidered Æ-far from �x.9We omment that in the ase that the veri�er V uses a logarithmi number of oin tosses, its proof omplexity ispolynomial (and so the \e�etive length" of the strings in �x must be polynomial in jxj). Furthermore, if in additionit holds that �x = fw : Pr[V w(x)= 1℄ = 1g, then (sanning all possible oin tosses of) V yields a polynomial-timeproedure for determining whether a given pair (x; �) satis�es � 2 �x.10Note that by the tehnial ondition, the urrent de�nition of the proof omplexity of V is lower-bounded by thede�nition used in De�nition 2.4. 10



too. A seond hoie was to �x the error probability (i.e., probability of aepting far from validobjets), rather than introduing yet another parameter. Needless to say, the error probability anbe redued by sequential appliations of the tester.In the rest of this setion, we onsider an array of de�nitional issues. First, we onsider twonatural strengthenings of the de�nition of loal testability (f. x2.3.1). We next we disuss therelation of loal testability to property testing (f. x2.3.2), and the relation of loality testableproofs to PCP of proximity (as de�ned in [15℄, f. x2.3.3). Finally, we disuss the relation betweenloal testable odes and proofs (f. x2.3.4), and the motivation to the study of short loal testableodes and proofs (f. x2.3.5). (The text regarding the last issue is almost idential to a orrespondingtext that appears in Part I.)2.3.1 Stronger de�nitionsThe de�nitions of testers presented so far, allow for the onstrution of a di�erent tester for eahrelevant value of the proximity parameter. However, whenever suh testers are atually onstruted,they tend to be \uniform" over all relevant values of the proximity parameter. Thus, it is naturalto present a single tester for all relevant values of the proximity parameter, provide this tester withthe said parameter, allow it to behave aordingly, and measure its query omplexity as a funtionof that parameter. For example, we may strengthen De�nition 2.3, by requiring the existene of afuntion q : (0; 1)! N and an orale mahineM suh that, for every onstant Æ > 0, all (suÆientlylarge) k and all w 2 f0; 1gn(k), the following onditions hold:1. On input (1k; Æ), mahine M makes q(Æ) queries.2. If w is a odeword of C then Pr[Mw(1k; Æ) = 1℄ = 1.3. If w is Æ-far from fC(x) : x 2 f0; 1gkg then Pr[Mw(1k; Æ) = 1℄ � 1=2.An analogous strengthening applies to De�nition 2.6. A speial ase of interest is when q(Æ) =O(1=Æ). In this ase, it makes sense to ask whether or not an even stronger \uniformity" onditionmay hold. Like in De�nitions 2.1 and 2.2 (resp., De�nitions 2.5 and 2.6), the tester M is not giventhe proximity parameter (and so its query omplexity annot depend on it), but we only requireit to rejet with probability proportional to the distane of the orale from the relevant set. Forexample, we may strengthen De�nition 2.3, by requiring the existene of an orale mahine M anda onstant q suh that, for every onstant Æ > 0, every (suÆiently large) k and w 2 f0; 1gn(k), thefollowing onditions hold:1. On input 1k, mahine M makes q queries.2. If w is a odeword of C then Pr[Mw(1k; Æ) = 1℄ = 1.3. If w is Æ-far from fC(x) : x 2 f0; 1gkg then Pr[Mw(1k; Æ) = 1℄ < 1�O(Æ).2.3.2 Relation to Property TestingLoally testable odes (and their orresponding testers) are essentially speial ases of property test-ing, as de�ned in [41, 30℄. Spei�ally, the property being tested is membership in a predeterminedode. The only di�erene between the de�nitions presented in Setion 2.1 and the formulation thatis standard in the property testing literature is that in the latter the tester is given the proximityparameter as input and determines its behavior (and in partiular the number of queries) aord-ingly. This di�erene is eliminated in x2.3.1. We note, however, that most of the property testing11



literature is onerned with \natural" objets (e.g., graphs, sets of points, funtions) presented ina \natural" form rather than with objet designed arti�ially to withstand errors (i.e., odewordsof error orreting odes).Our general formulation of proof testing (i.e., De�nition 2.6) an be viewed as a generalizationof property testing. That is, we view the set �x as a set of objets having a ertain x-dependentproperty (rather than as a set of valid proofs for some property of x). In other words, De�nition 2.6allows to onsider properties that are parameterized by auxiliary information (i.e., x), whereastraditional property testing may be viewed as referring to the ase that x only determines thelength of strings in �x (e.g., �x = ; for every x 62 f1g� or, equivalently, �x = �y for everyjxj = jyj).112.3.3 Relation to PCPs of ProximityOur de�nition of a loally testable proof is related but di�erent from the de�nition of a PCP ofproximity (appearing in [15℄).12 We start by reviewing the de�nition of PCP of proximity.De�nition 2.7 A PCP of proximity for a set S with proximity parameter Æ is a probabilisti (non-adaptive) polynomial-time orale mahine, denoted V , satisfyingCompleteness: For every x 2 S there exists a string �x suh that V always aepts when givenaess to the orale (x; �x); that is, Pr[V x;�x(1jxj)=1℄ = 1.Soundness: For every x that is Æ-far from S\f0; 1gjxj and for every string �, mahine V rejets withprobability at least 12 when given aess to the orale (x; �); that is, Pr[Mx;�(1jxj)=1℄ � 1=2.The query omplexity of V is de�ned as in ase of PCP, but here also queries to the x-part areounted.The orale (x; �) is atually a onatenation of two orales: the input-orale x (whih replaes anexpliitly given input in the de�nitions of PCPs and loally testable proofs), and a proof-orale �(exatly as in the prior de�nitions). Note that De�nition 2.7 refers to the distane of the input-orale to S, whereas loally testable proofs refer to the distane of the proof-orale from the set �xof valid proofs of membership of x 2 S.Still, PCPs of proximity an be de�ned within the framework of loally testable odes. Spei�-ally, onsider an extension of De�nition 2.6, where (relative) distanes are measured aording to aweighted Hamming distane; that is, for a weight funtion ! : f1; :::; ng ! [0; 1℄ and u; v 2 f0; 1gn,we let Æ!(u; v) = Pni=1 !(i) � �(ui; vi). (Indeed, the standard notion of relative distane betweenu; v 2 f0; 1gn is obtained by Æ!(u; v) when using the uniform weighting funtion (i.e., !(i) = 1=n forevery i 2 f1; :::; ng).) Now, De�nition 2.7 an be viewed as a speial ase of (the extended) De�ni-tion 2.6 when applied to the (rather arti�ial) set of proofs �1n = f(x; �) : x 2 S\f0; 1gn^� 2 �0xg,where �0x = f� : Pr[V x;�(1jxj) = 1℄ = 1g, by using the weighted Hamming distane Æ! for !that is uniform on the input-part of the orale; that is, for (x; �); (x0; �0) 2 f0; 1gn+p, we useÆ!((x; �); (x0; �0)) def= �(x; x0)=n, whih orresponds to !(i) = 1=n if i 2 f1; :::; ng and !(i) = 011In fat, in the ontext of property testing, the length of the orale must always be given to the tester (althoughsome soures neglet to state this fat).12We mention that PCP of proximity are almost idential to Assignment Testers, de�ned independently by Dinurand Reingold [23℄. Both notions are (important) speial ases of the general de�nition of a \PCP spot-heker"formulated before in [24℄. 12



otherwise. Alternatively, weights an be approximately replaed by repetitions (provided that thetester heks the onsisteny of the repetitions).13We mention that PCPs of proximity (of onstant query omplexity) yield a simple way ofobtaining loally testable odes. More generally, we an ombine any ode C0 with any PCP ofproximity V , and obtain a q-loally testable ode with distane essentially determined by C0 andrate determined by V , where q is the query omplexity of V . Spei�ally, x will be enoded byappending  = C0(x) by a proof that  is a odeword of C0, and distanes will be determined bythe weighted Hamming distane that assigns uniform weights to the �rst part of the new ode. Asin the previous paragraph, these weights an be implemented by making suitable repetitions.Finally, we omment that the de�nition of a PCP of proximity an be extended by providingthe veri�er with part of the input in an expliit form. That is, referring to De�nition 2.7, we letx = (x0; x00), and provide V with expliit input (x0; 1jxj) and input-orale x00 (rather than withexpliit input 1jxj and input-orale x). Clearly, the extended formulation implies PCP as a speialase (i.e., x00 = �). More interestingly, an extended PCP of proximity for a set of pairs R (e.g., thewitness relation of an NP-set), yields a PCP for the set S def= fx0 : 9x00 s.t. (x0; x00) 2 Rg.2.3.4 Relating loally testable odes and proofsLoally testable odes an be thought of as the ombinatorial ounterparts of the omplexity theo-reti notion of loally testable proofs (PCPs). This perspetive raises the question of whether oneof these notions implies (or is useful towards the understanding of) the other.Do PCPs imply loally testable odes? The use of odes with features related to loaltestability is impliit in known PCP onstrutions. Furthermore, the known onstrutions of loallytestable proofs (PCPs) provides a transformation of standard proofs (for say SAT) to loally testableproofs (i.e., PCP-orales), suh that transformed strings are aepted with probability one by thePCP veri�er. Spei�ally, denoting by Sx the set of standard proofs referring to an assertion x,there exists a polynomial-time mapping fx of Sx to Rx def= ffx(y) : y 2 Sxg suh that for every� 2 Rx it holds that Pr[V �(x) = 1℄ = 1, where V is the PCP veri�er. Moreover, starting fromdi�erent standard proofs, one obtains loally testable proofs that are far apart, and hene onstitutea good ode (i.e., for every x and every y 6= y0 2 Sx, it holds that �(fx(y); fx(y0)) � 
(jfx(y)j)).It is tempting to think that the PCP veri�er yields a odeword tester, but this is not really thease. Note that De�nition 2.5 requires rejetion of strings that are far from any valid proof (i.e.,any string far from �x), but it is not lear that the only valid proofs (w.r.t V ) are those in Rx(i.e., the proofs obtained by the transformation fx of standard proofs (in Sx) to loally testableones).14 In fat, the standard PCP onstrutions aept also valid proofs that are not in the rangeof the orresponding transformation (i.e., fx); that is, �x as in De�nition 2.5 is a strit subset of Rx(rather than �x = Rx). We omment that most known PCP onstrutions an be (non-trivially)1513That is, given a veri�er V as in De�nition 2.7, and denoting by n and p = p(n) the sizes of the two parts ofits orale, we onsider proofs of length t � n + p, where t = p=o(n) (e.g., t = (p=n) � log n). We onsider a veri�erV 0 with syntax as in De�nition 2.6 that, on input 1n and orale aess to w = (u1; :::; ut; v) 2 f0; 1gt�n+p, whereui 2 f0; 1gn and v 2 f0; 1gp, selets uniformly i 2 f1; :::; tg and invokes V ui;v(1n). In addition, V 0 performs a numberof repetition tests that is inversely proportional to the proximity parameter, where in eah test V 0 selets uniformlyi; i0 2 f1; :::; tg and j 2 f1; :::; ng and heks that ui and ui0 agree on their j-th bit. Thus, V 0 essentially emulatesthe PCP of proximity V , and the fat that V satis�es De�nition 2.7 an be aptured by saying that V 0 satis�esDe�nition 2.6.14Let alone that De�nition 2.4 refers only to the ase of false assertions, in whih ase all strings are far from avalid proof (whih does not exist).15The interested reader is referred to [32, Se. 5.2℄ for a disussion of typial problems that arise.13



modi�ed to yield �x = Rx, and thus to yield a loally testable ode (but this is not neessarily thebest way to design loally testable odes, see one alternative in x2.3.3).Do loally testable odes PCPs? Saying that loally testable odes are the ombinatorialounterparts of loally testable proofs (PCPs), raises the expetation (or hope) that it would beeasier to onstrut loally testable odes than it is to onstrut PCPs. The reason being thatombinatorial objets (e.g., odes) should be easier to understand than omplexity theoreti ones(e.g., PCPs). Indeed, this feeling was among the main motivations of Goldreih and Sudan, andtheir �rst result (f. [32, Se. 3℄) was along this vein: They showed a relatively simple onstrution(i.e., simple in omparison to PCP onstrutions) of a loally testable ode of T1-nearly linearlength. Unfortunately, their stronger result, providing a loally testable ode of T2-nearly linearlength is obtained by onstruting (f. [32, Se. 4℄) and using (f. [32, Se. 5℄) a T2-nearly linearloally testable proof (i.e., a PCP). Subsequent works [18, 15℄ have followed this route, and only thereent work of Ben-Sasson and Sudan [17℄ (whih ahieves a more relaxed notion of loal testability)reversed the ourse to the \right one": First odes are onstruted, and next they (or atually theiranalysis) are used towards the onstrution of proofs (rather than the other way around).2.3.5 Motivation to the study of short loally testable odes and proofsLoal testability o�ers an extremely strong notion of eÆient testing: The tester makes only aonstant number of bit probes, and determining the probed loations (as well as the �nal deision)is typially done in time that is poly-logarithmi in the length of the probed objet.The length of an error-orreting ode is widely reognized as one of the two most fundamentalparameters of the ode (the seond one being its distane). In partiular, the length of the odeis of major importane in appliations, beause it determines the overhead involved in enodinginformation.As argued in the Introdution, the same onsiderations apply also to proofs. However, in thease of proofs, this obvious point was blurred by the indiret, unexpeted and highly inuential ap-pliations of PCPs to the theory of approximation algorithms. In our view, the signi�ane of loallytestable proofs (or PCPs) extends far beyond their appliability to deriving non-approximabilityresults. The mere fat that proofs an be transformed into a format that supports super-fast prob-abilisti veri�ation is remarkable. From this perspetive, the question of how muh redundanyis introdued by suh a transformation is a fundamental one. Furthermore, loally testable proofs(i.e., PCPs) have been used not only to derive non-approximability results but also for obtainingpositive results (e.g., CS-proofs [36, 39℄ and their appliations [8, 21℄), and the length of the PCPa�ets the omplexity of those appliations.In any ase, the length of PCPs is also relevant to non-approximability results; spei�ally, ita�ets their tightness with respet to the running time. For example, suppose (exat) SAT hasomplexity 2
(n). The original PCP Theorem [5, 4℄ only implies that approximating MaxSATrequires time 2n� , for some (small) � > 0. The work of [40℄ makes � arbitrarily lose to 1, whereasthe results of [32, 18℄ further improve the lower-bound to 2n1�o(1) . We mention that it is urrentlynot known whether these improved lower-bounds an be ahieved simultaneously with optimalapproximation ratios, but the hope is that this an eventually be done.
14



2.4 A onfused historyThere is a great deal of onfusion regarding redits for some of the de�nitions presented in thissetion.16 We refer mainly to the de�nition of loally testable odes. This de�nition (or at leasta related notion)17 is arguably impliit in [7℄ as well as in subsequent works on PCP (see x2.3.4).Furthermore, the de�nition of loally testable odes has appeared independently in the works ofFriedl and Sudan [28℄ and Rubinfeld and Sudan [41℄ as well as in the PhD Thesis of Arora [3℄.3 Results and IdeasWe review the know onstrutions of loally testable odes and proofs, starting from odes andproofs of exponential length and onluding with odes and proofs of nearly linear length.3.1 The mere existene of loally testable odes and proofsThe mere existene of loally testable odes and proofs, regardless of their length, is non-obvious.Thus, we start by realling the simplest onstrutions known.3.1.1 The Hadamard Code is loally testableThe simplest example of a loally testable ode (of onstant relative distane) is the Hadamardode. This ode, denoted CHad, maps x 2 f0; 1gk to a string, of length n = 2k, that providesthe evaluation of all GF(2)-linear funtions at x; that is, the oordinates of the odeword areassoiated with linear funtions `(z) = Pki=1 `izi and so CHad(x)` = `(x) = Pki=1 `ixi. Testingwhether a string w 2 f0; 1g2k is a odeword redues to linearity testing. This is the ase beausew is a odeword of CHad if and only if, when viewed as a funtion w : f0; 1gk ! f0; 1g, it islinear (i.e., w(z) = Pki=1 izi for some i's or equivalently w(y + z) = w(y) + w(z) for all y; z).Spei�ally, loal testability is ahieved by uniformly seleting y; z 2 f0; 1gk and heking whetherw(y+ z) = w(y)+w(z). The analysis of this natural tester, due to Blum, Luby and Rubinfeld [19℄,turned out to be highly omplex (f. [19, 6, 25, 12, 13, 10℄). In partiular, it is known that if wis Æ-far from linear then the aforementioned (3-query) test rejets with probability at least �(Æ),where the funtion � : [0; 0:5℄ ! [0; 1℄ is de�ned as follows:�(x) def= 8><>: 3x� 6x2 0 � x � 5=1645=128 5=16 � x � 45=128x 45=128 � x � 1=2:The above lower bound is omposed of three di�erent bounds with \phase transitions" at x = 516and x = 45128 . It was shown in [10℄ that this ombined lower bound is lose to the best one possible.We believe is that this strange behavior of the rejetion probability is a strong indiation of thenon-triviality of the nature of this \innoent looking" test.16Some onfusion exists also with respet to some of the results and onstrutions desribed in Setion 3, but inomparison to what is going to be disussed here the latter onfusion is minor.17The related notion refers to the following relaxed notion of odeword testing: For two �xed good odes C1 �C2 � f0; 1gn, one has to aept (with high probability) every odeword of C1, but rejet (with high probability)every string that is far from being a odeword of C2. Indeed, our de�nitions refer to the speial (natural) ase thatC2 = C1, but the more general ase suÆes for the onstrution of PCPs (and is impliitly ahieved in most of them).15



Other odes. We mention that Reed-Muller Codes of onstant order are also loally testable [1℄.These odes have sub-exponential length, but are quite popular in pratie. The Long Code is alsoloally testable [11℄, but this ode has double-exponential length (and was introdued merely forthe design of PCPs). Finally, we mention that random linear odes (of linear length) require anyodeword tester to read a linear number of bits of the odeword [16℄, thus providing an additionalindiation to the non-triviality of loal testability.3.1.2 The Hadamard-Based PCP of ALMSSThe simplest example of a loally testable proof (for a set not known to be in BPP) is the \innerveri�er" of the PCP onstrution of Arora, Lund, Motwani, Sudan and Szegedy [4℄, whih in turn isbased on the Hadamard ode. Spei�ally, proofs of the satis�ability of a given system of quadratiequations over GF(2) are presented by providing a Hadamard enoding of the outer-produt ofa satisfying assignment (i.e., a satisfying assignment � 2 f0; 1gn is presented by CHad(�), where� = (�i;j)i;j2[n℄ and �i;j = �i�j). Given an alleged proof � 2 f0; 1g2n2 , the proof-tester proeeds asfollows:1. Tests that � is indeed a odeword of the Hadamard Code. If the test passes then w is loseto some CHad(�), for an arbitrary � = (�i;j)i;j2[n℄.2. Tests that the aforementioned � is indeed an outer-produt of some � 2 f0; 1gn. Notethat the Hadamard enoding of � is supposed to be part of the Hadamard enoding of� (beause Pni=1 i�i = Pni=1 i�2i is supposed to equal Pni=1 i�i;i). So we would liketo test that the latter odeword mathes the former one. Spei�ally, we wish to testwhether (�i;j)i;j2[n℄ equals (�i�j)i;j2[n℄ (i.e., the equality of two matries). This an bedone by uniformly seleting (r1; :::; rn); (s1; :::; sn) 2 f0; 1gn, and omparing Pi;j risj�i;j andPi;j risj�i�j = (Pi ri�i)(Pj sj�j).The above would have been �ne if w = CHad(�), but we only know that w is lose to CHad(�).The Hadamard enoding of � is a tiny part of the latter, and so we should not try to retrievethe latter diretly (beause this tiny part may be totally orrupted). Instead, we use theparadigm of self-orretion (f. [19℄): In general, for any �xed  = (i;j)i;j2[n℄, whenever wewish to retrieve Pni=1 i;j�i;j , we uniformly selet r = (ri;j)i;j2[n℄ and retrieve both w(r) andw(r + ). Thus, we obtain a self-orreted value of w(); that is, if w is Æ-lose to CHad(�)then w(r + )� w(r) =Pni=1 i;j�i;j with probability at least 1� 2Æ.Using self-orretion, we indiretly obtain bits in CHad(�), for � = (�i)i2[n℄ = (�i;i)i2[n℄. Sim-ilarly, we an obtain any other desired bit in CHad(�), whih in turn allows us to test whether(�i;j)i;j2[n℄ = (�i�j)i;j2[n℄. In fat, we are heking whether (�i;j)i;j2[n℄ = (�i;i�j;j)i;j2[n℄, byomparingPi;j risj�i;j and (Pi ri�i;i)(Pj sj�j;j), for randomly seleted (r1; :::; rn); (s1; :::; sn) 2f0; 1gn.3. Finally, we need to hek whether the aforementioned � satis�es the given system of equations.Towards this end, we uniformly selets a linear ombination of the equations, and hekwhether � satis�es the resulting (single) equation. Note that the value of the orrespondinglinear expression (in quadrati (and linear) forms) appears as a bit of the Hadamard enodingof �, but again we retrieve it from w by using self orretion.One key observation underlying the analysis of Steps 2 and 3 is that for (u1; :::; un) 6= (v1; ::::; vn) 2f0; 1gn, if we uniformly selet (r1; ::::; rn) 2 f0; 1gn then Pr[Pi riui = Pi rivi℄ = 1=2. Similarly,16



for n-by-n matries A 6= B, when r; s 2 f0; 1gn are uniformly seleted (vetors), it holds thatPr[As = Bs℄ = 2�rank(A�B) and it follows that Pr[rAs = rBs℄ � 3=4.3.2 Loally testable odes and proofs of polynomial lengthThe onstrutions presented in Setion 3.1 have exponential length in terms of the relevant param-eter (i.e., the amount of information being enoded in the ode or the length of the assertion beingproved). Ahieving loal testability by odes and proofs that have polynomial length turns out tobe even more hallenging.3.2.1 Loally testable odes of quadrati lengthA diret interpretation of low-degree tests (f. [6, 7, 29, 41, 28℄), proposed by Friedl and Sudan [28℄and Rubinfeld and Sudan [41℄, yields a loally testable ode of quadrati length over a suÆientlylarge alphabet. Similar (and atually better) results for binary odes required additional ideas,and have appeared only later (f. [32℄). We sketh both onstrutions below, starting with loallytestable odes over very large alphabets (whih are de�ned analogously to the binary ase).We will onsider a ode C : �k ! �n of linear distane, with j�j � k and n > k2. Forparameters m � d < log k (suh that k < dm), onsider a �nite �eld F of size O(d) and analphabet � = F d+1. Viewing the information as a m-variant polynomial p of total degree d overF , we enode it by providing its value on all possible lines over Fm, where eah suh line is de�nedby two points in Fm. Atually, the value of p on suh a line an be represented by a univariantpolynomial of degree d. Thus, the ode maps log2 jF j(m+dd ) > (d=m)m log jF j bits of information(whih may be viewed as k def= (d=m)m=(d + 1) � dm�1=mm long sequenes over � = F d+1) tosequenes of length n def= jF j2m = O(d)2m over �. Note that the smaller m, the better the rate (i.e.,relation of n to k) is, but this omes at the expense of using a larger alphabet. In partiular, weonsider two instantiations:1. Using d = mm, we get k � mm2�2m and n = m2m2+o(m), whih yields n � exp(plog k) � k2and log j�j = log jF jd+1 � d log d � exp(plog k).2. Letting d = m for any onstant  > 1, we get k � m(�1)m and n = m2m+o(m), whih yieldsn � k2=(�1) and log j�j � d log d � (log k).As for the odeword tester, it uniformly selets two interseting lines and heks that the orre-sponding univarinat polynomials agree on the point of intersetion. Thus, this tester makes twoqueries (to an orale over the alphabet �). The analysis of this tester redues to the analysis ofthe orresponding low degree test, undertaken in [4, 40℄.The above tester uses only two queries, but the entire desription (whih refers to odes over alarge alphabet) deviates from the bulk of our treatment, whih has foused on a binary alphabet.We omment that 2-query loally testable binary odes are essentially impossible (f., [14℄), butwe have already seem that 3-query tests are possible. A natural way of reduing the alphabet sizeof odes is via the well-known paradigm of onatenated odes [26℄.18 However, loal testabilityan be maintained only in speial ases. In partiular, observe that, for eah of the two queries18A onatenated ode is obtained by enoding the symbols of an \outer ode" (using the oding method of the\inner ode"). Spei�ally, let C1 : �k11 ! �n11 be the outer ode and C2 : �k22 ! �n22 be the inner ode, where�1 � �k22 . Then, the onatenated ode C : �k1k22 ! �n1n22 is obtained by C(x1; :::; xk1) = (C2(y1); :::;C2(yn1 )),where xi 2 �k22 � �1 and (y1; :::; yn1 ) = C1(x1; :::; xk1). Using a good inner ode for relatively short sequenes, allowsto transform good odes for a large alphabet into good odes for a smaller alphabet.17



made by the tester of C, the tester does not need the entire polynomial represented in � = F d+1,but rather only its value at a spei� point. Thus, enoding � by an error orreting ode thatsupports reovery of the said value while using a onstant number of probes will do.19 In partiular,Goldreih and Sudan used an enoding of F d+1 = F he by sequenes of length jF jeh over F , andprovided a testing and reovery proedure that makes O(e) queries [32, Se. 3.3℄. We mention thatthe ase of e = 1 and jF j = 2 orresponds to the Hadamard ode, and that bigger onstant e allowfor shorter odes. The resulting onatenated ode, C0, is a loally testable ode over F , and haslength n �O(d)eh = n � exp((e log d) � d1=e). Using onstant e = 2 and setting d = m � (log k), weget n � k2=(�1) � exp( eO(log k)1=2) and jF j = poly(log k). Finally, a binary loally testable odeis obtained by onatenating C0 with the Hadamard ode, while noting that the latter supportsa \loal reovery" property that suÆes to emulate the tester for C0. In partiular, the tester ofC0 merely heks a linear (over F ) equation referring to a onstant number of F -elements, andfor F = GF (2`), this an be emulated by heking related random linear ombinations of the bitsrepresenting these elements, whih in turn an be loal reovered (or rather self-orreted) from theHadamard ode. The �nal result is a loally testable (binary) ode of nearly quadrati length.203.2.2 Loally testable proofs of polynomial length: The PCP TheoremThe ase of proofs is far more omplex: Ahieving loally testable proof of polynomial length isessentially the ontents of the elebrated PCP Theorem of Arora, Lund, Motwani, Safra, Sudanand Szegedy [5, 4℄. The onstrution is analogous to (but far more omplex than) the one presentedin the ase of odes:21 First one onstruts proofs over a large alphabet, and next one omposessuh proofs with orresponding \inner" proofs (over a smaller alphabet, and �nally a binary one).The �rst step is to introdue the following NP-omplete problem. The input to the problemonsists of a �nite �eld F , a subset H � F of size bjF j1=15, an integer m < jHj, and a (3m + 4)-variant polynomial P : F 3m+4 ! F of total degree 3mjHj + O(1). The problem is to determinewhether there exists an m-variant (\assignment") polynomial A : Fm ! F of total degree mjHjsuh that P (x; z; y; �; A(x); A(y); A(z)) = 0 for every x; y; z 2 Hm and � 2 f0; 1g3 � H. Note thatthe problem-instane an be expliitly desribed by a sequene of jF j3m+4 log2 jF j bits, whereas thesolution sought an be expliitly desribed by a sequene of jF jm log2 jF j bits. We omment thatthe NP-ompleteness of the aforementioned problem an be proved by a redution from 3SAT, byidentifying the variables of the formula with Hm and essentially letting P be a low-degree extensionof a funtion f : H3m � f0; 1g3 ! f0; 1g that enodes the struture of the formula (by onsideringall possible 3-lauses). In fat, the resulting P has degree jHj in eah of the �rst 3m variables andonstant degree in eah of the other variables, and this fat an be used to improve the parametersbelow (but not in a fundamental way).The proof that P satis�es the aforementioned ondition onsists of an m-variant polynomialA : Fm ! F (whih is supposed to be of total degree mjHj) as well as 3m + 4 auxiliary poly-nomials Ai : F 3m+1 ! F , for i = 1; :::; 3m + 1 (eah supposedly of degree (3mjHj + O(1)) �mjHj). The polynomial A is supposed to satisfy the onditions of the problem, and in partiularP (x; z; y; �; A(x); A(y); A(z)) = 0 should hold for every x; y; z 2 Hm and � 2 f0; 1g3 � H. Fur-19Indeed, this property is related to loally deodable odes, to be disussed in Setion 4. Here we need to reoverone out of jF j spei� linear ombinations of the enoded (d + 1)-long sequene of F -symbols. In ontrast, loallydeodable refers to reovering one out of the original F -symbols of the (d+ 1)-long sequene.20Atually, the aforementioned result is only impliit in [32℄, beause Goldreih and Sudan apply these ideas diretlyto a trunated version of the low-degree based ode.21Our presentation reverses the historial order in whih the orresponding results (for odes and proofs) wereahieved. That is, the onstrutions of loally testable proof of polynomial length predated the oding ounterparts.18



thermore, A0(x; z; z; �) def= P (x; z; y; �; A(x); A(y); A(z)) should vanish on H3m+1. The auxiliarypolynomials are given to assist the veri�ation of the latter ondition. In partiular, it should bethe ase that Ai vanishes on F iH3m+1�i, a ondition that is easy to test for A3m+1 (assuming thatA3m+1 is a low degree polynomial). Cheking that Ai�1 agrees with Ai on F i�1H3m+1�(i�1), fori = 1; :::; 3m + 1, and that all Ai's are low degree polynomials, establishes the laim for A0. Thus,testing an alleged proof (A;A1; :::; A3m+1) is performed as follows:1. Testing that A is a polynomial of total degree mjHj. This is done by seleting a randomline through Fm, and testing whether A restrited to this line agrees with a degree mjHjunivariant polynomial.2. Testing that, for i = 1; :::; 3m+ 1, the polynomial Ai is of total degree d def= (3mjHj+O(1)) �mjHj. Here we selet a random line through F 3m+1, and test whether Ai restrited to thisline agrees with a degree d univariant polynomial.3. Testing that, for i = 1; :::; 3m + 1, the polynomial Ai agrees with Ai�1 on F i�1H3m+1�(i�1).This is done by uniformly seleting r0 = (r1; :::; ri�1) 2 F i�1 and r00 = (ri+1; :::; r3m+1) 2F 3m+1�i, and omparing Ai�1(r0; e; r00) to Ai(r0; e; r00), for every e 2 H. In addition, we hekthat both funtions when restrited to the axis-parallel line (r0; �; r00) agree with a univariantpolynomial of degree d.22 We stress that the values of A0 are omputed aording to the givenpolynomial P by aessing A at the adequate loations (i.e., by de�nition A0(x; z; z; �) =P (x; z; y; �; A(x); A(y); A(z))).4. Testing that A3m+1 vanishes on F 3m+1. This is done by uniformly seleting r 2 F 3m+1, andtesting whether F (r) = 0.The above desription (whih follows [42, Apdx. C℄) is somewhat di�erent than the original presen-tation in [4℄, whih in turn follows [6, 7, 25℄.23 The above tester may be viewed as making O(mjF j)queries to an orale over the alphabet F , or alternatively as makingO(mjF j log jF j) binary queries.24Note that we have already obtained a highly non-trivial tester. It makes O(mjF j log jF j) queries inorder to verify a laim regarding an input of length n def= jF j3m+4 log2 jF j. Usingm = log n= log logn,jHj = logn and jF j = poly(log n), we have obtained a tester of poly-logarithmi query omplexity.To further redue the query omplexity, one invokes the \proof omposition" paradigm, intro-dued by Arora and Safra [5℄. Spei�ally, one omposes an \outer" tester (as desribed above)with an \inner" tester that heks the residual ondition that the \outer" tester determines for theanswers it obtains. This omposition is more problemati than one suspets, beause we wish the\inner" tester to perform its task without reading its entire input (i.e., the answers to the \outer"tester). This seems quite paradoxial, as how an the \inner" tester operate without reading itsentire input. The problem an be resolved by using a \proximity tester" (i.e., a PCP of proximity)as an \inner" tester, provided that it suÆes to have suh a proximity test (for the answers to the\outer" tester).� One approah, introdued in [4℄, is to onvert the \outer" tester into one that makes a onstantnumber of queries over some larger alphabet, and furthermore have the answer be presented22Thus, e�etively, we are self-orreting the values at H (on the said line), based on the values at F (on that line).23The point is that the sum-hek, whih originates in [38℄, is replaed by an analogous proess (whih happens tobe non-adaptive).24Another alternative perspetive is obtained by applying so-alled parallelization (f. [37, 4℄). The result is a testmaking a onstant number of queries that are eah answered by strings of length poly(jF j).19



in an error orreting format. The implementation of this approah onsists of two stepsand is based on some spei�s. The �rst step is to onvert the \outer" tester into one thatmakes a onstant number of queries over some larger alphabet. This step uses the so-alledparallelization tehnique (f. [37, 4℄). Next, one applies an error orreting ode to these O(1)longer answers, and assumes that the \proximity tester" an handle inputs presented in thisformat (i.e., that it an test an input that is presented by an enoding of a onstant numberof its parts).25� An alternative approah, pursued and advoated in [15℄, is to take advantage of the spei�struture of the queries, \bundle" the answers together and furthermore show that the \bun-dled" answers are \robust" in a sense that �ts proximity testing. In partiular, the (generi)parallelization step is avoided, and is replaed by a loser analysis of the spei� (outer)tester.We will demonstrate the latter approah next.First, we show how the queries of the aforementioned tester an be \bundled" (into a onstantnumber of bundles). In partiular, we onsider the following \bundling" that aommodates alltypes of tests (and in partiular the m+1 di�erent sub-tests performed in Steps 2 and 3). ConsiderB(x1; ::::; x3m+1) = (A1(x1; x2; ::::; x3m+1); A2(x2; ::::; x3m+1; x1); :::; A3m+1(x3m+1; x1; ::::; x3m))and perform all 3m+ 1 tests of Step (3) by seleting uniformly (r2; :::; r3m+1) 2 F 3m and queryingB at (e; r2; :::; r3m+1) and (r3m+1; e; :::; r3m) for all e 2 F . Thus, all 3m + 1 tests of Step (3)an be performed by retrieving the values of B on a single axis parallel random line throughF 3m+1. Furthermore, note that all 3m + 1 tests of Step (2) an be performed by retrieving thevalues of B on a single (arbitrary) random line through F 3m+1. Finally, observe that the testsare \robust" in the sense that if, for some i, the funtion Ai is (say) 0.01-far from satisfying theondition (i.e., being low-degree or agreeing with Ai�1) then with onstant probability many ofthe values of Ai on an adequate random line will not �t to what is needed. This robustnessproperty is inherited by B, as well as by B0 (resp., A0) that is obtained by applying a good binaryerror-orreting ode on B (resp., on A). Thus, we may replae A and the Ai's by A0 and B0,and ondut all all tests by making O(m2jF j log jF j) queries to A0 : Fm � [O(log jF j)℄ ! f0; 1gand B0 : F 3m+1 � [O(log jF j3m+1)℄ ! f0; 1g. The robustness property asserts that if the originalpolynomial P had no solution (i.e., an A as above) then the answers obtained by the tester will befar from satisfying the residual deision prediate of the tester.One the robustness property of the resulting (\outer") tester �ts the proximity testing featureof the \inner tester", omposition is possible. Indeed, we ompose the \outer" tester with an\inner tester" that heks whether the residual deision prediate of the \outer tester" is satis�es.The bene�t of this omposition is that the query omplexity is redued from poly-logarithmi topolynomial in a double-logarithm. At this point we an a�ord the Hadamard-Based proof tester(beause the overhead in the proof omplexity will only be exponential in a polynomial in a double-logarithmi funtion), and obtain a loally testable proof of polynomial length.25The aforementioned assumption holds trivially in ase one uses a generi \proximity tester" (i.e., a PCP ofproximity or an Assignment Tester) as done in [23℄. But the aforementioned approah an be (and was in fatoriginally) applied with a spei� \proximity tester" that an only handle inputs presented in one spei� format(f. [4℄).
20



3.3 Loally testable odes and proofs of nearly linear lengthWe now move on to even shorter odes and proofs; spei�ally, odes and proofs of nearly linearlength. The latter term has been given quite di�erent interpretations, and we start by sorting theseout.3.3.1 Types of nearly linear funtionsA few ommon interpretations of this term are listed below (going from the most liberal to themost strit one).T1-nearly linear: A very liberal notion, at the verge of an abuse of the term, refers to a sequeneof funtions f� : N ! N suh that, for every � > 0, it holds that f�(n) � n1+�. That is, eahfuntion is atually of the form n 7! n, for some onstant  > 1, but the sequene as a wholean be viewed as approahing linearity.The PCP of Polishhuk and Spielman [40℄ and the simpler loally testable ode of Goldreihand Sudan [32, Thm. 2.4℄ have nearly linear length in this sense.T2-nearly linear: A more reasonable notion of nearly linear funtions refers to individual fun-tions f suh that f(n) = n1+o(1). Spei�ally, for some funtion � : N ! [0; 1℄ that goes tozero, it holds that f(n) � n1+�(n). Common sub-types inlude the following:1. �(n) = 1= log log n.2. �(n) = 1=(log n) for some  2 (0; 1).The urrently best loally testable odes and proofs [32, 18, 15℄ have nearly linear lengthin this sense.3. �(n) = exp((log log log n))= log n for some  2 (0; 1).Indeed, the ase in whih �(n) = O(log log n)= log n (or so) deserves a speial ategory.T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmi(or quasi-poly-logarithmi) fator. In the former ase f(n) � poly(logn) � n, whih orre-sponds to the ase of f(n) � n1+�(n) with �(n) = O(log log n)= log n, whereas the latter aseorresponds to �(n) = poly(log log n)= log n (i.e., in whih ase f(n) � (log n)poly(log log n) � n).Using the above notation, we summarize the state of the art with respet to loal testability ofodes and proofs.3.3.2 Loal testability with nearly linear lengthCurrently, loally testable odes and proofs of nearly linear length are known when nearly linear isinterpreted as Type T2 (i.e., T2-nearly linear). More generally, we have:Theorem 3.1 (Ben-Sasson, Goldreih, Harsha, Sudan and Vadhan [15℄): There exists a universalonstant  > 2 suh that for every funtion q : N! N satisfying 2 � q(k) � 2 log log klog log log k there existsa q-loally testable proof of length Fq(k) � k for satis�ability (of formulae of length k), whereFq(k) def= exp "�q(k) + (log k) q(k)� � (log log k) + (log k) 2q(k) + q(k)22 � poly log log log k# (1)The same length bound holds for q-loally testable odes, where k denotes the length of the infor-mation being enoded. 21



Let us derive two extreme ases of Theorem 3.1, while setting t = q(k)=.1. Constant query omplexity: For t 2 [2; :::; 0:99 log log klog log log k ℄, we have (log k) 1t > (log log k)1=0:99 andso Ft(k) = exp((log k) 2t ). In partiular, for any onstant t, we get loally testable proofs andodes (i.e.,  � t-loally testable proofs and odes) of length exp((log k) 2t ) � k = k1+�(k), where�(k) = 1=(log k)1� 2t .2. T3-nearly linear length: For t � 1:01 log log klog log log k , we have (log k) 1t � (log log k)1=1:01 and so Ft(k) =exp(t2 � poly log log log k) = exp( eO(log log k)2). In partiular, setting t = 2 log log klog log log k , we geto(log log k)-loally testable proofs and odes of length exp( eO(log log k)2) � k.For an even striter notion of T3-nearly linear (i.e., a poly-logarithmi fator rather than a quasi-poly-logarithmi one), testers of poly-logarithmi query omplexity are known.query omplexity length overhead ommentspoly(log k) poly(log k) Theorem 3.2.o(log log k) exp(poly(log log k)) These are two extreme asesAny onstant q exp((log k)O(1=q)) of Theorem 3.1.Figure 1: The best known q(�)-loally testable odes and proofsTheorem 3.2 (Ben-Sasson and Sudan [17℄): There exists a poly-logarithmi funtion f : N ! Nsuh that there exist f -loally testable odes and proofs of length f(k) �k, where k denotes the lengthof the atual information (i.e., the assertion in ase of proofs and the enoded information in aseof odes).The known results are summarized in Figure 1, where k is as in Theorems 3.1 and 3.2. The ultimategoal may be to obtain loally testable (i.e., O(1)-loally testable) odes and proofs of T3-nearlylinear length. Indeed, we onjeture that this is possible.Conjeture 3.3 There exist loally testable odes and proofs of length poly(log k) � k.We onjeture that loally testable odes and proofs of (stritly) linear length annot be ahieved.Conjeture 3.4 There exist no loally testable odes and proofs of linear length.3.3.3 The ideas underlying the onstrutionsWe briey mention some of the ideas that underly the proofs of Theorems 3.1 and 3.2.A nearly linear arithmeti representation of SAT. The proof of the PCP Theorem starts bya redution of 3SAT to an arithmeti problem, but the redution (as skethed in x3.2.2) representsan n-variable input formula as a binary string of length O(n3). Thus, this very �rst step alreadyubes the length of the onstruted proof. An alternative arithmetization, whih only inurs apoly-logarithmi inrease in length, is obtained by �rst \embedding" the formula in a de-Bruijn22



graph suh that the variables and lauses are plaed at verties of the opposite ends of the graph(f. [7, 40℄). The spei� formula will be enoded in an adequate routing of the variables to thelauses in whih they appear, and the arithmetization will \hard-wire" this routing in an adequatepolynomial (of the type used in x3.2.2). Extra ompliations arises when one seeks to performthis proess \optimally" (i.e., with the minimal number of variables), whih is important whenusing large �elds (as seems required for deriving the results of Theorem 3.1). These diÆulties areresolved in di�erent ways in [40℄ and in [15℄, respetively.Derandomizing low-degree tests. Another soure of polynomial blow-up in the proof length isthe low-degree tests, whih play a key role in all PCP onstrutions (f. x3.2.2). Reall that to testthat a funtion of the form f : Fm ! F is low degree, we fethed its values on points of a randomline. Sine a sub-proof will be (eventually) appended per eah suh a hoie (of a line), we willneed jF 2mj suh sub-proofs squaring the size of the original funtion f . Thus, a derandomizationof this test (as done non-onstrutively in [32℄ and onstrutively in [18, 15℄) is of key importane.In partiular, it turns out that it suÆes to onsider a set of eO(jFm�1j) lines; spei�ally, eahline is spei�ed by a anonial point (residing on this line) and a slope that belongs to a subset ofpoly-logarithmi many slopes (out of all jFmj possible slopes) [18℄.Avoiding parallelization. As explained in x3.2.2, parallelization play a key role in all previousPCP onstrutions, and applying it inreases the size of the proof by a fator that is at leastproportional to the query omplexity of the original PCP. But this is too muh in the ontext ofproving Theorem 3.1, and so the alternative \bundling" tehnique was introdued and used (in [15℄)in order to support a new proof omposition method (skethed already in x3.2.2). Similarly, othertypes of paking various polynomials into a single polynomial (by using an auxiliary variable),whih were used in prior onstrutions, have to be avoided.Unbounded number of proof ompositions. As mentioned above, proof omposition plays aentral role in the onstrution of PCPs. The reason being that a PCP must satisfy two onitingonditions; spei�ally, have relatively small query omplexity and still be short. Trying to optimizeboth omplexity measures simultaneously turns out to be very hard, and proof omposition allowsto make progress based on \non-optimal" onstrutions. Typially, the more we an apply proofomposition, the better. Indeed, signi�ant progress was ahieved by using a non-onstant (e.g.,double-logarithmi) number of proof ompositions [15, 23℄. In the ontext of providing short PCPs,the new omposition method of [15℄ has played an important role. The result, stated in Theorem 3.1,is a PCP with query omplexity that is linear in the number of proof ompositions (denoted t),and length overhead that dereases double-exponentially with this number (i.e., the overhead isessentially exp((log k)2=t)).Reursive onstrution of a speial purpose PCPP. The aforementioned proof ompositionparadigm seems to inur an unavoidable poly-logarithmi blow-up in the proof length, per eahappliation. This is the soure of the (log k)t fator in Eq. (1), where t = q(k)= is the numberof proof ompositions. This overhead is due to the fat that we redue a spei� problem (i.e.,evaluating the residual tester deision regarding the orale's answers) to a generi one, and thenarithmetize the latter.26 An alternative approah was taken in [17℄, resulting in Theorem 3.2:They �rst onstrut a q(k)-loal odeword tester, for q(k) = pk, and then redue the residual test26Our feeling is that a poly-logarithmi blow-up is unavoidable when reduing a spei� problem to a generi one.23



to testing the same odeword property on sequenes of length q(k). Unfortunately, the redutionuses a onstant number of reursive alls, and so the end result uses a number of queries that isexponential (rather than linear) in the number of ompositions, whih in turn is double-logarithmi.4 Loally Deodable CodesLoally deodable odes are omplimentary to loal testable odes. Reall that the latter are requiredto allow for super-fast rejetion of strings that are far from being odewords (while aepting allodewords). In ontrast, in ase of loally deodable odes, we are guaranteed that the input islose to a odeword, and are required to reover individual bits of the enoded information basedon a small number of probes (per reovered bit). As in ase of loal testability, the ase when theoperation (in this ase deoding) is performed based on a onstant number of probes is of speialinterest.Loal deodability is of natural pratial appeal, whih in turn provides additional motivationfor loal testability. The point being that it makes little sense to try reover part of the data, inase the odeword is too orrupted. Thus, one should �rst apply loal testability to hek that thereeived odeword is not too orrupted, and apply loal deodability only in ase the odeword testpasses.4.1 De�nitionsWe follow the onventions of Setion 2.1, but extend the treatment to odes over any �nite alphabet� (rather than insisting on � = f0; 1g). In the following, we use the notation [k℄ def= f1; 2; :::; kg.De�nition 4.1 Let C : �k ! �n be a ode, and let q 2 N and Æ 2 (0; 1). A q-loal Æ-deoder for Cis a probabilisti (non-adaptive) orale mahine M that makes at most q queries and satis�es thefollowing ondition:Loal reovery from somewhat orrupted odewords: For every i 2 [k℄ and x = (x1; :::; xk) 2 �k,and any w 2 �n that is Æ-lose to C(x), on input i and orale aess to w, mahine M outputsxi with probability at least 2=3. That is, Pr[Mw(1k; i) =xi℄ > 2=3, for any w 2 �n that isÆ-far from C(x).We all q the query omplexity of M , and Æ the proximity parameter.Note that the proximity parameter must be smaller than the overing radius of the ode (as oth-erwise the de�nition annot possibly be satis�es (at least for some w and i)). One may strengthenDe�nition 4.1 by requiring that the bits of an unorrupted odeword be always reovered orretly(rather than with high probability); that is, for every i 2 [k℄ and x = (x1; :::; xk) 2 �k, it musthold that Pr[MC(x)(1k; i)=xi℄ = 1. Turning to families of odes, we make the following de�nition(whih potentially allows the alphabet to grow with k).De�nition 4.2 For funtions n; � : N ! N, let C = fCk : [�(k)℄k ! [�(k)℄n(k)gk2K . We say thatC is a loal deodable ode if there exist onstants Æ > 0 and q and a mahine M that is a q-loalÆ-deoder for Ck, for every k 2 K.We mention that loally deodable odes are related to (information theoreti seure) PrivateInformation Retrieval shemes, introdued in [22℄. In the latter a user wishes to reover a bit24



of data from a k-bit long database, opies of whih are held by s servers, without revealing anyinformation to any single server. To that end, the user (seretly) ommuniates with eah of theservers, and the issue is to minimize the total amount of ommuniation. As we shall see, ertains-server PIR shemes yield 2s-loally deodable odes of length exponential in the ommuniationomplexity of the PIR.Related notions of loal reovery. The notion of loal deodability is a speial ase of ageneral notion of loal reovery, where one may be required to reover an arbitrary funtion ofthe original information based on a onstant number of probes to the (orrupted) odeword. Thefuntion f : �k ! f0; 1g� be better restrited in two ways: First it should have a small range (e.g.,its range may be �), and seondly it should ome from a small predetermined set F of funtions.De�nition 4.1 may be reast in these terms, by onsidering the set of projetion funtions (i.e.,ffi : �k ! �g where fi(x1; :::; xk) = xi). We believe that this is the most natural speial aseof the general notion of loal reovery. In x3.2.1 we referred to another speial ase, where thealphabet is assoiated with a �nite �eld F and the reovery funtion fe : F k ! F is one out of jF jpossible linear funtions (spei�ally, fe(x1; :::; xk) = Pki=1 ei�1xi, for e 2 F ).27 Another naturalase (also used in x3.2.1) is that of the reovery of (orret) symbols of the odeword, whih may beviewed as self-orretion. (In this ase the set of funtions orrespond to the funtions determiningeah odeword symbol as a funtion of the enoded message.)4.2 ResultsThe best known loally deodable odes are of sub-exponential length. Spei�ally, k informationbits an be enoded by odewords of length n = exp(kO(log log q)=q log q) that are loally deodableusing q bit-probes (f. [9℄). It is onjetured that, for every q there exists an � > 0, suh that loallydeodability based on q queries (i.e., probes) requires odewords of length n > exp(k�).4.2.1 Loally deodable odes of sub-exponential lengthFor any d � 1, there is a simple onstrution of a 2d-loally 2�d�2-deodable binary ode of lengthn = 2d�k1=d . For h = k1=d, we identify [k℄ with [h℄d, and view x 2 f0; 1gk as (xi1;:::;id)i1;:::;id2[h℄.We enode x by providing the parity of all xi1;:::;id residing in eah of the (2h)d sub-ubes of [h℄d;that is, for every (S1; :::; Sd) 2 2[h℄ � � � � � 2[h℄, we provide C(x)S1;:::;Sd = �i12S1;:::;id2Sdxi1;:::;id.Indeed, the Hadamard ode is the speial ase in whih d = 1. To reover the value of xi1;:::;id,at any desired (i1; :::; id) 2 [h℄d, the deoder uniformly selets (R1; :::; Rd) 2 2[h℄ � � � � � 2[h℄, andreovers the (possibly orrupted) values C(x)S1;:::;Sd, where eah Sj either equals Rj or equalsRj4fijg. The key observation is that eah of the deoder's queries is uniformly distributed.Thus, with probability at least 3=4, XORing the 2d answers, yields the desired result (beause�S12fR1;R14fi1gg;:::;Sd2fRd;Rd4fidggC(x)S1;:::;Sd equals C(x)fi1g;:::;fidg = xi1;:::;id).We omment that a related ode (of length n = 2dd�k1=d) allows for reovery based on d +1 (rather 2d) queries. The original presentation, due to [2℄ (building on [22℄), is in terms ofPIR shemes (with s = (d + 1)=2 servers and overall ommuniation dd � k1=d = exp( eO(s)) �k1=(2s�1)). In partiular, in the ase d = 2, we use two servers, sending (R1; R2; R3) to one and(R14fi1g; R24fi2g; R34fi3g) to the other. Upon reeiving (S1; S2; S3), eah server replies with thebit C(x)S1;S2;S3 = �j12S1;j22S2;j32S3xj1;j2;j3 , as well as the sequenes (C(x)S14f1g;S2;S3 ; :::;C(x)S14fk1=3g;S2;S3),27Indeed, the value fe(x1; :::; xk) is the evaluation at e of the polynomial p(�) =Pki=1 xi�i�1 represented by theoeÆients (x1; :::; xk). 25



(C(x)S1;S24f1g;S3 ; :::;C(x)S1 ;S24fk1=3g;S3), and (C(x)S1;S2;S34f1g; :::;C(x)S1 ;S2;S34fk1=3g), whih al-low the user to reover C(x)S14fi1g;S2;S3 , C(x)S1;S24fi2g;S3 , and C(x)S1;S2;S34fi1g.The orresponding loally deodable ode is obtained by a generi transformation that ap-plies to any PIR sheme with s servers, in whih the user makes uniformly distributed queriesof length qst(k), gets answers of length ans(k), and reovers the desired value by XORing somepredetermined bits ontained in the answers. In this ase, the resulting ode will ontain theHadamard enoding of eah of the possible answers provided by eah of the servers; that is, if thej-th server answers aording to Aj(x; q) 2 f0; 1gans(k), where x 2 f0; 1gk and q 2 f0; 1gqst(k), thenC(x)j;q;` = CHad(Aj(x; q))`, for every ` 2 f0; 1gans(k). Thus, the length of the ode is s�2qst(k)�2ans(k).Now, on input i 2 [k℄, the deoder emulates the PIR user, obtaining the query sequene (q1; :::; qs)and the desired linear ombinations (`1; ::::; `s). It uniformly selets r1; :::; rs 2 f0; 1gans(k), queriesthe (possibly orrupted) odeword at loations (1; q1; r1); (1; q1; r1� `1); :::; (s; qs; rs); (s; qs; rs� `s),and XORs the 2s answers.As mentioned above, better loally testable odes are known, but their onstrution is moreinvolved (f. [9℄). Again, it is instrutive to onsider �rst the onstrution of PIR shemes, in whihase s servers allow for a sheme with overall ommuniation k�(s), where �(s) = O(log log s)=s log s�1=(2s � 1). In partiular, �(3) = 4=21 improving over the previous bound of 1=5.Theorem 4.3 [9℄: For every onstant q, there exist q-loally deodable binary odes of length n =exp(k�(q)), where �(q) = O(log log q)q log q :4.2.2 Polylog-loal deoding for odes of nearly linear lengthWe will onsider a ode C : �k ! �n of linear distane, while identifying � with a �nite �eld. Forparameters h and m = logh k, onsider a �nite �eld F of size O(m � h), and a subset H � F of sizeh. Viewing the information as a funtion f : Hm ! F , we enode it by providing the values of itslow-degree extension bf : Fm ! F on all points in F , where bf is a m-variant polynomial of degreejHj�1 in eah variable. Thus, the ode maps k = hm long sequenes over F (whih may be viewedas hm log jF j bits of information) to sequenes of length n def= jF jm = O(mh)m = O(m)m �k over F .This ode has relative distane mh=jF j. Note that the smaller m, the better the rate (i.e., relationof n to k) is, but this omes at the expense of using a larger alphabet F (as well as larger queryomplexity of the deoder presented below).The deoder works by applying the self-orretion paradigm. Given a point x 2 Hm and aessto an orale w : Fm ! F that is 1=2-lose to bf , the value of f(x) is reovered by uniformly seletinga line through x, querying for the jF j values of w along the line, �nding the degree mh univariantpolynomial with the greatest agreement with these values, and evaluating it at the adequate point.Thus, we obtain an jF j-loal deoder.Using a onstant m, we obtain an O(k1=m)-loally deodable ode of onstant rate (i.e., n =O(k)), over an alphabet of size O(k1=m). On the other hand, using m = � log k= log log k (forany onstant � > 0), we obtain a poly(log k)-loally deodable ode of length n = k1+�, over analphabet of size poly(log k). Conatenation with any reasonable28 binary ode (oupled with atrivial deoder that reads the entire odeword), yields a binary poly(log k)-loally deodable odeof length n = k1+�.28Indeed, we may use any good ode (i.e., linear length and linear distane), as suh an be easily onstruted forblok length O(log log k). But we an even use the Hadamard ode, beause the length overhead aused by it in thissetting is negligible. 26



4.2.3 Lower BoundsIt is known that loally deodable odes annot be T2-nearly linear: Spei�ally, any q-loallydeodable ode C : �k ! �n must satisfy n = 
(k1+ 1q�1 ) (f. [34℄). For q = 2 and � = f0; 1g, anexponential lower bound is known (f. [35℄, following [31℄). We onjeture that loally deodableodes annot have polynomial length. In fat, we onjeture that loally deodable odes musthave sub-exponential length.Conjeture 4.4 For every q there exists an � > 0 suh that, for every Æ > 0 and all suÆienlylarge k, if C : f0; 1gk ! f0; 1gn has a q-loal Æ-deoder then n > exp(k�).We atually onjeture the same for families of odes over arbitrary alphabets, even when thealphabet size grows arbitrarily with k.4.3 RelaxationsIn light of the aforementioned onjeture it is natural to seek relaxations to the notion of loallydeodable odes. One natural relaxation requires loal reovery of most individual information-bits, allowing for reovery-failure (but not error) on the rest [15℄: That is, it is requires that,whenever few loation are orrupted, based on a onstant number of queries, the deoder shouldbe able to reover most of the individual information-bits, and for the rest of the loations, thedeoder may output a fail symbol (but not the wrong value). Augmenting these requirements bythe requirement that whenever the odeword is not orrupted { all bits are reovered orretly(with high probability), yields the following de�nition.De�nition 4.5 For funtions n; � : N! N, let C = fCk : f0; 1gk ! f0; 1gn(k)gk2K. For q 2 N andÆ; � 2 (0; 1), a q-loal relaxed (Æ; �)-deoder for C is a probabilisti (non-adaptive) orale mahineM that makes at most q queries and satis�es the following onditions:Loal reovery from unorrupted odewords: For every i 2 [k℄ and x = (x1; :::; xk) 2 �k, it holdsthat Pr[MC(x)(1k; i)=xi℄ > 2=3,Relaxed loal reovery from somewhat orrupted odewords: For every x = (x1; :::; xk) 2 �k, andany w 2 �n that is Æ-lose to C(x), the following two onditions hold:1. For every i 2 [k℄, it holds that Pr[MC(x)(1k; i)2 fxi;?g℄ > 2=3, where ? is a speial(\failure") symbol.2. There exists a set Iw � [k℄ of size at least �k suh that, for every i 2 Iw, it holds thatPr[MC(x)(1k; i)=xi℄ > 2=3.29In suh a ase, C is said to be loally relaxed-deodable.It turns out (f. [15℄) that Condition 2, in the relaxed reovery requirement, essentially follows fromthe other requirements. That is, odes satisfying the other requirements an be transformed intoloally relaxed-deodable odes, while essentially preserving their rate (and distane). Furthermore,the resulting odes satisfy the following stronger form of Condition 2: There exists a set Iw � [k℄of density at least 1 � O(�(w;C(x))=n) suh that for every i 2 Iw it holds that Pr[MC(x)(1k; i)=xi℄ > 2=3.29We stress that it is not required that Pr[MC(x)(1k; i) = ?℄ > 2=3 for i 2 [k℄ n Iw. Adding this requirementollapses the notion of relaxed-deodability to ordinary deodability (f. [20℄).27



Theorem 4.6 [15℄: There exist loally relaxed-deodable odes of T1-nearly linear length. Speif-ially, for every � > 0, there exists odes of length n = k1+� that have a O(1=�2)-loal relaxed(
(�); 1 �O(�))-deoder.An obvious open problem is to separate loally deodable odes from relaxed ones. This may followby either improving the aforementioned lower bound on the length of loally deodable odes or byproviding relaxed loally deodable odes of T2-nearly linear length.
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